JP2010062347A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2010062347A
JP2010062347A JP2008226778A JP2008226778A JP2010062347A JP 2010062347 A JP2010062347 A JP 2010062347A JP 2008226778 A JP2008226778 A JP 2008226778A JP 2008226778 A JP2008226778 A JP 2008226778A JP 2010062347 A JP2010062347 A JP 2010062347A
Authority
JP
Japan
Prior art keywords
trench
layer
insulating film
semiconductor device
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008226778A
Other languages
Japanese (ja)
Other versions
JP5439768B2 (en
Inventor
Hitoshi Kuribayashi
均 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2008226778A priority Critical patent/JP5439768B2/en
Publication of JP2010062347A publication Critical patent/JP2010062347A/en
Application granted granted Critical
Publication of JP5439768B2 publication Critical patent/JP5439768B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device which prevents generation of a crystal defect and efficiently forms a super junction structure when burying an epitaxial layer in a trench selectively formed using a hard mask in a state wherein the hard mask is left to obtain an excellent efficiency percentage. <P>SOLUTION: A mask insulating film 3 serving as a mask for forming the trench 4 has a thinner film thickness portion at least at a periphery of an opening portion 6d for trench formation than at other parts, and the p-type epitaxial semiconductor layer 5 is buried in the trench 4 after the thinner film thickness portion of the mask insulating film 3 is etched away. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は電力用半導体装置に関する。さらに詳しくは超接合(以降、SJと略記することもある)構造を有する半導体装置に関する。特に、MOSFET(絶縁ゲート型電界効果トランジスタ)、IGBT(絶縁ゲート型バイポーラトランジスタ)、バイポーラトランジスタ、ダイオード等に適用可能であって、高耐圧化と大電流容量化を両立させることのできる超接合構造を有する縦型の半導体装置の製造方法の改良に関するものである。   The present invention relates to a power semiconductor device. More particularly, the present invention relates to a semiconductor device having a superjunction (hereinafter sometimes abbreviated as SJ) structure. In particular, it is applicable to MOSFETs (insulated gate field effect transistors), IGBTs (insulated gate bipolar transistors), bipolar transistors, diodes, etc., and a superjunction structure that can achieve both high breakdown voltage and large current capacity. The present invention relates to an improvement in a method of manufacturing a vertical semiconductor device having

一般に半導体装置は、主電流の流れる両主電極が共に半導体基板の一方の主面に形成される横型半導体装置と、半導体基板の両主面にそれぞれ主電極が形成され、両主電極間を縦方向に主電流が流れる縦型半導体装置に大別できる。縦型半導体装置は、オン時にドリフト電流が流れる方向と、オフ時に逆バイアス電圧による空乏層の延びる方向とが同じである。   In general, a semiconductor device has a horizontal semiconductor device in which both main electrodes through which a main current flows are formed on one main surface of a semiconductor substrate, and a main electrode is formed on each main surface of the semiconductor substrate. It can be roughly divided into vertical semiconductor devices in which the main current flows in the direction. In the vertical semiconductor device, the direction in which the drift current flows when turned on is the same as the direction in which the depletion layer extends due to the reverse bias voltage when turned off.

たとえば、図5は、よく知られた通常のプレーナー型のnチャネル縦型MOSFETの断面図である。この縦型MOSFETは、ドレイン電極18が導電接触する低抵抗のnドレイン層11裏面の反対面上に形成される高抵抗のnドリフト層12を備える。このnドリフト層12の表面層には選択的に形成されるpベース領域23と、そのpベース領域23内に選択的に形成される高不純物濃度のnソース領域24と、nソース領域24とnドリフト層12とに挟まれるpベース領域23の表面にゲート絶縁膜25を介して設けられるゲート電極層26とを備える。さらに、前記nソース領域24とpベース領域23との表面に共通に接触して設けられるソース電極27を有し、前述のように、nドレイン層11の裏面側にはドレイン電極18が設けられる。このような縦型MOSFETにおいて、高抵抗のnドリフト層12はMOSFETがオン状態のときに縦方向(基板の厚さ方向)にドリフト電流が流れる領域として働き、オフ状態のときには空乏化して耐圧を保持する機能を有する。 For example, FIG. 5 is a cross-sectional view of a well-known normal planar type n-channel vertical MOSFET. This vertical MOSFET includes a high resistance n drift layer 12 formed on the opposite surface of the back surface of the low resistance n + drain layer 11 with which the drain electrode 18 is in conductive contact. A p base region 23 selectively formed on the surface layer of the n drift layer 12, a high impurity concentration n + source region 24 selectively formed in the p base region 23, and an n + source A gate electrode layer 26 is provided on the surface of the p base region 23 sandwiched between the region 24 and the n drift layer 12 via a gate insulating film 25. Furthermore, it has a source electrode 27 provided in common contact with the surfaces of the n + source region 24 and the p base region 23, and the drain electrode 18 is formed on the back side of the n + drain layer 11 as described above. Provided. In such a vertical MOSFET, the high-resistance n drift layer 12 functions as a region where a drift current flows in the vertical direction (the thickness direction of the substrate) when the MOSFET is on, and is depleted and withstand voltage when the MOSFET is off. It has the function to hold.

この高抵抗のnドリフト層12内の電流経路を短くする(すなわち、ドリフト層の厚さを薄くする)とドリフト抵抗が低くなるので、MOSFETは実質的にオン抵抗(ドレイン−ソース間抵抗)が低下する。この時、耐圧については、オフ状態でpベース領域23とnドリフト層12との間のpn接合から主としてnドリフト層12内に拡がり得る空乏層の幅が狭くなるので、Si半導体基板の最大(臨界)電界強度に達する耐圧(ドレイン−ソース電圧)を低下させる。一方、MOSFETの耐圧を高くすると、nドリフト層12が厚くなるためオン抵抗が大きくなり、損失が増す。このように、オン抵抗(電流容量)と耐圧間にはトレードオフ関係がある。このトレードオフ関係はIGBT、バイポーラトランジスタ、ダイオード等の半導体装置においても同様に成立することが知られている。また、このトレードオフに関する問題は、オン時にドリフト電流が流れる方向と、オフ時の空乏層の延びる方向とが異なる横型半導体装置についても共通に問題として存在する。 When the current path in the high-resistance n drift layer 12 is shortened (that is, the drift layer is thinned), the drift resistance is lowered, so that the MOSFET is substantially on-resistance (drain-source resistance). Decreases. At this time, for the breakdown voltage, p base region 23 and n in the off state - mainly n from the pn junction between the drift layer 12 - the width of the depletion layer to obtain spread in the drift layer 12 is narrowed, the Si semiconductor substrate The breakdown voltage (drain-source voltage) reaching the maximum (critical) electric field strength is reduced. On the other hand, when the breakdown voltage of the MOSFET is increased, the n drift layer 12 becomes thicker, so that the on-resistance increases and the loss increases. Thus, there is a trade-off relationship between on-resistance (current capacity) and breakdown voltage. This trade-off relationship is also known to hold in semiconductor devices such as IGBTs, bipolar transistors, and diodes. This trade-off problem also exists as a common problem for horizontal semiconductor devices in which the direction in which the drift current flows when turned on and the direction in which the depletion layer extends when turned off.

この問題に対する解決策の一つに、ドリフト層を、通常の設計耐圧に要求される不純物濃度よりも高濃度のn型で、主面に垂直な薄層領域と、p型で主面に垂直な薄層領域とを交互にかつ主面に水平方向に隣接させた並列pn層を備える超接合構造とする半導体装置が公開され、公知となっている。この半導体装置はオフ状態のとき、超接合構造からなるドリフト層が空乏化して高耐圧を負担し、オン状態では通常より低抵抗のn型の薄層領域を主電流が流れることにより、前述のオン抵抗と耐圧間のトレードオフ関係を改善することができるとされている。   One of the solutions to this problem is that the drift layer has an n-type impurity concentration higher than the impurity concentration required for normal design withstand voltage, a thin layer region perpendicular to the principal surface, and a p-type perpendicular to the principal surface. A semiconductor device having a superjunction structure including parallel pn layers alternately adjacent to the thin layer regions and horizontally adjacent to the main surface is disclosed and publicly known. When the semiconductor device is in the off state, the drift layer composed of the superjunction structure is depleted and bears a high breakdown voltage, and in the on state, the main current flows through the n-type thin layer region having a lower resistance than usual. It is said that the trade-off relationship between on-resistance and breakdown voltage can be improved.

図6はこのような超接合半導体装置の一例である縦型MOSFETの部分断面図である。図5との違いはドリフト層22が単一層ではなく、基板主面に垂直方向に形成される薄層のnドリフト領域22aとpドリフト領域22bとを交互に、かつ主面に水平方向に隣接した並列pn層からなる超接合構造とされている点である。なお、符号23はpベース領域、符号24はnソース領域、符号26はゲート電極、符号27はソース電極、符号28はドレイン電極であり、それぞれ前記図5と同様の機能を有する。 FIG. 6 is a partial cross-sectional view of a vertical MOSFET which is an example of such a superjunction semiconductor device. The difference from FIG. 5 is that the drift layer 22 is not a single layer, but thin n drift regions 22a and p drift regions 22b formed in a direction perpendicular to the main surface of the substrate alternately and adjacent to the main surface in the horizontal direction. This is a superjunction structure composed of parallel pn layers. Reference numeral 23 denotes a p base region, reference numeral 24 denotes an n + source region, reference numeral 26 denotes a gate electrode, reference numeral 27 denotes a source electrode, and reference numeral 28 denotes a drain electrode, which have the same functions as those in FIG.

このような超接合構造からなるドリフト層22を形成するには、まず、低抵抗のnドレイン層21を基板としてエピタキシャル法によって全面に所要の不純物濃度のn型ドリフト層を成長させる。この所要の不純物濃度は耐圧に依存して変わり得るが、前述のように通常の設計耐圧に必要な不純物濃度よりは高くすることができる。その後、n型ドリフト層の表面から垂直に選択的に縞状の表面パターンで、nドレイン層21に達するトレンチをエッチングで形成する。このトレンチはpドリフト領域22bを形成するためのトレンチである。このトレンチを形成した後、トレンチ間に残るn型ドリフト層の薄層領域をnドリフト領域22aとし、さらに、前記トレンチ内にエピタキシャル法によりp型エピタキシャル層を成長させて埋め込み、pドリフト領域22bを形成する。なお、以降、前述のようなオン状態では電流を流すとともに、オフ状態では空乏化する構成の並列pn層からなるドリフト層22を備える半導体装置を超接合半導体装置と称することとする。 In order to form the drift layer 22 having such a superjunction structure, first, an n-type drift layer having a required impurity concentration is grown on the entire surface by an epitaxial method using the low resistance n + drain layer 21 as a substrate. Although this required impurity concentration can vary depending on the breakdown voltage, it can be made higher than the impurity concentration required for the normal design breakdown voltage as described above. Thereafter, a trench reaching the n + drain layer 21 is formed by etching in a striped surface pattern selectively perpendicular to the surface of the n-type drift layer. This trench is a trench for forming the p drift region 22b. After forming this trench, the thin layer region of the n-type drift layer remaining between the trenches is used as an n drift region 22a, and a p-type epitaxial layer is grown and buried in the trench by an epitaxial method, and the p drift region 22b is filled. Form. Hereinafter, a semiconductor device including a drift layer 22 composed of a parallel pn layer configured to flow current in the on state as described above and to be depleted in the off state will be referred to as a super junction semiconductor device.

前記超接合構造の具体的なディメンジョンとしては、たとえば、降伏電圧の設計値を800Vとするとき、ドリフト層22のnドリフト領域22a、pドリフト領域22bの不純物濃度は共に、通常より高濃度の1.9×1016cm−3であって、これら薄層のnドリフト領域22aとpドリフト領域22bの、主面に平行な方向の短辺幅を共に同幅の5μmとすると、主面に垂直方向のドリフト層22の厚さは73μmとなる。このように幅に対して深さが深いpドリフト領域22bを形成するには、アスペクト比の大きいpドリフト領域22b形成用トレンチを必要とする、このような高アスペクト比のトレンチを形成するエッチング技術が、前記超接合構造を実現するためのキープロセス技術の一つである。このような高アスペクト比のトレンチエッチング技術は、数Paに減圧されたチャンバー内に所定のエッチングパターンに絶縁膜でマスクされたウエハを保持し、そこに、たとえばSF,HBrといったエッチングガスを連続的に供給する方法によって形成される。あるいは、エッチング、側壁保護膜形成のガスの切り替えを数秒ずつ行うBOSCHプロセス法などで実現される。このBOSCH法プロセスによれば、たとえば、側壁への保護膜形成のためのCを供給し、その後ガスを高速で切り替えてエッチングガスのSFを供給する。トレンチエッチング終了後にトレンチ内を洗浄した後、シリコン系絶縁膜マスク(ハードマスク)をそのままにして、トレンチ内にp型エピタキシャル層を成長させる。トレンチ内にp型エピタキシャル層を埋め込んだ後、基板主面のシリコン系絶縁膜マスク(ハードマスク)上の余分なp型エピタキシャル層をCMP(Chemical Mechanical Polishing)法によって研磨すると共に基板主面上を平坦化することにより、前記超接合構造が形成される。このp型エピタキシャル層の埋め込み技術および基板主面の平坦化の技術も、前述のトレンチエッチング技術と共に超接合構造を実現するためのキープロセス技術である。その後は基板主面に所要のMOSFET半導体領域を、通常のプレーナー型MOSFETと同様の製造工程を施せば、SJ−MOSFETのウエハプロセスが終了する(特許文献1)。
特開2007−129115号公報
As a specific dimension of the superjunction structure, for example, when the design value of the breakdown voltage is 800 V, the impurity concentrations of the n drift region 22a and the p drift region 22b of the drift layer 22 are both higher than usual. .9 × 10 16 cm −3 , and when the short-side widths of the thin drift layers 22a and p drift regions 22b in the direction parallel to the principal surface are both 5 μm, the width is perpendicular to the principal surface. The thickness of the directional drift layer 22 is 73 μm. In order to form the p drift region 22b having a depth deep with respect to the width as described above, a trench for forming the p drift region 22b having a large aspect ratio is required. Etching technology for forming such a high aspect ratio trench Is one of the key process technologies for realizing the super-junction structure. In such a high aspect ratio trench etching technique, a wafer masked with an insulating film in a predetermined etching pattern is held in a chamber depressurized to several Pa, and an etching gas such as SF 6 or HBr is continuously supplied thereto. It is formed by the method of supplying automatically. Alternatively, it can be realized by a BOSCH process method in which the gas for etching and side wall protective film formation is switched every few seconds. According to this BOSCH method process, for example, C 4 F 8 for forming a protective film on the sidewall is supplied, and then the gas is switched at a high speed to supply the etching gas SF 6 . After the trench etching is completed, the inside of the trench is cleaned, and a p-type epitaxial layer is grown in the trench while leaving the silicon-based insulating film mask (hard mask) as it is. After embedding the p-type epitaxial layer in the trench, the excess p-type epitaxial layer on the silicon-based insulating mask (hard mask) on the main surface of the substrate is polished by CMP (Chemical Mechanical Polishing) and the main surface of the substrate is polished. The super junction structure is formed by planarization. The p-type epitaxial layer embedding technique and the substrate main surface planarization technique are also key process techniques for realizing a superjunction structure together with the above-described trench etching technique. After that, if a required MOSFET semiconductor region is formed on the main surface of the substrate and a manufacturing process similar to that of a normal planar type MOSFET is performed, the wafer process of the SJ-MOSFET is completed (Patent Document 1).
JP 2007-129115 A

