JP2010069418A - Catalyst for oxidizing formaldehyde and method of manufacturing the catalyst - Google Patents

Catalyst for oxidizing formaldehyde and method of manufacturing the catalyst Download PDF

Info

Publication number
JP2010069418A
JP2010069418A JP2008240115A JP2008240115A JP2010069418A JP 2010069418 A JP2010069418 A JP 2010069418A JP 2008240115 A JP2008240115 A JP 2008240115A JP 2008240115 A JP2008240115 A JP 2008240115A JP 2010069418 A JP2010069418 A JP 2010069418A
Authority
JP
Japan
Prior art keywords
catalyst
manganese
cerium
component
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008240115A
Other languages
Japanese (ja)
Other versions
JP5441380B2 (en
Inventor
Shinya Kitaguchi
真也 北口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2008240115A priority Critical patent/JP5441380B2/en
Publication of JP2010069418A publication Critical patent/JP2010069418A/en
Application granted granted Critical
Publication of JP5441380B2 publication Critical patent/JP5441380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for efficiently oxidizing indoor formaldehyde of low-concentration at comparative low temperature to completely oxidize the formaldehyde into carbon dioxide and water and remove the formaldehyde and to provide a method of manufacturing the catalyst. <P>SOLUTION: The catalyst for oxidizing formaldehyde includes a manganese-cerium uniformly/densely-mixed oxide as a catalyst A component and at least one metallic element selected from elements belonging to group 8 to group 11 of the periodic table as a catalyst B component. The catalyst A component is the manganese-cerium uniformly/densely-mixed oxide which has an X-ray diffraction peak corresponding to the fluorite structure of cerium dioxide as a main peak and contains manganese of 10-60 mass% in terms of manganese dioxide. The catalyst for oxidizing formaldehyde can be manufactured by using inexpensive raw materials, a simple manufacturing facility and a simple manufacturing method and can make formaldehyde be oxidized completely at comparably low temperature without using a noble metal and indoor air be cleaned. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、オフィスや住居の室内の空気中に存在するホルムアルデヒド等の有害物質を比較的低温で酸化分解するホルムアルデヒド酸化触媒に関するものである。ホルムアルデヒドは本触媒により完全酸化されて二酸化炭素と水になり無害化される。   The present invention relates to a formaldehyde oxidation catalyst that oxidatively decomposes harmful substances such as formaldehyde present in the air in offices and residential rooms at a relatively low temperature. Formaldehyde is completely oxidized by this catalyst to become carbon dioxide and water and detoxified.

オフィスや住居の気密性の向上により、壁材、床材等の内装材から発生するホルムアルデヒド、トルエン、キシレン等の有害物質の除去に対する関心が高まっている。特にホルムアルデヒドは長期吸入により慢性呼吸系疾病にかかるおそれがあり、世界保健機関(WHO)によって発ガン性物質および催奇形性物質に指定されているほか、突然変異性が強い物質として、もっとも危険な化学物質のリストに入れられています。そこでシックハウス対策として材料メーカ、住宅メーカでは、ホルムアルデヒドを発生しない材料を用いて施工したり、施工後施主に引き渡す前に、住宅内をエージングしたりしてホルムアルデヒド濃度を低減する等の対策が実施されています。しかしながらホルムアルデヒドの発生源は建材以外にも家具、カーテン、カーペットや喫煙と多岐に亘り、室内の低濃度の有害ガスを効率的かつ経済的に処理する技術がもとめられている。   With the improvement of the airtightness of offices and residences, there is an increasing interest in removing harmful substances such as formaldehyde, toluene and xylene generated from interior materials such as wall materials and floor materials. In particular, formaldehyde may cause chronic respiratory illness due to long-term inhalation. It is designated as a carcinogen and teratogenic substance by the World Health Organization (WHO), and it is the most dangerous as a substance with strong mutagenicity. In the list of chemicals. Therefore, as measures against sick houses, material manufacturers and housing manufacturers have implemented measures such as reducing the formaldehyde concentration by constructing materials that do not generate formaldehyde or aging the interior of the housing before handing over to the owner after construction. It is. However, the source of formaldehyde is not limited to building materials, but covers a wide range of furniture, curtains, carpets, and smoking, and a technology for efficiently and economically treating indoor low-concentration harmful gases is being sought.

ホルムアルデヒドの除去法に関しては、活性炭、ゼオライト、モレキュラシープ、多孔質粘土、活性アルミナおよびシリカゲルなどの吸着剤が用いられているが、これら吸着剤は寿命があり、所定量のホルムアルデヒドを吸着すると飽和して吸着性能が低下する。したがって、定期的に、例えば数ヶ月毎に吸着剤を交換する必要があり、その性能を維持するのに過大な労力や費用を要する。   For the removal method of formaldehyde, adsorbents such as activated carbon, zeolite, molecular sheep, porous clay, activated alumina and silica gel are used, but these adsorbents have a lifetime and are saturated when a certain amount of formaldehyde is adsorbed. As a result, the adsorption performance decreases. Therefore, it is necessary to replace the adsorbent regularly, for example, every several months, and excessive labor and cost are required to maintain the performance.

触媒技術によりホルムアルデヒド等の室内の有害物質や臭気物質を無臭無害な物質に分解する方法は、通常200℃以上の温度に昇温する必要があり、一般に貴金属系触媒を使用して処理する方法が知られている。また貴金属を使用しない触媒として例えば2種以上の遷移金属を共沈法により作成したMn/Cu複合酸化物等の脱臭触媒(特許文献1)や、クロム、鉄、コバルトおよび銅のいずれかとマンガンよりなる複合酸化物を含有する脱臭用触媒組成物(特許文献2)のようなマンガン複合酸化物系触媒が提案されている。マンガン系等の複合酸化物を作成するには共沈等の複雑な装置や製造工程の管理が必要とされる。   The method of decomposing indoor harmful substances and odorous substances such as formaldehyde into odorless and harmless substances using catalyst technology usually requires heating to a temperature of 200 ° C or higher, and generally a method using a precious metal catalyst is used. Are known. As a catalyst that does not use a noble metal, for example, a deodorization catalyst (Patent Document 1) such as Mn / Cu composite oxide prepared by coprecipitation of two or more transition metals, or any one of chromium, iron, cobalt and copper and manganese A manganese composite oxide catalyst such as a deodorizing catalyst composition containing a composite oxide (Patent Document 2) has been proposed. Production of complex oxides such as manganese-based materials requires complicated equipment such as coprecipitation and management of manufacturing processes.

また最近では、ホルムアルデヒドを常温で効率的に酸化分解する触媒として還元処理で酸素欠陥を有するセリウム酸化物に貴金属を担持した触媒(特許文献3)や、酸化セリウム−酸化ジルコニウム複合酸化物等に10nm以下の金を担持した触媒(特許文献4)が開示されている。常温で酸化処理する方法はガスを昇温するためのエネルギー費が不要となるが、、ガス中の不純物の影響や副生成物の蓄積等により処理性能低下が生じたりする可能性があった。また還元処理や複合酸化物の作成等で製造方法が複雑であること及び高価な貴金属を多量に担持するため触媒費用が高くなるという問題があった。
また、その他の方法として、酸化チタンに紫外線を照射する光触媒法や放電を用いてオゾンを発生させるオゾン酸化法があるが、処理効率の低さやオゾンの人体に与える影響などから有効な技術とはいえない。
Recently, as a catalyst for efficiently oxidizing and decomposing formaldehyde at room temperature, a catalyst in which a noble metal is supported on a cerium oxide having oxygen defects by reduction treatment (Patent Document 3), a cerium oxide-zirconium oxide composite oxide, etc. The following gold-supported catalyst (Patent Document 4) is disclosed. The method of oxidizing at room temperature does not require the energy cost for raising the temperature of the gas, but there is a possibility that the processing performance may be deteriorated due to the influence of impurities in the gas and accumulation of by-products. In addition, there are problems that the manufacturing method is complicated by reduction treatment, composite oxide production, and the like, and that a large amount of expensive noble metal is supported, resulting in high catalyst costs.
Other methods include the photocatalytic method of irradiating titanium oxide with ultraviolet light and the ozone oxidation method of generating ozone using electric discharge. However, the effective technology is due to the low processing efficiency and the effect of ozone on the human body. I can't say that.

