JP2010044969A - Tape-shaped oxide superconductor, and board used for the same - Google Patents

Tape-shaped oxide superconductor, and board used for the same Download PDF

Info

Publication number
JP2010044969A
JP2010044969A JP2008208867A JP2008208867A JP2010044969A JP 2010044969 A JP2010044969 A JP 2010044969A JP 2008208867 A JP2008208867 A JP 2008208867A JP 2008208867 A JP2008208867 A JP 2008208867A JP 2010044969 A JP2010044969 A JP 2010044969A
Authority
JP
Japan
Prior art keywords
metal layer
layer
tape
oxide superconductor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008208867A
Other languages
Japanese (ja)
Other versions
JP5405069B2 (en
Inventor
Yuji Aoki
裕治 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Superconductivity Technology Center
SWCC Corp
Original Assignee
International Superconductivity Technology Center
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Superconductivity Technology Center, SWCC Showa Cable Systems Co Ltd filed Critical International Superconductivity Technology Center
Priority to JP2008208867A priority Critical patent/JP5405069B2/en
Publication of JP2010044969A publication Critical patent/JP2010044969A/en
Application granted granted Critical
Publication of JP5405069B2 publication Critical patent/JP5405069B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tape-shaped oxide superconductor which is superior in heat radiation and connection, and in which thinning of a superconductive layer by laser processing is easy. <P>SOLUTION: The tape-shaped oxide superconductor 20 is constructed of a laminate in which an intermediate layer 14 consisting of an inorganic material which is two axially oriented by an IBAD process and a YBCO superconductor layer 15 by TFA-MOD method are laminated on a first metal layer 11 of a substrate 13, in which the first metal layer 11 which is formed of a non-magnetic material with non-orientation consisting of a Ni-based alloy of a core material and a second metal layer 12 formed of a material which consists of a copper or a copper-based alloy and has a large thermal conductivity and a small electric resistance are firmly jointed after applying a heat treatment after surface activation bonding. An Ag stabilized layer 16 is deposited by a vapor deposition method on the upper face and side face of the laminate as the upper face of the YBCO superconductor layer 15, and thereby the YBCO superconductive layer 15 and the second metal layer 12 are electrically connected. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、送電ケーブルや電力貯蔵システムのような電力機器及びモーターなどの動力機器への使用に適した酸化物超電導体及びそれに用いる基板に係り、特に前駆体膜を塗布後に加熱、焼成することによって基板上にセラミックス薄層を形成する成膜方法(以下MOD法という。)を用いて製造される酸化物超電導体に適したテープ状酸化物超電導体及びそれに用いる基板に関する。   The present invention relates to an oxide superconductor suitable for use in power equipment such as a power transmission cable and a power storage system and a power equipment such as a motor and a substrate used therefor, and in particular, heating and baking after coating a precursor film. The present invention relates to a tape-shaped oxide superconductor suitable for an oxide superconductor manufactured by using a film forming method (hereinafter referred to as MOD method) for forming a ceramic thin layer on a substrate and a substrate used therefor.

酸化物超電導体は、従来のNbSn系等の合金系超電導体と比較して臨界温度(Tc)が高く、送電ケーブルや変圧器、モーター、電力貯蔵システムといった応用機器を液体窒素温度で運用できることから、その線材化の研究が精力的に行われている。なかでもReBaCu7−y(Re=Y、Nd、Sm、Gd、Eu、Yb、Pr又はHoから選択された少なくとも1種類以上の元素を示す、以下、ReBCOと称する.)超電導体は、高磁場領域における通電電流の減衰が小さく、即ち、液体窒素温度における磁場特性が、Bi系超電導体に比べて優れているため、実用的な高い臨界電流密度(Jc)を維持することが可能であり、高温領域での優れた特性に加えて、貴金属である銀を使用しない製法が可能であること及び冷媒に液体窒素を使用できることから冷却効率が著しく向上するため、経済的に極めて有利であり、次世代の超電導材料としてその線材化が期待されている。 Oxide superconductor, the critical compared to alloy-based superconductors, such as a conventional Nb 3 Sn-based temperature (Tc) is high, transmission cables, transformers, motors, operate application equipment such electric power storage system at the temperature of liquid nitrogen Because of what we can do, research into making it into wire has been vigorously conducted. Among them, ReBa 2 Cu 3 O 7-y (Re = Y, Nd, Sm, Gd, Eu, Yb, Pr, or Ho represents at least one kind of element, hereinafter referred to as ReBCO) superconductor Has a small attenuation of energization current in the high magnetic field region, that is, the magnetic field characteristics at the liquid nitrogen temperature are superior to those of the Bi-based superconductor, so that a practically high critical current density (Jc) can be maintained. In addition to excellent characteristics in the high temperature range, it is possible to make a process that does not use silver, which is a noble metal, and because liquid nitrogen can be used as a refrigerant, the cooling efficiency is remarkably improved. As a next-generation superconducting material, it is expected to be used as a wire.

ReBCO超電導体の結晶系は斜方晶であり、x軸、y軸、z軸の3辺の長さが異なり、単位胞の三辺間の角度もそれぞれ微妙に異なるために双晶を形成し易く、僅かな方位のずれが双晶粒界を発生させ通電特性を低下させるため、通電特性において材料の特性を発揮させるためには、結晶内のCuO面を揃えるだけでなく、面内の結晶方位をも揃えることが要求されることからBi系酸化物超電導体と比較してその線材化に困難が伴う。   The crystal system of the ReBCO superconductor is orthorhombic, the lengths of the three sides of the x-axis, y-axis, and z-axis are different, and the angles between the three sides of the unit cell are slightly different, so twins are formed. Since a slight misalignment easily generates twin grain boundaries and lowers the current-carrying characteristics, in order to bring out the material characteristics in the current-carrying characteristics, not only align the CuO plane in the crystal but also the crystal in the plane. Since it is required to align the orientation, it is difficult to make the wire as compared with the Bi-based oxide superconductor.

このため、ReBCO超電導線材は、一般に金属基板上に中間層として2軸配向した酸化物層を少なくとも1層若しくは複数層形成し、その上に酸化物超電導層を、さらに超電導層の表面保護と電気的接触の向上及び過通電時の保護回路としての役割を担う安定化層を積層した構造を有する。一般に上記の中間層として、CeOが多用されているが、これは、CeO中間層がReBCO層との格子整合性及び耐酸化性に優れ、かつReBCO層との反応性が小さいため最も優れた中間層の一つとして知られていることによる。 For this reason, the ReBCO superconducting wire is generally formed by forming at least one or more biaxially oriented oxide layers as an intermediate layer on a metal substrate, further forming an oxide superconducting layer thereon, further protecting the surface of the superconducting layer and It has a structure in which a stabilizing layer that plays a role of a protective circuit in the case of over-electricity improvement and overcurrent is laminated. As a general the above intermediate layer, although CeO 2 is often used, which, CeO 2 intermediate layer is excellent in lattice matching and oxidation resistance of the ReBCO layer, and excellent most for a small reactivity with ReBCO layer According to what is known as one of the intermediate layers.

また、近年の機器応用を想定した超電導線材においては、事故電流通電の際にバイパス回路を確保するために、超電導層の上に電気抵抗が小さく、かつ熱伝導率の大きい、例えば、銅テープを張り合わせる構造も検討されている。   Also, in superconducting wires that are expected to be used in recent years, in order to secure a bypass circuit when an accident current is energized, electrical resistance is low and thermal conductivity is high on the superconducting layer, for example, copper tape. Bonding structures are also being studied.