前記超接合半導体装置の超接合構造が、n型ドリフト層表面からのエッチングにより形成した、縞状の表面パターンと高アスペクト比とを有するトレンチ内に、p型エピタキシャル層を埋め込む方法で形成される場合、できるかぎり多結晶化、結晶欠陥等を発生させないようにp型エピタキシャル層を埋め込むことがリーク電流を低レベルに抑える上で重要である。   The superjunction structure of the superjunction semiconductor device is formed by a method of embedding a p-type epitaxial layer in a trench having a striped surface pattern and a high aspect ratio formed by etching from the surface of the n-type drift layer. In this case, it is important to bury the p-type epitaxial layer so as not to cause polycrystallization or crystal defects as much as possible in order to suppress the leakage current to a low level.

一方、最終的に、トレンチ内のエピタキシャル層を効率性よく、適正な厚さに研磨するには、第一にはトレンチエッチングのマスクとして用いた絶縁膜などのハードマスクを基板主面に残した状態で、エピタキシャル層をトレンチ内およびその延長で基板主面のハードマスク上にもオーバーして堆積させる。第二には、適正な超接合構造厚さに仕上げるために、前記基板主面のハードマスク上のエピタキシャル層を該ハードマスクをストッパー層として用いてCMPによる研磨を施し、ハードマスクが露出したことを検出した時点で研磨を高精度に終了させることがデバイスの耐圧を確保するために重要である。   On the other hand, finally, in order to polish the epitaxial layer in the trench efficiently and to an appropriate thickness, first, a hard mask such as an insulating film used as a mask for trench etching was left on the main surface of the substrate. In this state, the epitaxial layer is deposited over the hard mask on the main surface of the substrate in the trench and its extension. Second, in order to achieve an appropriate super-junction structure thickness, the hard mask was exposed by polishing the epitaxial layer on the hard mask of the substrate main surface with CMP using the hard mask as a stopper layer. In order to ensure the breakdown voltage of the device, it is important to finish the polishing with high accuracy at the time of detecting.

前述のように、基板主面上に残されたハードマスクを利用して、このハードマスク上には直接に成長させないような選択成長条件でエピタキシャル層の埋め込みを行う他の理由は、ハードマスク上に結晶成長を起こさせず、トレンチ内からの結晶成長のみとすることで、多結晶が成長しないようにでき、リーク電流発生の一因となる結晶粒界の形成を防ぐことができるからである。   As described above, the other reason for using the hard mask left on the main surface of the substrate and embedding the epitaxial layer under the selective growth conditions that do not allow direct growth on the hard mask is that on the hard mask. This is because the crystal growth is prevented from occurring in the trench, and only the crystal growth from the trench is prevented, so that the polycrystal can be prevented from growing, and the formation of the grain boundary that causes the leakage current can be prevented. .

しかしながら、前述のように、トレンチ内からのエピタキシャル成長のみという選択的成長条件で埋め込みを行っても、結果的に、なお充分に良好な結晶性が得られてはいないし、さらに結晶性の良いエピタキシャル層を埋め込むことが望まれている。
前述の、充分に良好な結晶性が得られてはいないことの原因は、特にハードマスク(シリコン系絶縁膜)とシリコン基板との界面近傍では、熱膨張係数など材料物性の違いに起因する応力が発生しているため、この応力に起因して結晶欠陥が形成され易いことにあると考えられる。そこで、たとえば、ハードマスクを除去した後にトレンチを埋め込むことにすれば、ハードマスク起因の多結晶の形成、結晶欠陥の発生と言った、リーク電流発生原因を防ぐことが可能となる。しかし、この場合、ハードマスクを研磨工程における終了ポイントの高精度な検出手段として用いることができなくなるため、研磨終了点を決め難くなり、耐圧の歩留まり悪化を招くことなどの問題があるため、採用が難しい。
However, as described above, even if the filling is performed under the selective growth condition of only the epitaxial growth from the trench, as a result, a sufficiently good crystallinity has not been obtained, and an epitaxial having a better crystallinity has been obtained. It is desirable to embed a layer.
The reason why the above-mentioned sufficiently good crystallinity has not been obtained is the stress caused by the difference in material properties such as thermal expansion coefficient, especially in the vicinity of the interface between the hard mask (silicon-based insulating film) and the silicon substrate. Therefore, it is considered that crystal defects are likely to be formed due to this stress. Therefore, for example, if the trench is embedded after removing the hard mask, it is possible to prevent the cause of leakage current such as formation of polycrystals due to the hard mask and occurrence of crystal defects. However, in this case, the hard mask cannot be used as a highly accurate means for detecting the end point in the polishing process, so it is difficult to determine the end point of polishing, and there is a problem that the yield rate of the breakdown voltage is deteriorated. Is difficult.

図7は、図示しない低抵抗n型半導体基板(nドレイン層)上にエピタキシャル成長により堆積形成したn型シリコン半導体層22aに表面からシリコン酸化膜20をマスクにして形成したトレンチに、p型エピタキシャル層(p−Si層)22bを埋め込んだ際のn型シリコン半導体層22aの断面図を示す。図7では、ハードマスクとしてのシリコン酸化膜20とn型シリコン半導体層22aの界面で応力が集中して結晶欠陥が発生しやすい場所を破線の丸印で示している。 FIG. 7 shows a p-type epitaxial layer formed in a trench formed by using a silicon oxide film 20 as a mask from an n-type silicon semiconductor layer 22a deposited and formed on a low-resistance n-type semiconductor substrate (n + drain layer) by epitaxial growth on a low resistance n-type semiconductor substrate (not shown). A cross-sectional view of the n-type silicon semiconductor layer 22a when the layer (p-Si layer) 22b is embedded is shown. In FIG. 7, broken circles indicate places where stress is concentrated and crystal defects are likely to occur at the interface between the silicon oxide film 20 as a hard mask and the n-type silicon semiconductor layer 22a.

本発明は、以上説明した点に鑑みてなされたものであり、本発明の目的は、ハードマスクを用いて選択形成したトレンチに、ハードマスクを残した状態でエピタキシャル層を埋め込む際に、結晶欠陥の発生を防ぐとともに、超接合構造を効率良く形成でき、良好な良品率が得られる半導体装置の製造方法を提供することである。   The present invention has been made in view of the above-described points, and an object of the present invention is to provide crystal defects when embedding an epitaxial layer with a hard mask left in a trench selectively formed using a hard mask. And a method of manufacturing a semiconductor device that can efficiently form a superjunction structure and obtain a good yield rate.

本発明による解決手段のその一は、低抵抗の第1導電型半導体基板上の第1導電型半導体層の主面に設けた絶縁膜をマスクとして、該主面に垂直に層状またはカラム状にエッチングしてトレンチを形成する第一工程と、該トレンチに第2導電型エピタキシャル半導体層を該トレンチからオーバーするように埋め込み、前記絶縁膜を終点検出手段として前記第2導電型エピタキシャル半導体層表面を研磨して、該第2導電型エピタキシャル半導体層と前記第1導電型半導体層のトレンチエッチング残部層とを交互に隣接配置させ、オン状態で電流を流し、オフ状態で空乏化する構成の並列pn層からなる超接合構造を形成する第二工程とを有する半導体装置の製造方法において、前記第一工程では前記マスクとなる絶縁膜を膜厚の薄い部分と厚い部分を有するように形成し、第二工程では前記トレンチに第2導電型エピタキシャル半導体層を埋め込む前に、前記絶縁膜の膜厚の薄い部分をエッチングにより除去して開口部を形成した後に、前記トレンチに第2導電型エピタキシャル半導体層を埋め込む半導体装置の製造方法とする。   One of the solutions according to the present invention is that the insulating film provided on the main surface of the first conductive type semiconductor layer on the first conductive type semiconductor substrate with low resistance is used as a mask in a layered or columnar shape perpendicular to the main surface. A first step of etching to form a trench; a second conductive type epitaxial semiconductor layer is embedded in the trench so as to be over the trench; and the surface of the second conductive type epitaxial semiconductor layer is formed using the insulating film as an end point detecting means. A parallel pn having a configuration in which the second conductive type epitaxial semiconductor layer and the remaining trench etching remaining layer of the first conductive type semiconductor layer are alternately disposed adjacent to each other, a current flows in the on state, and is depleted in the off state. And a second step of forming a superjunction structure composed of layers. In the method of manufacturing a semiconductor device, in the first step, the insulating film serving as the mask is formed with a thin portion and a thickness. In the second step, before the second conductive type epitaxial semiconductor layer is embedded in the trench, the thin portion of the insulating film is removed by etching to form an opening, and then the opening is formed. A method for manufacturing a semiconductor device in which a second conductivity type epitaxial semiconductor layer is embedded in a trench is provided.

本発明の半導体装置の製造方法によれば、前記第一工程では、前記絶縁膜の膜厚の薄い部分が前記トレンチの開口上端部に接していることが好ましい。
本発明の半導体装置の製造方法によれば、前記第一工程では、前記絶縁膜の膜厚の厚い部分の、前記半導体基板全体に対する面積比率が30%以上であることが望ましい。
本発明の半導体装置の製造方法によれば、前記絶縁膜がシリコン酸化膜、または、シリコン酸化膜とシリコン窒化膜との積層膜とすることもできる。
According to the method for manufacturing a semiconductor device of the present invention, in the first step, it is preferable that the thin portion of the insulating film is in contact with the upper end of the opening of the trench.
According to the method for manufacturing a semiconductor device of the present invention, in the first step, the area ratio of the thick part of the insulating film to the entire semiconductor substrate is preferably 30% or more.
According to the method for manufacturing a semiconductor device of the present invention, the insulating film may be a silicon oxide film or a laminated film of a silicon oxide film and a silicon nitride film.

また、本発明の半導体装置の製造方法によれば、前記半導体装置としてIGBT、MOSFET、バイポーラトランジスタ、ダイオードのいずれかを選択することができる。   According to the method for manufacturing a semiconductor device of the present invention, any of IGBT, MOSFET, bipolar transistor, and diode can be selected as the semiconductor device.

前述の本発明によればハードマスクを用いて選択形成したトレンチに、ハードマスクを残した状態でエピタキシャル層を埋め込む際に、結晶欠陥の発生を防ぐとともに、超接合構造を効率良く形成でき、良好な良品率が得られる半導体装置の製造方法を提供することができる。   According to the present invention described above, when an epitaxial layer is embedded in a trench selectively formed using a hard mask while leaving the hard mask, crystal defects can be prevented and a superjunction structure can be efficiently formed. It is possible to provide a method for manufacturing a semiconductor device capable of obtaining a good yield rate.

以下、本発明の半導体装置の製造方法の実施例について、図面を用いて詳細に説明する。本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。
図1、図2は本発明の半導体装置の製造方法の実施例1にかかる主要な製造工程を示す半導体基板の断面図である。図3、図4は本発明半導体装置の製造方法の実施例2にかかる主要な製造工程を示す半導体基板の断面図である。
Embodiments of a method for manufacturing a semiconductor device according to the present invention will be described below in detail with reference to the drawings. The present invention is not limited to the description of the examples described below unless it exceeds the gist.
1 and 2 are cross-sectional views of a semiconductor substrate showing main manufacturing steps according to Example 1 of the method for manufacturing a semiconductor device of the present invention. 3 and 4 are cross-sectional views of a semiconductor substrate showing main manufacturing steps according to Example 2 of the method for manufacturing a semiconductor device of the present invention.

図1、図2を参照して本発明の実施例1について詳細に説明する。厚さ625μmの低比抵抗n型シリコン半導体基板(nドレイン層)1に、不純物濃度1.9×1016cm−3で73μm厚のn型シリコン半導体層2をエピタキシャル成長させたウエハを材料とする。トレンチエッチングのためのマスク絶縁膜3としてマスク酸化膜3をたとえば1.5μm厚形成する。このマスク酸化膜3は熱酸化により形成しても、CVD法により形成してもどちらでも良い。 A first embodiment of the present invention will be described in detail with reference to FIGS. A wafer obtained by epitaxially growing a 73 μm thick n-type silicon semiconductor layer 2 with an impurity concentration of 1.9 × 10 16 cm −3 on a low specific resistance n-type silicon semiconductor substrate (n + drain layer) 1 having a thickness of 625 μm is used as a material. To do. As the mask insulating film 3 for trench etching, a mask oxide film 3 is formed to a thickness of 1.5 μm, for example. The mask oxide film 3 may be formed by thermal oxidation or by CVD.

次にフォトリソグラフィ技術によりマスク酸化膜3に膜厚の厚い部分と薄い部分を形成するために、薄い膜厚とする部分(開口パターン3b)を一旦開口し、再度、シリコン酸化膜3aを形成する。この時のシリコン酸化膜3aも、熱酸化法またはCVD法によって形成してもどちらでもよい。また、開口パターン3bについても、ストライプ状またはセル状の表面パターンのどちらでもよい。さらに前述のようにマスク酸化膜3の開口パターン3b上に、再度シリコン酸化膜3aを形成することで、マスク酸化膜3には厚い部分と薄い部分ができる。この状態を図1(a)に示す。   Next, in order to form a thick part and a thin part in the mask oxide film 3 by photolithography technology, the thin part (opening pattern 3b) is once opened, and the silicon oxide film 3a is formed again. . The silicon oxide film 3a at this time may be formed either by a thermal oxidation method or a CVD method. Further, the opening pattern 3b may be either a stripe-shaped or cell-shaped surface pattern. Further, by forming the silicon oxide film 3a again on the opening pattern 3b of the mask oxide film 3 as described above, the mask oxide film 3 has a thick portion and a thin portion. This state is shown in FIG.

次に、トレンチ形成用の酸化膜開口部3cを形成する。この状態を図1(b)に示す。この際、トレンチ形成用酸化膜開口部3cは、特に、後述するトレンチの開口部上端のエッジ部分が前記マスク酸化膜3の薄い部分3aに接するように開口パターンを配置させて、前記トレンチ形成用酸化膜開口部3cを形成することが好ましい。
次にトレンチエッチングをたとえば、BOSCHプロセスにより行い、ウエハ表面から深さ73μmのトレンチ4を形成する。この状態を図1(c)に示す。次いでトレンチ4内の洗浄とマスク酸化膜3のエッチングを兼ねてHF(フッ化水素)処理により、マスク酸化膜3の膜厚の薄い部分をエッチングにより除去してなる応力抑制用開口パターン3dを形成する。この状態を図1(d)に示す。
Next, an oxide film opening 3c for forming a trench is formed. This state is shown in FIG. At this time, the trench forming oxide film opening 3c is arranged so that the edge pattern at the upper end of the opening of the trench, which will be described later, is in contact with the thin part 3a of the mask oxide film 3, thereby It is preferable to form the oxide film opening 3c.
Next, trench etching is performed by, for example, a BOSCH process to form a trench 4 having a depth of 73 μm from the wafer surface. This state is shown in FIG. Next, a stress suppressing opening pattern 3d is formed by etching away the thin portion of the mask oxide film 3 by HF (hydrogen fluoride) treatment, which serves as both cleaning of the trench 4 and etching of the mask oxide film 3. To do. This state is shown in FIG.

このように、マスク酸化膜3に応力抑制用開口パターン3dを形成することにより、マスク酸化膜3自体の容積、面積を減らすことができ、後述の図2で説明するp型エピタキシャル層5の埋め込みをした際に、p型エピタキシャル層5とこの層に接するマスク酸化膜3の材料物性が異なることに起因して界面に発生し易い歪応力を全体として低減し結晶欠陥の発生を抑制することができる。さらに、この際、トレンチ4の開口部のエッジ表面にはマスク酸化膜3の開口部である応力抑制用開口パターン3dが接するようにすると、マスク酸化膜3とp型エピタキシャル層5とが接する界面をトレンチ開口部から遠ざけることができ、たとえ前記界面近傍に結晶欠陥が発生しても埋め込まれた部分のp型エピタキシャル層5からは遠ざけることができる。   In this way, by forming the stress suppressing opening pattern 3d in the mask oxide film 3, the volume and area of the mask oxide film 3 itself can be reduced, and the p-type epitaxial layer 5 described later with reference to FIG. When the p-type epitaxial layer 5 and the mask oxide film 3 in contact with this layer are different in material properties, the strain stress that easily occurs at the interface due to the difference in material properties is reduced as a whole, and the generation of crystal defects is suppressed. it can. Further, at this time, if the stress suppressing opening pattern 3 d which is the opening of the mask oxide film 3 is in contact with the edge surface of the opening of the trench 4, the interface where the mask oxide film 3 and the p-type epitaxial layer 5 are in contact with each other. Can be kept away from the trench opening, and even if a crystal defect occurs near the interface, it can be kept away from the buried p-type epitaxial layer 5.

次にトレンチ4の側壁凹凸の平滑化およびトレンチ4底部の角部の丸めを行うために水素アニール処理を行う。アニール処理は950〜1100℃の高温で圧力10〜760Torr(10〜760×133.3Pa)の還元性雰囲気中、30〜200秒処理する。この処理によりトレンチ4内部の表面荒れ(図示せず)は平滑になる。この後、エピタキシャル法により、1.9×1016cm−3のn型シリコン半導体層2と同程度の不純物濃度のp型エピタキシャル層5でトレンチ4を充填する。この状態を図2(a)に示す。p型エピタキシャル層5をトレンチ4に充填するには、少なくともトレンチ4の幅の2分の1以上の厚さにp型エピタキシャル層5を成長させる必要がある。その結果、図2(a)ではマスク酸化膜3上にもp型エピタキシャル層5が横方向に成長し堆積する。図2(a)ではp型エピタキシャル層5の最表面はフラットに描かれているが、ウエハ表面の凹凸の影響を受けてわずかに凹凸ができることが通常である。 Next, a hydrogen annealing process is performed in order to smooth the unevenness of the side wall of the trench 4 and round the corner at the bottom of the trench 4. The annealing treatment is performed at a high temperature of 950 to 1100 ° C. for 30 to 200 seconds in a reducing atmosphere at a pressure of 10 to 760 Torr (10 to 760 × 133.3 Pa). By this treatment, the surface roughness (not shown) inside the trench 4 becomes smooth. Thereafter, the trench 4 is filled with the p-type epitaxial layer 5 having the same impurity concentration as that of the 1.9 × 10 16 cm −3 n-type silicon semiconductor layer 2 by an epitaxial method. This state is shown in FIG. In order to fill the trench 4 with the p-type epitaxial layer 5, it is necessary to grow the p-type epitaxial layer 5 to a thickness of at least one-half of the width of the trench 4. As a result, in FIG. 2A, the p-type epitaxial layer 5 is also grown and deposited on the mask oxide film 3 in the lateral direction. In FIG. 2A, the outermost surface of the p-type epitaxial layer 5 is drawn flat, but it is normal that the surface is slightly uneven due to the influence of the unevenness on the wafer surface.

前述のように、本発明ではこのエピタキシャル成長中に、マスク酸化膜3には応力抑制用開口パターン3dが設けられているため、マスク酸化膜3の容積が小さくなると共に、マスク酸化膜3とn型シリコン半導体層2とが接する界面がトレンチ開口部から遠くなり、トレンチ内のp型エピタキシャル層では応力が緩和されて結晶欠陥の発生を抑えることができる。この後、基板表面の余分なp型エピタキシャル層5をCMP法により削り平坦化を行う。この状態を図2(b)に示す。この時、p型エピタキシャル層5に比べて酸化膜3の研磨速度が遅くて削れにくい公知のスラリーを使いマスク酸化膜3を研磨プロセスにおける終点検知材(ストッパー)として用いて研磨する。このような研磨方法とすることにより、p型エピタキシャル層5とn型シリコン半導体層2のエッチング残部層とが交互に隣接配置すると共に、オン状態で電流を流し、オフ状態で空乏化する構成の並列pn層からなる超接合層を正確な厚さに制御することが可能となる。   As described above, in the present invention, since the mask oxide film 3 is provided with the stress suppressing opening pattern 3d during the epitaxial growth, the volume of the mask oxide film 3 is reduced and the mask oxide film 3 and the n-type are formed. The interface in contact with the silicon semiconductor layer 2 is far from the opening of the trench, and stress is relaxed in the p-type epitaxial layer in the trench, so that generation of crystal defects can be suppressed. Thereafter, the excess p-type epitaxial layer 5 on the substrate surface is shaved and planarized by the CMP method. This state is shown in FIG. At this time, the polishing is performed by using a known slurry which has a slower polishing rate of the oxide film 3 than the p-type epitaxial layer 5 and is difficult to be scraped, and the mask oxide film 3 is used as an end point detection material (stopper) in the polishing process. By adopting such a polishing method, the p-type epitaxial layer 5 and the remaining etching layer of the n-type silicon semiconductor layer 2 are alternately disposed adjacent to each other, a current flows in the on state, and is depleted in the off state. It becomes possible to control the super junction layer composed of the parallel pn layers to an accurate thickness.

マスク酸化膜3を除去した後は、前記図6に示す通常と同様のMOS構造の形成工程に入る。即ち、前記超接合層の表面に熱酸化によりゲート絶縁膜25を形成し、減圧CVD法などにより多結晶シリコン膜を堆積し、フォトリソグラフィによりゲート電極層26とする。続けて、ゲート電極層26をマスクとして利用する選択的なイオン注入および熱処理によって、pベース領域23、nソース領域24、pコンタクト領域30を形成する。更に層間絶縁膜31を堆積し、フォトリソグラフィにより窓開けを行い、アルミニウム合金の堆積およびパターン形成によりソース電極27、ドレイン電極28および図示されないアルミニウムゲート電極の形成を経てMOSFETのウエハプロセスを完了させる。 After the mask oxide film 3 is removed, the same MOS structure forming process as shown in FIG. That is, a gate insulating film 25 is formed on the surface of the super junction layer by thermal oxidation, a polycrystalline silicon film is deposited by a low pressure CVD method or the like, and a gate electrode layer 26 is formed by photolithography. Subsequently, the p base region 23, the n + source region 24, and the p + contact region 30 are formed by selective ion implantation and heat treatment using the gate electrode layer 26 as a mask. Further, an interlayer insulating film 31 is deposited, a window is opened by photolithography, a source electrode 27, a drain electrode 28, and an aluminum gate electrode (not shown) are formed by depositing and patterning an aluminum alloy, thereby completing the MOSFET wafer process.

図3、図4を参照して本発明の実施例2について詳細に説明する。実施例1と同様に、厚さ625μmの低比抵抗n型半導体基板1に、73μm厚で不純物濃度1.9×1016cm−3のn型シリコン半導体層2をエピタキシャル成長させたウエハを材料とする。まず減圧CVD法によりSiN膜6aをたとえば100nm程度の厚さに堆積させる。このとき、薄いバッファー酸化膜(図示せず)を予めウエハ表面に形成しておき、その上に前記SiN膜6aを堆積させてもよい。次にフォトリソグラフィ技術によりマスクSiN膜6aを開口する。マスクSiN膜6aの開口部分6bは、後述の薄いマスク絶縁膜部分あるいはトレンチ形成部になる。マスクSiN膜開口部分6bの平面形状はストライプ状にしてもセル状にしても良い。 A second embodiment of the present invention will be described in detail with reference to FIGS. As in Example 1, a wafer obtained by epitaxially growing an n-type silicon semiconductor layer 2 with an impurity concentration of 1.9 × 10 16 cm −3 at a thickness of 73 μm on a low-resistivity n-type semiconductor substrate 1 with a thickness of 625 μm is used as a material. To do. First, the SiN film 6a is deposited to a thickness of, for example, about 100 nm by a low pressure CVD method. At this time, a thin buffer oxide film (not shown) may be formed in advance on the wafer surface, and the SiN film 6a may be deposited thereon. Next, the mask SiN film 6a is opened by photolithography. The opening portion 6b of the mask SiN film 6a becomes a thin mask insulating film portion or a trench formation portion described later. The planar shape of the mask SiN film opening 6b may be a stripe shape or a cell shape.

次に、トレンチ形成用であって凹凸を有するマスク絶縁膜6を形成するように、前記マスクSiN膜6aの上にシリコン酸化膜6cをたとえば1.5μmの厚さに形成する。この状態が図3(a)である。このシリコン酸化膜6cはCVD法により形成する。ここでは減圧CVD法によりLP−TEOS(Low Temperature−Tetra EthylOxy Silicate)膜6cを形成する。   Next, a silicon oxide film 6c is formed to a thickness of, for example, 1.5 μm on the mask SiN film 6a so as to form a mask insulating film 6 for forming trenches and having irregularities. This state is shown in FIG. This silicon oxide film 6c is formed by the CVD method. Here, an LP-TEOS (Low Temperature-Tetra Ethyl Oxysilicate) film 6c is formed by a low pressure CVD method.

次に、フォトリソグラフィ技術により前記トレンチ形成用マスク絶縁膜6にトレンチ形成用開口部6dを設ける。この状態が図3(b)である。この際、トレンチ4の開口部上端のエッジ表面にはマスク酸化膜6の開口部である応力抑制用開口パターン6dが接するようにすることが好ましいことは前述の実施例1と同様である。この後、トレンチエッチングをたとえば、BOSCHプロセスにより行い、深さ73μmのトレンチ4を形成する。この状態が図3(c)である。   Next, a trench forming opening 6d is provided in the trench forming mask insulating film 6 by photolithography. This state is shown in FIG. At this time, it is preferable that the stress suppressing opening pattern 6d which is the opening of the mask oxide film 6 is in contact with the edge surface of the upper end of the opening of the trench 4 as in the first embodiment. Thereafter, trench etching is performed by, for example, a BOSCH process to form a trench 4 having a depth of 73 μm. This state is shown in FIG.

このトレンチエッチングに次いで、トレンチ内部表面の洗浄を行うが、この処理では適切な濃度のHFを用い、トレンチ4内部のポリマーを除去するとともに、マスク絶縁膜6の残りのシリコン酸化膜部分であるLP−TEOS膜6cもエッチングして全て除去し、マスク絶縁膜6の下地のSiN膜6aのみを残す。このSiN膜6aはHFに対するエッチレートが前記LP−TEOS膜6cに比べて十分に遅いことを利用して、SiN膜6aのみがn型シリコン半導体層2上に残されるようにエッチング時間を調整すればよい。この状態が図3(d)である。   Following this trench etching, the inside surface of the trench is cleaned. In this process, HF having an appropriate concentration is used to remove the polymer inside the trench 4 and to remove LP in the remaining silicon oxide film portion of the mask insulating film 6. The TEOS film 6c is also removed by etching, leaving only the SiN film 6a underlying the mask insulating film 6. The SiN film 6a is adjusted so that only the SiN film 6a remains on the n-type silicon semiconductor layer 2 by utilizing the fact that the etch rate for HF is sufficiently slower than that of the LP-TEOS film 6c. That's fine. This state is shown in FIG.

次にトレンチ4側壁凹凸の平滑化およびトレンチ4底部の角部の丸めを行うために水素アニール処理を行う。アニール処理は950〜1100℃の高温で圧力10〜760Torrの還元性雰囲気中、30〜200秒処理する。この処理によりトレンチ4内部のスキャロップ(図示せず)は平滑になる。この後にエピタキシャル法により前記n型シリコン半導体層2と同程度の不純物濃度のp型エピタキシャル層5でトレンチ4を充填する。この状態が図4(a)である。この後ウエハ表面の余分なシリコンをCMP法により削り平坦化を行うが、この実施例2ではSiN膜6aをCMPでp型エピタキシャル層5を削って平坦な表面にする際の研磨終了点を検出するストッパー膜として利用することができる。この状態が図4(b)である。SiN膜6aを除去した後はMOS構造形成工程に入る。このMOS構造形成工程は実施例1と同じであるため説明を省略する。   Next, hydrogen annealing is performed to smooth the unevenness of the sidewalls of the trench 4 and round the corners at the bottom of the trench 4. The annealing is performed at a high temperature of 950 to 1100 ° C. for 30 to 200 seconds in a reducing atmosphere at a pressure of 10 to 760 Torr. By this processing, the scallop (not shown) inside the trench 4 becomes smooth. Thereafter, the trench 4 is filled with a p-type epitaxial layer 5 having an impurity concentration similar to that of the n-type silicon semiconductor layer 2 by an epitaxial method. This state is shown in FIG. Thereafter, excess silicon on the wafer surface is removed by planarization by CMP, and in this embodiment 2, the polishing end point is detected when the p-type epitaxial layer 5 is removed by CMP to form a flat surface in the SiN film 6a. It can be used as a stopper film. This state is shown in FIG. After removing the SiN film 6a, the MOS structure forming process is started. Since this MOS structure forming step is the same as that of the first embodiment, the description thereof is omitted.

以上説明したように、本発明によれば、p型エピタキシャル成長によりトレンチ4を埋め込む際に発生し易い結晶欠陥を防ぎつつ、SiN膜6aをCMP処理でのストッパーとして用いることで超接合層の厚みを正確に所定の値に制御することが可能になり、リーク電流の少ない超接合構造を有する半導体装置を高良品率で製造することが可能になる。   As described above, according to the present invention, the thickness of the super junction layer can be reduced by using the SiN film 6a as a stopper in the CMP process while preventing crystal defects that are likely to occur when the trench 4 is buried by p-type epitaxial growth. It becomes possible to accurately control to a predetermined value, and it becomes possible to manufacture a semiconductor device having a superjunction structure with little leakage current at a high yield rate.

本発明の実施例1にかかる半導体基板の要部断面図(その1)である。It is principal part sectional drawing (the 1) of the semiconductor substrate concerning Example 1 of this invention. 本発明の実施例1にかかる半導体基板の要部断面図(その2)である。It is principal part sectional drawing (the 2) of the semiconductor substrate concerning Example 1 of this invention. 本発明の実施例2にかかる半導体基板の要部断面図(その1)である。It is principal part sectional drawing (the 1) of the semiconductor substrate concerning Example 2 of this invention. 本発明の実施例2にかかる半導体基板の要部断面図(その2)である。It is principal part sectional drawing (the 2) of the semiconductor substrate concerning Example 2 of this invention. 従来のnチャネル縦型MOSFETを示す半導体基板の要部断面図である。It is principal part sectional drawing of the semiconductor substrate which shows the conventional n channel vertical MOSFET. 従来の超接合MOSFETの半導体基板の要部断面図である。It is principal part sectional drawing of the semiconductor substrate of the conventional super junction MOSFET. 結晶欠陥の発生しやすい領域を示す半導体基板の要部断面図である。It is principal part sectional drawing of the semiconductor substrate which shows the area | region where a crystal defect is easy to generate | occur | produce.

符号の説明Explanation of symbols

1 :n型シリコン半導体基板(nドレイン層)
2 :n型シリコン半導体層
3 :マスク絶縁膜、マスク酸化膜
3a :シリコン酸化膜
3b :開口パターン
3c :トレンチ形成用酸化膜開口部
3d :応力抑制用開口パターン
4 :トレンチ
5 :p型エピタキシャル層
6 :マスク絶縁膜
6a :SiN膜、マスクSiN膜
6b :マスクSiN膜開口部分
6c :シリコン酸化膜、LP−TEOS膜
6d :トレンチ形成用開口部
23 :pベース領域
24 :nソース領域
25 :ゲート絶縁膜
26 :ゲート電極層
27 :ソース電極
28 :ドレイン電極
30 :pコンタクト領域
31 :層間絶縁膜。
1: n-type silicon semiconductor substrate (n + drain layer)
2: n-type silicon semiconductor layer 3: mask insulating film, mask oxide film 3a: silicon oxide film 3b: opening pattern 3c: oxide film opening for trench formation 3d: opening pattern for stress suppression 4: trench 5: p-type epitaxial layer 6: Mask insulating film 6a: SiN film, mask SiN film 6b: Mask SiN film opening 6c: Silicon oxide film, LP-TEOS film 6d: Trench formation opening 23: p base region 24: n + source region 25: Gate insulating film 26: Gate electrode layer 27: Source electrode 28: Drain electrode 30: p + contact region 31: Interlayer insulating film

Claims (5)

低抵抗の第1導電型半導体基板上の第1導電型半導体層の主面に設けた絶縁膜をマスクとして、該主面に垂直に層状またはカラム状にエッチングしてトレンチを形成する第一工程と、該トレンチに第2導電型エピタキシャル半導体層を該トレンチからオーバーするように埋め込み、前記絶縁膜を終点検出手段として前記第2導電型エピタキシャル半導体層表面を研磨して、該第2導電型エピタキシャル半導体層と前記第1導電型半導体層のトレンチエッチング残部層とを交互に隣接配置させ、オン状態で電流を流し、オフ状態で空乏化する構成の並列pn層からなる超接合構造を形成する第二工程とを有する半導体装置の製造方法において、前記第一工程では前記マスクとなる絶縁膜を膜厚の薄い部分と厚い部分を有するように形成し、第二工程では前記トレンチに第2導電型エピタキシャル半導体層を埋め込む前に、前記絶縁膜の膜厚の薄い部分をエッチングにより除去して開口部を形成した後に、前記トレンチに第2導電型エピタキシャル半導体層を埋め込むことを特徴とする半導体装置の製造方法。 A first step of forming a trench by etching in a layer or column shape perpendicularly to the main surface using an insulating film provided on the main surface of the first conductive type semiconductor layer on the first conductive type semiconductor substrate of low resistance as a mask And filling the trench with a second conductivity type epitaxial semiconductor layer so as to extend over the trench, and polishing the surface of the second conductivity type epitaxial semiconductor layer with the insulating film as an end point detection means, First, a semiconductor layer and a trench etching remaining layer of the first conductivity type semiconductor layer are alternately disposed adjacent to each other, and a superjunction structure including a parallel pn layer configured to flow current in an on state and deplete in an off state is formed. In the method of manufacturing a semiconductor device having two steps, in the first step, the insulating film to be the mask is formed to have a thin portion and a thick portion, and the second step Before embedding the second conductivity type epitaxial semiconductor layer in the trench, the thin portion of the insulating film is removed by etching to form an opening, and then the second conductivity type epitaxial semiconductor layer is formed in the trench. A method for manufacturing a semiconductor device, comprising embedding. 前記第一工程では、前記絶縁膜の膜厚の薄い部分が前記トレンチの開口上端部に接していることを特徴とする請求項1記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein in the first step, the thin portion of the insulating film is in contact with the upper end of the opening of the trench. 前記第一工程では、前記絶縁膜の膜厚の厚い部分の、前記絶縁膜全体に対する面積比率が30%以上であることを特徴とする請求項1または2記載の半導体装置の製造方法。 3. The method of manufacturing a semiconductor device according to claim 1, wherein, in the first step, an area ratio of the thick portion of the insulating film to the entire insulating film is 30% or more. 前記絶縁膜がシリコン酸化膜、または、シリコン酸化膜とシリコン窒化膜との積層膜であることを特徴とする請求項1乃至3のいずれか一項に記載の半導体装置の製造方法。 4. The method of manufacturing a semiconductor device according to claim 1, wherein the insulating film is a silicon oxide film or a laminated film of a silicon oxide film and a silicon nitride film. 前記半導体装置がIGBT、MOSFET、バイポーラトランジスタ、ダイオードのいずれかであることを特徴とする請求項1乃至4のいずれか一項に記載の半導体装置の製造方法。 5. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor device is one of an IGBT, a MOSFET, a bipolar transistor, and a diode.
JP2008226778A 2008-09-04 2008-09-04 Manufacturing method of semiconductor device Expired - Fee Related JP5439768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008226778A JP5439768B2 (en) 2008-09-04 2008-09-04 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008226778A JP5439768B2 (en) 2008-09-04 2008-09-04 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2010062347A true JP2010062347A (en) 2010-03-18
JP5439768B2 JP5439768B2 (en) 2014-03-12

Family

ID=42188831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008226778A Expired - Fee Related JP5439768B2 (en) 2008-09-04 2008-09-04 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5439768B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412151A (en) * 2011-11-25 2012-04-11 上海华虹Nec电子有限公司 Method for manufacturing super junction double-surface trench insulated gate bipolar translator (IGBT) device
CN102420134A (en) * 2011-11-25 2012-04-18 上海华虹Nec电子有限公司 Manufacturing method of super-junction combined punch-through type groove IGBT (Insulated Gate Bipolar Transistor) device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638011B (en) * 2015-01-23 2018-05-11 无锡同方微电子有限公司 A kind of groove MOSFET device and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351865A (en) * 2000-06-05 2001-12-21 Denso Corp Manufacturing method of semiconductor device
JP2002124474A (en) * 2000-10-13 2002-04-26 Denso Corp Semiconductor substrate and method of manufacturing the same
JP2005019898A (en) * 2003-06-27 2005-01-20 Denso Corp Semiconductor substrate and its manufacturing method
JP2006324432A (en) * 2005-05-18 2006-11-30 Fuji Electric Holdings Co Ltd Semiconductor device and its manufacturing method
JP2007129115A (en) * 2005-11-07 2007-05-24 Fuji Electric Holdings Co Ltd Manufacturing method for semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351865A (en) * 2000-06-05 2001-12-21 Denso Corp Manufacturing method of semiconductor device
JP2002124474A (en) * 2000-10-13 2002-04-26 Denso Corp Semiconductor substrate and method of manufacturing the same
JP2005019898A (en) * 2003-06-27 2005-01-20 Denso Corp Semiconductor substrate and its manufacturing method
JP2006324432A (en) * 2005-05-18 2006-11-30 Fuji Electric Holdings Co Ltd Semiconductor device and its manufacturing method
JP2007129115A (en) * 2005-11-07 2007-05-24 Fuji Electric Holdings Co Ltd Manufacturing method for semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412151A (en) * 2011-11-25 2012-04-11 上海华虹Nec电子有限公司 Method for manufacturing super junction double-surface trench insulated gate bipolar translator (IGBT) device
CN102420134A (en) * 2011-11-25 2012-04-18 上海华虹Nec电子有限公司 Manufacturing method of super-junction combined punch-through type groove IGBT (Insulated Gate Bipolar Transistor) device
CN102420134B (en) * 2011-11-25 2013-09-11 上海华虹Nec电子有限公司 Manufacturing method of super-junction combined punch-through type groove IGBT (Insulated Gate Bipolar Transistor) device

Also Published As

Publication number Publication date
JP5439768B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
US9515160B2 (en) Silicon carbide semiconductor device and method for producing the same
JP5383732B2 (en) Semiconductor device
JP5476689B2 (en) Manufacturing method of semiconductor device
TWI497722B (en) Semiconductor strips with undercuts and methods for forming the same
JP2004273742A (en) Manufacturing method of semiconductor wafer
JP5806600B2 (en) Method for manufacturing silicon carbide semiconductor device
JP2008166490A (en) Manufacturing method for semiconductor device
JP5509543B2 (en) Manufacturing method of semiconductor device
CN103765594A (en) Silicon carbide semiconductor device
JP2010003970A (en) Manufacturing method of semiconductor device
JP2009141307A (en) Method of manufacturing semiconductor device
US8575648B2 (en) Silicon carbide semiconductor device and method of manufacturing the same
JP4039161B2 (en) Manufacturing method of semiconductor substrate
JP4539052B2 (en) Manufacturing method of semiconductor substrate
US11869966B2 (en) Method for forming an insulation layer in a semiconductor body and transistor device
WO2012105170A1 (en) Semiconductor device and manufacturing method thereof
JP5439768B2 (en) Manufacturing method of semiconductor device
JP2010161114A (en) Process of fabricating semiconductor device
JP5458608B2 (en) Manufacturing method of semiconductor device
JP4539057B2 (en) Manufacturing method of semiconductor substrate
JP2005142335A (en) Method of manufacturing semiconductor element
JP2006303232A (en) Method of manufacturing semiconductor device
JP2012174949A (en) Semiconductor device and manufacturing method therefor
JP2017168720A (en) Method for manufacturing silicon carbide semiconductor device
TWI539497B (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Ref document number: 5439768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees