JP2010053318A - Phenolic resin - Google Patents

Phenolic resin Download PDF

Info

Publication number
JP2010053318A
JP2010053318A JP2008222587A JP2008222587A JP2010053318A JP 2010053318 A JP2010053318 A JP 2010053318A JP 2008222587 A JP2008222587 A JP 2008222587A JP 2008222587 A JP2008222587 A JP 2008222587A JP 2010053318 A JP2010053318 A JP 2010053318A
Authority
JP
Japan
Prior art keywords
mass
parts
compound
group
synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008222587A
Other languages
Japanese (ja)
Inventor
Tatsuro Kobayashi
達朗 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2008222587A priority Critical patent/JP2010053318A/en
Publication of JP2010053318A publication Critical patent/JP2010053318A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an industrially useful phenolic resin having a high heat resistance. <P>SOLUTION: The phenolic resin is expressed by general formula (1) (wherein, n is 2 or more; hydrogen on the aromatic ring having a hydroxy group may be substituted with a substituent). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、フェノール樹脂に関するものである。   The present invention relates to a phenol resin.

フェノール樹脂は、基材及び添加剤などと複合することにより成形材料として幅広く用いられている。こうして得られたフェノール樹脂成形材料は、耐熱性、寸法安定性及び成形性等に優れ、自動車部品、電気部品及び電子部品等の用途に使用されてきている。
特に、最近では、自動車部品をはじめとする各種金属部品の代替材料として適用され、その使用量は益々拡大してきている。フェノール樹脂の典型的な構造としては、フェノール類とホルマリンによって製造されるノボラック型フェノール樹脂が知られており、安価であり工業的に多くの分野で使用されている。近年、フェノール樹脂の性能への要求が厳しくなってきており、さらなる耐熱性の向上が求められている。
ノボラック型フェノール樹脂の耐熱性を改良する上で、様々な変性フェノール樹脂が検討されている。その中でも、フェノールアラルキル樹脂は、硬化物として優れた耐熱性を有しており、ノボラック型フェノール樹脂の硬化物と比較して耐熱性の指標である5%重量減少温度が390℃から440℃に向上することが明らかとなっている(例えば、特許文献1参照。)。しかしながら、成形材料分野ではさらに優れた耐熱性を有する樹脂が求められており、現在のフェノール樹脂では十分とはいえない状況である。
特開平8−48755号公報
Phenolic resins are widely used as molding materials by combining with a base material and additives. The phenolic resin molding material thus obtained is excellent in heat resistance, dimensional stability, moldability and the like, and has been used for applications such as automobile parts, electrical parts and electronic parts.
In particular, it has recently been applied as an alternative material for various metal parts such as automobile parts, and the amount of use has been increasing. As a typical structure of a phenolic resin, a novolac type phenolic resin produced by phenols and formalin is known, and is inexpensive and industrially used in many fields. In recent years, demands on the performance of phenolic resins have become stricter, and further improvement in heat resistance has been demanded.
Various modified phenolic resins have been studied for improving the heat resistance of novolac type phenolic resins. Among them, the phenol aralkyl resin has excellent heat resistance as a cured product, and the 5% weight loss temperature, which is an index of heat resistance compared with the cured product of the novolak type phenol resin, is increased from 390 ° C. to 440 ° C. It has been clarified to improve (see, for example, Patent Document 1). However, in the field of molding materials, a resin having further excellent heat resistance is required, and the current phenol resin is not sufficient.
JP-A-8-48755

本発明は、以上のような従来技術の問題点に鑑みなされたもので、その目的は、従来のフェノール樹脂よりも高耐熱性を有するフェノール樹脂を提供することである。   The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a phenol resin having higher heat resistance than that of a conventional phenol resin.

本発明者らは、上記課題を解決するため樹脂骨格について鋭意検討した結果、本発明に至ったものである。
すなわち本発明は、下記一般式(1)で表されるフェノール樹脂である。
As a result of intensive studies on the resin skeleton in order to solve the above problems, the present inventors have reached the present invention.
That is, the present invention is a phenol resin represented by the following general formula (1).

Figure 2010053318
(式(1)中、nは2以上であり、水酸基を有する芳香環上の水素が置換基により置換されてもよい。)
Figure 2010053318
(In formula (1), n is 2 or more, and hydrogen on the aromatic ring having a hydroxyl group may be substituted with a substituent.)

上記水酸基を有する芳香環上の置換基としては、一般式(2)に表される置換基、芳香族基、水酸基、ハロゲン、またはアルコキシ基が挙げられる。   Examples of the substituent on the aromatic ring having a hydroxyl group include a substituent represented by the general formula (2), an aromatic group, a hydroxyl group, a halogen, or an alkoxy group.

Figure 2010053318
(式(2)中、R1、R2及びR3は、水素原子、アルキル基、及び芳香族基のいずれか1つから選ばれるものである。)
Figure 2010053318
(In the formula (2), R 1 , R 2 and R 3 are selected from any one of a hydrogen atom, an alkyl group, and an aromatic group.)

本発明によれば、高耐熱性を有し工業的に有用なフェノール樹脂を提供できる。   According to the present invention, an industrially useful phenolic resin having high heat resistance can be provided.

本発明は、前記一般式(1)で表されるフェノール樹脂であり、該フェノール樹脂は耐熱性に優れるものである。   This invention is a phenol resin represented by the said General formula (1), This phenol resin is excellent in heat resistance.

本発明のフェノール樹脂は、一般式(1)で表されるものである。   The phenol resin of this invention is represented by General formula (1).

前記一般式(1)で表されるフェノール樹脂における重合度nは2以上であり、2以上1000以下であることが好ましく、より好ましくはnが2以上30以下である。nが2以上1000以下であると、保存時における固結などを生じることがなく、しかも低溶融粘度となるため、ハンドリング性が良好であり、また、成形材料などに用いた場合、成形性が良好なものとなる。   The degree of polymerization n in the phenol resin represented by the general formula (1) is 2 or more, preferably 2 or more and 1000 or less, and more preferably n is 2 or more and 30 or less. When n is 2 or more and 1000 or less, there is no caking during storage, and since it has a low melt viscosity, the handling property is good, and when used as a molding material, the moldability is good. It will be good.

本発明のフェノール樹脂は、前記一般式(1)において、水酸基を有する芳香環上の水素が、下記一般式(2)に表される置換基、芳香族基、水酸基、ハロゲンまたはアルコキシ基により置換されていても良い。   In the phenol resin of the present invention, in the general formula (1), hydrogen on the aromatic ring having a hydroxyl group is substituted by a substituent, an aromatic group, a hydroxyl group, a halogen, or an alkoxy group represented by the following general formula (2). May be.

Figure 2010053318
(式(2)中、R1、R2及びR3は、水素原子、アルキル基及び芳香族基のいずれか1つから選ばれるものである。)
Figure 2010053318
(In the formula (2), R 1 , R 2 and R 3 are selected from any one of a hydrogen atom, an alkyl group and an aromatic group.)

前記一般式(2)で表される置換基におけるR1、R2及びR3としてのアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソプロピル基、イソブチル基、セカンダリーブチル基、ターシャリーブチル基、ネオペンチル基、シクロペンチル基及びシクロヘキシル基等が挙げられる。 Examples of the alkyl group as R 1 , R 2 and R 3 in the substituent represented by the general formula (2) include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a heptyl group. Octyl group, isopropyl group, isobutyl group, secondary butyl group, tertiary butyl group, neopentyl group, cyclopentyl group and cyclohexyl group.

一般式(2)で表される置換基におけるR1、R2及びR3としての芳香族基としては、例えば、フェニル基、トリル基、キシリル基、ビフェニル基、ターフェニル基、ジフェニルエーテル基及びジフェニルスルホン基等が挙げられる。これら芳香族基の水素原子が水酸基、フッ素及び塩素等のハロゲンで置換されてよい。 Examples of the aromatic group as R 1 , R 2 and R 3 in the substituent represented by the general formula (2) include a phenyl group, a tolyl group, a xylyl group, a biphenyl group, a terphenyl group, a diphenyl ether group and a diphenyl group. A sulfone group etc. are mentioned. The hydrogen atom of these aromatic groups may be substituted with a halogen such as a hydroxyl group, fluorine and chlorine.

前記一般式(1)において、水酸基を有する芳香環上の水素が置換される芳香族基としては、例えば、フェニル基、ナフチル基、アントリル基、フェナンスリル基及びピリル基などの単環式又は縮合多環式芳香族基、メチレンビスフェニル基、イソプロピリデンビスフェニル基、ビフェニル基及びターフェニル基などの複数の芳香環を有する基、ジフェニルエーテル基、ジフェニルスルフィド基及びジフェニルスルホン基などのヘテロ原子含有芳香族基などが挙げられる。これらの芳香族基は、芳香環上の水素が、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、セカンダリーブチル基、ターシャリーブチル基、ペンチル基、イソペンチル基及びネオペンチル基等のアルキル基、フッ素及び塩素等のハロゲン等により置換されていても良い。   In the general formula (1), examples of the aromatic group in which hydrogen on the aromatic ring having a hydroxyl group is substituted include monocyclic or condensed poly groups such as a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a pyryl group. Heteroatom-containing aromatics such as cyclic aromatic groups, methylene bisphenyl groups, isopropylidene bisphenyl groups, groups having multiple aromatic rings such as biphenyl groups and terphenyl groups, diphenyl ether groups, diphenyl sulfide groups and diphenyl sulfone groups Groups and the like. These aromatic groups have hydrogen on the aromatic ring, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, secondary butyl, tertiary butyl, pentyl, isopentyl and neopentyl. May be substituted with an alkyl group such as fluorine, halogen such as fluorine and chlorine, and the like.

前記一般式(1)において、水酸基を有する芳香環上の水素が置換されるハロゲンとしては、例えば、フッ素及び塩素等のハロゲンが挙げられる。   In the general formula (1), examples of the halogen substituted with hydrogen on the aromatic ring having a hydroxyl group include halogens such as fluorine and chlorine.

前記一般式(1)において、水酸基を有する芳香環上の水素が置換されるアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基及びフェノキシ基等が挙げられる。   In the general formula (1), examples of the alkoxy group substituted with hydrogen on the aromatic ring having a hydroxyl group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a phenoxy group.

また、前記一般式(1)において、それぞれの繰り返し単位の芳香環上の水素が置換される置換基は、同一であっても異なっていても良い。   Moreover, in the said General formula (1), the substituent by which the hydrogen on the aromatic ring of each repeating unit is substituted may be same or different.

次に、本発明の一般式(1)で表されるフェノール樹脂の製造方法について、説明する。
本発明の一般式(1)で表されるフェノール樹脂の製造方法の一例としては、パラジウム(以下、Pdと称することがある。)触媒、助触媒として銅化合物を用い、アミン存在下、パラジブロモ化合物と、ジエチニル化合物とをクロスカップリング反応(薗頭反応)させることにより得られる(例えば、K.Sonogashira,J.Organomet.Chem.,653,46(2002)参照。)。
Next, the manufacturing method of the phenol resin represented by General formula (1) of this invention is demonstrated.
As an example of the method for producing a phenol resin represented by the general formula (1) of the present invention, a palladium (hereinafter sometimes referred to as Pd) catalyst, a copper compound as a promoter, and a paradibromo compound in the presence of an amine. And a diethynyl compound are subjected to a cross-coupling reaction (Sonogashira reaction) (for example, see K. Sonogashira, J. Organomet. Chem., 653, 46 (2002)).

具体的には、下記式(3)で表されるパラジブロモ化合物と、下記式(4)で表されるジエチニル化合物と、Pd触媒及び助触媒を、反応容器中に投入し、さらにアミンを加えて、加熱しながら反応させることにより、本発明の一般式(1)で表されるフェノール樹脂を得ることができる。   Specifically, a paradibromo compound represented by the following formula (3), a diethynyl compound represented by the following formula (4), a Pd catalyst and a co-catalyst are introduced into a reaction vessel, and an amine is further added. By making it react, heating, the phenol resin represented by General formula (1) of this invention can be obtained.

Figure 2010053318
Figure 2010053318

Figure 2010053318
Figure 2010053318

なお、一般式(1)で表されるフェノール樹脂が水酸基を有する芳香環上に置換基を有する場合は、上記式(3)で表されるジブロモ化合物及び上記式(4)で表されるジエチニル化合物として、フェノール性水酸基を有する芳香環上の同一箇所に当該置換基を有する化合物を用いればよい。   In addition, when the phenol resin represented by the general formula (1) has a substituent on the aromatic ring having a hydroxyl group, the dibromo compound represented by the above formula (3) and the diethynyl represented by the above formula (4). What is necessary is just to use the compound which has the said substituent in the same location on the aromatic ring which has a phenolic hydroxyl group as a compound.

上記式(3)で表されるパラジブロモ化合物の合成法の具体例としては、1,4−ジブロモ−2,5−ビス(メトキシメチル)ベンゼンとフェノール化合物を酸触媒下で反応させた後、加熱減圧下、残留フェノール化合物を除去した後、再結晶することで得ることができる。一般式(1)で表されるフェノール樹脂が水酸基を有する芳香環上に置換基を有しない場合は、上記フェノール化合物としてフェノールを用い、置換基を有する場合は、上記フェノール化合物として、当該置換基を同一箇所に有するフェノールを用いれば良い。   As a specific example of the synthesis method of the paradibromo compound represented by the above formula (3), 1,4-dibromo-2,5-bis (methoxymethyl) benzene and a phenol compound are reacted in the presence of an acid catalyst, followed by heating. After removing the residual phenol compound under reduced pressure, it can be obtained by recrystallization. When the phenol resin represented by the general formula (1) does not have a substituent on the aromatic ring having a hydroxyl group, phenol is used as the phenol compound, and when the phenol resin has a substituent, the phenol compound is used as the substituent. May be used in the same place.

上記式(4)で表されるジエチニル化合物の合成法の具体例としては、上記で得た式(3)で表されるパラジブロモ化合物を用いることができ、まず、これと、トリメチルシリルアセチレンとを、前記薗頭反応の条件下で反応させる。次いで、得られた反応生成物を溶媒に溶解させ、炭酸カリウムを反応させた後、有機層を取り出して、再結晶することで得ることができる。   As a specific example of the synthesis method of the diethynyl compound represented by the above formula (4), the paradibromo compound represented by the formula (3) obtained above can be used. First, this and trimethylsilylacetylene, The reaction is carried out under the Sonogashira reaction conditions. Subsequently, after the obtained reaction product is dissolved in a solvent and reacted with potassium carbonate, the organic layer is taken out and recrystallized.

薗頭反応に用いられるPd触媒としては、例えば、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、ジクロロビス(ベンゾニトリル)パラジウム、トリス(ジベンジリデンアセトン)ジパラジウム、塩化パラジウム、酢酸パラジウムなどが挙げられる。   Examples of the Pd catalyst used in the Sonogashira reaction include tetrakis (triphenylphosphine) palladium, dichlorobis (triphenylphosphine) palladium, dichlorobis (benzonitrile) palladium, tris (dibenzylideneacetone) dipalladium, palladium chloride, and palladium acetate. Etc.

助触媒としての銅化合物としては、例えば、CuI、CuBr、及びCuClなどが用いられる。アミンとしては、例えば、n−BuNH2(Buはブチル基を示す。)、Et2NH(Etはエチル基を示す。)、Et3Nまたはピペリジンなどが用いられ、テトラヒドロフラン、ジメチルホルムアミド等の溶媒と組み合わせて用いても良い。 For example, CuI, CuBr, and CuCl are used as the copper compound as the promoter. Examples of the amine include n-BuNH 2 (Bu represents a butyl group), Et 2 NH (Et represents an ethyl group), Et 3 N, piperidine, and the like, and solvents such as tetrahydrofuran and dimethylformamide. May be used in combination.

なお、反応の際の雰囲気は、窒素ガス、アルゴンガスなどの不活性ガス雰囲気であることが好ましい。   The atmosphere during the reaction is preferably an inert gas atmosphere such as nitrogen gas or argon gas.

上記反応において、式(3)で表されるパラジブロモ化合物に対する式(4)で表されるジエチニル化合物の反応モル比としては、0.2以上5.0以下が好ましく、より好ましくは0.5以上2.0以下、さらに好ましくは0.8以上1.25以下である。   In the above reaction, the reaction molar ratio of the diethynyl compound represented by the formula (4) to the paradibromo compound represented by the formula (3) is preferably 0.2 or more and 5.0 or less, more preferably 0.5 or more. 2.0 or less, more preferably 0.8 or more and 1.25 or less.

また、Pd触媒の使用量としては、式(3)で表されるパラジブロモ化合物の100質量部に対して、0.001質量部以上10質量部以下が好ましく、より好ましくは0.01質量部以上1質量部以下である。
また、Pd触媒を安定化させるためにホスフィン化合物を用いることができ、ホスフィン化合物として、例えばトリフェニルホスフィン、トリシクロヘキシルホスフィン及びメチルジフェニルホスフィンなどが挙げられる。ホスフィン化合物の使用量としてはPd触媒に対して、モル比として0.1以上20以下が好ましい。
また、助触媒としての銅化合物の使用量としてはPd触媒に対して、モル比で0.1以上10以下が好ましく、より好ましくは1.0以上5.0以下である。
アミンの使用量としてはPd触媒に対して、モル比で1以上が好ましく、より好ましくは10以上10000以下である。
The amount of the Pd catalyst used is preferably 0.001 part by mass or more and 10 parts by mass or less, more preferably 0.01 part by mass or more with respect to 100 parts by mass of the paradibromo compound represented by the formula (3). 1 part by mass or less.
In addition, a phosphine compound can be used to stabilize the Pd catalyst. Examples of the phosphine compound include triphenylphosphine, tricyclohexylphosphine, and methyldiphenylphosphine. The amount of the phosphine compound used is preferably 0.1 to 20 in terms of molar ratio with respect to the Pd catalyst.
In addition, the amount of the copper compound used as a co-catalyst is preferably 0.1 or more and 10 or less, more preferably 1.0 or more and 5.0 or less, in molar ratio with respect to the Pd catalyst.
The amount of amine used is preferably 1 or more, more preferably 10 or more and 10,000 or less, in terms of molar ratio with respect to the Pd catalyst.

反応温度としては室温以上が好ましく、より好ましくは80℃以上である。80℃以上であれば反応が高効率的に進行し、本発明のフェノール樹脂を効率的に得ることができる。
本発明のフェノール樹脂の製造方法において、反応生成物を精製する方法としては、反応生成物を溶媒に溶かした後、再沈殿、カラムクロマトグラフィー及び再結晶等の方法により精製することができる。
The reaction temperature is preferably room temperature or higher, more preferably 80 ° C. or higher. If it is 80 degreeC or more, reaction will advance highly efficiently and the phenol resin of this invention can be obtained efficiently.
In the method for producing a phenol resin of the present invention, the reaction product can be purified by a method such as reprecipitation, column chromatography and recrystallization after dissolving the reaction product in a solvent.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by these examples.

本発明のフェノール樹脂を合成するに先立ち、まず、出発原料を合成した。
[パラジブロモ化合物の合成]
(合成例1)
[1,4−ジブロモ−2,5−ビス((ヒドロキシフェニル)メチル)ベンゼンの合成]
1Lの三口ナスフラスコに、1,4−ジブロモ−2,5−ビス(メトキシメチル)ベンゼン(シグマアルドリッチ社製)162質量部、フェノール(キシダ化学(株)製)470.6質量部及び硫酸9.8質量部を投入し、系内を攪拌しつつ100℃に昇温した。100℃で3時間反応を行った後、反応溶液を室温に冷却し、メチルイソブチルケトン500質量部を加え溶解させた。油層を2Lの分液ロートに移し、純水500mLを加え、油層を抽出した後、飽和炭酸水素ナトリウム水溶液500mL及び飽和食塩水500mLを用いて、油層の洗浄を行った。油層に、硫酸マグネシウム50質量部を加え、24時間放置し水分の除去を行った。これを濾過して硫酸マグネシウムを除去し、さらに減圧下溶媒を留去して得られた反応混合物を、0.001MPaの減圧下150℃に加熱し、5時間攪拌を行いフェノールの除去を行った。ここで得られた反応混合物をメタノールから再結晶を行うことで、201質量部の白色固体(化合物(A1))を得た。
Prior to synthesizing the phenolic resin of the present invention, first, starting materials were synthesized.
[Synthesis of paradibromo compounds]
(Synthesis Example 1)
[Synthesis of 1,4-dibromo-2,5-bis ((hydroxyphenyl) methyl) benzene]
In a 1 L three-necked eggplant flask, 162 parts by mass of 1,4-dibromo-2,5-bis (methoxymethyl) benzene (manufactured by Sigma-Aldrich), 470.6 parts by mass of phenol (manufactured by Kishida Chemical Co., Ltd.), and sulfuric acid 9 8 parts by mass were added and the temperature was raised to 100 ° C. while stirring the system. After reacting at 100 ° C. for 3 hours, the reaction solution was cooled to room temperature, and 500 parts by mass of methyl isobutyl ketone was added and dissolved. The oil layer was transferred to a 2 L separatory funnel, 500 mL of pure water was added to extract the oil layer, and then the oil layer was washed with 500 mL of saturated aqueous sodium bicarbonate and 500 mL of saturated brine. To the oil layer, 50 parts by mass of magnesium sulfate was added and left for 24 hours to remove moisture. This was filtered to remove magnesium sulfate, and the solvent was distilled off under reduced pressure. The reaction mixture obtained was heated to 150 ° C. under a reduced pressure of 0.001 MPa and stirred for 5 hours to remove phenol. . The reaction mixture obtained here was recrystallized from methanol to obtain 201 parts by mass of a white solid (compound (A1)).

上記で得られた白色固体を、電界脱離質量分析法(FD−MS、以下同様)により分析した結果より、得られた固体の分子量が448.2であり、重クロロホルム(CDCl3)中のプロトン核磁気共鳴(1H−NMR、以下同様)スペクトルの結果が以下になったことから、この白色固体が下記式(A1)の構造であることを確認した。
1H−NMR(400MHz, CDCl3): δ: 9.45 (2H, brs, OH), 7.15−6.62 (10H, m, Ar), 3.96−3.84 (4H, m, CH2
As a result of analyzing the white solid obtained above by field desorption mass spectrometry (FD-MS, the same applies hereinafter), the obtained solid had a molecular weight of 448.2, and in deuterated chloroform (CDCl 3 ) Proton nuclear magnetic resonance ( 1 H-NMR, the same applies hereinafter) spectrum results were as follows, and it was confirmed that this white solid had the structure of the following formula (A1).
1 H-NMR (400 MHz, CDCl 3 ): δ: 9.45 (2H, brs, OH), 7.15-6.62 (10H, m, Ar), 3.96-3.84 (4H, m , CH 2 )

Figure 2010053318
Figure 2010053318

(合成例2)
[1,4−ジブロモ−2,5−ビス((ブチルヒドロキシフェニル)メチル)ベンゼンの合成]
合成例1において用いた、フェノール470.6質量部を2−ブチルフェノール751.1質量部に代えた以外は、合成例1と同様の反応を行い、226質量部の白色固体(化合物(A2))を得た。
上記で得た白色固体について、FD−MSの結果より、分子量が560.4であり、重クロロホルム中の1H−NMRスペクトルの結果が以下となったことから、この白色固体が下記式(A2)の構造であることを確認した。
1H−NMR(CDCl3): δ: 9.65 (2H, brs, OH), 7.18−6.67 (8H, m, Ar), 3.98−3.87 (4H, m, CH2), 2.62 (4H, m, CH2), 1.63−0.87 (14H, m)
(Synthesis Example 2)
[Synthesis of 1,4-dibromo-2,5-bis ((butylhydroxyphenyl) methyl) benzene]
Except that 470.6 parts by mass of phenol used in Synthesis Example 1 was replaced with 751.1 parts by mass of 2-butylphenol, the same reaction as in Synthesis Example 1 was performed, and 226 parts by mass of a white solid (compound (A2)) Got.
About the white solid obtained above, the molecular weight was 560.4 from the results of FD-MS, and the result of 1 H-NMR spectrum in deuterated chloroform was as follows. ).
1 H-NMR (CDCl 3 ): δ: 9.65 (2H, brs, OH), 7.18-6.67 (8H, m, Ar), 3.98-3.87 (4H, m, CH 2), 2.62 (4H, m , CH 2), 1.63-0.87 (14H, m)

Figure 2010053318
Figure 2010053318

(合成例3)
[1,4−ジブロモ−2,5−ビス((ヒドロキシフェニルフェニル)メチル)ベンゼンの合成]
合成例1において用いた、フェノール470.6質量部を2−フェニルフェノール851質量部に代えた以外は、合成例1と同様の反応を行い、232質量部の白色固体(化合物(A3))を得た。
上記で得た白色固体について、FD−MSの結果より、分子量が600.3であり、重クロロホルム中の1H−NMRスペクトルの結果が以下となったことから、この白色固体が下記式(A3)の構造であることを確認した。
1H−NMR(CDCl3): δ: 9.57 (2H, brs, OH), 7.55−6.62 (18H, m, Ar), 3.96−3.84 (4H, m, CH2
(Synthesis Example 3)
[Synthesis of 1,4-dibromo-2,5-bis ((hydroxyphenylphenyl) methyl) benzene]
Except that 470.6 parts by mass of phenol used in Synthesis Example 1 was replaced with 851 parts by mass of 2-phenylphenol, the same reaction as in Synthesis Example 1 was performed, and 232 parts by mass of a white solid (compound (A3)) was obtained. Obtained.
About the white solid obtained above, the molecular weight was 600.3 from the results of FD-MS, and the result of 1 H-NMR spectrum in deuterated chloroform was as follows. ).
1 H-NMR (CDCl 3 ): δ: 9.57 (2H, brs, OH), 7.55-6.62 (18H, m, Ar), 3.96-3.84 (4H, m, CH 2 )

Figure 2010053318
Figure 2010053318

(合成例4)
[1,4−ジブロモ−2,5−ビス((ジヒドロキシフェニル)メチル)ベンゼンの合成]
合成例1において用いた、フェノール470.6質量部をレゾルシノール550.6質量部に代えた以外は、合成例1と同様の反応を行い、195質量部の白色固体(化合物(A4))を得た。
上記で得た白色固体について、FD−MSの結果より、分子量が480.2であり、重クロロホルム中の1H−NMRスペクトルの結果が以下となったことから、この白色固体が下記式(A4)の構造であることを確認した。
1H−NMR(CDCl3): δ: 9.56 (4H, brs, OH), 7.20−6.03 (8H, m, Ar), 3.99−3.86 (4H, m, CH2
(Synthesis Example 4)
[Synthesis of 1,4-dibromo-2,5-bis ((dihydroxyphenyl) methyl) benzene]
Except for replacing 470.6 parts by mass of phenol used in Synthesis Example 1 with 550.6 parts by mass of resorcinol, the same reaction as in Synthesis Example 1 was performed to obtain 195 parts by mass of a white solid (compound (A4)). It was.
About the white solid obtained above, the molecular weight was 480.2 from the results of FD-MS, and the result of 1 H-NMR spectrum in deuterated chloroform was as follows. ).
1 H-NMR (CDCl 3 ): δ: 9.56 (4H, brs, OH), 7.20-6.03 (8H, m, Ar), 3.99-3.86 (4H, m, CH 2 )

Figure 2010053318
Figure 2010053318

[ジエチニル化合物]
(合成例5)
[1,4−ジエチニル−2,5−ビス((ヒドロキシフェニル)メチル)ベンゼンの合成]
還流管を装着した2L三口ナスフラスコに、合成例1で得た化合物(A1)179.2質量部、ジクロロビス(トリフェニルホスフィン)パラジウム(和光純薬工業(株)製)1.4質量部、ヨウ化銅(I)1.52質量部及びトリフェニルホスフィン4.2質量部を加え、反応容器内を窒素ガスで置換した。反応系に、(トリメチルシリル)アセチレン(東京化成工業(株)製)157.2質量部、トリエチルアミン800質量部及びテトラヒドロフラン200質量部を加え、攪拌下、系内の温度を90℃に昇温し、6時間薗頭反応を行った。反応終了後、溶媒を減圧留去して得られた黒色混合物に、ジエチルエーテル1000質量部を加え可溶部を濾別した。濾液の溶媒を留去して得られた反応混合物に、炭酸カリウム110.4質量部、メタノール400mL及びテトラヒドロフラン80mLを加え、室温にて2時間攪拌し、反応させた。反応液から、溶媒を留去し、ジエチルエーテル600mLで、残渣を溶解させ、この溶液を、1mol/Lの塩酸水溶液300mLで二回、純水300mLで一回、飽和炭酸水素ナトリウム水溶液300mLで一回、及び飽和食塩水300mLで一回、有機層の洗浄を行った。さらに、有機層に、硫酸マグネシウム60質量部加え、24時間放置し、水分の除去を行った。水分が除去された有機層から、硫酸マグネシウムを濾過し、さらに、減圧下、溶媒を留去して得られた反応生成物を、熱ヘキサンで再結晶させて、118質量部の白色固体(化合物(B1))を得た。
[Diethynyl compound]
(Synthesis Example 5)
[Synthesis of 1,4-diethynyl-2,5-bis ((hydroxyphenyl) methyl) benzene]
In a 2 L three-necked eggplant flask equipped with a reflux tube, 179.2 parts by mass of the compound (A1) obtained in Synthesis Example 1, 1.4 parts by mass of dichlorobis (triphenylphosphine) palladium (manufactured by Wako Pure Chemical Industries, Ltd.) Copper iodide (I) 1.52 parts by mass and triphenylphosphine 4.2 parts by mass were added, and the inside of the reaction vessel was replaced with nitrogen gas. To the reaction system, 157.2 parts by mass of (trimethylsilyl) acetylene (manufactured by Tokyo Chemical Industry Co., Ltd.), 800 parts by mass of triethylamine and 200 parts by mass of tetrahydrofuran were added, and the temperature inside the system was raised to 90 ° C. with stirring. The Sonogashira reaction was performed for 6 hours. After completion of the reaction, 1000 parts by mass of diethyl ether was added to the black mixture obtained by distilling off the solvent under reduced pressure, and the soluble part was separated by filtration. To the reaction mixture obtained by distilling off the solvent of the filtrate, 110.4 parts by mass of potassium carbonate, 400 mL of methanol and 80 mL of tetrahydrofuran were added, and the mixture was stirred at room temperature for 2 hours to be reacted. The solvent was distilled off from the reaction solution, the residue was dissolved with 600 mL of diethyl ether, and this solution was diluted twice with 300 mL of 1 mol / L hydrochloric acid aqueous solution, once with 300 mL of pure water, and once with 300 mL of saturated aqueous sodium hydrogen carbonate solution. The organic layer was washed once with 300 mL of saturated saline. Further, 60 parts by mass of magnesium sulfate was added to the organic layer and left for 24 hours to remove moisture. From the organic layer from which water has been removed, magnesium sulfate is filtered, and the solvent is distilled off under reduced pressure. The reaction product is recrystallized with hot hexane to give 118 parts by weight of a white solid (compound (B1)) was obtained.

上記で得た白色固体について、FD−MSの結果より、得られた固体の分子量は338.4となった。また、重クロロホルム(CDCl3)中の1H−NMRスペクトルの結果が以下になり、エチニルのプロトンが確認されたことから、この白色固体が下記式(B1)の構造であることを確認した。
1H−NMR(400MHz, CDCl3): δ: 9.45 (2H, brs, OH), 7.15−6.62 (10H, m, Ar), 4.05 (2H, s, ≡CH) 3.96−3.82 (4H, s, CH2
About the white solid obtained above, the molecular weight of the obtained solid was 338.4 from the results of FD-MS. Further, the result of 1 H-NMR spectrum in deuterated chloroform (CDCl 3 ) was as follows, and the proton of ethynyl was confirmed. Thus, the white solid was confirmed to have the structure of the following formula (B1).
1 H-NMR (400 MHz, CDCl 3 ): δ: 9.45 (2H, brs, OH), 7.15-6.62 (10H, m, Ar), 4.05 (2H, s, ≡CH) 3.96-3.82 (4H, s, CH 2 )

Figure 2010053318
Figure 2010053318

(合成例6)
[1,4−ジエチニル−2,5−ビス(((ブチル−ヒドロキシ)フェニル)メチル)ベンゼンの合成]
合成例5において用いた化合物(A1)179.2質量部を、合成例2で得た化合物(A2)224.1質量部に代えた以外は合成例5と同様の反応を行い、白色固体(化合物(B2))を得た。
上記で得た白色固体について、FD−MSの結果より、分子量が450.6であり、重クロロホルム中の1H−NMRスペクトルの結果が以下となったことから、この白色固体が下記式(B2)の構造であることを確認した。
1H−NMR(CDCl3): δ: 9.48 (2H, brs, OH), 7.75−6.78 (8H, m, Ar), 4.05 (2H, s, ≡CH), 3.98−3.86 (4H, m, CH2), 2.63 (4H, m, CH2), 1.60−0.88 (14H, m)
(Synthesis Example 6)
[Synthesis of 1,4-diethynyl-2,5-bis (((butyl-hydroxy) phenyl) methyl) benzene]
The same reaction as in Synthesis Example 5 was performed except that 179.2 parts by mass of Compound (A1) used in Synthesis Example 5 was replaced with 224.1 parts by mass of Compound (A2) obtained in Synthesis Example 2, and a white solid ( Compound (B2)) was obtained.
About the white solid obtained above, the molecular weight was 450.6 from the results of FD-MS, and the result of 1 H-NMR spectrum in deuterated chloroform was as follows. ).
1 H-NMR (CDCl 3 ): δ: 9.48 (2H, brs, OH), 7.75-6.78 (8H, m, Ar), 4.05 (2H, s, ≡CH), 3 .98-3.86 (4H, m, CH 2 ), 2.63 (4H, m, CH 2), 1.60-0.88 (14H, m)

Figure 2010053318
Figure 2010053318

(合成例7)
[1,4−ジエチニル−2,5−ビス(((ヒドロキシ−フェニル)フェニル)メチル)ベンゼンの合成]
合成例5において用いた化合物(A1)179.2質量部を、合成例3で得た化合物(A3)240.1質量部に代えた以外は合成例5と同様の反応を行い、白色固体(化合物(B3))を得た。
上記で得た白色固体について、FD−MSの結果より、分子量g490.6であり、重クロロホルム中の1H−NMRスペクトルの結果が以下となったことから、この白色固体が下記式(B3)の構造であることを確認した。
1H−NMR(CDCl3): δ: 9.57 (2H, brs, OH), 7.75−6.92 (18H, m, Ar), 4.05 (2H, s, ≡CH), 3.94−3.83 (4H, m, CH2
(Synthesis Example 7)
[Synthesis of 1,4-diethynyl-2,5-bis (((hydroxy-phenyl) phenyl) methyl) benzene]
The same reaction as in Synthesis Example 5 was performed, except that 179.2 parts by mass of Compound (A1) used in Synthesis Example 5 was replaced with 240.1 parts by mass of Compound (A3) obtained in Synthesis Example 3, and a white solid ( Compound (B3)) was obtained.
About the white solid obtained above, the molecular weight was 490.6 from the results of FD-MS, and the result of 1 H-NMR spectrum in deuterated chloroform was as follows. The structure was confirmed.
1 H-NMR (CDCl 3 ): δ: 9.57 (2H, brs, OH), 7.75-6.92 (18H, m, Ar), 4.05 (2H, s, ≡CH), 3 .94-3.83 (4H, m, CH 2 )

Figure 2010053318
Figure 2010053318

(合成例8)
[1,4−ジエチニル−2,5−ビス((ジヒドロキシフェニル)メチル)ベンゼンの合成]
合成例5において用いた化合物(A1)179.2質量部を、合成例4で得た化合物(A4)192.1質量部に代えた以外は合成例5と同様の反応を行い、白色固体(化合物(B4))を得た。
上記で得た白色固体について、FD−MSの結果より、分子量g370.4であり、重クロロホルム中の1H−NMRスペクトルの結果が以下となったことから、この白色固体が化合物(B4)の構造であることを確認した。
1H−NMR(CDCl3): δ: 9.56 (4H, brs, OH), 7.75−6.13 (8H, m, Ar), 4.05 (2H, s, ≡CH), 3.99−3.86 (4H, m, CH2
(Synthesis Example 8)
[Synthesis of 1,4-diethynyl-2,5-bis ((dihydroxyphenyl) methyl) benzene]
The same reaction as in Synthesis Example 5 was performed except that 179.2 parts by mass of Compound (A1) used in Synthesis Example 5 was replaced with 192.1 parts by mass of Compound (A4) obtained in Synthesis Example 4, and a white solid ( Compound (B4)) was obtained.
About the white solid obtained above, the molecular weight was 370.4 from the results of FD-MS, and the result of 1 H-NMR spectrum in deuterated chloroform was as follows. Confirmed the structure.
1 H-NMR (CDCl 3 ): δ: 9.56 (4H, brs, OH), 7.75-6.13 (8H, m, Ar), 4.05 (2H, s, ≡CH), 3 .99-3.86 (4H, m, CH 2 )

Figure 2010053318
Figure 2010053318

[フェノール樹脂の合成]
実施例1
1Lナスフラスコに、合成例1で得た化合物(A1)45質量部、合成例5で得た化合物(B1)34質量部、ジクロロロビス(トリフェニルホスフィン)パラジウム0.35質量部、ヨウ化銅(I)0.38質量部及びトリフェニルホスフィン1.05質量部を加え、系内の雰囲気を窒素ガスで置換した。次いで、トリエチルアミン300質量部及びテトラヒドロフラン100質量部を加え溶解させた後、系内の温度を80℃に昇温し、6時間攪拌を行った。反応液をメタノール5000質量部に滴下することで、固体を析出させた。得られた固体を濾過し、真空乾燥させることで、55.6質量部の白色固体を得た。下記式(C1)で表させる樹脂を合成した。
[Synthesis of phenolic resin]
Example 1
In a 1 L eggplant flask, 45 parts by mass of the compound (A1) obtained in Synthesis Example 1, 34 parts by mass of the compound (B1) obtained in Synthesis Example 5, 0.35 parts by mass of dichlororobis (triphenylphosphine) palladium, copper iodide ( I) 0.38 parts by mass and 1.05 parts by mass of triphenylphosphine were added, and the atmosphere in the system was replaced with nitrogen gas. Next, 300 parts by mass of triethylamine and 100 parts by mass of tetrahydrofuran were added and dissolved, and then the temperature in the system was raised to 80 ° C. and stirred for 6 hours. The reaction solution was dropped into 5000 parts by mass of methanol to precipitate a solid. The obtained solid was filtered and vacuum-dried to obtain 55.6 parts by mass of a white solid. A resin represented by the following formula (C1) was synthesized.

上記で得られた白色固体について、ゲル浸透クロマトグラフィー(以下、GPCと称する。)により分子量の測定を行った。GPC測定は、東ソー(株)製カラム(TSK gel SuperHZM−Mを一本、TSK gel SuperHZ3000を一本、TSK gel SuperHZ2000を3本、及びTSK gel SuperHZ100を1本)を用いて、テトラヒドロフランを溶媒として行い、分子量測定の結果から、得られた白色固体のポリスチレン換算の分子量は数平均分子量(Mn、以下同様)が6130、分散比が1.39であった。   About the white solid obtained above, molecular weight was measured by gel permeation chromatography (hereinafter referred to as GPC). GPC measurement was performed using a column made by Tosoh Corporation (one TSK gel SuperHZM-M, one TSK gel SuperHZ3000, three TSK gel SuperHZ2000, and one TSK gel SuperHZ100) with tetrahydrofuran as the solvent. As a result of molecular weight measurement, the obtained white solid had a polystyrene-reduced molecular weight of 6130 as the number average molecular weight (Mn, hereinafter the same) and a dispersion ratio of 1.39.

Figure 2010053318
Figure 2010053318

[フェノール樹脂の評価]
上記で得られたフェノール樹脂8.3質量部に対しヘキサメチレンテトラミン1.0質量部を加え、熱板上で、130℃で3分間溶融混練後、180℃で3時間、225℃で4時間、熱処理することで硬化物を得た。ここで得られた硬化物について、セイコーインスツルメンツ(株)製のTG/DTA6200を用い、5%重量減少温度Td5を測定したところ、489℃であった。
[Evaluation of phenolic resin]
1.0 part by mass of hexamethylenetetramine is added to 8.3 parts by mass of the phenol resin obtained above, and after melt-kneading on a hot plate at 130 ° C. for 3 minutes, at 180 ° C. for 3 hours and at 225 ° C. for 4 hours. The cured product was obtained by heat treatment. The cured product obtained here, using a TG / DTA6200 manufactured by Seiko Instruments Inc., it was measured 5% weight loss temperature Td 5, was 489 ° C..

実施例2
実施例1の合成に用いた化合物(B1)34質量部を、化合物(B1)68質量部に代えた以外は実施例1と同様の反応を行い、61.3質量部の白色固体を得た。上記式(C1)で表させる樹脂を合成した。GPCの結果より、得られた固体のMnは1700、分散比1.85であった。
実施例1と同様にTd5を測定したところ、498℃であった。
Example 2
The same reaction as in Example 1 was carried out except that 34 parts by mass of the compound (B1) used in the synthesis of Example 1 was replaced by 68 parts by mass of the compound (B1) to obtain 61.3 parts by mass of a white solid. . A resin represented by the above formula (C1) was synthesized. From the results of GPC, the obtained solid had a Mn of 1700 and a dispersion ratio of 1.85.
The measured Td 5 in the same manner as in Example 1, was 498 ° C..

実施例3
実施例1の合成に用いた化合物(B1)34質量部を、化合物(B1)6.8質量部に代えた以外は実施例1と同様の反応を行い、10.2質量部の白色固体を得た。上記式(C1)で表させる樹脂を合成した。GPCの結果より、得られた固体のMnは760、分散比1.17であった。
実施例1と同様にTd5を測定したところ、478℃であった。
Example 3
The same reaction as in Example 1 was performed except that 34 parts by mass of the compound (B1) used in the synthesis of Example 1 was replaced with 6.8 parts by mass of the compound (B1), and 10.2 parts by mass of a white solid was obtained. Obtained. A resin represented by the above formula (C1) was synthesized. From the results of GPC, the obtained solid had Mn of 760 and a dispersion ratio of 1.17.
The measured Td 5 in the same manner as in Example 1, was 478 ° C..

実施例4
実施例1の合成に用いた化合物(A1)45質量部を合成例2で得た化合物(A2)56質量部に、化合物(B1)34質量部を合成例6で得た化合物(B2)54質量部に代えた以外は実施例1と同様の反応を行い、71.2質量部の白色固体を得た。下記式(C2)で表させる樹脂を合成した。GPCの結果より、得られた樹脂のMnは4220、分散比は1.65であった。
実施例1と同様にTd5を測定したところ、467℃であった。
Example 4
45 parts by mass of the compound (A1) used in the synthesis of Example 1 was 56 parts by mass of the compound (A2) obtained in Synthesis Example 2, and 34 parts by mass of the compound (B1) was obtained in Synthesis Example 6 54 (B2) 54 A reaction similar to that of Example 1 was performed except that the amount was changed to part by mass to obtain 71.2 parts by mass of a white solid. A resin represented by the following formula (C2) was synthesized. From the results of GPC, the obtained resin had an Mn of 4220 and a dispersion ratio of 1.65.
When Td 5 was measured in the same manner as in Example 1, it was 467 ° C.

Figure 2010053318
Figure 2010053318

実施例5
実施例1の合成に用いた化合物(A1)45質量部を合成例2で得た化合物(A2)5.6質量部に、化合物(B1)34質量部を合成例6で得た化合物(B2)45質量部に代えた以外は実施例1と同様の反応を行い、8.4質量部の白色固体を得た。上記式(C2)で表させる樹脂を合成した。GPCの結果より、得られた樹脂のMnは870、分散比は1.14であった。
実施例1と同様にTd5を測定したところ、463℃であった。
Example 5
45 parts by mass of the compound (A1) used in the synthesis of Example 1 was 5.6 parts by mass of the compound (A2) obtained in Synthesis Example 2, and 34 parts by mass of the compound (B1) was obtained in Synthesis Example 6 (B2 The reaction was the same as in Example 1 except that the amount was changed to 45 parts by mass to obtain 8.4 parts by mass of a white solid. A resin represented by the above formula (C2) was synthesized. From the results of GPC, the obtained resin had an Mn of 870 and a dispersion ratio of 1.14.
When Td 5 was measured in the same manner as in Example 1, it was 463 ° C.

実施例6
実施例1の合成に用いた化合物(A1)45質量部を合成例3で得た化合物(A3)60質量部に、化合物(B1)34質量部を合成例7で得た化合物(B3)49質量部に代えた以外は実施例1と同様の反応を行い、74.6質量部の白色固体を得た。下記式(C3)で表させる樹脂を合成した。GPCの結果より、得られた樹脂のMnは5670、分散比は1.41であった。
実施例1と同様にTd5を測定したところ、499℃であった。
Example 6
45 parts by mass of the compound (A1) used in the synthesis of Example 1 was 60 parts by mass of the compound (A3) obtained in Synthesis Example 3, and 34 parts by mass of the compound (B1) was obtained in Synthesis Example 7 49 (B3) 49 A reaction similar to that of Example 1 was performed except that the amount was changed to part by mass, and 74.6 parts by mass of a white solid was obtained. A resin represented by the following formula (C3) was synthesized. From the results of GPC, the obtained resin had an Mn of 5670 and a dispersion ratio of 1.41.
The measured Td 5 in the same manner as in Example 1, was 499 ° C..

Figure 2010053318
Figure 2010053318

実施例7
実施例1の合成に用いた化合物(A1)45質量部を合成例4で得た化合物(A4)48質量部に、化合物(B1)34質量部を合成例8で得た化合物(B4)44.4質量部に代えた以外は実施例1と同様の反応を行い、57.6質量部の白色固体を得た。下記式(C4)で表させる樹脂を合成した。GPCの結果より、得られた樹脂のMnは4900、分散比は1.39であった。
実施例1と同様にTd5を測定したところ、512℃であった。
Example 7
45 parts by mass of the compound (A1) used in the synthesis of Example 1 was 48 parts by mass of the compound (A4) obtained in Synthesis Example 4, and 34 parts by mass of the compound (B1) was obtained in Synthesis Example 8 44 (B4) 44 The same reaction as in Example 1 was carried out except that the amount was changed to 4 parts by mass to obtain 57.6 parts by mass of a white solid. A resin represented by the following formula (C4) was synthesized. From the results of GPC, the obtained resin had Mn of 4900 and a dispersion ratio of 1.39.
The measured Td 5 in the same manner as in Example 1, was 512 ° C..

Figure 2010053318
Figure 2010053318

実施例8
実施例1の合成に用いた化合物(B1)34質量部を合成例6で得た化合物(B2)45質量部に代えた以外は実施例1と同様の反応を行い、69.6質量部の白色固体を得た。下記式(C5)で表させる樹脂を合成した。GPCの結果より、得られた樹脂のMnは6350、分散比は1.43であった。
実施例1と同様にTd5を測定しところ、483℃であった。
Example 8
The same reaction as in Example 1 was carried out except that 34 parts by mass of the compound (B1) used in the synthesis of Example 1 was replaced with 45 parts by mass of the compound (B2) obtained in Synthesis Example 6, and 69.6 parts by mass of A white solid was obtained. A resin represented by the following formula (C5) was synthesized. From the results of GPC, the obtained resin had an Mn of 6350 and a dispersion ratio of 1.43.
When Td 5 was measured in the same manner as in Example 1, it was 483 ° C.

Figure 2010053318
Figure 2010053318

比較例1
市販のフェノールノボラック樹脂(PR−53195、住友ベークライト(株)製)について、実施例1と同様にしてヘキサメチレンテトラミンにより硬化させて、Td5により測定のところ、387℃であり、フェノールアラルキル樹脂(PR−54869、住友ベークライト(株)製)についても同様にしてTd5により測定のところ、437℃であった。
Comparative Example 1
A commercially available phenol novolac resin (PR-53195, manufactured by Sumitomo Bakelite Co., Ltd.) was cured with hexamethylenetetramine in the same manner as in Example 1, and measured by Td 5 to be 387 ° C., and phenol aralkyl resin ( PR-54869 (manufactured by Sumitomo Bakelite Co., Ltd.) was similarly measured by Td 5 and found to be 437 ° C.

上記比較例に対し、本発明の各実施例における硬化物のTd5の結果から、本発明のフェノール樹脂は耐熱性に優れるものであった。 Compared to the above comparative example, the phenol resin of the present invention was excellent in heat resistance from the result of Td 5 of the cured product in each example of the present invention.

Claims (1)

下記一般式(1)で表されるフェノール樹脂。
Figure 2010053318
(式(1)中、nは2以上であり、水酸基を有する芳香環上の水素が置換基により置換されてもよい。)
A phenol resin represented by the following general formula (1).
Figure 2010053318
(In formula (1), n is 2 or more, and hydrogen on the aromatic ring having a hydroxyl group may be substituted with a substituent.)
JP2008222587A 2008-08-29 2008-08-29 Phenolic resin Pending JP2010053318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008222587A JP2010053318A (en) 2008-08-29 2008-08-29 Phenolic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008222587A JP2010053318A (en) 2008-08-29 2008-08-29 Phenolic resin

Publications (1)

Publication Number Publication Date
JP2010053318A true JP2010053318A (en) 2010-03-11

Family

ID=42069556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008222587A Pending JP2010053318A (en) 2008-08-29 2008-08-29 Phenolic resin

Country Status (1)

Country Link
JP (1) JP2010053318A (en)

Similar Documents

Publication Publication Date Title
TW201538491A (en) Method for purification of compound or resin
TWI432445B (en) Monofunctional, bifunctional, and multifunctional phosphinated phenols and their derivatives and preparation method thereof
TWI553034B (en) Polybenzoxazole resin and precursor thereof
JP5870918B2 (en) Method for purifying alkylnaphthalene formaldehyde polymer
KR20160008529A (en) Method for producing biphenyl-skeleton-containing epoxy resin
JP2866747B2 (en) Method for producing phenolic polymer
TW202140600A (en) Curable resin, curable resin composition, cured product, electronic device, laminated plate material, electronic component encapsulant and method for production of curable resin
JP4956402B2 (en) Method for producing thermosetting resin having dihydrobenzoxazine ring structure
JP4356446B2 (en) Bisaminophenol derivatives
KR101976406B1 (en) The method for producing aryl alcohol and heteroaryl alcohol compounds
JP2010053318A (en) Phenolic resin
JP5580712B2 (en) Anthracene derivative, curable composition and cured product
CN109563263B (en) Phenylene ether copolymers and compositions comprising the same
JP3755629B2 (en) Method for producing phenol aralkyl resin
US20110028626A1 (en) Flame retardant halogenated aryl ether oligomer compositions and their production
JP6190256B2 (en) Novel bis (hydroxyphenyl) benzoxazole compounds
JP6906983B2 (en) Acetylene-containing benzoxazine compound, polyacetylene compound obtained by polymerizing the ethynyl group of the acetylene-containing benzoxazine compound, and a thermocured product thereof.
JP2012526150A (en) Aryl ether oligomer and method for producing aryl ether oligomer
Krishnan et al. Semifluorinated multiple pendant group bearing poly (arylene ether) copolymers prepared at room temperature
JP7473905B2 (en) HYPERBRANCHED POLYMER AND METHOD FOR PRODUCING SAME
JP5343227B2 (en) Phenazacillin polymer with epoxy group in side chain
JP6150213B2 (en) Aromatic hydrocarbon formaldehyde resin and modified aromatic hydrocarbon formaldehyde resin
JP2004238412A (en) Method for manufacturing thermosetting resin
JP5087852B2 (en) Biadamantane compounds
JP3403178B2 (en) Phenolic compound and method for producing the same