特開平8 −243396号公報JP-A-8-243396 特開平10−180108号公報Japanese Patent Laid-Open No. 10-180108 特開2001−187343号公報JP 2001-187343 A 特開2004−74069号公報JP 2004-74069 A

本発明は、上述のような問題点を解決するためになされたものであり、室内の低濃度ホルムアルデヒドを比較的低温度でホルムアルデヒドを効率良く酸化し、二酸化炭素と水に完全酸化して除去する触媒及びそれを用いた空気清浄化方法を提供することである。また本触媒の製造方法は簡単であり、複雑な製造設備を必要としない。   The present invention has been made to solve the above-described problems, and efficiently removes low-concentration formaldehyde in a room at a relatively low temperature by efficiently oxidizing formaldehyde and completely oxidizing it into carbon dioxide and water. A catalyst and an air cleaning method using the same are provided. Moreover, the manufacturing method of this catalyst is simple and does not require complicated manufacturing equipment.

上記課題を解決するために、本発明のホルムアルデヒド酸化触媒は、触媒A成分としてマンガン−セリウムの均密混合酸化物と触媒B成分として周期律表8〜11族に属する元素の中から選ばれた少なくとも一種以上の金属元素を含有しており、前記触媒A成分は二酸化セリウムの蛍石型構造に対応するX線回折ピークを主ピークとするものであり、かつマンガンを二酸化マンガン換算で10〜60質量%含有するマンガン−セリウム均密混合酸化物であることを特徴とするものである。
本発明のホルムアルデヒド酸化触媒は触媒A成分であるマンガン−セリウム均密混合酸化物を30質量%以上、触媒B成分の金属元素を0.05〜20質量%含有していることが好ましい。
In order to solve the above problems, the formaldehyde oxidation catalyst of the present invention was selected from manganese-cerium homogeneous mixed oxide as the catalyst A component and elements belonging to groups 8 to 11 of the periodic table as the catalyst B component. It contains at least one or more metal elements, and the catalyst A component has an X-ray diffraction peak corresponding to the fluorite structure of cerium dioxide as the main peak, and manganese is 10 to 60 in terms of manganese dioxide. It is characterized by being a manganese-cerium homogeneous mixed oxide containing by mass.
The formaldehyde oxidation catalyst of the present invention preferably contains 30% by mass or more of the manganese-cerium homogeneous mixed oxide as the catalyst A component and 0.05 to 20% by mass of the metal element of the catalyst B component.

触媒B成分の金属元素としては鉄、コバルト、ニッケル、銅、銀および金から選ばれる少なくとも1種であることが好ましく、その含有量はホルムアルデヒド酸化触媒に対して1〜20質量%とすることができる。
またホルムアルデデヒド酸化触媒は触媒A成分と触媒B成分に加えて、さらに触媒C成分として酸化アルミニウム、酸化チタン、酸化ジルコニウム、ゼオライトおよびチタン系複合酸化物からなる群から選ばれる少なくとも1種の耐火性無機酸化物を含有することができる。
The metal element of the catalyst B component is preferably at least one selected from iron, cobalt, nickel, copper, silver and gold, and the content thereof is 1 to 20% by mass with respect to the formaldehyde oxidation catalyst. it can.
The formaldehyde oxidation catalyst is at least one refractory selected from the group consisting of aluminum oxide, titanium oxide, zirconium oxide, zeolite and titanium-based composite oxide as catalyst C component in addition to catalyst A component and catalyst B component. An inorganic oxide can be contained.

本発明のホルムアルデヒド酸化触媒の製造方法において、触媒A成分として酸化セリウムまたは酸化セリウムの前駆体にマンガン塩溶液を混合し乾燥後に空気中300〜900℃で焼成してマンガン−セリウム均密混合酸化物を調製する工程を有していることを特徴とする。この際、マンガン塩1モルに対して0.1〜2モルの有機酸をマンガン塩溶液に添加することが好ましい。   In the method for producing a formaldehyde oxidation catalyst of the present invention, a manganese salt solution is mixed as a catalyst A component with cerium oxide or a precursor of cerium oxide, dried and then calcined in air at 300 to 900 ° C. to obtain a manganese-cerium homogeneous mixed oxide It has the process of preparing. Under the present circumstances, it is preferable to add 0.1-2 mol organic acid with respect to 1 mol of manganese salts to a manganese salt solution.

本発明のホルムアルデヒド酸化触媒に用いる触媒A成分であるマンガン−セリウム均密混合酸化物は安価な原料、簡便な製造設備や製造方法で製造可能であり、触媒B成分と組み合わせることにより比較的低温でホルムアルデヒドを完全酸化して室内空気を清浄化することができる。   Manganese-cerium dense mixed oxide, which is a catalyst A component used in the formaldehyde oxidation catalyst of the present invention, can be produced with inexpensive raw materials, simple production equipment and production methods, and is combined with the catalyst B component at a relatively low temperature. Formaldehyde can be completely oxidized to clean indoor air.

本発明のホルムアルデヒド酸化触媒は触媒A成分としてマンガン−セリウム均密混合酸化物と触媒B成分として周期律表8〜11族に属する元素の中から選ばれた少なくとも一種以上の金属元素を含有するものであって、前記触媒A成分はX線回折測定した時に検出される結晶ピークが二酸化セリウムの蛍石型構造に対応する位置に主ピークを有しており、かつマンガンを二酸化マンガン換算で10〜60質量%含有するマンガンーセリウム均密混合酸化物であることを特徴とする。   The formaldehyde oxidation catalyst of the present invention contains a manganese-cerium dense mixed oxide as a catalyst A component and at least one metal element selected from elements belonging to groups 8 to 11 of the periodic table as a catalyst B component. The catalyst A component has a main peak at a position corresponding to a fluorite structure of cerium dioxide as detected by X-ray diffraction measurement, and manganese is 10 to 10 in terms of manganese dioxide. It is characterized by being a manganese-cerium homogeneous mixed oxide containing 60% by mass.

触媒B成分の周期律表8〜11族に属する金属元素としては、8族の鉄、ルテニウム、9族のコバルト、ロジウム、10族のニッケル、パラジウム、白金および11族の銅、銀、金などが使用可能である。   Examples of metal elements belonging to groups 8 to 11 of the periodic table of the catalyst B component include group 8 iron, ruthenium, group 9 cobalt, rhodium, group 10 nickel, palladium, platinum and group 11 copper, silver, gold, and the like. Can be used.

本発明の触媒A成分のマンガン−セリウム均密混合酸化物とは、X線回折にて測定した際に、酸化マンガンに由来する回折ピークはほとんど見られず、二酸化セリウムの結晶ピークを主ピークとして得られるものを表している。粉末試料の結晶構造は格子面間隔(d値)を測定することにより確認することが可能である。X線回折の測定条件は、CuKα線源、電圧45KV、電流40mA、走査範囲10〜90°、走査速度0.198°/minで実施した。本願発明により得られたマンガン−セリウム均密混合酸化物のX線回折の測定結果において主ピークのd値は3.07〜3.15の範囲にあり、JCPDS(Joint Committee of Powder Diffraction Standarts)カード記載の二酸化セリウムの蛍石型構造のd値である3.12とほぼ一致する。またカードに記載されている二酸化セリウムのd値は相対強度が高い順に、3.12、1.91、1.63、2.71等であり、主ピーク以外もほぼ一致した位置に結晶ピークが検出され、マンガン−セリウム均密混合酸化物の結晶構造は二酸化セリウム蛍石型構造にほぼ類似していると考えられる。   With the manganese-cerium homogeneous mixed oxide of the catalyst A component of the present invention, when measured by X-ray diffraction, almost no diffraction peak derived from manganese oxide is seen, and the crystal peak of cerium dioxide is the main peak. It represents what is obtained. The crystal structure of the powder sample can be confirmed by measuring the lattice spacing (d value). The measurement conditions for X-ray diffraction were a CuKα radiation source, a voltage of 45 KV, a current of 40 mA, a scanning range of 10 to 90 °, and a scanning speed of 0.198 ° / min. In the X-ray diffraction measurement result of the manganese-cerium dense mixed oxide obtained by the present invention, the d value of the main peak is in the range of 3.07 to 3.15, and the JCPDS (Joint Committee of Powder Diffraction Standards) card. This is almost the same as 3.12 which is the d value of the described cerium dioxide fluorite structure. Moreover, the d value of cerium dioxide described on the card is 3.12, 1.91, 1.63, 2.71, etc. in descending order of relative intensity, and there is a crystal peak at almost the same position other than the main peak. It is detected that the crystal structure of the manganese-cerium dense mixed oxide is almost similar to the cerium dioxide fluorite structure.

触媒A成分であるマンガン−セリウム均密混合酸化物はマンガンを二酸化マンガン換算で10〜60質量%、好ましくは15〜50質量%、より好ましくは20〜40質量%の範囲で含有する。このように高い含有率でマンガンを含有するにも係らず、酸化マンガンに由来する回折ピークがほとんど見られないことから酸化マンガンはアモルファスな状態で酸化セリウム上に高分散されていると推定される。
マンガン−セリウム均密混合酸化物における二酸化マンガン換算の含有率が10質量%未満である場合は、ホルムアルデヒドの酸化速度が不十分となり効率的な触媒処理ができなくなり、60質量%を超える場合はマンガンの安定化が不十分となり耐熱性や耐被毒性の低下を招くので好ましくない。
The manganese-cerium homogeneous mixed oxide which is the catalyst A component contains 10 to 60% by mass, preferably 15 to 50% by mass, more preferably 20 to 40% by mass in terms of manganese dioxide. Despite containing manganese at such a high content, it is estimated that manganese oxide is highly dispersed on cerium oxide in an amorphous state because there are almost no diffraction peaks derived from manganese oxide. .
When the content of manganese-cerium dense mixed oxide in terms of manganese dioxide is less than 10% by mass, the oxidation rate of formaldehyde becomes insufficient and efficient catalytic treatment becomes impossible, and when the content exceeds 60% by mass, manganese This is not preferable since the stabilization of heat resistance becomes insufficient and the heat resistance and poisoning resistance are lowered.

一般に酸化マンガンの結晶構造としてはMnO、MnO、Mn、Mnなどの形態があり、特にMnOは活性二酸化マンガンと呼ばれ強い酸化力を有していることが知られている。しかしながらMnOは熱処理により相変化しやすいため触媒燃焼法に使用することは困難であった。本願の製造方法により得られるマンガン−セリウム均密混合酸化物は900℃の高温で熱処理してもX線回折測定において、ほとんど二酸化セリウムの蛍石型の結晶ピークが検出されるのみであり耐熱性に関しても大幅な改善効果が得られることが判っている。具体的には700℃以下の熱処理ではほぼ二酸化セリウムの結晶ピークしか検出されないが700℃を超えると若干の酸化マンガン由来の結晶ピークが検出されるようになる。また酸化マンガンは反応性が高く処理ガス中に硫黄化合物が存在すると硫化マンガンや硫酸マンガンに変質して性能低下を招きやすいことが判っているが、本発明のマンガン−セリウム均密混合酸化物は酸化マンガンが安定化されており耐硫黄被毒性に対しても改善効果が得られる。 In general, the crystal structure of manganese oxide includes MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 and the like, and especially MnO 2 is known as active manganese dioxide and has a strong oxidizing power. ing. However, MnO 2 is difficult to use in the catalytic combustion method because it easily undergoes a phase change by heat treatment. The manganese-cerium homogeneous mixed oxide obtained by the production method of the present application can only detect a fluorite-type crystal peak of cerium dioxide in the X-ray diffraction measurement even when heat-treated at a high temperature of 900 ° C. It has been found that a significant improvement effect can be obtained. Specifically, only a crystal peak of cerium dioxide is detected by heat treatment at 700 ° C. or lower, but some crystal peaks derived from manganese oxide are detected when the temperature exceeds 700 ° C. Manganese oxide is highly reactive, and it is known that when sulfur compounds are present in the processing gas, it will be transformed into manganese sulfide or manganese sulfate, which tends to cause performance degradation. Manganese oxide is stabilized, and an improvement effect is obtained with respect to sulfur poisoning resistance.

尚、本発明のマンガン−セリウム均密混合酸化物を900℃で5時間熱処理した場合には若干の酸化マンガン(γMn)の結晶ピークが出現する。γMnの主ピークはd値が2.48〜2.49の位置に検出されるが3.12近辺のセリウムの主ピークの強度を100とした場合のマンガン由来の相対強度は30以下であることが好ましく、より好ましくは20以下であることが好ましい。
マンガン−セリウム均密混合酸化物は固相混合法、固液混合法、液相共沈法、アルコキシドを用いたゾルゲル法等により製造することができる。特に安価な原料を用いて簡便な製造装置用いて高活性な均密混合酸化物を製造することができる固液混合法が好ましい製造方法として挙げられる。固液混合法として酸化セリウムまたは炭酸セリウム等の酸化セリウムの前駆体に硝酸マンガン等のマンガン塩水溶液を含浸して、乾燥、焼成することが挙げられる。空気中で300〜900℃で焼成することで、20〜100m/gの比表面積を有したマンガン−セリウム均密混合酸化物を調製することができる。
In addition, when the manganese-cerium homogeneous mixed oxide of the present invention is heat-treated at 900 ° C. for 5 hours, a slight crystal peak of manganese oxide (γMn 3 O 4 ) appears. The main peak of γMn 3 O 4 is detected at a position where the d value is 2.48 to 2.49, but the relative intensity derived from manganese when the intensity of the main peak of cerium near 3.12 is 100 is 30 or less. And more preferably 20 or less.
The manganese-cerium homogeneous mixed oxide can be produced by a solid phase mixing method, a solid-liquid mixing method, a liquid phase coprecipitation method, a sol-gel method using an alkoxide, or the like. A particularly preferable production method is a solid-liquid mixing method that can produce a highly active homogeneous mixed oxide by using a simple production apparatus using an inexpensive raw material. As a solid-liquid mixing method, a precursor of cerium oxide such as cerium oxide or cerium carbonate is impregnated with an aqueous manganese salt solution such as manganese nitrate, and then dried and fired. By firing at 300 to 900 ° C. in the air, a manganese-cerium homogeneous mixed oxide having a specific surface area of 20 to 100 m 2 / g can be prepared.

本発明のホルムアルデヒド酸化触媒は前記触媒A成分としてマンガン−セリウム均密混合酸化物を30質量%以上、触媒B成分として周期律表8〜11族の金属元素を0.05〜20質量%含有していることが好ましい。マンガン−セリウム均密混合酸化物が30質量%未満である場合はホルムアルデヒド酸化速度が遅くなり高い処理効率が得られ難く、好ましくは50質量%以上、より好ましくは70質量%以上である。また周期律表8〜11族の金属元素が0.05質量%より低い場合は低温での酸化性能が不十分となり、20質量%を超えても性能向上効果はほとんど得られず分散性が低下して粒子成長する可能性があるので好ましくない。尚、触媒B成分は各元素の金属または金属酸化物として含有されることが好ましい。   The formaldehyde oxidation catalyst of the present invention contains 30% by mass or more of manganese-cerium dense mixed oxide as the catalyst A component, and 0.05 to 20% by mass of metal elements of groups 8 to 11 of the periodic table as the catalyst B component. It is preferable. When the manganese-cerium homogeneous mixed oxide is less than 30% by mass, the formaldehyde oxidation rate is slow, and high treatment efficiency is difficult to obtain, preferably 50% by mass or more, more preferably 70% by mass or more. Moreover, when the metal element of group 8-11 of the periodic table is lower than 0.05% by mass, the oxidation performance at low temperature becomes insufficient, and even if it exceeds 20% by mass, the performance improvement effect is hardly obtained and the dispersibility is lowered. Then, there is a possibility of grain growth, which is not preferable. The catalyst B component is preferably contained as a metal or metal oxide of each element.

また触媒B成分の周期律表8〜11族の金属元素として鉄、コバルト、ニッケル、銅、銀および金から選ばれる少なくとも1種を使用することが好ましく、その含有量は1〜20質量%とすることができる。特に白金族金属と比較して安価である銀を触媒B成分として使用する場合は著しくホルムアルデヒドの低温酸化活性を向上するため好ましい。
本発明のホルムアルデヒド酸化触媒は触媒A成分のマンガン−セリウム均密混合酸化物および触媒B成分の周期律表8〜11族の金属元素に加えて、さらに酸化アルミニウム、酸化チタン、酸化ジルコニウム、ゼオライトおよびチタン系複合酸化物からなる群から選ばれる少なくとも1種の耐火性無機酸化物を触媒C成分として含有することができる。耐火性無機酸化物は0〜70質量%含有することが好ましい。耐火性無機酸化物を添加することによりホルムアルデヒド等の有害ガスの吸着特性や触媒の機械的強度の向上が得られる。耐火性無機酸化物が70質量%を超える場合は触媒A成分および触媒B成分の含有量が少なくなり、十分な触媒活性が得られなくなるので好ましくない。
Moreover, it is preferable to use at least 1 sort (s) chosen from iron, cobalt, nickel, copper, silver, and gold as a metal element of the periodic table 8-11 group of the catalyst B component, and the content is 1-20 mass%. can do. In particular, when silver, which is cheaper than platinum group metals, is used as the catalyst B component, it is preferable because the low-temperature oxidation activity of formaldehyde is remarkably improved.
The formaldehyde oxidation catalyst according to the present invention includes, in addition to the manganese-cerium dense mixed oxide of the catalyst A component and the metal elements of the periodic table group 8 to 11 of the catalyst B component, aluminum oxide, titanium oxide, zirconium oxide, zeolite, and At least one refractory inorganic oxide selected from the group consisting of titanium-based composite oxides can be contained as the catalyst C component. It is preferable to contain 0-70 mass% of refractory inorganic oxides. By adding a refractory inorganic oxide, the adsorption characteristics of harmful gases such as formaldehyde and the mechanical strength of the catalyst can be improved. When the refractory inorganic oxide exceeds 70% by mass, the contents of the catalyst A component and the catalyst B component are decreased, and sufficient catalytic activity cannot be obtained, which is not preferable.

前記耐火性無機酸化物はチタン系複合酸化物を使用することが好ましい。チタン系複合酸化物が優れている理由は明らかではないが、顕著な固体酸性を有していることでホルムアルデヒドの酸化が促進する効果が得られていると考えられる。チタン系複合酸化物としてはTi−Si複合酸化物、Ti−Zr複合酸化物およびTi−Si−Zr複合酸化物から選ばれる1種を使用することが好ましい。特にTi−Si複合酸化物は高比表面積を有しており化学的および熱的に安定であり、マンガン−セリウム均密混合酸化物と組み合わせることにより優れた耐久性を有したホルムアルデヒド酸化触媒を構成することができる。特に低温での酸化処理で問題となる硫黄系化合物を含有するガスを処理するのに好適である。室内の低濃度のホルムアルデヒドを処理するに際してチタン系複合酸化物の比表面積は100m/g以上、好ましくは150m/g以上であることが好ましい。またチタン系複合酸化物はpKa≦+3.3の酸強度を有する固体酸量が0.3mmol/g以上であることが好ましい。 The refractory inorganic oxide is preferably a titanium composite oxide. The reason why the titanium-based composite oxide is excellent is not clear, but it is considered that the effect of promoting the oxidation of formaldehyde is obtained due to the remarkable solid acidity. As the titanium-based composite oxide, it is preferable to use one selected from a Ti—Si composite oxide, a Ti—Zr composite oxide, and a Ti—Si—Zr composite oxide. In particular, Ti-Si composite oxide has a high specific surface area, is chemically and thermally stable, and forms a formaldehyde oxidation catalyst with excellent durability when combined with a manganese-cerium homogeneous mixed oxide. can do. In particular, it is suitable for treating a gas containing a sulfur compound that causes a problem in oxidation treatment at a low temperature. In treating indoor low-concentration formaldehyde, the titanium-based composite oxide has a specific surface area of 100 m 2 / g or more, preferably 150 m 2 / g or more. The titanium-based composite oxide preferably has a solid acid amount having an acid strength of pKa ≦ + 3.3 of 0.3 mmol / g or more.

次にホルムアルデヒド酸化触媒の製造方法について記載する。前述のように触媒A成分であるマンガン−セリウム均密混合酸化物は液相共沈法やゾルゲル法によっても製造することができるが、簡便な固液混合法で製造することが好ましい。固液混合法とはマンガンまたはセリウムとどちらかを固体原料を用いて、もう一方を溶液として混合して調製するものであり、好ましくはセリウム源を固体としてマンガン源を溶液で使用することが好ましい。具体的にはアモルファスな酸化セリウムまたは炭酸セリウム、水酸化セリウム等の酸化セリウムの前駆体を硝酸マンガン、塩化マンガン、酢酸マンガン等のマンガン塩水溶液を混合して、乾燥、焼成して本発明のマンガン−セリウム均密混合酸化を調製することができる。焼成は空気中300〜900℃、好ましくは500〜700℃で実施することができる。特に多孔質で高比表面積な均密混合酸化物を得ることができる炭酸セリウムをセリウム源として用いることが好ましい。   Next, a method for producing a formaldehyde oxidation catalyst will be described. As described above, the manganese-cerium homogeneous mixed oxide as the catalyst A component can be produced by a liquid phase coprecipitation method or a sol-gel method, but it is preferably produced by a simple solid-liquid mixing method. The solid-liquid mixing method is prepared by mixing either manganese or cerium with a solid raw material and the other as a solution, preferably using a cerium source as a solid and a manganese source in solution. . Specifically, the manganese of the present invention is prepared by mixing amorphous cerium oxide or a precursor of cerium oxide such as cerium carbonate and cerium hydroxide with an aqueous manganese salt solution such as manganese nitrate, manganese chloride and manganese acetate, followed by drying and firing. -A cerium homogeneous mixed oxidation can be prepared. Firing can be carried out in air at 300 to 900 ° C, preferably 500 to 700 ° C. In particular, it is preferable to use cerium carbonate as a cerium source, which can obtain a porous and dense mixed oxide having a high specific surface area.

またより高活性で微細構造を有したマンガン−セリウム均密混合酸化物を得る方法として上記マンガン塩水溶液に酢酸、クエン酸、マレイン酸、リンゴ酸、コハク酸等の有機酸を添加することが好ましい。有機酸の添加量としてはマンガン塩1モルに対して0.1〜2モル、好ましくは0.3〜1.5モル、より好ましくは0.5〜1モル添加して含浸することができる。添加量が0.1モルより少ない場合は有機酸の添加効果は得られず、2モルを超える場合は焼成時に還元雰囲気となり均密混合酸化物の性状に悪影響を与える可能性があるため好ましくない。   Further, as a method for obtaining a manganese-cerium homogeneous mixed oxide having a higher activity and a fine structure, it is preferable to add an organic acid such as acetic acid, citric acid, maleic acid, malic acid, and succinic acid to the aqueous manganese salt solution. . As the addition amount of the organic acid, it can be impregnated by adding 0.1 to 2 mol, preferably 0.3 to 1.5 mol, more preferably 0.5 to 1 mol with respect to 1 mol of the manganese salt. If the addition amount is less than 0.1 mol, the effect of adding an organic acid cannot be obtained. If the addition amount exceeds 2 mol, a reducing atmosphere is formed during firing, which may adversely affect the properties of the dense mixed oxide. .

触媒B成分は上記マンガン−セリウム均密混合酸化物上に周期律表8〜11族の金属元素の硝酸塩、硫酸塩や酢酸塩等の水溶液を噴霧や浸漬して乾燥焼成して担持することができる。また触媒B成分はマンガン−セリウム均密混合酸化物の調製時に同時に添加しても良い。   The catalyst B component may be supported by spraying or dipping an aqueous solution of a metal element of group 8 to 11 of the periodic table, such as nitrate, sulfate or acetate, on the above manganese-cerium homogeneous mixed oxide, followed by drying and firing. it can. The catalyst B component may be added simultaneously with the preparation of the manganese-cerium dense mixed oxide.

本発明のホルムアルデヒド酸化触媒は上記のようにして得られた触媒A成分であるマンガン−セリウム均密混合酸化物および触媒B成分である周期律表8〜11族の金属元素を含有する触媒組成物を押出成形して所望の形状に成形し、乾燥焼成して完成触媒となすることができる。触媒の焼成温度としては300〜900℃、好ましくは400〜600℃で空気中で焼成することが好ましい。ホルムアルデヒド酸化触媒は顆粒状、ペレット状、ハニカム状等の形状とすることができる。また触媒A成分であるマンガン−セリウム均密混合酸化物を含有する触媒組成物を成形してから周期律表8〜11族の金属元素を含有する溶液に含浸して触媒B成分を担持しても良い。   The formaldehyde oxidation catalyst of the present invention is a catalyst composition containing a manganese-cerium homogeneous mixed oxide as the catalyst A component obtained as described above and a metal element of Groups 8 to 11 in the periodic table as the catalyst B component. Can be formed into a desired shape, dried and fired to form a finished catalyst. The catalyst is preferably calcined in air at 300 to 900 ° C., preferably 400 to 600 ° C. The formaldehyde oxidation catalyst can be in the form of granules, pellets, honeycombs and the like. In addition, a catalyst composition containing a manganese-cerium homogeneous mixed oxide which is a catalyst A component is molded, and then impregnated in a solution containing a metal element of Groups 8 to 11 of the periodic table to carry the catalyst B component. Also good.

触媒組成物としては触媒A成分であるマンガン−セリウム均密混合酸化物および触媒B成分である周期律表8〜11族の金属元素以外に、触媒C成分として酸化アルミニウム、酸化チタン、酸化ジルコニウム、ゼオライトまたはチタン系複合酸化物等の耐火性無機酸化物を添加することができる。また必要により成形助剤として澱粉等の有機バインダー、シリカゾルやアルミナゾル等の無機バインダーやガラス繊維等のセラミック繊維を添加することができる。成形助剤は触媒組成物の15%以下、好ましくは10%以下で添加することが好ましい。
本発明の空気清浄化方法はホルムアルデヒド酸化触媒をホルムアルデヒドを含有する空気と常温〜150℃にて接触させて、ホルムアルデヒドを二酸化炭素と水に完全酸化することによって達成される。処理温度は低温度であるほど好ましくは常温〜150℃、より好ましくは常温〜100℃である。触媒の空間速度は1000〜1000000hr−1で処理可能であり、好ましくは10000〜200000hr−1の範囲で処理することが好ましい。本発明のホルムアルデヒド酸化触媒により室内空気中のホルムアルデヒド以外にも一酸化炭素、VOC、硫黄系化合物や窒素系化合物等の有害物質や臭気物質を酸化分解処理することができる。
As the catalyst composition, in addition to the manganese-cerium dense mixed oxide which is the catalyst A component and the metal element of Group 8 to 11 of the periodic table which is the catalyst B component, as the catalyst C component, aluminum oxide, titanium oxide, zirconium oxide, A refractory inorganic oxide such as zeolite or titanium-based composite oxide can be added. If necessary, an organic binder such as starch, an inorganic binder such as silica sol or alumina sol, or a ceramic fiber such as glass fiber can be added as a molding aid. The molding aid is preferably added at 15% or less, preferably 10% or less of the catalyst composition.
The air cleaning method of the present invention is achieved by bringing a formaldehyde oxidation catalyst into contact with air containing formaldehyde at room temperature to 150 ° C. to completely oxidize formaldehyde into carbon dioxide and water. The treatment temperature is preferably as low as possible from room temperature to 150 ° C, more preferably from room temperature to 100 ° C. The space velocity of the catalyst is processable in 1000~1000000hr -1, preferably it is preferred to treat a range of 10000~200000hr -1. The formaldehyde oxidation catalyst of the present invention can oxidatively decompose harmful substances and odorous substances such as carbon monoxide, VOC, sulfur compounds and nitrogen compounds in addition to formaldehyde in indoor air.

以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples.

(実施例1〜4)
固液混合法により触媒A成分であるマンガン−セリウム均密混合酸化物を以下の方法で調製した。粉末状の炭酸セリウムおよび硝酸マンガンの水溶液を計量して、マンガン−セリウム均密混合酸化物中の酸化マンガンの含有率がMnO換算で50質量%となるように混合して、得れたスラリー状物を150℃で一晩乾燥して500℃で5時間焼成して、ハンマ−ミルで粉砕してマンガン−セリウム均密混合酸化物MC−1粉体を得た。得られたマンガン−セリウム均密混合酸化物をCuKα線源、電圧45KV、電流40mA、走査範囲10〜90°、走査速度0.198°/minでX線回折の測定した結果、二酸化セリウムの蛍石型結晶構造を示す位置に主ピークが検出されマンガン由来の結晶ピークは観察されなかった。またBET法で測定した比表面積は48m/gであった。
(Examples 1-4)
Manganese-cerium homogeneous mixed oxide as the catalyst A component was prepared by the following method by the solid-liquid mixing method. An aqueous slurry of powdered cerium carbonate and manganese nitrate was weighed and mixed so that the manganese oxide content in the manganese-cerium dense mixed oxide was 50% by mass in terms of MnO 2. The product was dried at 150 ° C. overnight, calcined at 500 ° C. for 5 hours, and pulverized with a hammer mill to obtain a manganese-cerium homogeneous mixed oxide MC-1 powder. The obtained manganese-cerium homogeneous mixed oxide was measured for X-ray diffraction by a CuKα ray source, a voltage of 45 KV, a current of 40 mA, a scanning range of 10 to 90 °, and a scanning speed of 0.198 ° / min. A main peak was detected at a position showing a stone-type crystal structure, and no manganese-derived crystal peak was observed. The specific surface area measured by the BET method was 48 m 2 / g.

上記で得られたMC−1粉体94.4質量部、ガラス繊維5.6質量部と澱粉3質量部に適当量の水を添加してニーダーで混合し押出成形機にて5mmΦ長さ7mmの円柱状ペレットに成形し、乾燥後に500℃で5時間空気中にて焼成してペレット成形体を得た。
このようにして得られたペレット成形体に触媒B成分元素の硝酸塩水溶液を噴霧してロータリーエバポレータで100℃に加熱しながら攪拌し、十分に乾燥してから空気中で500℃2時間焼成して表1に示す組成の実施例1〜4の完成触媒を得た。
An appropriate amount of water was added to 94.4 parts by mass of the MC-1 powder obtained above, 5.6 parts by mass of glass fiber and 3 parts by mass of starch, mixed with a kneader, and 5 mmΦ 7 mm in length by an extruder. After being dried, it was dried and then fired in the air at 500 ° C. for 5 hours to obtain a pellet molded body.
The pellet shaped body thus obtained was sprayed with an aqueous nitrate solution of the catalyst B component element, stirred while heating to 100 ° C. with a rotary evaporator, sufficiently dried and then calcined in air at 500 ° C. for 2 hours. The finished catalysts of Examples 1 to 4 having the compositions shown in Table 1 were obtained.

(比較例1)
実施例1〜4において触媒B成分を担持する前のマンガン−セリウム均密混合酸化物MC−1の成形体ペレットを比較触媒とした。
(Comparative Example 1)
In Examples 1 to 4, a compact pellet of manganese-cerium homogeneous mixed oxide MC-1 before supporting the catalyst B component was used as a comparative catalyst.

(実施例5〜6)
実施例1〜4のマンガン−セリウム均密混合酸化物の調製において硝酸マンガン水溶液にクエン酸をマンガン1モルに対して1.0モル添加した以外は実施例1〜4と同様にして酸化マンガンの含有率が50質量%のマンガン−セリウム均密混合酸化物MC−2を得た。得られたMC−2粉体はX線回折測定において二酸化セリウムの蛍石型結晶構造を示す位置に主ピークが検出されマンガン由来の結晶ピークは観察されなかった。またBET法で測定したMC−2粉体の比表面積は55m/gであった。
以下、実施例1〜4と同様にして表1に示す組成の実施例5〜6の完成触媒を得た。
(Examples 5-6)
Except for adding 1.0 mol of citric acid to 1 mol of manganese in the aqueous solution of manganese nitrate in the preparation of the manganese-cerium homogeneous mixed oxide of Examples 1 to 4, the same procedure as in Examples 1 to 4 was conducted. Manganese-cerium homogeneous mixed oxide MC-2 having a content of 50% by mass was obtained. In the obtained MC-2 powder, a main peak was detected at a position showing a fluorite-type crystal structure of cerium dioxide in X-ray diffraction measurement, and a crystal peak derived from manganese was not observed. The specific surface area of the MC-2 powder measured by the BET method was 55 m 2 / g.
Thereafter, in the same manner as in Examples 1 to 4, finished catalysts of Examples 5 to 6 having the compositions shown in Table 1 were obtained.

(実施例7〜8)
まず触媒C成分となるTi−Si複合酸化物(Ti/Siモル比=85/15)を以下の方法で調製した。10重量%アンモニア水700リットルにスノーテックス−20(日産化学(株)製シリカゾル、約20重量%のSiO含有)21.3kgを加え、攪拌、混合した後、硫酸チタニルの硫酸溶液(TiOとして125g/リットル、硫酸濃度550g/リットル)340リットルを攪拌しながら徐々に滴下した。得られたゲルを3時間放置した後、ろ過、水洗し、続いて150℃で10時間乾燥した。これを500℃で焼成し、更にハンマーミルを用いて粉砕してTi−Si複合酸化物粉体TS−1を得た。
(Examples 7 to 8)
First, a Ti—Si composite oxide (Ti / Si molar ratio = 85/15) serving as a catalyst C component was prepared by the following method. After adding 21.3 kg of SNOWTEX-20 (silica sol manufactured by Nissan Chemical Co., Ltd., containing about 20% by weight of SiO 2 ) to 700 liters of 10% by weight aqueous ammonia, stirring and mixing, a sulfuric acid solution of titanyl sulfate (TiO 2) (125 g / liter, sulfuric acid concentration 550 g / liter) was gradually added dropwise with stirring. The obtained gel was allowed to stand for 3 hours, filtered, washed with water, and then dried at 150 ° C. for 10 hours. This was fired at 500 ° C. and further pulverized using a hammer mill to obtain Ti—Si composite oxide powder TS-1.

TS−1粉体の比表面積が162m/gであり、X線回折測定ではTiOやSiOの明らかな固有ピークは認められず、ブロードな回折ピークによって非晶質な微細構造を有するTi−Si複合酸化物が形成されていることが確認された。またp−ジメチルアミノアゾベンゼンを指示薬として用いてn−ブチルアミン滴定法によりTS−1の固体酸量を測定した結果、pKa≦+3.3の酸強度の固体酸量は0.48mmol/gであった。
次に実施例5〜6にて得られた触媒A成分であるマンガン−セリウム均密混合酸化物MC−2粉体に触媒B成分として硝酸銀水溶液を含浸して乾燥し空気中500℃で2時間焼成して表1に示す比率で触媒A成分に触媒B成分を担持した粉体を得た。以下、表1に示す組成で触媒A成分、触媒B成分、触媒C成分およびガラス繊維よりなる触媒組成物をニーダーで混練して押出成形機にてペレット形状に成形し、乾燥して、500℃にて5時間空気中で焼成して実施例7〜8の完成触媒を得た。
The specific surface area of the TS-1 powder is 162 m 2 / g, and X-ray diffraction measurement does not show any obvious intrinsic peaks of TiO 2 or SiO 2 , and Ti has an amorphous microstructure due to a broad diffraction peak. It was confirmed that a —Si composite oxide was formed. Moreover, as a result of measuring the solid acid amount of TS-1 by n-butylamine titration method using p-dimethylaminoazobenzene as an indicator, the solid acid amount of acid strength of pKa ≦ + 3.3 was 0.48 mmol / g. .
Next, the manganese-cerium dense mixed oxide MC-2 powder, which is the catalyst A component obtained in Examples 5 to 6, was impregnated with a silver nitrate aqueous solution as the catalyst B component, dried, and dried in air at 500 ° C. for 2 hours. The powder which carried the catalyst B component on the catalyst A component in the ratio shown in Table 1 by baking was obtained. Hereinafter, a catalyst composition composed of a catalyst A component, a catalyst B component, a catalyst C component and glass fibers with the composition shown in Table 1 is kneaded with a kneader, formed into a pellet shape with an extruder, dried, and 500 ° C. And calcined in air for 5 hours to obtain finished catalysts of Examples 7-8.

(実施例9)
固液混合法によりマンガン−セリウム−銀の均密混合酸化物を以下の方法で調製した。マンガン−セリウム−銀の均密混合酸化物のマンガンの含有率がMnOとして30質量%、銀の含有率がAgOとして20質量%となるように硝酸マンガン及び硝酸銀を計量して水に溶解した混合水溶液を粉末状の炭酸セリウムに投入し、得れたスラリー状物を150℃で一晩乾燥して500℃で5時間焼成して、ハンマ−ミルで粉砕してマンガン−セリウム−銀均密混合酸化物MCS−1粉体を得た。得られたMCS−1粉体をX線回折測定した結果、二酸化セリウムの蛍石型結晶構造を示す位置に主ピークが検出され、マンガンおよび銀に由来する結晶ピークは観察されなかった。またBET法で測定した比表面積は50m/gであった。
Example 9
A manganese-cerium-silver homogeneous mixed oxide was prepared by the following method by a solid-liquid mixing method. The manganese nitrate and silver nitrate were weighed in water so that the manganese content of the manganese-cerium-silver dense mixed oxide was 30% by mass as MnO 2 and the silver content was 20% by mass as Ag 2 O. The dissolved mixed aqueous solution is put into powdered cerium carbonate, and the resulting slurry is dried at 150 ° C. overnight, calcined at 500 ° C. for 5 hours, pulverized with a hammer mill, and manganese-cerium-silver. A uniform mixed oxide MCS-1 powder was obtained. As a result of X-ray diffraction measurement of the obtained MCS-1 powder, a main peak was detected at a position showing a fluorite-type crystal structure of cerium dioxide, and a crystal peak derived from manganese and silver was not observed. The specific surface area measured by the BET method was 50 m 2 / g.

上記で得られたMCS−1粉体、TS−1粉体およびガラス繊維を表1に示す組成で混錬しペレット状に押し出し成形し、乾燥して、500℃にて5時間空気中で焼成して実施例9の完成触媒を得た。   The MCS-1 powder, TS-1 powder and glass fiber obtained above were kneaded with the composition shown in Table 1, extruded into pellets, dried, and fired at 500 ° C for 5 hours in air. Thus, a finished catalyst of Example 9 was obtained.

(比較例2)
市販のアルミナペレット(比表面積90m/g)にジニトロジアミン白金硝酸水溶液を噴霧し、ロータリーエバポレータで回転させながら100℃で加熱して乾燥させて取り出し、空気中で400℃で2時間焼成して白金が0.1質量%担持された白金触媒を得た。
(Comparative Example 2)
Commercially available alumina pellets (specific surface area 90 m 2 / g) are sprayed with a dinitrodiamine platinum nitric acid aqueous solution, heated and dried at 100 ° C. while rotating on a rotary evaporator, and baked in air at 400 ° C. for 2 hours. A platinum catalyst carrying 0.1% by mass of platinum was obtained.

Figure 2010069418
(ホルムアルデヒド分解試験)
実施例1〜9および比較例1〜2で得られた各触媒を用いて、以下の手順でホルムアルデヒド分解試験を実施した。
ペレット触媒75ccを内径25mmのガラス管の充填し、ホルムアルデヒドが1000ppm、水分2.5%を含有する空気を空間速度5000hr−1で通ガスし出口の二酸化炭素濃度を測定して二酸化炭素転化率によりホルムアルデヒド酸化性能をもとめた。反応温度40〜80℃の各温度で測定した性能試験結果を表1に示した。
以上の結果より本発明のホルムアルデヒド酸化触媒により、高価な貴金属を使用しなくても比較的緩和な条件で室内空気の清浄化が行える。
Figure 2010069418
(Formaldehyde decomposition test)
Using the respective catalysts obtained in Examples 1 to 9 and Comparative Examples 1 and 2, a formaldehyde decomposition test was carried out in the following procedure.
A glass tube having an inner diameter of 25 mm was filled with 75 cc of pellet catalyst, air containing 1000 ppm of formaldehyde and 2.5% of water was passed through at a space velocity of 5000 hr −1 , and the carbon dioxide concentration at the outlet was measured. The formaldehyde oxidation performance was determined. The performance test results measured at each reaction temperature of 40 to 80 ° C. are shown in Table 1.
From the above results, the formaldehyde oxidation catalyst of the present invention can clean indoor air under relatively mild conditions without using expensive noble metals.

本発明は、オフィスや住居の室内の空気中に存在するホルムアルデヒド等の有害物質を酸化分解する技術に関するものであり、空気清浄化方法に用いることができる。   The present invention relates to a technique for oxidatively decomposing harmful substances such as formaldehyde present in the air of an office or a house, and can be used in an air cleaning method.

Claims (6)

触媒A成分としてマンガン−セリウム均密混合酸化物および触媒B成分として周期律表8〜11族に属する元素の中から選ばれた少なくとも一種以上の金属元素を含有するホルムアルデヒド酸化触媒であって、前記触媒A成分が二酸化セリウムの蛍石型構造に対応するX線回折ピークを主ピークとするものであり、かつマンガンを二酸化マンガン換算で10〜60質量%含有しているマンガンーセリウム均密混合酸化物であることを特徴とするホルムアルデヒド酸化触媒。 A formaldehyde oxidation catalyst containing at least one metal element selected from manganese-cerium homogeneous mixed oxide as a catalyst A component and an element belonging to groups 8 to 11 of the periodic table as a catalyst B component, The catalyst A component has an X-ray diffraction peak corresponding to the fluorite structure of cerium dioxide as the main peak, and manganese-cerium homogeneous mixed oxidation containing 10 to 60% by mass of manganese in terms of manganese dioxide Formaldehyde oxidation catalyst characterized by being a thing. ホルムアルデヒド酸化触媒は触媒A成分であるマンガン−セリウム均密混合酸化物を30質量%以上、触媒B成分の金属元素を0.05〜20質量%含有している請求項1記載のホルムアルデヒド酸化触媒。 2. The formaldehyde oxidation catalyst according to claim 1, wherein the formaldehyde oxidation catalyst contains 30% by mass or more of the manganese-cerium homogeneous mixed oxide as the catalyst A component and 0.05 to 20% by mass of the metal element of the catalyst B component. 触媒B成分の金属元素が鉄、コバルト、ニッケル、銅、銀および金から選ばれる少なくとも1種であり、その含有量が1〜20質量%である請求項2記載のホルムアルデヒド酸化触媒。 The formaldehyde oxidation catalyst according to claim 2, wherein the metal element of the catalyst B component is at least one selected from iron, cobalt, nickel, copper, silver and gold, and the content thereof is 1 to 20% by mass. 触媒C成分として酸化アルミニウム、酸化チタン、酸化ジルコニウム、ゼオライトおよびチタン系複合酸化物からなる群から選ばれる少なくとも1種の耐火性無機酸化物をさらに含有するものである請求項1〜3に記載のホルムアルデヒド酸化触媒。 The catalyst C component further contains at least one refractory inorganic oxide selected from the group consisting of aluminum oxide, titanium oxide, zirconium oxide, zeolite, and titanium-based composite oxide. Formaldehyde oxidation catalyst. 請求項1〜4に記載のホルムアルデヒド酸化触媒の製造方法であって、触媒A成分として酸化セリウムまたは酸化セリウムの前駆体にマンガン塩溶液を混合し乾燥後に空気中300〜900℃で焼成してマンガン−セリウム均密混合酸化物を調製する工程を有していることを特徴とするホルムアルデヒド酸化触媒の製造方法。 5. The method for producing a formaldehyde oxidation catalyst according to claim 1, wherein a manganese salt solution is mixed as a catalyst A component with cerium oxide or a precursor of cerium oxide, dried, and then fired at 300 to 900 ° C. in air to produce manganese. -A method for producing a formaldehyde oxidation catalyst, comprising the step of preparing a cerium homogeneous mixed oxide. 請求項5の製造方法においてマンガン塩1モルに対して0.1〜2モルの有機酸をマンガン塩溶液に添加する請求項5記載のホルムアルデヒド酸化触媒の製造方法。 6. The method for producing a formaldehyde oxidation catalyst according to claim 5, wherein 0.1 to 2 mol of an organic acid is added to the manganese salt solution with respect to 1 mol of the manganese salt in the production method of claim 5.
JP2008240115A 2008-09-19 2008-09-19 Formaldehyde oxidation catalyst and method for producing the same Active JP5441380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008240115A JP5441380B2 (en) 2008-09-19 2008-09-19 Formaldehyde oxidation catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008240115A JP5441380B2 (en) 2008-09-19 2008-09-19 Formaldehyde oxidation catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010069418A true JP2010069418A (en) 2010-04-02
JP5441380B2 JP5441380B2 (en) 2014-03-12

Family

ID=42201696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008240115A Active JP5441380B2 (en) 2008-09-19 2008-09-19 Formaldehyde oxidation catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP5441380B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115578A (en) * 2008-11-12 2010-05-27 Nissan Motor Co Ltd Compound oxide catalyst, diesel particulate filter using the same and method for manufacturing compound oxide catalyst
JP2010131531A (en) * 2008-12-05 2010-06-17 Nippon Shokubai Co Ltd Air cleaning catalyst and its manufacturing method
JP2011224546A (en) * 2010-03-31 2011-11-10 Tokyo Metropolitan Industrial Technology Research Institute Inorganic oxide molded catalyst and method for manufacturing the same
JP2013237951A (en) * 2012-05-16 2013-11-28 Tadashi Inoue Formaldehyde remover, formaldehyde-removing fiber product containing the remover and method for producing the fiber product
JP2017094309A (en) * 2015-11-27 2017-06-01 東洋紡株式会社 Aldehyde removal catalyst, method for producing the same, and aldehyde gas removal method
WO2019172445A1 (en) * 2018-03-08 2019-09-12 日東電工株式会社 Catalyst
CN111479630A (en) * 2017-12-22 2020-07-31 亮锐控股有限公司 Manganese catalyst for catalyzing formaldehyde oxidation and preparation and application thereof
CN111672503A (en) * 2020-06-03 2020-09-18 南京工程学院 Load type long-acting formaldehyde purifying agent and preparation method and application thereof
CN114130387A (en) * 2021-11-26 2022-03-04 合肥智慧环境研究院 Nitrogen-defect g-C3N4 surface-doped nano-manganese catalyst and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549943A (en) * 1991-08-20 1993-03-02 Sakai Chem Ind Co Ltd Oxidizing catalyst
JP2001038207A (en) * 1999-08-03 2001-02-13 Agency Of Ind Science & Technol Deodorization catalyst and its manufacturing method
JP3578259B2 (en) * 1998-07-02 2004-10-20 日立化成工業株式会社 Decomposition and removal of formaldehyde in air
JP2007160297A (en) * 2005-11-21 2007-06-28 Kumamoto Univ Oxidation catalyst for burning pm and cleaning method for diesel engine exhaust gas, filter and cleaning device using the same
JP2008540126A (en) * 2005-05-21 2008-11-20 エボニック デグサ ゲーエムベーハー Gold catalyst on ceria-containing support

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549943A (en) * 1991-08-20 1993-03-02 Sakai Chem Ind Co Ltd Oxidizing catalyst
JP3578259B2 (en) * 1998-07-02 2004-10-20 日立化成工業株式会社 Decomposition and removal of formaldehyde in air
JP2001038207A (en) * 1999-08-03 2001-02-13 Agency Of Ind Science & Technol Deodorization catalyst and its manufacturing method
JP2008540126A (en) * 2005-05-21 2008-11-20 エボニック デグサ ゲーエムベーハー Gold catalyst on ceria-containing support
JP2007160297A (en) * 2005-11-21 2007-06-28 Kumamoto Univ Oxidation catalyst for burning pm and cleaning method for diesel engine exhaust gas, filter and cleaning device using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115578A (en) * 2008-11-12 2010-05-27 Nissan Motor Co Ltd Compound oxide catalyst, diesel particulate filter using the same and method for manufacturing compound oxide catalyst
JP2010131531A (en) * 2008-12-05 2010-06-17 Nippon Shokubai Co Ltd Air cleaning catalyst and its manufacturing method
JP2011224546A (en) * 2010-03-31 2011-11-10 Tokyo Metropolitan Industrial Technology Research Institute Inorganic oxide molded catalyst and method for manufacturing the same
JP2013237951A (en) * 2012-05-16 2013-11-28 Tadashi Inoue Formaldehyde remover, formaldehyde-removing fiber product containing the remover and method for producing the fiber product
JP2017094309A (en) * 2015-11-27 2017-06-01 東洋紡株式会社 Aldehyde removal catalyst, method for producing the same, and aldehyde gas removal method
CN111479630A (en) * 2017-12-22 2020-07-31 亮锐控股有限公司 Manganese catalyst for catalyzing formaldehyde oxidation and preparation and application thereof
JP2021506583A (en) * 2017-12-22 2021-02-22 ルミレッズ ホールディング ベーフェー Catalysts for catalyzing formaldehyde oxidation and their preparation and use
JP7203110B2 (en) 2017-12-22 2023-01-12 ルミレッズ ホールディング ベーフェー Catalyst for catalyzing formaldehyde oxidation and its preparation and use
CN111479630B (en) * 2017-12-22 2023-11-21 亮锐控股有限公司 Manganese catalyst for catalyzing formaldehyde oxidation and preparation and application thereof
WO2019172445A1 (en) * 2018-03-08 2019-09-12 日東電工株式会社 Catalyst
CN111672503A (en) * 2020-06-03 2020-09-18 南京工程学院 Load type long-acting formaldehyde purifying agent and preparation method and application thereof
CN111672503B (en) * 2020-06-03 2023-02-03 南京工程学院 Load type long-acting formaldehyde purifying agent and preparation method and application thereof
CN114130387A (en) * 2021-11-26 2022-03-04 合肥智慧环境研究院 Nitrogen-defect g-C3N4 surface-doped nano-manganese catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
JP5441380B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5441380B2 (en) Formaldehyde oxidation catalyst and method for producing the same
CN109107567B (en) M-MnOX-CeO2Catalyst and application thereof
US9399208B2 (en) Catalysts for oxidation of carbon monoxide and/or volatile organic compounds
JP4878141B2 (en) Composite photocatalyst
JP3326836B2 (en) Catalyst body and method for producing catalyst body
TW201929957A (en) A catalyst for catalyzing formaldehyde oxidation and the preparation and use of the same
EP1857179A1 (en) Visible light-responsive photocatalyst composition and process for producing the same
CN104785302B (en) Denitrifying catalyst with selective catalytic reduction and its preparation method and application
JP2010058074A (en) Catalyst for oxidizing formaldehyde, method of producing the same, and method of cleaning air using the same catalyst
JP2007229559A (en) Catalyst for decomposing ethylene
KR20160047609A (en) Porous copper-manganese filter media and the preparation of the same
JP2010131531A (en) Air cleaning catalyst and its manufacturing method
CN107649145B (en) Catalyst for decomposing ozone and preparation method thereof
JP2007098293A (en) Visible light response type photocatalyst, visible light response type photocatalyst composition and its production method
JP2001187343A (en) Cleaning catalyst at normal temperature and utilization thereof
JPH10296087A (en) Deodorizing catalyst and its manufacture
JP4300280B2 (en) Photocatalyst
JP5503155B2 (en) Carbon monoxide removal filter
JP2916377B2 (en) Ammonia decomposition catalyst and method for decomposing ammonia using the catalyst
JPH10290933A (en) Deodorization catalyst, deodorization filter using the same and deodorizer using the same
JP5706476B2 (en) Carbon monoxide oxidation catalyst and production method thereof
JP3546766B2 (en) Deodorizing catalyst
JP2002102700A (en) Normal temperature catalyst
JP2916259B2 (en) Method for oxidative decomposition of organic halogen compounds
JP2015202440A (en) Catalyst for voc decomposition removal, production method thereof, and voc decomposition removal method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131217

R150 Certificate of patent or registration of utility model

Ref document number: 5441380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150