JP2010062457A - Diamond field-effect transistor and method of manufacturing the same - Google Patents

Diamond field-effect transistor and method of manufacturing the same Download PDF

Info

Publication number
JP2010062457A
JP2010062457A JP2008228654A JP2008228654A JP2010062457A JP 2010062457 A JP2010062457 A JP 2010062457A JP 2008228654 A JP2008228654 A JP 2008228654A JP 2008228654 A JP2008228654 A JP 2008228654A JP 2010062457 A JP2010062457 A JP 2010062457A
Authority
JP
Japan
Prior art keywords
surface layer
diamond
oxygen
effect transistor
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008228654A
Other languages
Japanese (ja)
Other versions
JP5095562B2 (en
Inventor
Makoto Kakazu
誠 嘉数
Kenji Ueda
研二 植田
Hiroyuki Kageshima
博之 影島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008228654A priority Critical patent/JP5095562B2/en
Publication of JP2010062457A publication Critical patent/JP2010062457A/en
Application granted granted Critical
Publication of JP5095562B2 publication Critical patent/JP5095562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reliable and practical diamond FET which has a high maximum operating temperature and large drain current density, and can withstand a large-power operation for a long period of time. <P>SOLUTION: A diamond crystal 1 is prepared and irradiated with hydrogen plasma (represented as H) in the reactor of a microwave CVD device to form a surface layer 2 containing hydrogen (Fig.1(a)). In a partial area on the first surface layer 2, metal films 31 and 32 of 600 nm in thickness are vapor-deposited spatially apart from each other. They serve as a source electrode 31 and a drain electrode 32. An Al thin film 4 is vapor-deposited spatially apart from each other between the source electrode 31 and drain electrode 32 (Fig.1(c)). The Al thin film 4 serves as a gate electrode 4. Then NO<SB>2</SB>is supplied to a sample to form a second surface layer 5 on the first surface layer 2 (Fig.1(d)). A protective layer 6 is deposited on the second surface layer 5 so as to cover the entire second surface layer 5 which is exposed (Fig.1(e)). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ダイヤモンド電界効果トランジスタ及びその作製方法に関し、より詳細には、室温以上でも安定な表面層を有するダイヤモンド電界効果トランジスタ及びその作製方法に関する。   The present invention relates to a diamond field effect transistor and a manufacturing method thereof, and more particularly to a diamond field effect transistor having a surface layer that is stable even at room temperature or higher and a manufacturing method thereof.

ダイヤモンド半導体は、半導体最大の絶縁耐圧、熱伝導性を有するばかりでなく、電子や正孔の移動度やドリフト速度も高く、もしダイヤモンド・トランジスタが実用化できれば、既存の半導体の性能を遥かに超える、最高の性能を持つ高周波電力トランジスタが実用可能になる(非特許文献1参照)。   Diamond semiconductors not only have the highest withstand voltage and thermal conductivity of semiconductors, but also have high electron and hole mobility and drift speed. If diamond transistors can be put to practical use, they will far exceed the performance of existing semiconductors. Thus, a high-frequency power transistor having the best performance can be put into practical use (see Non-Patent Document 1).

図6に、従来の水素終端ダイヤモンド電界効果トランジスタ(FET)の作製工程を示す。ダイヤモンド結晶層1を用意し、そのダイヤモンド結晶層1をCVDリアクター内で水素プラズマに曝し、ダイヤモンド表面を水素ラジカル(Hで表す)で終端する(図6(a))。そのようにして水素を含む表面層2を形成する。次に、水素を含む表面層2上の一部の領域に、金薄膜31、32を空間的に分離して蒸着する(図6(b))。それが各々ソース電極31、ドレイン電極32になる。次に、ソース電極31とドレイン電極32との間に、空間的に分離して、Al薄膜4を蒸着する。これがゲート電極4になる(図6(c))。次に、試料に二酸化炭素(CO)又は水(HO)を吸着させ、CO又はHOを含む表面層55を形成する。(図6(d))。このデバイスを動作させる場合の配線を図6(f)に示す。 FIG. 6 shows a manufacturing process of a conventional hydrogen-terminated diamond field effect transistor (FET). A diamond crystal layer 1 is prepared, the diamond crystal layer 1 is exposed to hydrogen plasma in a CVD reactor, and the diamond surface is terminated with hydrogen radicals (represented by H) (FIG. 6A). Thus, the surface layer 2 containing hydrogen is formed. Next, the gold thin films 31 and 32 are spatially separated and deposited in a partial region on the surface layer 2 containing hydrogen (FIG. 6B). These become the source electrode 31 and the drain electrode 32, respectively. Next, the Al thin film 4 is deposited in a spatially separated manner between the source electrode 31 and the drain electrode 32. This becomes the gate electrode 4 (FIG. 6C). Next, carbon dioxide (CO 2 ) or water (H 2 O) is adsorbed on the sample to form a surface layer 55 containing CO 2 or H 2 O. (FIG. 6 (d)). The wiring for operating this device is shown in FIG.

このような従来技術に基づき作製したダイヤモンドFET(ゲート長10μm)のドレイン電流電圧特性を図7(a)に示す。従来技術によるダイヤモンドFETの特性は、ゲート電圧−3Vにおける最大ドレイン電流密度は5mA/mmであった。   FIG. 7A shows drain current-voltage characteristics of a diamond FET (gate length: 10 μm) manufactured based on such a conventional technique. The characteristic of the diamond FET according to the prior art is that the maximum drain current density at a gate voltage of −3 V is 5 mA / mm.

嘉数 誠 外、「ダイヤモンドMESFETの高周波特性」、応用物理、2004年、第73巻、第3号、pp.363−367Makoto Kaji, “High Frequency Characteristics of Diamond MESFET”, Applied Physics, 2004, Vol. 73, No. 3, pp. 363-367

しかしながら、図8に、従来の水素終端ダイヤモンドFETのゲート電圧−3Vでのドレイン電流密度の試料温度特性を示すように、昇温すると、室温から140℃にかけてドレイン電流密度は徐々に減少するという課題があった。これは、表面層2の二酸化炭素(CO)又は水(HO)が蒸発してしまうためで、昇温によって一度減少したドレイン電流密度は、再び室温に戻してもドレイン電流密度は元に戻らない。以下の記述では、ドレイン電流密度が急激に減少する試料温度をTと呼ぶことにする。 However, FIG. 8 shows that the drain current density gradually decreases from room temperature to 140 ° C. when the temperature rises, as shown in the sample temperature characteristics of the drain current density at a gate voltage of −3 V of the conventional hydrogen-terminated diamond FET. was there. This is because carbon dioxide (CO 2 ) or water (H 2 O) in the surface layer 2 is evaporated, and the drain current density once reduced by the temperature rise is the original even if the drain current density is returned to room temperature again. Do not return to. In the following description, it will be referred to as sample temperature drain current density decreases rapidly with T C.

従来技術によれば、(1)試料を昇温すると、図6(e)に示すように、水を含む表面層55は100℃で消失してしまい、ドレイン電流は劇的に減少するという課題があった。また、(2)試料を真空状態に曝した場合も、図6(e)に示すように、表面層55は蒸発してしまうため、ドレイン電流が劇的に減少してデバイス動作しなくなるという課題があった。従来のダイヤモンドFETは、このような根本的課題を抱えていたため、実用化まで至っていなかった。   According to the prior art, (1) when the temperature of the sample is raised, as shown in FIG. 6E, the surface layer 55 containing water disappears at 100 ° C., and the drain current decreases dramatically. was there. Further, (2) even when the sample is exposed to a vacuum state, as shown in FIG. 6E, the surface layer 55 evaporates, so that the drain current is dramatically reduced and the device does not operate. was there. Conventional diamond FETs have had such fundamental problems and have not yet been put into practical use.

本発明は、このような課題に鑑みてなされたもので、その目的とするところは、最高動作温度が高くドレイン電流密度が大きい、かつ、長時間の大電力動作にも耐える信頼性のある、実用的なダイヤモンドFETを提供することにある。   The present invention has been made in view of such problems, and the object of the present invention is a high maximum operating temperature, a high drain current density, and a reliability that can withstand long-time high-power operation. The object is to provide a practical diamond FET.

このような目的を達成するために、請求項1に記載の発明は、ダイヤモンド電界効果トランジスタであって、ダイヤモンド結晶基板と、前記ダイヤモンド結晶基板上に水素原子で終端された第1の表面層と、前記ダイヤモンド結晶基板の第1の表面層上に形成された、窒素と酸素、硫黄と酸素、及び酸素のみのいずれかから成る第2の表面層と、前記第2の表面層上に互いに離間して形成されたソース電極、ゲート電極、ドレイン電極からなる電極部とを備えたことを特徴とする。   In order to achieve such an object, the invention according to claim 1 is a diamond field effect transistor, comprising: a diamond crystal substrate; and a first surface layer terminated with hydrogen atoms on the diamond crystal substrate. A second surface layer formed of only one of nitrogen and oxygen, sulfur and oxygen, and oxygen formed on the first surface layer of the diamond crystal substrate, and spaced apart from each other on the second surface layer And an electrode portion formed of a source electrode, a gate electrode, and a drain electrode.

請求項2に記載の発明は、ダイヤモンド電界効果トランジスタであって、ダイヤモンド結晶基板と、前記ダイヤモンド結晶基板上に水素原子で終端された第1の表面層と、前記第2の表面層上に互いに離間して形成されたソース電極、ゲート電極、ドレイン電極からなる電極部と、前記ダイヤモンド結晶基板の第1の表面層上に形成された、窒素と酸素、硫黄と酸素、及び酸素のみのいずれかから成る第2の表面層とを備えたことを特徴とする。   The invention according to claim 2 is a diamond field effect transistor, wherein the diamond crystal substrate, the first surface layer terminated with hydrogen atoms on the diamond crystal substrate, and the second surface layer are mutually connected. Any one of nitrogen and oxygen, sulfur and oxygen, and oxygen formed on the first surface layer of the diamond crystal substrate and the electrode portion formed of the source electrode, the gate electrode, and the drain electrode formed separately from each other And a second surface layer.

請求項3に記載の発明は、請求項1又は2に記載のダイヤモンド電界効果トランジスタにおいて、前記第2の表面層上に形成されたフッ素を含む化合物からなる保護層をさらに備えたことを特徴とする。   The invention according to claim 3 is the diamond field effect transistor according to claim 1 or 2, further comprising a protective layer made of a compound containing fluorine formed on the second surface layer. To do.

請求項4に記載の発明は、請求項1乃至3のいずれかに記載のダイヤモンド電界効果トランジスタにおいて、前記第2の表面層が、NO又はNOからなることを特徴とする。 According to a fourth aspect of the invention, the diamond field effect transistor according to any one of claims 1 to 3, wherein the second surface layer, characterized in that it consists of NO or NO 2.

請求項5に記載の発明は、ダイヤモンド電界効果トランジスタであって、ダイヤモンド結晶基板と、前記ダイヤモンド結晶基板上に形成された水素原子で終端された第1の表面層と、前記第1の表面層上に互いに離間して形成されたソース電極、ゲート電極、ドレイン電極からなる電極部と、前記第1の表面層上に形成されたフッ素を含む化合物からなる保護層とを備えたことを特徴とする。   The invention according to claim 5 is a diamond field effect transistor comprising a diamond crystal substrate, a first surface layer terminated with hydrogen atoms formed on the diamond crystal substrate, and the first surface layer. And an electrode portion formed of a source electrode, a gate electrode, and a drain electrode formed on the first surface layer, and a protective layer made of a compound containing fluorine formed on the first surface layer. To do.

請求項6に記載の発明は、請求項3乃至5のいずれかに記載のダイヤモンド電界効果トランジスタにおいて、前記保護層が、アモルファスフロロポリマー、ポリテトラフルオロエチレン、テトラフルオロエチレン及びフッ素を含むポリジメチルグルタルイミドのいずれかからなることを特徴とする。   A sixth aspect of the present invention is the diamond field effect transistor according to any one of the third to fifth aspects, wherein the protective layer includes an amorphous fluoropolymer, polytetrafluoroethylene, tetrafluoroethylene and fluorine. It consists of either imide, It is characterized by the above-mentioned.

請求項7に記載の発明は、ダイヤモンド電界効果トランジスタ作製方法であって、ダイヤモンド結晶基板表面に水素ラジカルを吸着させる第1の工程と、前記水素ラジカルが吸着した表面に窒素と酸素、硫黄と酸素、及び酸素のみのいずれかを含む第1の化合物原料を吸着させる第2の工程と、前記水素ラジカルが吸着した表面に互いに離間して形成されたソース電極、ゲート電極、ドレイン電極からなる電極部を形成する第3の工程とを含むことを特徴とする。   The invention according to claim 7 is a method for producing a diamond field effect transistor, wherein the first step of adsorbing hydrogen radicals on the surface of the diamond crystal substrate, and nitrogen and oxygen, sulfur and oxygen on the surface on which the hydrogen radicals are adsorbed. And a second step of adsorbing the first compound raw material containing only one of oxygen and an electrode portion comprising a source electrode, a gate electrode, and a drain electrode formed on the surface on which the hydrogen radicals are adsorbed and spaced apart from each other And a third step of forming.

請求項8に記載の発明は、ダイヤモンド電界効果トランジスタ作製方法であって、ダイヤモンド結晶基板表面に水素ラジカルを吸着させる第1の工程と、前記水素ラジカルが吸着した表面に互いに離間して形成されたソース電極、ゲート電極、ドレイン電極からなる電極部を形成する第2の工程と、前記水素ラジカルが吸着した表面に窒素と酸素、硫黄と酸素、及び酸素のみのいずれかを含む第1の化合物原料を吸着させる第3の工程とを含むことを特徴とする。   The invention according to claim 8 is a method for producing a diamond field effect transistor, wherein the first step of adsorbing hydrogen radicals on the surface of the diamond crystal substrate and the surface on which the hydrogen radicals are adsorbed are formed apart from each other. A second step of forming an electrode portion comprising a source electrode, a gate electrode, and a drain electrode; and a first compound raw material containing only nitrogen and oxygen, sulfur and oxygen, or oxygen on the surface on which the hydrogen radicals are adsorbed And a third step of adsorbing.

請求項9に記載の発明は、請求項7又は8に記載のダイヤモンド電界効果トランジスタ作製方法において、前記第1の化合物原料が吸着した表面にフッ素を含む第2の化合物原料を堆積させる第4の工程をさらに含むことを特徴とする。   According to a ninth aspect of the present invention, in the diamond field effect transistor manufacturing method according to the seventh or eighth aspect, the second compound raw material containing fluorine is deposited on the surface on which the first compound raw material is adsorbed. The method further includes a step.

請求項10に記載の発明は、請求項7乃至9のいずれかに記載のダイヤモンド電界効果トランジスタ作製方法において、前記第1の化合物原料は、NO又はNOであることを特徴とする。 The invention according to claim 10, in the diamond field effect transistor manufacturing method according to any one of claims 7 to 9, wherein said first compound raw material, characterized in that it is a NO or NO 2.

請求項11に記載の発明は、請求項9又は10に記載のダイヤモンド電界効果トランジスタ作製方法において、前記第2の化合物原料が、アモルファスフロロポリマー、ポリテトラフルオロエチレン、テトラフルオロエチレン及びフッ素を含むポリジメチルグルタルイミドのいずれかであることを特徴とする。   An eleventh aspect of the present invention is the method for fabricating a diamond field effect transistor according to the ninth or tenth aspect, wherein the second compound raw material is a polycrystal containing amorphous fluoropolymer, polytetrafluoroethylene, tetrafluoroethylene, and fluorine. It is one of dimethylglutarimide.

このようにして、水素終端ダイヤモンド表面をCO又はHOなる表面層より格段に安定なNO、SOなる表面層を形成することにより、また、表面層をポリテトラフルオロエチレン(PTFE)などの重合化合物からなる保護層で覆うことによって、表面層を更に安定化させ、長時間の大電力動作にも耐える信頼性のある、実用的なダイヤモンドFETが可能になる。 In this way, a surface layer made of NO 2 and SO 2 that is much more stable than the surface layer made of CO 2 or H 2 O is formed on the surface of the hydrogen-terminated diamond, and the surface layer is made of polytetrafluoroethylene (PTFE). The surface layer is further stabilized by covering with a protective layer made of a polymerized compound such as the above, and a reliable and practical diamond FET capable of withstanding long-time high-power operation becomes possible.

本発明によれば、最高動作温度が高くドレイン電流密度が大きい、かつ、長時間の大電力動作にも耐える信頼性のある、実用的なダイヤモンドFETが可能になる。   According to the present invention, a practical diamond FET having a high maximum operating temperature, a high drain current density, and a reliability that can withstand long-time high power operation can be realized.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施形態1)
図1(a)〜(e)に、本発明の実施形態1に係るダイヤモンドFETの作製工程を示す。マイクロ波プラズマCVD装置などで結晶成長したダイヤモンド結晶1を用意し、マイクロ波CVD装置のリアクター内で水素プラズマ(Hで表す)を照射し、水素を含む表面層2を形成する(図1(a))。マイクロ波プラズマCVD装置で、水素プラズマ雰囲気内で結晶成長したダイヤモンド結晶1表面は、既に水素を含む第1の表面層2を形成しているので、第1の表面層2が十分形成されている場合、改めて水素プラズマ照射処理をしなくても良い。
(Embodiment 1)
1A to 1E show a process for producing a diamond FET according to Embodiment 1 of the present invention. A diamond crystal 1 crystal-grown by a microwave plasma CVD apparatus or the like is prepared, and hydrogen plasma (represented by H) is irradiated in a reactor of the microwave CVD apparatus to form a surface layer 2 containing hydrogen (FIG. 1A )). Since the surface of diamond crystal 1 which has been crystal-grown in a hydrogen plasma atmosphere with a microwave plasma CVD apparatus has already formed a first surface layer 2 containing hydrogen, the first surface layer 2 is sufficiently formed. In this case, the hydrogen plasma irradiation process may not be performed again.

次に、第1の表面層2上の一部の領域に、空間的に分離して、厚さ600nmの金薄膜31、32を蒸着する。これは、各ソース電極31、ドレイン電極32になる。   Next, gold thin films 31 and 32 having a thickness of 600 nm are vapor-deposited in a partial region on the first surface layer 2 in a spatially separated manner. This becomes the source electrode 31 and the drain electrode 32.

次に、ソース電極31とドレイン電極32との間に、空間的に分離して、Al薄膜4を蒸着する(図1(c))。このAl薄膜4はゲート電極4になる。   Next, the Al thin film 4 is vapor-deposited spatially separated between the source electrode 31 and the drain electrode 32 (FIG. 1C). The Al thin film 4 becomes the gate electrode 4.

次に、試料にNOを供給し、第1の表面層2上に第2の表面層5を形成する(図1(d))。また、第2の表面層5は、ソース電極31とゲート電極4間、ゲート電極4とドレイン電極32間を結ぶように形成する。 Next, NO 2 is supplied to the sample, and the second surface layer 5 is formed on the first surface layer 2 (FIG. 1D). The second surface layer 5 is formed so as to connect between the source electrode 31 and the gate electrode 4 and between the gate electrode 4 and the drain electrode 32.

次に、露出した第2の表面層5全体を覆うように、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレンからなる保護層6を第2の表面層5上に堆積させる(図1(e))。図9に、本発明の実施形態1に係るダイヤモンドFETの透過型電子顕微鏡(TEM)断面図を示す。   Next, a protective layer 6 made of polytetrafluoroethylene (PTFE) or tetrafluoroethylene is deposited on the second surface layer 5 so as to cover the entire exposed second surface layer 5 (FIG. 1E). ). FIG. 9 shows a transmission electron microscope (TEM) cross-sectional view of the diamond FET according to Embodiment 1 of the present invention.

このようにして作製された本発明のダイヤモンドFETに対し、図1(f)のように配線してドレイン電流電圧特性を測定し、その結果を図7(b)に示す。本発明のダイヤモンドFETのゲート電圧−3Vにおける最大ドレイン電流密度は180mA/mmと従来の約30倍になり、トランジスタ特性は大きく向上している。   The diamond FET of the present invention thus manufactured is wired as shown in FIG. 1 (f) and the drain current-voltage characteristics are measured. The result is shown in FIG. 7 (b). The maximum drain current density at a gate voltage of −3 V of the diamond FET of the present invention is 180 mA / mm, which is about 30 times that of the conventional one, and the transistor characteristics are greatly improved.

図8に、本発明のダイヤモンドFETと従来のダイヤモンドFETのドレイン電流の試料温度特性を示す。従来のダイヤモンドFETでは、室温から140℃にかけて、第2の表面層55が蒸発してしまうため、ドレイン電流は急激に減少する。それに対して、本発明のダイヤモンドFETは、第2の表面層5が安定しているため、300℃までFET動作する。   FIG. 8 shows the sample temperature characteristics of the drain current of the diamond FET of the present invention and the conventional diamond FET. In the conventional diamond FET, since the second surface layer 55 evaporates from room temperature to 140 ° C., the drain current rapidly decreases. In contrast, the diamond FET of the present invention operates up to 300 ° C. because the second surface layer 5 is stable.

表1は、本発明の実施形態1に係るゲート長10μmのダイヤモンドFETにおけるドレイン電流密度(IDMAX)と最高動作温度(T)をまとめたものである。 Table 1 summarizes the drain current density (I DMAX ) and the maximum operating temperature (T C ) in a diamond FET having a gate length of 10 μm according to Embodiment 1 of the present invention.

本発明の実施形態1に係るゲート長10μダイヤモンドFETにおいて、保護層6にPTFEを用い、表面層2を、NO、NO、SO、Oにした場合、(IDMAX、T)は各々、表1のようになり、従来の方法による場合(6mA/mm、100℃)より大幅に上昇する。 In the diamond FET having a gate length of 10 μm according to the first embodiment of the present invention, when PTFE is used for the protective layer 6 and the surface layer 2 is NO, NO 2 , SO 2 , O 3 , (I DMAX , T C ) is Each of them is as shown in Table 1, which is significantly higher than the case of the conventional method (6 mA / mm, 100 ° C.).

また、本発明の実施形態1に係るダイヤモンドFETにおいて、表面層2に、NOにし、保護層をフッソ化ポリミド、AF1600(TFE(テトラフルオロエチレン)とPDD(ジオキソール)からなるアモルファスフロロポリマーでガラス転移点が160℃のもの)、AF2400(TFE(テトラフルオロエチレン)とPDD(ジオキソール)からなるアモルファスフロロポリマーでガラス転移点が240℃のもの)、テトラフルオロエチレン、Cとパーフルオロアルコキシエチレン、Fを含むPMMA(分子鎖内の水素の一部をフッ素で置換したポリメタクリル酸メチル樹脂)、PMGI(ポリメチルグルタルイミド)、AlF、CaF、CeF、LiF、MgF、NdF、NaFを用いた場合、(IDMAX、T)は各々、表1のようになり、従来の方法による場合(6mA/mm、100℃)より大幅に上昇する。 Further, in the diamond FET according to the first embodiment of the present invention, the surface layer 2 is made of NO 2 , and the protective layer is made of glass with an amorphous fluoropolymer made of fluorinated polyimide, AF1600 (TFE (tetrafluoroethylene) and PDD (dioxole)). those transition point of 160 ℃), AF2400 (TFE (tetrafluoroethylene) and having a glass transition point of 240 ° C. in an amorphous fluoropolymer consisting PDD (dioxole)), tetrafluoroethylene, C 2 F 4 and perfluoroalkoxy PMMA containing ethylene and F (polymethyl methacrylate resin in which a part of hydrogen in the molecular chain is substituted with fluorine), PMGI (polymethylglutarimide), AlF 3 , CaF 2 , CeF 3 , LiF, MgF 2 , NdF 3. When NaF is used, (I D MAX , T C ) are as shown in Table 1, and are significantly higher than those obtained by the conventional method (6 mA / mm, 100 ° C.).

(実施形態2)
図2に、本発明の実施形態2に係るダイヤモンドFETの構造を示す。実施形態2では、実施形態1の図1(a)〜(d)までの工程を行い、図1(e)の工程を行わない。
(Embodiment 2)
FIG. 2 shows the structure of a diamond FET according to Embodiment 2 of the present invention. In the second embodiment, the steps of FIGS. 1A to 1D of the first embodiment are performed, and the step of FIG. 1E is not performed.

本発明の実施形態2に係るゲート長を10μmのダイヤモンドFETにおいて、表面層2としてNOを用いた場合、FETのドレイン電流密度(IDMAX)と最高動作温度(T)は各々(180mA/mm、220℃)になる。保護層が無い分だけ実施形態1よりもTが低いが、従来のダイヤモンドFETの場合の(6mA/mm、100℃)より大幅に上昇する。 In a diamond FET having a gate length of 10 μm according to Embodiment 2 of the present invention, when NO 2 is used as the surface layer 2, the drain current density (I DMAX ) and the maximum operating temperature (T C ) of the FET are each 180 mA / mm, 220 ° C.). Although the TC is lower than that of the first embodiment due to the absence of the protective layer, it is significantly higher than that of the conventional diamond FET (6 mA / mm, 100 ° C.).

(実施形態3)
図3に、本発明の実施形態3に係るダイヤモンドFETの構成を示す。実施形態3では、実施形態1の図1(a)〜(c)、(e)の工程を行い、図1(d)の工程を行わない。
(Embodiment 3)
FIG. 3 shows the configuration of a diamond FET according to Embodiment 3 of the present invention. In the third embodiment, the steps of FIGS. 1A to 1C and 1E of the first embodiment are performed, and the step of FIG. 1D is not performed.

本発明の実施形態3に係るゲート長を10μmのダイヤモンドFETにおいて、保護層6としてPTFEを用いた場合、FETのドレイン電流密度(IDMAX)と最高動作温度(T)は(100mA/mm、260℃)になる。表面層2が無い分だけ、実施形態1の場合よりもIDMAXが低いが、従来のダイヤモンドFETの場合の(6mA/mm、100℃)より大幅に上昇する。 In a diamond FET having a gate length of 10 μm according to Embodiment 3 of the present invention, when PTFE is used as the protective layer 6, the drain current density (I DMAX ) and the maximum operating temperature (T C ) of the FET are (100 mA / mm, 260 ° C.). Because of the absence of the surface layer 2, IDMAX is lower than that of the first embodiment, but is significantly higher than that of the conventional diamond FET (6 mA / mm, 100 ° C.).

(実施形態4)
図4に、本発明の実施形態4に係るダイヤモンドFETの作製工程を示す。実施形態4と実施形態1との差異は、電極設置前に第2の表面層5を形成する点にある。
(Embodiment 4)
FIG. 4 shows a manufacturing process of a diamond FET according to Embodiment 4 of the present invention. The difference between the fourth embodiment and the first embodiment is that the second surface layer 5 is formed before the electrodes are installed.

マイクロ波プラズマCVD装置などで結晶成長したダイヤモンド結晶1を用意し、マイクロ波CVD装置のリアクター内で水素プラズマ(Hで表す)を照射し、水素を含む表面層2を形成する(図4(a))。マイクロ波プラズマCVD装置で、水素プラズマ雰囲気内で結晶成長したダイヤモンド結晶1表面は、既に水素を含む表面層2を形成しているので、第1の表面層2が十分形成されている場合、改めて水素プラズマ照射処理をしなくても良い。   A diamond crystal 1 crystal-grown by a microwave plasma CVD apparatus or the like is prepared and irradiated with hydrogen plasma (represented by H) in a reactor of the microwave CVD apparatus to form a surface layer 2 containing hydrogen (FIG. 4A )). Since the surface of the diamond crystal 1 which has been grown in a hydrogen plasma atmosphere by a microwave plasma CVD apparatus has already formed a surface layer 2 containing hydrogen, if the first surface layer 2 has been sufficiently formed, it is again necessary. It is not necessary to perform the hydrogen plasma irradiation treatment.

次に、試料にNOを供給し、第1の表面層2上に第2の表面層5を形成する(図4(b))。 Next, NO 2 is supplied to the sample, and the second surface layer 5 is formed on the first surface layer 2 (FIG. 4B).

次に、第2の表面層5上の一部領域に、空間的に分離して、厚さ600nmの金薄膜31、32を蒸着する。これは、各々ソース電極31、ドレイン電極32になる(図4(c))。   Next, gold thin films 31 and 32 having a thickness of 600 nm are deposited in a partial region on the second surface layer 5 in a spatially separated manner. This becomes the source electrode 31 and the drain electrode 32, respectively (FIG. 4C).

次に、ソース電極31、ドレイン電極32との間に、空間的に分離して、Al薄膜4を蒸着する(図4(d))。このAl薄膜4はゲート電極4になる。   Next, the Al thin film 4 is deposited by being spatially separated between the source electrode 31 and the drain electrode 32 (FIG. 4D). The Al thin film 4 becomes the gate electrode 4.

次に、第2の表面層5上全体を覆うように、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレンからなる保護層6を堆積させる(図4(e))。   Next, a protective layer 6 made of polytetrafluoroethylene (PTFE) or tetrafluoroethylene is deposited so as to cover the entire surface of the second surface layer 5 (FIG. 4E).

このようにして作製された本発明のダイヤモンドFETに対し、図4(f)のように配線してドレイン電流電圧特性を測定し、その結果を図7(b)に示す。本発明のダイヤモンドFETのゲート電圧−3Vにおける最大ドレイン電流密度は180mA/mmと従来の約30倍になり、トランジスタ特性は大きく向上している。   The diamond FET of the present invention thus manufactured is wired as shown in FIG. 4 (f) and the drain current / voltage characteristics are measured. The result is shown in FIG. 7 (b). The maximum drain current density at a gate voltage of −3 V of the diamond FET of the present invention is 180 mA / mm, which is about 30 times that of the conventional one, and the transistor characteristics are greatly improved.

図8に、本発明によって作製したFETのドレイン電流の試料温度特性を示す。従来の方法では、室温から140℃にかけて、第2の表面層55が蒸発してしまうため、ドレイン電流は急激に減少する。それに対して、本発明によれば、300℃まで第2の表面層5が安定して、FET動作した。   FIG. 8 shows a sample temperature characteristic of the drain current of the FET manufactured according to the present invention. In the conventional method, since the second surface layer 55 evaporates from room temperature to 140 ° C., the drain current rapidly decreases. On the other hand, according to the present invention, the second surface layer 5 was stably operated up to 300 ° C. and operated as an FET.

表2は、このようにして作製した本発明の実施形態4に係るゲート長を10μmのダイヤモンドFETのドレイン電流密度(IDMAX)と最高動作温度(T)をまとめたものである。 Table 2 summarizes the drain current density (I DMAX ) and the maximum operating temperature (T C ) of the diamond FET having the gate length of 10 μm according to the fourth embodiment of the present invention manufactured as described above.

本発明の実施形態4に係るゲート長10μmダイヤモンドFETにおいて、保護層6をPTFEを用い、表面層2を、NO、NO、SO、Oにした場合、(IDMAX、T)は各々、表2のようになり、従来の方法による場合(6mA/mm、100℃)より大幅に上昇する。 In the diamond FET having a gate length of 10 μm according to the fourth embodiment of the present invention, when PTFE is used as the protective layer 6 and NO, NO 2 , SO 2 , and O 3 are used as the surface layer 2, (I DMAX , T C ) is Each is as shown in Table 2, which is a significant increase over the conventional method (6 mA / mm, 100 ° C.).

また、本発明の実施形態4に係るダイヤモンドFETにおいて、表面層2を、NOにし、保護層をフッソ化ポリミド、AF1600、AF2400、テトラフルオロエチレン、Cとパーフルオロアルコキシエチレン、Fを含むPMMA、PMGI、AlF、CaF、CeF、LiF、MgF、NdF、NaFを用いた場合、(IDMAX、T)は各々、表2のようになり、従来の方法による場合(6mA/mm、100℃)より大幅に上昇する。 Further, in the diamond FET according to the fourth embodiment of the present invention, the surface layer 2 is NO 2 , and the protective layer is fluorinated polyimide, AF1600, AF2400, tetrafluoroethylene, C 2 F 4 and perfluoroalkoxyethylene, F. When including PMMA, PMGI, AlF 3 , CaF 2 , CeF 3 , LiF, MgF 2 , NdF 3 , and NaF, (I DMAX , T C ) are as shown in Table 2, respectively, according to the conventional method (6 mA / mm, 100 ° C.).

(実施形態5)
図5に、本発明の実施形態5に係るダイヤモンドFETの構造を示す。実施形態5では、実施形態4の図4(a)〜(d)までの工程を行い、図4(e)の工程を行わない。
(Embodiment 5)
FIG. 5 shows the structure of a diamond FET according to Embodiment 5 of the present invention. In the fifth embodiment, the processes of FIGS. 4A to 4D of the fourth embodiment are performed, and the process of FIG. 4E is not performed.

本発明の実施形態5に係るゲート長10μmのダイヤモンドFETにおいて、表面層2としてNOを用いた場合、FETのドレイン電流密度(IDMAX)と最高動作温度(T)は各々(180mA/mm、220℃)になる。保護層がないだけ、実施形態1よりもTが低いが、従来の方法による場合(6mA/mm、100℃)より大幅に上昇する。 In the diamond FET having a gate length of 10 μm according to the fifth embodiment of the present invention, when NO 2 is used as the surface layer 2, the drain current density (I DMAX ) and the maximum operating temperature (T C ) of the FET are each (180 mA / mm). 220 ° C.). Since there is no protective layer, TC is lower than that of the first embodiment, but it is significantly higher than in the case of the conventional method (6 mA / mm, 100 ° C.).

(a)〜(e)は、本発明の実施形態1に係るダイヤモンドFETの作製工程を示す図であり、(f)は、ドレイン電流電圧特性の測定方法を示す図である。(A)-(e) is a figure which shows the preparation process of the diamond FET which concerns on Embodiment 1 of this invention, (f) is a figure which shows the measuring method of a drain current voltage characteristic. 本発明の実施形態2に係るダイヤモンドFETの構造を示す図である。It is a figure which shows the structure of the diamond FET which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係るダイヤモンドFETの構成を示す図である。It is a figure which shows the structure of the diamond FET which concerns on Embodiment 3 of this invention. (a)〜(e)は、本発明の実施形態4に係るダイヤモンドFETの作製工程を示す図であり、(f)は、ドレイン電流電圧特性の測定方法を示す図である。(A)-(e) is a figure which shows the preparation process of the diamond FET which concerns on Embodiment 4 of this invention, (f) is a figure which shows the measuring method of a drain current voltage characteristic. 本発明の実施形態5に係るダイヤモンドFETの構造を示す図である。It is a figure which shows the structure of the diamond FET which concerns on Embodiment 5 of this invention. (a)〜(e)は、従来のダイヤモンドFETの作製工程を示す図であり、(f)は、ドレイン電流電圧特性の測定方法を示す図である。(A)-(e) is a figure which shows the preparation process of the conventional diamond FET, (f) is a figure which shows the measuring method of a drain current voltage characteristic. (a)は、従来のダイヤモンドFETのドレイン電流電圧特性を示す図であり、(b)は、本発明のダイヤモンドFETのドレイン電流電圧特性を示す図である。(A) is a figure which shows the drain current voltage characteristic of the conventional diamond FET, (b) is a figure which shows the drain current voltage characteristic of the diamond FET of this invention. 本発明によって作製したダイヤモンドFETのドレイン電流の試料温度特性を示す図である。It is a figure which shows the sample temperature characteristic of the drain current of the diamond FET produced by this invention. 本発明の実施形態1に係るダイヤモンドFETの透過型電子顕微鏡(TEM)断面図である。It is a transmission electron microscope (TEM) sectional drawing of the diamond FET which concerns on Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 ダイヤモンド結晶膜
2 水素を含む第1の表面層
31 ソース電極(Au)
32 ドレイン電極(Au)
4 ゲート電極(Al)
5 NOを含む第2の表面層
55 CO、HOを含む第2の表面層
6 ポリテトラフルオロエチレン(PTFE)を含む保護層
DESCRIPTION OF SYMBOLS 1 Diamond crystal film 2 The 1st surface layer 31 containing hydrogen Source electrode (Au)
32 Drain electrode (Au)
4 Gate electrode (Al)
5 Second surface layer containing NO 2 55 Second surface layer containing CO 2 and H 2 O 6 Protective layer containing polytetrafluoroethylene (PTFE)

Claims (11)

ダイヤモンド結晶基板と、
前記ダイヤモンド結晶基板上に水素原子で終端された第1の表面層と、
前記ダイヤモンド結晶基板の第1の表面層上に形成された、窒素と酸素、硫黄と酸素、及び酸素のみのいずれかから成る第2の表面層と、
前記第2の表面層上に互いに離間して形成されたソース電極、ゲート電極、ドレイン電極からなる電極部と、
を備えたことを特徴とするダイヤモンド電界効果トランジスタ。
A diamond crystal substrate;
A first surface layer terminated with hydrogen atoms on the diamond crystal substrate;
A second surface layer made of only nitrogen and oxygen, sulfur and oxygen, and oxygen, formed on the first surface layer of the diamond crystal substrate;
An electrode portion comprising a source electrode, a gate electrode, and a drain electrode formed on the second surface layer so as to be spaced apart from each other;
A diamond field effect transistor comprising:
ダイヤモンド結晶基板と、
前記ダイヤモンド結晶基板上に水素原子で終端された第1の表面層と、
前記第2の表面層上に互いに離間して形成されたソース電極、ゲート電極、ドレイン電極からなる電極部と、
前記ダイヤモンド結晶基板の第1の表面層上に形成された、窒素と酸素、硫黄と酸素、及び酸素のみのいずれかから成る第2の表面層と、
を備えたことを特徴とするダイヤモンド電界効果トランジスタ。
A diamond crystal substrate;
A first surface layer terminated with hydrogen atoms on the diamond crystal substrate;
An electrode portion comprising a source electrode, a gate electrode, and a drain electrode formed on the second surface layer so as to be spaced apart from each other;
A second surface layer made of only nitrogen and oxygen, sulfur and oxygen, and oxygen, formed on the first surface layer of the diamond crystal substrate;
A diamond field effect transistor comprising:
前記第2の表面層上に形成されたフッ素を含む化合物からなる保護層をさらに備えたことを特徴とする請求項1又は2に記載のダイヤモンド電界効果トランジスタ。   The diamond field effect transistor according to claim 1 or 2, further comprising a protective layer made of a compound containing fluorine formed on the second surface layer. 前記第2の表面層は、NO又はNOからなることを特徴とする請求項1乃至3のいずれかに記載のダイヤモンド電界効果トランジスタ。 The second surface layer is a diamond field effect transistor according to any one of claims 1 to 3, characterized in that it consists of NO or NO 2. ダイヤモンド結晶基板と、
前記ダイヤモンド結晶基板上に形成された水素原子で終端された第1の表面層と、
前記第1の表面層上に互いに離間して形成されたソース電極、ゲート電極、ドレイン電極からなる電極部と、
前記第1の表面層上に形成されたフッ素を含む化合物からなる保護層と
を備えたことを特徴とするダイヤモンド電界効果トランジスタ。
A diamond crystal substrate;
A first surface layer terminated with hydrogen atoms formed on the diamond crystal substrate;
An electrode portion comprising a source electrode, a gate electrode, and a drain electrode formed on the first surface layer so as to be spaced apart from each other;
A diamond field effect transistor comprising: a protective layer made of a compound containing fluorine formed on the first surface layer.
前記保護層は、アモルファスフロロポリマー、ポリテトラフルオロエチレン、テトラフルオロエチレン及びフッ素を含むポリジメチルグルタルイミドのいずれかからなることを特徴とする請求項3乃至5のいずれかに記載のダイヤモンド電界効果トランジスタ。   6. The diamond field effect transistor according to claim 3, wherein the protective layer is made of any one of amorphous fluoropolymer, polytetrafluoroethylene, polydimethylglutarimide containing tetrafluoroethylene and fluorine. . ダイヤモンド結晶基板表面に水素ラジカルを吸着させる第1の工程と、
前記水素ラジカルが吸着した表面に窒素と酸素、硫黄と酸素、及び酸素のみのいずれかを含む第1の化合物原料を吸着させる第2の工程と、
前記水素ラジカルが吸着した表面に互いに離間して形成されたソース電極、ゲート電極、ドレイン電極からなる電極部を形成する第3の工程と
を含むことを特徴とするダイヤモンド電界効果トランジスタ作製方法。
A first step of adsorbing hydrogen radicals on the surface of the diamond crystal substrate;
A second step of adsorbing a first compound material containing only one of nitrogen and oxygen, sulfur and oxygen, and oxygen on the surface on which the hydrogen radicals are adsorbed;
And a third step of forming an electrode portion comprising a source electrode, a gate electrode, and a drain electrode formed on the surface on which the hydrogen radicals are adsorbed to each other, and a third step of producing the diamond field effect transistor.
ダイヤモンド結晶基板表面に水素ラジカルを吸着させる第1の工程と、
前記水素ラジカルが吸着した表面に互いに離間して形成されたソース電極、ゲート電極、ドレイン電極からなる電極部を形成する第2の工程と、
前記水素ラジカルが吸着した表面に窒素と酸素、硫黄と酸素、及び酸素のみのいずれかを含む第1の化合物原料を吸着させる第3の工程と
を含むことを特徴とするダイヤモンド電界効果トランジスタ作製方法。
A first step of adsorbing hydrogen radicals on the surface of the diamond crystal substrate;
A second step of forming an electrode portion comprising a source electrode, a gate electrode, and a drain electrode formed on the surface on which the hydrogen radical is adsorbed and spaced apart from each other;
And a third step of adsorbing a first compound material containing only one of nitrogen and oxygen, sulfur and oxygen, and oxygen on the surface on which the hydrogen radicals are adsorbed. .
前記第1の化合物原料が吸着した表面にフッ素を含む第2の化合物原料を堆積させる第4の工程をさらに含むことを特徴とする請求項7又は8に記載のダイヤモンド電界効果トランジスタ作製方法。   The diamond field effect transistor manufacturing method according to claim 7 or 8, further comprising a fourth step of depositing a second compound material containing fluorine on a surface on which the first compound material is adsorbed. 前記第1の化合物原料は、NO又はNOであることを特徴とする請求項7乃至9のいずれかに記載のダイヤモンド電界効果トランジスタ作製方法。 The diamond field effect transistor manufacturing method according to claim 7, wherein the first compound material is NO or NO 2 . 前記第2の化合物原料は、アモルファスフロロポリマー、ポリテトラフルオロエチレン、テトラフルオロエチレン及びフッ素を含むポリジメチルグルタルイミドのいずれかであることを特徴とする請求項9又は10に記載のダイヤモンド電界効果トランジスタ作製方法。   11. The diamond field effect transistor according to claim 9, wherein the second compound raw material is one of amorphous fluoropolymer, polytetrafluoroethylene, tetrafluoroethylene, and polydimethylglutarimide containing fluorine. Manufacturing method.
JP2008228654A 2008-09-05 2008-09-05 Diamond field effect transistor and manufacturing method thereof Active JP5095562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008228654A JP5095562B2 (en) 2008-09-05 2008-09-05 Diamond field effect transistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008228654A JP5095562B2 (en) 2008-09-05 2008-09-05 Diamond field effect transistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010062457A true JP2010062457A (en) 2010-03-18
JP5095562B2 JP5095562B2 (en) 2012-12-12

Family

ID=42188913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008228654A Active JP5095562B2 (en) 2008-09-05 2008-09-05 Diamond field effect transistor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5095562B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013172023A (en) * 2012-02-21 2013-09-02 Nippon Telegr & Teleph Corp <Ntt> Diamond field effect transistor and manufacturing method of the same
JPWO2013061398A1 (en) * 2011-10-24 2015-04-02 株式会社ユーテック CxNyHz film, film forming method, magnetic recording medium, and manufacturing method thereof
CN107331602A (en) * 2017-06-27 2017-11-07 中国科学院微电子研究所 A kind of diamond surface voids concentration improves method
CN107331701A (en) * 2017-06-27 2017-11-07 中国科学院微电子研究所 A kind of diamond channel conduction characteristic optimizing method
JP2018048410A (en) * 2017-12-04 2018-03-29 株式会社ユーテック CxNyHz FILM, FILM DEPOSITION METHOD, MAGNETIC RECORDING MEDIUM, AND PRODUCTION METHOD THEREOF
JP2018182058A (en) * 2017-04-13 2018-11-15 国立研究開発法人物質・材料研究機構 Mis type semiconductor device and method of manufacturing the same
CN110416290A (en) * 2019-07-30 2019-11-05 中国电子科技集团公司第十三研究所 Diamond crystal tube preparation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107146756A (en) * 2017-06-27 2017-09-08 中国科学院微电子研究所 A kind of diamond substrate field effect transistor tube preparation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139109A (en) * 1994-09-16 1996-05-31 Tokyo Gas Co Ltd Isolated diamond semiconductor element terminated with hydrogen and fabrication thereof
JPH09257736A (en) * 1996-03-25 1997-10-03 Tokai Univ Gas sensor and gas detection apparatus
JPH10125932A (en) * 1996-09-02 1998-05-15 Tokyo Gas Co Ltd Hydrogen-terminated diamond misfet and manufacture thereof
JP2007051327A (en) * 2005-08-18 2007-03-01 Kobe Steel Ltd Film deposition method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139109A (en) * 1994-09-16 1996-05-31 Tokyo Gas Co Ltd Isolated diamond semiconductor element terminated with hydrogen and fabrication thereof
JPH09257736A (en) * 1996-03-25 1997-10-03 Tokai Univ Gas sensor and gas detection apparatus
JPH10125932A (en) * 1996-09-02 1998-05-15 Tokyo Gas Co Ltd Hydrogen-terminated diamond misfet and manufacture thereof
JP2007051327A (en) * 2005-08-18 2007-03-01 Kobe Steel Ltd Film deposition method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013061398A1 (en) * 2011-10-24 2015-04-02 株式会社ユーテック CxNyHz film, film forming method, magnetic recording medium, and manufacturing method thereof
US9524742B2 (en) 2011-10-24 2016-12-20 Youtec Co., Ltd. CXNYHZ film, deposition method, magnetic recording medium and method for manufacturing the same
JP2013172023A (en) * 2012-02-21 2013-09-02 Nippon Telegr & Teleph Corp <Ntt> Diamond field effect transistor and manufacturing method of the same
JP2018182058A (en) * 2017-04-13 2018-11-15 国立研究開発法人物質・材料研究機構 Mis type semiconductor device and method of manufacturing the same
CN107331602A (en) * 2017-06-27 2017-11-07 中国科学院微电子研究所 A kind of diamond surface voids concentration improves method
CN107331701A (en) * 2017-06-27 2017-11-07 中国科学院微电子研究所 A kind of diamond channel conduction characteristic optimizing method
JP2018048410A (en) * 2017-12-04 2018-03-29 株式会社ユーテック CxNyHz FILM, FILM DEPOSITION METHOD, MAGNETIC RECORDING MEDIUM, AND PRODUCTION METHOD THEREOF
CN110416290A (en) * 2019-07-30 2019-11-05 中国电子科技集团公司第十三研究所 Diamond crystal tube preparation method
CN110416290B (en) * 2019-07-30 2022-11-15 中国电子科技集团公司第十三研究所 Diamond transistor preparation method

Also Published As

Publication number Publication date
JP5095562B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5095562B2 (en) Diamond field effect transistor and manufacturing method thereof
Jain et al. One-dimensional edge contacts to a monolayer semiconductor
Chuang et al. High mobility WSe2 p-and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts
Lee et al. High-performance current saturating graphene field-effect transistor with hexagonal boron nitride dielectric on flexible polymeric substrates
Hiroki et al. Suppression of self-heating effect in AlGaN/GaN high electron mobility transistors by substrate-transfer technology using h-BN
Dai et al. Large‐Area Chemical Vapor Deposited MoS2 with Transparent Conducting Oxide Contacts toward Fully Transparent 2D Electronics
JP5665171B2 (en) Group III nitride semiconductor electronic device, method of fabricating group III nitride semiconductor electronic device
Wang et al. Flexible inorganic/organic hybrid thin‐film transistors using all‐transparent component materials
JP5515073B2 (en) Electronic device and method for manufacturing electronic device
Oseki et al. Field-effect transistors based on cubic indium nitride
Wang et al. High-performance flexible ZnO thin-film transistors by atomic layer deposition
US20150060768A1 (en) Method to improve performance characteristics of transistors comprising graphene and other two-dimensional materials
Chaganti et al. Demonstration of a depletion-mode SrSnO 3 n-channel MESFET
Ra et al. Dual-gate black phosphorus field-effect transistors with hexagonal boron nitride as dielectric and passivation layers
Qian et al. 2D materials as semiconducting gate for field-effect transistors with inherent over-voltage protection and boosted ON-current
Alexandrou et al. Encapsulated graphene field-effect transistors for air stable operation
KR102095641B1 (en) A annealing method for enhancing driving current of transistor using localized heat
US20060121700A1 (en) Method of forming a gate insulator in group III-V nitride semiconductor devices
JP5483168B2 (en) Diamond thin film and diamond field effect transistor
Goyal et al. Multilayer Pt/Al based ohmic contacts for AlGaN/GaN heterostructures stable up to 600° C ambient air
JP4769931B2 (en) Method of forming electrode for carbon nanotube and carbon nanotube FET using the same
KR101780737B1 (en) Method of manufacturing field effect transistor comprising channels treated with organic materials
KR102127740B1 (en) Method for fabricating field effect transistor and methd for removing poly methyl methacrylate from graphene device
KR20170054161A (en) Field effect transistor comprising channels treated with organic materials and method of manufacturing the same
JP6783463B2 (en) Diamond semiconductor device, logic device using it, and manufacturing method of diamond semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100525

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100525

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120919

R150 Certificate of patent or registration of utility model

Ref document number: 5095562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350