ReBCO超電導体の臨界電流特性は超電導層の面内配向性に依存し、下地となる中間層の面内配向性と表面平滑性の影響を大きく受けることが知られており、ReBCO超電導体の結晶の面内配向性を高め、かつ面内の方位を揃えながら線材化する製法は、薄膜の製法と規を同一にしている。   The critical current characteristics of the ReBCO superconductor depend on the in-plane orientation of the superconducting layer and are known to be greatly affected by the in-plane orientation and surface smoothness of the underlying intermediate layer. The manufacturing method of increasing the in-plane orientation and forming the wire while aligning the in-plane orientation is the same as the manufacturing method of the thin film.

即ち、テープ状金属基板の上に面内配向度と方位を向上させた中間層を形成し、この中間層の結晶格子をテンプレートとして用いることによって、ReBCO超電導層の結晶の面内配向度と方位を向上させるものであり、現在、さまざまな製造プロセスで検討が行われ、テープ状金属基板の上に面内配向した中間層を形成した種々の複合基板が用いられているが、この場合、少なくともテープ状金属基板上の中間層が2軸配向していることが必須であり、この複合基板としては、テープ状金属基板に2軸配向した金属基板を用いる方法と無配向の金属基板を用いる方法が知られている。   That is, by forming an intermediate layer with improved in-plane orientation and orientation on a tape-shaped metal substrate and using the crystal lattice of this intermediate layer as a template, the in-plane orientation and orientation of the crystal of the ReBCO superconducting layer Currently, various manufacturing processes have been studied, and various composite substrates in which an in-plane oriented intermediate layer is formed on a tape-shaped metal substrate are used. It is essential that the intermediate layer on the tape-shaped metal substrate is biaxially oriented. As this composite substrate, a method using a biaxially-oriented metal substrate and a method using a non-oriented metal substrate as the tape-shaped metal substrate. It has been known.

前者の2軸配向金属基板を用いた複合基板としては、(イ)集合組織を形成し易く、かつ格子整合性に優れたNi又はNi基合金を用い、冷間加工したNi基板等を真空中で熱処理を施して高配向させた配向性Ni基板(RABiTS/商標:rolling-assisted biaxially textured-substrates)上にCeO薄層及びYSZ層(又は、さらにその上にCeO薄層)を設けたもの、(ロ)無配向で非磁性の第1の金属層と、第1の金属層に貼り合わされ、かつ少なくとも表層が配向した立方体集合組織を有する第2の金属層とを備え、第1の金属層は第2の金属層より高い強度を有し、良好な配向性を維持したまま高い強度を有する膜形成用配向基板の第2の金属層上に中間層を形成したもの(例えば、特許文献1参照。)及び(ハ)耐熱性及び耐酸化性を有する金属基板上に2軸配向したNiまたはNi基合金あるいはCuまたはCu基合金を設け、この上にCeO2等の中間層を1層又は2層形成した複合基板が知られている(例えば、特許文献2参照。)。 As the composite substrate using the former biaxially oriented metal substrate, (i) Ni or Ni-based alloy which is easy to form a texture and excellent in lattice matching, and cold-worked Ni substrate is used in a vacuum. A CeO 2 thin layer and a YSZ layer (or a CeO 2 thin layer thereon) were provided on an oriented Ni substrate (RABiTS / trademark: rolling-assisted biaxially textured-substrates) subjected to heat treatment in (B) a non-oriented non-magnetic first metal layer and a second metal layer bonded to the first metal layer and having a cubic texture in which at least the surface layer is oriented, The metal layer has higher strength than the second metal layer, and an intermediate layer is formed on the second metal layer of the film-forming alignment substrate having high strength while maintaining good orientation (for example, patent Reference 1) and (c) Heat resistance and oxidation resistance A composite substrate is known in which a biaxially oriented Ni or Ni-based alloy or Cu or Cu-based alloy is provided on a metal substrate having one or two intermediate layers such as CeO2 formed thereon (for example, patents) Reference 2).

一方、後者の複合基板に無配向の金属基板を用いる方法としては、現在、最も高い臨界電流特性を示す方法としてIBAD(Ion Beam Assisted Deposition)プロセスを用いる方法が知られている。この方法は、多結晶の非磁性で高強度のテープ状Ni系基板(ハステロイ等:商標)上に、このNi系基板の法線に対して一定の角度方向からイオンを照射しながら、ターゲットから発生した粒子をレーザー蒸着法(PLD)で堆積させて、結晶粒径が細かく高配向性を有し、超電導体を構成する元素との反応を抑制する中間層(CeO、Y、YSZ等)または2層構造の中間層(YSZ又はRxZr/CeO又はY等:Rxは、Y、Nd、Sm、Gd、Ei、Yb、Ho、Tm、Dy、Ce、LaまたはErを示す。)を(又は、さらにその上にCeO層)形成するものである(例えば、特許文献3乃至5参照。)。 On the other hand, as a method of using a non-oriented metal substrate for the latter composite substrate, a method using an IBAD (Ion Beam Assisted Deposition) process is currently known as a method that exhibits the highest critical current characteristics. In this method, a polycrystalline non-magnetic high-strength tape-like Ni-based substrate (Hastelloy et al .: trademark) is irradiated from a target while irradiating ions from a certain angle with respect to the normal of the Ni-based substrate. The generated particles are deposited by laser vapor deposition (PLD), and the intermediate layer (CeO 2 , Y 2 O 3 , which has a fine crystal grain size and high orientation and suppresses reaction with the elements constituting the superconductor, YSZ or the like) or an intermediate layer having a two-layer structure (YSZ or Rx 2 Zr 2 O 7 / CeO 2 or Y 2 O 3 or the like: Rx is Y, Nd, Sm, Gd, Ei, Yb, Ho, Tm, Dy, (Indicating Ce, La or Er.) (Or a CeO 2 layer thereon) (see, for example, Patent Documents 3 to 5).

特開2006−127847号公報JP 2006-127847 A 特開2007−115562号公報JP 2007-115562 A 特開平4−329867号公報JP-A-4-329867 特開平4−331795号公報Japanese Patent Laid-Open No. 4-331895 特開2002−203439号公報JP 2002-203439 A

しかしながら、上記の複合基板に2軸配向した金属基板を用いる方法(イ)においては、Ni基合金等の金属基板は、集合組織形成のために強圧延加工される結果、厚さが薄く、さらに添加元素量が少ないため、高温での配向化熱処理を施すと機械強度が数十〜150MPa程度にまで低下し、その後の成膜時のハンドリングに影響を及ぼすだけでなく、線材の使用時の電磁力に耐えないなどの問題があった。   However, in the method (a) using a biaxially oriented metal substrate for the composite substrate, the metal substrate such as a Ni-based alloy is thinned as a result of being strongly rolled to form a texture. Because the amount of added elements is small, mechanical strength decreases to several tens to 150 MPa when orientation heat treatment is performed at a high temperature, which not only affects handling during subsequent film formation, but also electromagnetics during use of the wire. There were problems such as inability to withstand power.

また、上記(ロ)においては、第2の配向性基板の強度を補強するために、高い強度を有する第1の金属層を圧延などの方法により互いに貼り合わされた構造を有するため、その後の成膜時やコイル形成時のハンドリング等において接合強度が十分でないという問題がある。   In the above (b), in order to reinforce the strength of the second orientation substrate, the first metal layers having high strength are bonded to each other by a method such as rolling. There is a problem that the bonding strength is not sufficient in handling during film formation or coil formation.

さらに、上記(ハ)においては、耐熱性及び耐酸化性を有する金属基板とNi基合金等あるいはCu基合金等とを貼り合わせた構造を有するため、機械的強度に優れるが、2層の金属板は冷間加工により貼り合わせた後に配向化熱処理を施して形成されているため、上記(イ)と同様に、その後の成膜時やコイル形成時のハンドリング等において接合強度が十分でないという問題がある。   Furthermore, in the above (c), since it has a structure in which a metal substrate having heat resistance and oxidation resistance is bonded to a Ni-base alloy or the like or a Cu-base alloy or the like, it has excellent mechanical strength, but two layers of metal Since the plate is formed by performing an orientation heat treatment after being bonded by cold working, the problem is that the bonding strength is not sufficient in handling during subsequent film formation or coil formation, as in (a) above. There is.

一方、上記の複合基板に無配向の金属基板を用いるIBADプロセスによる方法においては、多結晶の非磁性で高強度のテープ状Ni系基板が用いられ、この基板上に直接中間層が形成されるため、強度面の問題は少ないが、上記の(イ)〜(ハ)の場合も含めてこれらの従来技術においては以下のような問題がある。   On the other hand, in the method based on the IBAD process using a non-oriented metal substrate as the composite substrate, a polycrystalline non-magnetic high-strength tape-shaped Ni-based substrate is used, and an intermediate layer is directly formed on the substrate. Therefore, although there are few problems in terms of strength, these conventional techniques, including the cases (a) to (c) above, have the following problems.

即ち、ReBCO超電導体の臨界電流値(Ic)は、付加歪に依存することが知られており、例えば、YBCO超電導体は1%の圧縮歪に対してIcの低下を示さないが、0.7%の引張歪で超電導膜に亀裂が生じ、それ以上の引張歪の増加とともに急速にIcが低下し、歪を除荷しても復元しないことが知られている。   That is, it is known that the critical current value (Ic) of the ReBCO superconductor depends on the applied strain. For example, the YBCO superconductor does not show a decrease in Ic with respect to a compression strain of 1%. It is known that cracks occur in the superconducting film at a tensile strain of 7%, and that the Ic decreases rapidly as the tensile strain increases further, and does not recover even when the strain is removed.

この理由により、複合基板の中間層上に超電導層及び安定化層を形成したテープ状酸化物超電導体を用いて超電導コイルを形成する場合には、超電導層に圧縮歪が付加されるように(金属基板を外側にして)巻回することが通常行われている。この場合、銀等の安定化層が最内層に位置することになるため、良導体である銀に直接電極を接続することができず、また、最外層に位置する金属基板は高抵抗を有し、さらに超電導層と接続基板との間に絶縁体である酸化物中間層が存在するため、効率よく電流を印加することはできないという問題がある。   For this reason, when a superconducting coil is formed using a tape-shaped oxide superconductor in which a superconducting layer and a stabilizing layer are formed on an intermediate layer of a composite substrate, compressive strain is added to the superconducting layer ( Winding is usually performed with the metal substrate on the outside. In this case, since the stabilizing layer such as silver is located in the innermost layer, the electrode cannot be directly connected to silver which is a good conductor, and the metal substrate located in the outermost layer has high resistance. Furthermore, since there is an oxide intermediate layer that is an insulator between the superconducting layer and the connection substrate, there is a problem that current cannot be applied efficiently.

また、前述のように、機器応用を想定したReBCO超電導線材においては、超電導層の上に電気抵抗が小さく、かつ熱伝導率の大きい銅テープを張り合わせる構造が検討されており、超電導層の上に銅テープを貼り合わせる方法としては、半田浴に浸漬後ロール圧着する方法、半田メッキ後に加熱ロールで接着する方法及び半田テープを介在させて加熱ロールで成型する方法等がこれまで検討されているが、超電導層の結晶化熱処理により超電導層の表面が酸化被膜で覆われるため、十分な接合強度が得られないという問題があった。   As described above, in the ReBCO superconducting wire intended for equipment application, a structure in which a copper tape having low electrical resistance and high thermal conductivity is laminated on the superconducting layer has been studied. As a method of laminating a copper tape on the surface, a method of pressure bonding after immersion in a solder bath, a method of bonding with a heating roll after solder plating, a method of molding with a heating roll with a solder tape interposed, and the like have been studied so far. However, since the surface of the superconducting layer is covered with an oxide film by the crystallization heat treatment of the superconducting layer, there is a problem that sufficient bonding strength cannot be obtained.

また、超電導層の上に銅テープを貼り合わせたReBCO超電導線材においては、銅の熱伝導率が大きいため、レーザー加工による超電導層の細線化ができないという難点がある。   In addition, in the ReBCO superconducting wire in which a copper tape is bonded on the superconducting layer, the thermal conductivity of copper is large, so that there is a problem that the superconducting layer cannot be thinned by laser processing.

即ち、磁束ピンニング現象に起因するヒステリシス損失は微量ながらも,超電導体を交流機器に応用する際の冷却の妨げとなり,冷却コストの増大やクエンチを引き起こす要因となるため、ヒステリシス損失の低減が重要な課題となっており、この問題を解決するため、例えば、図3に示すように、ハステロイ31上にIBAD法によるGd−Zr−O中間層32、CeO中間層33、YBCO超電導層34及びAg安定化層35を順次形成したテープ状超電導線材30の表面をレーザー光線を照射して電流路に沿って分割することが行われているが、安定化層35の上に熱伝導率の大きい銅テープを貼り合わせた構造の場合には、銅の熱伝導率が大きいため、レーザー加工による超電導層の細線化ができない。 In other words, the hysteresis loss due to the magnetic flux pinning phenomenon is very small, but it hinders cooling when superconductors are applied to AC devices, and causes an increase in cooling cost and quenching. Therefore, it is important to reduce hysteresis loss. In order to solve this problem, for example, as shown in FIG. 3, a Gd—Zr—O intermediate layer 32, CeO 2 intermediate layer 33, YBCO superconducting layer 34, and Ag are formed on the Hastelloy 31 by the IBAD method. The surface of the tape-shaped superconducting wire 30 on which the stabilization layer 35 is sequentially formed is divided along the current path by irradiating a laser beam, but a copper tape having a high thermal conductivity on the stabilization layer 35. In the case of the structure in which is bonded, the superconducting layer cannot be thinned by laser processing because the thermal conductivity of copper is large.

本発明は、以上の問題を解決するためになされたもので、放熱性に優れ、かつレーザー加工による超電導層の細線化が容易なテープ状酸化物超電導体を提供することをその目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a tape-shaped oxide superconductor that is excellent in heat dissipation and can be easily thinned by a laser process.

また、本発明の他の目的は、超電導コイルを形成する場合の接続性に優れたテープ状酸化物超電導体及びそれに用いる基板を提供することをその目的とする。   Another object of the present invention is to provide a tape-shaped oxide superconductor excellent in connectivity when forming a superconducting coil and a substrate used therefor.

さらに、本発明の他の目的は、機械的強度及び接合強度に優れたテープ状酸化物超電導体及びそれに用いる基板を提供することをその目的とする。   Another object of the present invention is to provide a tape-shaped oxide superconductor excellent in mechanical strength and bonding strength and a substrate used therefor.

本発明のテープ状酸化物超電導体は、以上の問題を解決するためになされたもので、コア材となる第1の金属層と第2の金属層とを接合した基板の第1の金属層の上に2軸配向した無機材料からなる1層または複数層の中間層及び酸化物超電導層を形成した積層体からなる酸化物超電導体において、第1の金属層及び第2の金属層に、それぞれ第2の金属層の機械的強度より大きく、かつ無配向で非磁性の材料及び熱伝導率が大きく、かつ電気抵抗の小さい材料を用いるようにしたものである。   The tape-shaped oxide superconductor of the present invention has been made to solve the above problems, and the first metal layer of the substrate in which the first metal layer and the second metal layer as the core material are joined. In the oxide superconductor composed of a laminate in which one or a plurality of intermediate layers and an oxide superconducting layer made of an inorganic material biaxially oriented are formed on the first metal layer and the second metal layer, Each is made of a non-oriented, non-magnetic material, a material having a high thermal conductivity, and a low electric resistance, which is larger than the mechanical strength of the second metal layer.

また、本発明による他のテープ状酸化物超電導体は、コア材となる第1の金属層と第2の金属層とを接合した基板の第1の金属層の上に2軸配向した無機材料からなる1層または複数層の中間層及び酸化物超電導層を形成した積層体からなる酸化物超電導体において、第1の金属層及び第2の金属層に、それぞれ第2の金属層の機械的強度より大きく、かつ無配向で非磁性の材料及び熱伝導率が大きく、かつ電気抵抗の小さい材料を用いるとともに、積層体の酸化物超電導層側の上面及び側面に安定化層を蒸着することにより、超電導層と第2の金属層を電気的に接続するようにしたものである。   Another tape-shaped oxide superconductor according to the present invention is an inorganic material biaxially oriented on a first metal layer of a substrate obtained by bonding a first metal layer and a second metal layer as a core material. In the oxide superconductor composed of a laminate in which one or a plurality of intermediate layers and oxide superconducting layers are formed, the second metal layer is mechanically coupled to the first metal layer and the second metal layer, respectively. By using a non-oriented, non-magnetic material with high strength, a material with high thermal conductivity and low electrical resistance, and by depositing a stabilization layer on the top and side surfaces of the oxide superconducting layer side of the laminate. The superconducting layer and the second metal layer are electrically connected.

さらに、本発明のテープ状酸化物超電導体用基板は、コア材となる第1の金属層と第2の金属層とを接合し、第1の金属層及び第2の金属層に、それぞれ第2の金属層の機械的強度より大きく、かつ無配向で非磁性の材料及び熱伝導率が大きく、かつ電気抵抗の小さい材料を用いるようにしたものである。   Furthermore, the substrate for a tape-shaped oxide superconductor of the present invention joins the first metal layer and the second metal layer, which are core materials, to the first metal layer and the second metal layer, respectively. The material is larger than the mechanical strength of the metal layer 2 and is made of a non-oriented, non-magnetic material and a material having a high thermal conductivity and a small electric resistance.

以上のテープ状酸化物超電導体及びそれに用いる基板において、第1の金属層をニッケル基合金又はステンレスにより形成することが好ましく、例えば、第1の金属層は、ニッケルにタングステン、モリブデン、クロム、鉄、コバルト、バナジウム、マンガンから選択された一種類以上の添加元素を含むニッケル基合金により形成される。   In the tape-shaped oxide superconductor and the substrate used therefor, the first metal layer is preferably formed of a nickel-based alloy or stainless steel. For example, the first metal layer is nickel, tungsten, molybdenum, chromium, iron , Nickel-base alloy containing one or more additive elements selected from cobalt, vanadium, and manganese.

また、第2の金属層は、放熱部材及び接続部材として機能するもので、熱伝導率が大きく、かつ電気抵抗の小さい材料が用いられ、100〜300Kの温度領域において、熱伝導率が100W/m・K以上の材料を用いることが好ましく、
例えば、第2の金属層として、銅、銀、金、アルミニウム又はこれらを主材料として含む銅基合金、銀基合金、金基合金又はアルミニウム基合金が用いられる。
The second metal layer functions as a heat radiating member and a connecting member, and a material having a high thermal conductivity and a low electrical resistance is used. In a temperature range of 100 to 300 K, the thermal conductivity is 100 W / It is preferable to use a material of m · K or more,
For example, copper, silver, gold, aluminum, or a copper-based alloy, silver-based alloy, gold-based alloy, or aluminum-based alloy containing these as the main material is used as the second metal layer.

以上の第1の金属層と第2の金属層は、表面活性化接合後の熱処理を施すことにより接合層を介して接合されていることが好ましい。これにより第1の金属層と第2の金属層とを強固に接合することができる。この接合方法は、従来良く知られたプロセスであって、一般に表面活性化接合と呼ばれており、事前に表面を電解研磨処理して表面平滑度をRa=5nm以下とした材料を高真空(10−8Pa)雰囲気下において、アルゴンイオンビーム(水素ラジカルでも可)を照射し、10MPaの圧力で圧接して接着するものである(まてりあ,第35巻第5号,1996参照)。 The first metal layer and the second metal layer are preferably bonded via the bonding layer by performing a heat treatment after the surface activation bonding. Thereby, a 1st metal layer and a 2nd metal layer can be joined firmly. This bonding method is a well-known process and is generally called surface activated bonding. A material whose surface smoothness is Ra = 5 nm or less by subjecting the surface to electropolishing in advance is subjected to high vacuum ( In an atmosphere of 10 −8 Pa), an argon ion beam (or hydrogen radicals may be used) is applied and pressed and bonded at a pressure of 10 MPa (see, Materia, Vol. 35, No. 5, 1996).

第1の金属層上の中間層は、前述のIBADプロセスにより成膜されていることが好ましい。IBADプロセスにより中間層を成膜することにより、高強度のテープ状Ni系基板等の上に、結晶粒径が細かく高配向性を有し、超電導体を構成する元素との反応を抑制する中間層を直接形成することができる。   The intermediate layer on the first metal layer is preferably formed by the IBAD process described above. By forming an intermediate layer by the IBAD process, an intermediate layer that has a fine crystal grain size and high orientation on a high-strength tape-like Ni substrate, etc., and suppresses the reaction with the elements constituting the superconductor. Layers can be formed directly.

一方、本発明によるテープ状酸化物超電導体においては、酸化物超電導層及びその上面の安定化層がテープ軸方向に沿った複数の電流路に分割されていることが好ましい。本発明においては、熱伝導率が大きく、かつ電気抵抗の小さい材料からなる第2の金属層がコア材となる機械的強度の大きい第1の金属層の中間層側と反対側の面に接合されているため、レーザー加工による超電導層の細線化が容易となり、酸化物超電導層と安定化層を複数の電流路に分割することにより、磁束ピンニング現象に起因するヒステリシス損失を低減させることができる。   On the other hand, in the tape-shaped oxide superconductor according to the present invention, the oxide superconducting layer and the stabilizing layer on the upper surface thereof are preferably divided into a plurality of current paths along the tape axial direction. In the present invention, the second metal layer made of a material having high thermal conductivity and low electrical resistance is bonded to the surface opposite to the intermediate layer side of the first metal layer having high mechanical strength as the core material. Therefore, it is easy to thin the superconducting layer by laser processing, and the hysteresis loss due to the magnetic flux pinning phenomenon can be reduced by dividing the oxide superconducting layer and the stabilizing layer into a plurality of current paths. .

本発明のテープ状酸化物超電導体においては、熱伝導率が大きく、かつ電気抵抗の小さい材料からなる第2の金属層がコア材となる機械的強度の大きい第1の金属層の中間層側と反対側の面に接合されているため、放熱性に優れ、かつレーザー加工による超電導層の細線化が容易となる利点を有する。   In the tape-shaped oxide superconductor of the present invention, the intermediate layer side of the first metal layer having high mechanical strength in which the second metal layer made of a material having high thermal conductivity and low electrical resistance serves as a core material Since it is bonded to the surface opposite to the surface, there is an advantage that heat dissipation is excellent and the superconducting layer can be easily thinned by laser processing.

また、本発明のテープ状酸化物超電導体においては、第1の金属層の上に中間層及び酸化物超電導層を形成した積層体の酸化物超電導層側の上面及び側面に安定化層を蒸着することにより、超電導層と電気抵抗の小さい材料からなる第2の金属層が電気的に接続され、コイルを形成した場合に、外部電源からの超電導体への電流の印加が容易になる利点を有する。   In the tape-shaped oxide superconductor of the present invention, a stabilization layer is deposited on the upper surface and the side surface of the oxide superconducting layer side of the laminate in which the intermediate layer and the oxide superconducting layer are formed on the first metal layer. As a result, when the superconducting layer and the second metal layer made of a material having low electrical resistance are electrically connected to form a coil, it is possible to easily apply a current from an external power source to the superconductor. Have.

さらに、本発明の基板は、以上のテープ状酸化物超電導体の製造に好適するものであり、第1の金属層と第2の金属層とを表面活性化接合後の熱処理を施して接合層を介して接合することにより、機械的強度及び接合強度に優れる利点を有する。   Furthermore, the substrate of the present invention is suitable for the production of the tape-shaped oxide superconductor described above, and the first metal layer and the second metal layer are subjected to a heat treatment after surface activation bonding to form a bonding layer. By joining via, there is an advantage of excellent mechanical strength and joining strength.

図1に示すように、本発明のテープ状酸化物超電導体10は、コア材となる第1の金属層11と、銅、銀、金、アルミニウム又はこれらを主材料として含む合金からなり、熱伝導率が大きく、かつ電気抵抗の小さい材料で形成された第2の金属層12とを接合した基板13の第1の金属層11の上に2軸配向した無機材料からなる3層の中間層14及びYBCO超電導層15を積層した積層体により構成されており、この積層体のYBCO超電導層15の上にAg安定化層16の蒸着層が形成されている。   As shown in FIG. 1, the tape-shaped oxide superconductor 10 of the present invention is composed of a first metal layer 11 serving as a core material and copper, silver, gold, aluminum, or an alloy containing these as main materials. A three-layered intermediate layer made of an inorganic material biaxially oriented on the first metal layer 11 of the substrate 13 joined to the second metal layer 12 formed of a material having high conductivity and low electrical resistance. 14 and a YBCO superconducting layer 15 are laminated, and a vapor deposition layer of an Ag stabilizing layer 16 is formed on the YBCO superconducting layer 15 of the laminated body.

第1の金属層11は、第2の金属層の機械的強度より大きいニッケルにタングステン、モリブデン、クロム、鉄、コバルト、バナジウム、マンガンから選択された一種類以上の添加元素を含むニッケル基合金からなる無配向で非磁性の材料で形成され、第1の金属層11と第2の金属層12とは表面活性化接合後の熱処理を施すことにより接合層を介して強固に接合されており、基板13の機械的強度及び接合強度を向上させる。   The first metal layer 11 is made of a nickel-based alloy containing nickel having a mechanical strength higher than that of the second metal layer and one or more additive elements selected from tungsten, molybdenum, chromium, iron, cobalt, vanadium, and manganese. The first metal layer 11 and the second metal layer 12 are firmly bonded via the bonding layer by performing a heat treatment after the surface activation bonding, The mechanical strength and bonding strength of the substrate 13 are improved.

上記の表面活性化接合後の熱処理は、接着後の層間に形成される微小なアモルファス層や微小結晶粒による界面の影響を抑制し、元素拡散によって均一且つ強固な接合層を形成するために施される。この場合の熱処理は、還元性雰囲気或いは不活性雰囲気で行われる。   The heat treatment after the surface activation bonding described above is performed in order to suppress the influence of the interface due to the fine amorphous layer and the fine crystal grains formed between the bonded layers and to form a uniform and strong bonding layer by element diffusion. Is done. The heat treatment in this case is performed in a reducing atmosphere or an inert atmosphere.

第1の金属層11上の中間層14は、IBADプロセスによりGdZr層14a及びCeO層14bを堆積し、この上にCeO層14cをスパッタリング法により堆積したもので、このCeO層14cの上にTFA−MOD法によりYBCO超電導層15及び蒸着法によりAg安定化層16が積層されている。 The intermediate layer 14 on the first metal layer 11 is formed by depositing a Gd 2 Zr 2 O 7 layer 14a and a CeO 2 layer 14b by an IBAD process, and depositing a CeO 2 layer 14c thereon by a sputtering method. On the CeO 2 layer 14c, the YBCO superconducting layer 15 is laminated by the TFA-MOD method, and the Ag stabilizing layer 16 is laminated by the vapor deposition method.

図2に示す本発明の他のテープ状酸化物超電導体20は、安定化壮を除いて基本的に図1のテープ状酸化物超電導体10と同一構造を有し、図1と同一部分は同符号で示してある。   The other tape-shaped oxide superconductor 20 of the present invention shown in FIG. 2 basically has the same structure as the tape-shaped oxide superconductor 10 of FIG. The same reference numerals are used.

テープ状酸化物超電導体20は、第1の金属層11と第2の金属層12とを接合した基板13の第1の金属層11の上に中間層14、YBCO超電導層15及びAg安定化層16を形成した積層体により構成されている点は図1と同様であるが、Ag安定化層16は、YBCO超電導層15の上面である積層体の上面及び側面に蒸着法により堆積されており、これによりYBCO超電導層15と第2の金属層12が電気的に接続されている。   The tape-shaped oxide superconductor 20 includes an intermediate layer 14, a YBCO superconducting layer 15 and an Ag stabilizing layer on the first metal layer 11 of the substrate 13 in which the first metal layer 11 and the second metal layer 12 are joined. 1 is the same as in FIG. 1 except that the Ag stabilizing layer 16 is deposited on the top and side surfaces of the laminate, which is the top surface of the YBCO superconducting layer 15, by vapor deposition. Thus, the YBCO superconducting layer 15 and the second metal layer 12 are electrically connected.

以上のテープ状酸化物超電導体10及び20は、熱伝導率が大きく、かつ電気抵抗の小さい材料からなる第2の金属層がコア材となる機械的強度の大きい第1の金属層11の中間層側と反対側の面に接合されているため、放熱性に優れ、レーザー加工による超電導層の細線化を容易に行うことができる。   The tape-shaped oxide superconductors 10 and 20 described above are intermediate between the first metal layer 11 having a high mechanical strength and the second metal layer made of a material having a high thermal conductivity and a low electric resistance as a core material. Since it is bonded to the surface opposite to the layer side, it has excellent heat dissipation, and the superconducting layer can be easily thinned by laser processing.

また、上記のテープ状酸化物超電導体20を用いて超電導コイルを製造する場合、例えば、付加歪によるIcの低下を防止するために、Ag安定化層16を内側にしてパンケーキ(又はダブルパンケーキ)状に巻回した構造を採用したときに外側の第2の金属層を経由して超電導層に電流を印加することができるため、外部電源からの超電導コイルへの電流の印加が容易になり、電極の接続部分の設計を簡略化できる。   Further, when a superconducting coil is manufactured using the tape-shaped oxide superconductor 20 described above, for example, in order to prevent a decrease in Ic due to additional strain, the pancake (or double pancake) is formed with the Ag stabilizing layer 16 inside. Since a current can be applied to the superconducting layer via the outer second metal layer when adopting a structure wound in the shape of a cake, it is easy to apply a current from the external power source to the superconducting coil. Thus, the design of the electrode connection portion can be simplified.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

以下、本発明の実施例及び比較例について説明する。   Examples of the present invention and comparative examples will be described below.

実施例
図2に示すように、無配向で非磁性の厚さ100μmtのハステロイテープ11の片側の面に、厚さ100μmtのCuテープ12を表面活性化接合プロセスにより接着した後、Ar―4%Hの還元性雰囲気中で500℃の温度で3時間の熱処理を施し、接着界面に拡散層、即ち、厚さ1μm以下の接合層を形成することにより、基板13を作成した。
Example As shown in FIG. 2, after a 100 μm t Cu tape 12 was bonded to one side of a non-oriented nonmagnetic 100 μm t hastelloy tape 11 by a surface activated bonding process, Ar— A substrate 13 was prepared by performing a heat treatment at 500 ° C. for 3 hours in a reducing atmosphere of 4% H 2 to form a diffusion layer, that is, a bonding layer having a thickness of 1 μm or less at the adhesion interface.

上記の基板13のハステロイテープ11の上にIBADプロセスにより、厚さ400nmのGdZr層14a及び厚さ1.0μmのCeO層14bを形成し、この上に厚さ150nmのCeO層14cを高周波スパッタリング法により形成した後、さらに、その上にYBCO層15を形成した。 A 400 nm thick Gd 2 Zr 2 O 7 layer 14a and a 1.0 μm thick CeO 2 layer 14b are formed on the Hastelloy tape 11 of the substrate 13 by an IBAD process, and a 150 nm thick CeO 2 layer is formed thereon. After the two layers 14c were formed by the high frequency sputtering method, the YBCO layer 15 was further formed thereon.

YBCO層15は、以下の方法により形成した。まず、Y―TFA塩、Ba―TFA塩及びCuのナフテン酸塩をY:Ba:Cuのモル比が1:1.5:3となるように2―オクタノン中に混合した混合溶液をディップコーティング法を用いて中間層上に塗布し、水蒸気モル分率2.0%、760Torrの酸素ガス雰囲気中で最高加熱温度380℃に加熱した後、常温まで炉冷して仮焼膜を形成し、この工程を繰り返して仮焼膜を複数層形成した後、水蒸気分圧7.5%未満、炉内圧力760Torr未満の酸素−アルゴンガス雰囲気中で最高加熱温度700~780℃の焼成条件で結晶化熱処理、即ち、超電導体生成の熱処理を施してYBCO層15を形成した。以上のようにして形成したYBCO層の膜厚は1.5μmであった。   The YBCO layer 15 was formed by the following method. First, dip coating a mixed solution in which Y-TFA salt, Ba-TFA salt and Cu naphthenate were mixed in 2-octanone so that the molar ratio of Y: Ba: Cu was 1: 1.5: 3. After coating on the intermediate layer using a method, heating to a maximum heating temperature of 380 ° C. in an oxygen gas atmosphere with a water vapor mole fraction of 2.0% and 760 Torr, forming a calcined film by furnace cooling to room temperature, After repeating this process to form a plurality of calcined films, crystallization is performed under firing conditions of a maximum heating temperature of 700 to 780 ° C. in an oxygen-argon gas atmosphere with a water vapor partial pressure of less than 7.5% and a furnace pressure of less than 760 Torr. A YBCO layer 15 was formed by heat treatment, that is, heat treatment for generating a superconductor. The thickness of the YBCO layer formed as described above was 1.5 μm.

次いで、YBCO層15の上面、基板13の側面(ハステロイテープ11及びCuテープ12の側面)、中間層14の側面(GdZr層14a、CeO層14b及びCeO層14cの側面)に厚さ20μmのAgの蒸着層16を形成した後、レーザー加工によりYBCO層15及び蒸着法によりAgの安定化層16をテープの軸方向に沿って複数に分割した。 Next, the upper surface of the YBCO layer 15, the side surface of the substrate 13 (side surfaces of the Hastelloy tape 11 and the Cu tape 12), the side surface of the intermediate layer 14 (the side surfaces of the Gd 2 Zr 2 O 7 layer 14a, the CeO 2 layer 14b, and the CeO 2 layer 14c) After forming the 20 μm-thick Ag vapor deposition layer 16), the YBCO layer 15 by laser processing and the Ag stabilization layer 16 by the vapor deposition method were divided into a plurality along the axial direction of the tape.

このテープ状酸化物超電導線材20の両端部分で複数に分割された電流路を電気的に接続した後、そのIcを測定した結果、自己磁界(77K)中で150Aの値を示した。   After electrically connecting the divided current paths at both ends of the tape-shaped oxide superconducting wire 20, Ic was measured, and as a result, a value of 150 A was shown in the self magnetic field (77K).

また、上記のテープ状酸化物超電導線材20を用い、Cuテープ12を外側にしてダブルパンケーキ状に巻回して超電導コイルを製造し、外部電源からCuテープ12へ電流を印加した結果、超電導コイルへの電流の印加に支障を生じなかった。   Moreover, as a result of producing a superconducting coil by using the above-described tape-shaped oxide superconducting wire 20 and winding it in a double pancake shape with the Cu tape 12 outside, a current was applied to the Cu tape 12 from an external power source. There was no hindrance to the application of current.

比較例
無配向で非磁性の厚さ100μmtのハステロイテープ11の上にIBADプロセスにより、厚さ400nmのGdZr層及び厚さ1.0μmのCeO層を形成し、この上に厚さ150nmのCeO層を高周波スパッタリング法により形成した後、さらに、その上にYBCO層を形成した。
The IBAD process on a Hastelloy tape 11 having a thickness of 100 [mu] m t of the non-magnetic comparative example non-oriented, to form a CeO 2 layer of Gd 2 Zr 2 O 7 layer and the thickness 1.0μm thick 400 nm, on the After forming a 150 nm thick CeO 2 layer by high frequency sputtering, a YBCO layer was further formed thereon.

YBCO層は、実施例と同様の方法により形成した。このYBCO層の表面にCuテープを半田で接合した上、YBCO層をテープの軸方向に沿って複数に分割することを試みたが、YBCO層の表面が酸化されているため、テープの軸方向に亘って接合することはできず、レーザ加工も不可能であった。   The YBCO layer was formed by the same method as in the example. The Cu tape was joined to the surface of this YBCO layer with solder, and an attempt was made to divide the YBCO layer into a plurality along the axial direction of the tape. However, since the surface of the YBCO layer was oxidized, the axial direction of the tape It was not possible to bond them over a long distance, and laser processing was impossible.

本発明によるテープ状酸化物超電導体は、送電ケーブルや電力貯蔵システムのような電力機器及びモーターなどの動力機器への使用に適した酸化物超電導体への利用が可能であり、また、本発明によるテープ状酸化物超電導体用基板は、そのような超電導体への使用に好適する。   The tape-shaped oxide superconductor according to the present invention can be used as an oxide superconductor suitable for use in power devices such as power transmission cables and power storage systems and power devices such as motors. The tape-shaped oxide superconductor substrate according to is suitable for use in such a superconductor.

本発明のテープ状酸化物超電導体の一実施例を示すテープの軸方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to the axial direction of the tape which shows one Example of the tape-shaped oxide superconductor of this invention. 本発明のテープ状酸化物超電導体の一実施例を示すテープの軸方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to the axial direction of the tape which shows one Example of the tape-shaped oxide superconductor of this invention. テープ状酸化物超電導体を電流路に沿って分割する状態を示す斜視図である。It is a perspective view which shows the state which divides | segments a tape-shaped oxide superconductor along an electric current path.

符号の説明Explanation of symbols

10、20、30 テープ状酸化物超電導体
11 第1の金属層
12 第2の金属層
13 基板
14 中間層
15、34 YBCO超電導層15
16、35 Ag安定化層
31 ハステロイ
32 Gd−Zr−O中間層
33 CeO中間層
10, 20, 30 Tape-shaped oxide superconductor 11 First metal layer 12 Second metal layer 13 Substrate 14 Intermediate layer 15, 34 YBCO superconducting layer 15
16, 35 Ag stabilizing layer 31 Hastelloy 32 Gd—Zr—O intermediate layer 33 CeO 2 intermediate layer

Claims (14)

コア材となる第1の金属層と第2の金属層とを接合した基板の前記第1の金属層の上に2軸配向した無機材料からなる1層または複数層の中間層及び酸化物超電導層を形成した積層体からなる酸化物超電導体において、前記第1の金属層及び前記第2の金属層に、それぞれ前記第2の金属層の機械的強度より大きく、かつ無配向で非磁性の材料及び熱伝導率が大きく、かつ電気抵抗の小さい材料を用いたことを特徴とするテープ状酸化物超電導体。   One or more intermediate layers made of a biaxially oriented inorganic material and oxide superconductivity on the first metal layer of the substrate bonded with the first metal layer and the second metal layer as the core material In the oxide superconductor composed of a laminate in which a layer is formed, each of the first metal layer and the second metal layer is larger than the mechanical strength of the second metal layer and is non-oriented and nonmagnetic. A tape-shaped oxide superconductor using a material and a material having a high thermal conductivity and a low electrical resistance. コア材となる第1の金属層と第2の金属層とを接合した基板の前記第1の金属層の上に2軸配向した無機材料からなる1層または複数層の中間層及び酸化物超電導層を形成した積層体からなる酸化物超電導体において、前記第1の金属層及び前記第2の金属層に、それぞれ前記第2の金属層の機械的強度より大きく、かつ無配向で非磁性の材料及び熱伝導率が大きく、かつ電気抵抗の小さい材料を用いるとともに、前記積層体の酸化物超電導層側の上面及び側面に安定化層を蒸着することにより、前記超電導層と前記第2の金属層を電気的に接続したことを特徴とするテープ状酸化物超電導体。   One or more intermediate layers made of a biaxially oriented inorganic material and oxide superconductivity on the first metal layer of the substrate bonded with the first metal layer and the second metal layer as the core material In the oxide superconductor composed of a laminate in which a layer is formed, each of the first metal layer and the second metal layer is larger than the mechanical strength of the second metal layer and is non-oriented and nonmagnetic. The superconducting layer and the second metal are formed by using a material and a material having a high thermal conductivity and a low electrical resistance and depositing a stabilizing layer on the upper surface and the side surface of the stacked body on the oxide superconducting layer side. A tape-shaped oxide superconductor characterized in that the layers are electrically connected. 第1の金属層は、ニッケル基合金又はステンレスからなることを特徴とする請求項1または2記載のテープ状酸化物超電導体。   The tape-shaped oxide superconductor according to claim 1 or 2, wherein the first metal layer is made of a nickel-based alloy or stainless steel. 第1の金属層は、ニッケルにタングステン、モリブデン、クロム、鉄、コバルト、バナジウム、マンガンから選択された一種類以上の添加元素を含むニッケル基合金からなることを特徴とする請求項3記載のテープ状酸化物超電導体。   4. The tape according to claim 3, wherein the first metal layer is made of nickel-based alloy containing nickel and one or more additive elements selected from tungsten, molybdenum, chromium, iron, cobalt, vanadium, and manganese. Oxide superconductor. 第2の金属層は、100〜300Kの温度領域において、熱伝導率が100W/m・K以上であることを特徴とする請求項1乃至4いずれか1項記載のテープ状酸化物超電導体。   The tape-shaped oxide superconductor according to any one of claims 1 to 4, wherein the second metal layer has a thermal conductivity of 100 W / m · K or more in a temperature range of 100 to 300K. 第2の金属層は、銅、銀、金、アルミニウム又はこれらを主材料として含む合金からなることを特徴とする請求項5記載のテープ状酸化物超電導体。   6. The tape-shaped oxide superconductor according to claim 5, wherein the second metal layer is made of copper, silver, gold, aluminum, or an alloy containing these as main materials. 第1の金属層と第2の金属層は、表面活性化接合後の熱処理を施すことにより接合層を介して接合されていることを特徴とする請求項1乃至6いずれか1項記載のテープ状酸化物超電導体。   The tape according to any one of claims 1 to 6, wherein the first metal layer and the second metal layer are bonded via a bonding layer by performing a heat treatment after surface activation bonding. Oxide superconductor. 第1の金属層上の中間層は、IBADプロセスにより成膜されていることを特徴とする請求項1乃至7いずれか1項記載のテープ状酸化物超電導体。   The tape-shaped oxide superconductor according to any one of claims 1 to 7, wherein the intermediate layer on the first metal layer is formed by an IBAD process. 中間層上の酸化物超電導層は、TFA−MOD法により成膜されていることを特徴とする請求項1乃至8いずれか1項記載のテープ状酸化物超電導体。   The tape-shaped oxide superconductor according to any one of claims 1 to 8, wherein the oxide superconducting layer on the intermediate layer is formed by a TFA-MOD method. 酸化物超電導層及びその上面の安定化層は、テープ軸方向に沿った複数の電流路に分割されていることを特徴とする請求項2乃至9いずれか1項記載のテープ状酸化物超電導体。   The tape-shaped oxide superconductor according to any one of claims 2 to 9, wherein the oxide superconducting layer and the stabilization layer on the upper surface thereof are divided into a plurality of current paths along the tape axial direction. . テープ状の酸化物超電導体を製造するために用いられる基板であって、前記基板は、コア材となる第1の金属層と第2の金属層とを接合し、前記第1の金属層及び前記第2の金属層に、それぞれ前記第2の金属層の機械的強度より大きく、かつ無配向で非磁性の材料及び熱伝導率が大きく、かつ電気抵抗の小さい材料を用いたことを特徴とするテープ状酸化物超電導体用基板。   A substrate used for manufacturing a tape-shaped oxide superconductor, wherein the substrate joins a first metal layer and a second metal layer to be a core material, and the first metal layer and The second metal layer is made of a non-oriented, non-magnetic material, a material having a high thermal conductivity, and a material having a low electrical resistance, each of which is greater than the mechanical strength of the second metal layer. Tape-shaped oxide superconductor substrate. テープ状の酸化物超電導体を製造するために用いられる基板であって、前記基板は、コア材となる第1の金属層と第2の金属層とを接合し、第1の金属層を前記第2の金属層の機械的強度より大きく、かつ無配向で非磁性のニッケルに、タングステン、モリブデン、クロム、鉄、コバルト、バナジウム、マンガンから選択された一種類以上の添加元素を含むニッケル基合金からなる材料により形成するとともに、前記第2の金属層を熱伝導率が大きく、かつ電気抵抗の小さい銅、銀、金、アルミニウム又はこれらを主材料として含む合金により形成したことを特徴とするテープ状酸化物超電導体用基板。   A substrate used for manufacturing a tape-shaped oxide superconductor, wherein the substrate joins a first metal layer and a second metal layer as a core material, and the first metal layer is bonded to the first metal layer. Nickel-based alloy containing one or more additional elements selected from tungsten, molybdenum, chromium, iron, cobalt, vanadium, and manganese in non-oriented non-magnetic nickel that is greater than the mechanical strength of the second metal layer A tape characterized in that the second metal layer is made of copper, silver, gold, aluminum, or an alloy containing these as a main material having a high thermal conductivity and a low electrical resistance. -Like superconductor substrate. 基板は、前記第1の金属層の上に2軸配向した無機材料からなる1層または複数層の中間層が形成されていることを特徴とする請求項11又は12記載のテープ状酸化物超電導体用基板。   13. The tape-shaped oxide superconductor according to claim 11 or 12, wherein the substrate has one or more intermediate layers made of a biaxially oriented inorganic material formed on the first metal layer. Body substrate. 第1の金属層と第2の金属層は、表面活性化接合後の熱処理を施すことにより接合層を介して接合されていることを特徴とする請求項11乃至13いずれか1項記載のテープ状酸化物超電導体用基板。   The tape according to any one of claims 11 to 13, wherein the first metal layer and the second metal layer are bonded through a bonding layer by performing a heat treatment after surface activation bonding. -Like superconductor substrate.
JP2008208867A 2008-08-14 2008-08-14 Tape-shaped oxide superconductor and substrate used therefor Expired - Fee Related JP5405069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008208867A JP5405069B2 (en) 2008-08-14 2008-08-14 Tape-shaped oxide superconductor and substrate used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008208867A JP5405069B2 (en) 2008-08-14 2008-08-14 Tape-shaped oxide superconductor and substrate used therefor

Publications (2)

Publication Number Publication Date
JP2010044969A true JP2010044969A (en) 2010-02-25
JP5405069B2 JP5405069B2 (en) 2014-02-05

Family

ID=42016200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008208867A Expired - Fee Related JP5405069B2 (en) 2008-08-14 2008-08-14 Tape-shaped oxide superconductor and substrate used therefor

Country Status (1)

Country Link
JP (1) JP5405069B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009218A (en) * 2010-06-23 2012-01-12 Swcc Showa Cable Systems Co Ltd Manufacturing method and heat treatment apparatus for tape-like oxide superconductive wire
JP2014110125A (en) * 2012-11-30 2014-06-12 Fujikura Ltd Oxide superconductive wire and method of producing the same
US11328841B2 (en) 2015-08-12 2022-05-10 Karlsruher Institut für Technologie Method and device for producing a superconductive conductor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044636A (en) * 2003-07-22 2005-02-17 Sumitomo Electric Ind Ltd Superconductive wire rod
WO2007016492A2 (en) * 2005-07-29 2007-02-08 American Superconductor Corporation Architecture for high temperature superconductor wire
WO2007034686A1 (en) * 2005-09-21 2007-03-29 Sumitomo Electric Industries, Ltd. Method for manufacturing superconducting tape wire rod, superconducting tape wire rod, and superconducting device
JP2007115562A (en) * 2005-10-21 2007-05-10 Internatl Superconductivity Technology Center Tape-shaped rare-earth group oxide superconductor and its manufacturing method
JP2007266149A (en) * 2006-03-28 2007-10-11 Toshiba Corp Method of connecting superconductive wire rod, and superconductive wire rod
WO2008036073A2 (en) * 2005-07-29 2008-03-27 American Superconductor Corporation High temperature superconducting wires and coils
JP2008243588A (en) * 2007-03-27 2008-10-09 Toshiba Corp High-temperature superconductive wire, high-temperature superconductive coil, and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044636A (en) * 2003-07-22 2005-02-17 Sumitomo Electric Ind Ltd Superconductive wire rod
WO2007016492A2 (en) * 2005-07-29 2007-02-08 American Superconductor Corporation Architecture for high temperature superconductor wire
WO2008036073A2 (en) * 2005-07-29 2008-03-27 American Superconductor Corporation High temperature superconducting wires and coils
WO2007034686A1 (en) * 2005-09-21 2007-03-29 Sumitomo Electric Industries, Ltd. Method for manufacturing superconducting tape wire rod, superconducting tape wire rod, and superconducting device
JP2007115562A (en) * 2005-10-21 2007-05-10 Internatl Superconductivity Technology Center Tape-shaped rare-earth group oxide superconductor and its manufacturing method
JP2007266149A (en) * 2006-03-28 2007-10-11 Toshiba Corp Method of connecting superconductive wire rod, and superconductive wire rod
JP2008243588A (en) * 2007-03-27 2008-10-09 Toshiba Corp High-temperature superconductive wire, high-temperature superconductive coil, and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009218A (en) * 2010-06-23 2012-01-12 Swcc Showa Cable Systems Co Ltd Manufacturing method and heat treatment apparatus for tape-like oxide superconductive wire
JP2014110125A (en) * 2012-11-30 2014-06-12 Fujikura Ltd Oxide superconductive wire and method of producing the same
US11328841B2 (en) 2015-08-12 2022-05-10 Karlsruher Institut für Technologie Method and device for producing a superconductive conductor
EP3317903B1 (en) * 2015-08-12 2024-05-29 Karlsruher Institut für Technologie Method and device for producing a superconductive conductor

Also Published As

Publication number Publication date
JP5405069B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP4268645B2 (en) Rare earth tape oxide superconductor and composite substrate used therefor
CA2622384C (en) High temperature superconducting wires and coils
JP4800740B2 (en) Rare earth tape-shaped oxide superconductor and method for producing the same
WO2011129252A1 (en) Electrode unit joining structure for superconducting wire material, superconducting wire material, and superconducting coil
JP5244337B2 (en) Tape-shaped oxide superconductor
JP5154953B2 (en) Superconducting articles with low density characteristics
JP5548441B2 (en) Superconducting connection structure, superconducting wire connecting method, superconducting coil device
RU2518505C1 (en) Strip high-temperature superconductors
JP2013012645A (en) Oxide superconducting coil and superconducting apparatus
JP5724029B2 (en) Superconducting current lead, superconducting current lead device, and superconducting magnet device
JP5405069B2 (en) Tape-shaped oxide superconductor and substrate used therefor
JP6329736B2 (en) Laminated pancake type superconducting coil and superconducting equipment provided with the same
JP6101490B2 (en) Oxide superconducting wire connection structure and superconducting equipment
JP5675232B2 (en) Superconducting current lead
JP6688914B1 (en) Oxide superconducting wire and superconducting coil
JP5694866B2 (en) Superconducting wire
JP2012064323A (en) Superconductive current lead
JP6349439B1 (en) Superconducting coil
WO2018207727A1 (en) Superconducting wire and superconducting coil
JP6131176B2 (en) Manufacturing method of oxide superconducting wire
WO2013008851A1 (en) Superconducting thin film and method for manufacturing superconducting thin film
JP6707164B1 (en) Superconducting wire connection structure and superconducting wire
JP6724125B2 (en) Oxide superconducting wire and method for producing the same
JP6318284B1 (en) Superconducting wire
JP5614831B2 (en) Oxide superconducting current lead

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131030

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees