JP6349439B1 - Superconducting coil - Google Patents

Superconducting coil Download PDF

Info

Publication number
JP6349439B1
JP6349439B1 JP2017095548A JP2017095548A JP6349439B1 JP 6349439 B1 JP6349439 B1 JP 6349439B1 JP 2017095548 A JP2017095548 A JP 2017095548A JP 2017095548 A JP2017095548 A JP 2017095548A JP 6349439 B1 JP6349439 B1 JP 6349439B1
Authority
JP
Japan
Prior art keywords
superconducting
layer
stress
coil
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017095548A
Other languages
Japanese (ja)
Other versions
JP2018195612A (en
Inventor
直識 中村
直識 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2017095548A priority Critical patent/JP6349439B1/en
Priority to CN201880024565.XA priority patent/CN110494935A/en
Priority to US16/612,238 priority patent/US20200211741A1/en
Priority to PCT/JP2018/017614 priority patent/WO2018207727A1/en
Priority to RU2019135320A priority patent/RU2719388C1/en
Priority to EP18798094.1A priority patent/EP3624143A4/en
Application granted granted Critical
Publication of JP6349439B1 publication Critical patent/JP6349439B1/en
Publication of JP2018195612A publication Critical patent/JP2018195612A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

【課題】酸化物超電導線材における層の剥離等の損傷による劣化が起こりにくい超電導コイルを提供する。【解決手段】超電導線材10が厚さ方向に積層された超電導コイル。超電導線材10は、テープ状の基材に中間層を介して超電導層が形成された超電導積層体15と、超電導積層体15の少なくとも側面15bを覆う安定化層16とを備える。安定化層16のうち超電導積層体15の側面15bを覆う側面部16Bにおける内部の残留応力F2は、超電導積層体15の厚さ方向に沿う引張応力である。残留応力F2は、前記超電導コイルの径方向の最大印加応力より大きい。【選択図】図2The present invention provides a superconducting coil in which deterioration due to damage such as peeling of a layer in an oxide superconducting wire hardly occurs. A superconducting coil in which a superconducting wire is laminated in a thickness direction. The superconducting wire 10 includes a superconducting laminate 15 in which a superconducting layer is formed on a tape-like base material via an intermediate layer, and a stabilization layer 16 that covers at least the side surface 15b of the superconducting laminate 15. The internal residual stress F <b> 2 in the side surface portion 16 </ b> B that covers the side surface 15 b of the superconducting laminate 15 in the stabilization layer 16 is a tensile stress along the thickness direction of the superconducting laminate 15. The residual stress F2 is larger than the maximum applied stress in the radial direction of the superconducting coil. [Selection] Figure 2

Description

本発明は、超電導コイルに関する。   The present invention relates to a superconducting coil.

超電導線材(例えばY系酸化物超電導線材)は電流損失が低いため、電力供給用ケーブル、磁気コイル等として使用されている(例えば、特許文献1を参照)。超電導線材は、コイル化後、冷却の際に含浸材と線材との熱収縮率の差を原因とする剥離応力により劣化する可能性がある。また、前記超電導線材は、コイルの製造過程で巻き枠の鍔部、送出(または巻取)リールの鍔部などと接触することにより、エッジ部において積層構造体の一部の層に剥離等の損傷が生じ、損傷部分から劣化が進行する可能性がある。   Superconducting wires (for example, Y-based oxide superconducting wires) have low current loss and are used as power supply cables, magnetic coils, and the like (see, for example, Patent Document 1). The superconducting wire may be deteriorated by peeling stress caused by the difference in thermal shrinkage between the impregnated material and the wire after cooling after coiling. In addition, the superconducting wire is brought into contact with the flange part of the winding frame, the reel part of the delivery (or take-up) reel, etc. in the manufacturing process of the coil, so that a part of the laminated structure is peeled off at the edge part. Damage may occur and deterioration may progress from the damaged part.

特開2010−212134号公報JP 2010-212134 A

本発明の一態様は、上記事情に鑑みてなされたものであり、酸化物超電導線材における層の剥離等の損傷による劣化が起こりにくい超電導コイルを提供することを課題とする。   One embodiment of the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a superconducting coil in which deterioration due to damage such as peeling of a layer in an oxide superconducting wire hardly occurs.

本発明の一態様は、超電導線材が厚さ方向に積層された超電導コイルであって、前記超電導線材が、テープ状の基材に中間層を介して超電導層が形成された超電導積層体と、前記超電導積層体の少なくとも側面を覆う安定化層とを備え、前記安定化層のうち前記超電導積層体の側面を覆う側面部における内部の残留応力は、前記超電導積層体の厚さ方向に沿う引張応力であり、前記残留応力は、前記超電導コイルの径方向の最大印加応力より大きい、超電導コイルを提供する。
前記残留応力は、0.2MPa以上であることが好ましい。
前記安定化層は、めっき層であることが好ましい。
One aspect of the present invention is a superconducting coil in which superconducting wires are laminated in the thickness direction, wherein the superconducting wire is a superconducting laminate in which a superconducting layer is formed on a tape-like substrate via an intermediate layer; A stabilizing layer covering at least a side surface of the superconducting laminate, and an internal residual stress in a side portion covering the side surface of the superconducting laminate among the stabilizing layers is tensile along the thickness direction of the superconducting laminate. Stress, wherein the residual stress is greater than a maximum radial applied stress of the superconducting coil.
The residual stress is preferably 0.2 MPa or more.
The stabilization layer is preferably a plating layer.

本発明の一態様によれば、酸化物超電導線材の安定化層の内部の残留応力は引張応力であり、その残留応力は、超電導コイルの径方向の最大印加応力より大きい。そのため、残留応力と反対方向の反発力によって、超電導積層体の剥離応力が緩和され、酸化物超電導層等の剥離等の破損を回避することができる。よって、前記破損による劣化を防ぐことができる。   According to one aspect of the present invention, the residual stress inside the stabilization layer of the oxide superconducting wire is a tensile stress, and the residual stress is greater than the maximum applied stress in the radial direction of the superconducting coil. Therefore, the peeling stress of the superconducting laminate is relaxed by the repulsive force in the direction opposite to the residual stress, and damage such as peeling of the oxide superconducting layer can be avoided. Therefore, deterioration due to the damage can be prevented.

実施形態の超電導コイルに用いられる酸化物超電導線材の構造を示す概略図である。It is the schematic which shows the structure of the oxide superconducting wire used for the superconducting coil of embodiment. 図1の酸化物超電導線材の断面を模式的に示す図である。It is a figure which shows typically the cross section of the oxide superconducting wire of FIG. 実施形態の超電導コイルを示す概略図である。It is the schematic which shows the superconducting coil of embodiment.

以下、好適な実施形態に基づき、図面を参照して本発明を説明する。   Hereinafter, based on a preferred embodiment, the present invention will be described with reference to the drawings.

図1は、実施形態の超電導コイルに用いられる酸化物超電導線材(超電導線材)の構造を示す概略図である。図1は、酸化物超電導線材10の長手方向に垂直な断面の構造を模式的に示している。
図1に示すように、酸化物超電導線材10は、超電導積層体15と、安定化層16とを備えている。
超電導積層体15は、基材11上に中間層12を介して酸化物超電導層13および保護層14が形成された構造を有する。詳しくは、超電導積層体15は、テープ状の基材11の一方の面上に、中間層12と酸化物超電導層13と保護層14がこの順に積層された構成を有する。
以下、必要に応じてXY座標系に基づいて各方向の説明を行う。Y方向は、酸化物超電導線材10の厚さ方向であり、基材11、中間層12、酸化物超電導層13、保護層14等の各層が積層される方向である。X方向は、酸化物超電導線材10の幅方向であり、酸化物超電導線材10の長手方向および厚さ方向に垂直な方向である。
FIG. 1 is a schematic diagram showing the structure of an oxide superconducting wire (superconducting wire) used in the superconducting coil of the embodiment. FIG. 1 schematically shows the structure of a cross section perpendicular to the longitudinal direction of the oxide superconducting wire 10.
As shown in FIG. 1, the oxide superconducting wire 10 includes a superconducting laminate 15 and a stabilization layer 16.
The superconducting laminate 15 has a structure in which an oxide superconducting layer 13 and a protective layer 14 are formed on a base material 11 via an intermediate layer 12. Specifically, the superconducting laminate 15 has a configuration in which an intermediate layer 12, an oxide superconducting layer 13, and a protective layer 14 are laminated in this order on one surface of a tape-like substrate 11.
Hereinafter, each direction will be described based on the XY coordinate system as necessary. The Y direction is the thickness direction of the oxide superconducting wire 10 and is a direction in which layers such as the base material 11, the intermediate layer 12, the oxide superconducting layer 13, and the protective layer 14 are laminated. The X direction is the width direction of the oxide superconducting wire 10 and is the direction perpendicular to the longitudinal direction and the thickness direction of the oxide superconducting wire 10.

基材11は、テープ状であり、例えば金属で形成されている。基材11を構成する金属の具体例として、ハステロイ(登録商標)に代表されるニッケル合金;ステンレス鋼;ニッケル合金に集合組織を導入した配向Ni−W合金などが挙げられる。基材11の厚さは、目的に応じて適宜調整すればよく、例えば10〜500μmの範囲である。   The base material 11 is tape-shaped, for example, is formed with metal. Specific examples of the metal constituting the substrate 11 include a nickel alloy typified by Hastelloy (registered trademark); stainless steel; an oriented Ni—W alloy in which a texture is introduced into the nickel alloy. What is necessary is just to adjust the thickness of the base material 11 suitably according to the objective, for example, it is the range of 10-500 micrometers.

中間層12は、基材11と酸化物超電導層13との間に設けられる。中間層12は、基材11の一方の主面11aに形成される。中間層12は、多層構成でもよく、例えば基材11側から酸化物超電導層13側に向かう順で、拡散防止層、ベッド層、配向層、キャップ層等を有してもよい。これらの層は必ずしも1層ずつ設けられるとは限らず、一部の層を省略する場合や、同種の層を2以上繰り返し積層する場合もある。   The intermediate layer 12 is provided between the base material 11 and the oxide superconducting layer 13. The intermediate layer 12 is formed on one main surface 11 a of the substrate 11. The intermediate layer 12 may have a multilayer structure, and may include, for example, a diffusion prevention layer, a bed layer, an alignment layer, a cap layer, and the like in the order from the substrate 11 side to the oxide superconducting layer 13 side. These layers are not necessarily provided one by one, and some layers may be omitted, or two or more of the same kind of layers may be laminated repeatedly.

拡散防止層は、基材11の成分の一部が拡散し、不純物として酸化物超電導層13側に混入することを抑制する機能を有する。拡散防止層は、例えば、Si、Al、GZO(GdZr)等から構成される。拡散防止層の厚さは、例えば10〜400nmである。 The diffusion preventing layer has a function of suppressing a part of the components of the base material 11 from diffusing and mixing as impurities into the oxide superconducting layer 13 side. The diffusion preventing layer is made of, for example, Si 3 N 4 , Al 2 O 3 , GZO (Gd 2 Zr 2 O 7 ) or the like. The thickness of the diffusion preventing layer is, for example, 10 to 400 nm.

拡散防止層の上には、基材11と酸化物超電導層13との界面における反応を低減し、その上に形成される層の配向性を向上するためにベッド層を形成してもよい。ベッド層の材質としては、例えばY、Er、CeO、Dy、Eu、Ho、La等が挙げられる。ベッド層の厚さは、例えば10〜100nmである。 A bed layer may be formed on the diffusion preventing layer in order to reduce the reaction at the interface between the base material 11 and the oxide superconducting layer 13 and improve the orientation of the layer formed thereon. Examples of the material of the bed layer include Y 2 O 3 , Er 2 O 3 , CeO 2 , Dy 2 O 3 , Eu 2 O 3 , Ho 2 O 3 , and La 2 O 3 . The thickness of the bed layer is, for example, 10 to 100 nm.

配向層は、その上のキャップ層の結晶配向性を制御するために2軸配向する物質から形成される。配向層の材質としては、例えば、GdZr、MgO、ZrO−Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物を例示することができる。配向層はIBAD(Ion-Beam-Assisted Deposition)法で形成することが好ましい。 The orientation layer is formed from a biaxially oriented material in order to control the crystal orientation of the cap layer thereon. Examples of the material of the alignment layer include Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , Examples thereof include metal oxides such as Zr 2 O 3 , Ho 2 O 3 , and Nd 2 O 3 . The alignment layer is preferably formed by an IBAD (Ion-Beam-Assisted Deposition) method.

キャップ層は、上述の配向層の表面に成膜されて、結晶粒が面内方向に自己配向し得る材料からなる。キャップ層の材質としては、例えば、CeO、Y、Al、Gd、ZrO、YSZ、Ho、Nd、LaMnO等が挙げられる。キャップ層の厚さは、50〜5000nmの範囲が挙げられる。 The cap layer is formed on the surface of the above-described alignment layer, and is made of a material that allows crystal grains to self-align in the in-plane direction. The material of the cap layer, for example, CeO 2, Y 2 O 3 , Al 2 O 3, Gd 2 O 3, ZrO 2, YSZ, Ho 2 O 3, Nd 2 O 3, LaMnO 3 , and the like. Examples of the thickness of the cap layer include a range of 50 to 5000 nm.

酸化物超電導層13は、酸化物超電導体から構成される。酸化物超電導体としては、特に限定されないが、例えば一般式REBaCu(RE123)で表されるRE−Ba−Cu−O系酸化物超電導体が挙げられる。希土類元素REとしては、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luのうちの1種又は2種以上が挙げられる。中でも、Y、Gd、Eu、Smの1種か、又はこれら元素の2種以上の組み合わせが好ましい。一般に、Xは、7−x(酸素欠損量x:約0〜1程度)である。酸化物超電導層13の厚さは、例えば0.5〜5μm程度である。この厚さは、長手方向に均一であることが好ましい。
酸化物超電導層13は、中間層12の主面12a(基材11側とは反対の面)に形成されている。
The oxide superconducting layer 13 is composed of an oxide superconductor. As an oxide superconductor, particularly, but not limited to, for example, the general formula REBa 2 Cu 3 O X (RE123 ) with REBa-Cu-O based oxide superconductor represented the like. The rare earth element RE may be one or more of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Among these, one of Y, Gd, Eu, and Sm, or a combination of two or more of these elements is preferable. Generally, X is 7-x (oxygen deficiency x: about 0 to 1). The thickness of the oxide superconducting layer 13 is, for example, about 0.5 to 5 μm. This thickness is preferably uniform in the longitudinal direction.
The oxide superconducting layer 13 is formed on the main surface 12a of the intermediate layer 12 (the surface opposite to the substrate 11 side).

保護層14は、事故時に発生する過電流をバイパスしたり、酸化物超電導層13と保護層14の上に設けられる層との間で起こる化学反応を抑制する等の機能を有する。保護層14の材質としては、例えば銀(Ag)、銅(Cu)、金(Au)、金と銀との合金、その他の銀合金、銅合金、金合金などが挙げられる。保護層14は、少なくとも酸化物超電導層13の主面13a(中間層12側とは反対の面)を覆っている。   The protective layer 14 has functions such as bypassing an overcurrent generated at the time of an accident and suppressing a chemical reaction occurring between the oxide superconducting layer 13 and a layer provided on the protective layer 14. Examples of the material of the protective layer 14 include silver (Ag), copper (Cu), gold (Au), an alloy of gold and silver, other silver alloys, copper alloys, and gold alloys. The protective layer 14 covers at least the main surface 13a of the oxide superconducting layer 13 (the surface opposite to the intermediate layer 12 side).

保護層14は、酸化物超電導層13の側面、中間層12の側面、基材11の側面及び裏面から選択される領域の一部または全部を覆ってもよい。保護層14は2種以上又は2層以上の金属層から構成されてもよい。保護層14の厚さは、特に限定されないが、例えば1〜30μm程度が挙げられる。   The protective layer 14 may cover part or all of the region selected from the side surface of the oxide superconducting layer 13, the side surface of the intermediate layer 12, the side surface of the base material 11, and the back surface. The protective layer 14 may be composed of two or more metal layers or two or more metal layers. Although the thickness of the protective layer 14 is not specifically limited, For example, about 1-30 micrometers is mentioned.

超電導積層体15の長手方向に垂直な断面の形状は矩形状である。超電導積層体15は、厚さより幅の方が大きい矩形状、すなわち平角型の断面を有する。図1において、15aは超電導積層体15の第1主面(保護層14の主面14a:酸化物超電導層13側とは反対の面)である。15bは超電導積層体15の側面(基材11の側面、中間層12の側面、酸化物超電導層13の側面、および保護層14の側面)である。15cは超電導積層体15の第2主面(基材11の主面11aとは反対の面)である。   The shape of the cross section perpendicular to the longitudinal direction of the superconducting laminate 15 is rectangular. The superconducting laminate 15 has a rectangular shape whose width is larger than the thickness, that is, a rectangular cross section. In FIG. 1, reference numeral 15 a denotes a first main surface of the superconducting laminate 15 (main surface 14 a of the protective layer 14: a surface opposite to the oxide superconducting layer 13 side). 15b is the side surface of the superconducting laminate 15 (the side surface of the base material 11, the side surface of the intermediate layer 12, the side surface of the oxide superconducting layer 13, and the side surface of the protective layer 14). 15 c is a second main surface of the superconducting laminate 15 (a surface opposite to the main surface 11 a of the base material 11).

安定化層16は、超電導積層体15を覆って形成される。安定化層16は、保護層14の表面(主面14a)、保護層14の側面、酸化物超電導層13の側面、中間層12の側面、基材11の側面、基材11の裏面(基材11の主面11aとは反対の面)から選択される領域の一部または全部を覆う。安定化層16の厚さとしては、特に限定されないが、例えば10〜300μm程度が挙げられる。   The stabilization layer 16 is formed so as to cover the superconducting laminate 15. The stabilization layer 16 includes a surface (main surface 14a) of the protective layer 14, a side surface of the protective layer 14, a side surface of the oxide superconducting layer 13, a side surface of the intermediate layer 12, a side surface of the base material 11, and a back surface (base) of the base material 11. A part or all of the region selected from the surface opposite to the main surface 11a of the material 11 is covered. Although it does not specifically limit as thickness of the stabilization layer 16, For example, about 10-300 micrometers is mentioned.

安定化層16は、酸化物超電導層13が常電導状態に転移した時に発生する過電流を転流させるバイパス部としての機能を有する。安定化層16の構成材料としては、銅、銅合金、アルミニウム、アルミニウム合金、銀等の金属が挙げられる。
酸化物超電導線材10が超電導限流器に使用される場合は、常電導状態への転移時に発生する過電流を瞬時に抑制する必要があるため、安定化層16に高抵抗金属を用いてもよい。高抵抗金属としては、例えば、Ni−Cr等のNi系合金などが挙げられる。
The stabilization layer 16 has a function as a bypass part that commutates an overcurrent generated when the oxide superconducting layer 13 transitions to a normal conducting state. Examples of the constituent material of the stabilization layer 16 include metals such as copper, copper alloy, aluminum, aluminum alloy, and silver.
When the oxide superconducting wire 10 is used for a superconducting fault current limiter, it is necessary to instantaneously suppress the overcurrent generated at the time of transition to the normal conducting state. Good. Examples of the high resistance metal include Ni-based alloys such as Ni-Cr.

安定化層16によって、酸化物超電導層13と安定化層16との間の電気的接続が良好となる。安定化層16は、酸化物超電導層13の側面を覆っているため、酸化物超電導層13の剥離防止性、防水性が向上する。
安定化層16のうち超電導積層体15の第1主面15aを覆う部分を第1主面部16Aという。安定化層16のうち超電導積層体15の側面15bを覆う部分を側面部16Bという。安定化層16のうち超電導積層体15の第2主面15cを覆う部分を第2主面部16Cという。
The stabilization layer 16 provides good electrical connection between the oxide superconducting layer 13 and the stabilization layer 16. Since the stabilization layer 16 covers the side surface of the oxide superconducting layer 13, the anti-peeling property and waterproofness of the oxide superconducting layer 13 are improved.
A portion of the stabilization layer 16 that covers the first main surface 15a of the superconducting laminate 15 is referred to as a first main surface portion 16A. A portion of the stabilization layer 16 that covers the side surface 15b of the superconducting laminate 15 is referred to as a side surface portion 16B. A portion of the stabilization layer 16 that covers the second main surface 15c of the superconducting laminate 15 is referred to as a second main surface portion 16C.

図2は、酸化物超電導線材10の断面を模式的に示す図である。図2に示すように、F1,F2は、安定化層16の内部の残留応力である。詳しくは、F1は、第1主面部16Aおよび第2主面部16Cの残留応力である。F2は、側面部16Bの残留応力である。
残留応力F1,F2は、引張方向の応力(引張応力)である。すなわち、残留応力F1は、第1主面部16Aおよび第2主面部16Cにおける幅(X方向の寸法)が拡張する方向の引張応力である。残留応力F2は、側面部16Bにおいて厚さ寸法(Y方向の寸法)が増す方向の引張応力である。超電導積層体15には、図2に破線の矢印で示すように、残留応力F1,F2と反対方向の反発力が生じる。
FIG. 2 is a diagram schematically showing a cross section of the oxide superconducting wire 10. As shown in FIG. 2, F <b> 1 and F <b> 2 are residual stresses inside the stabilization layer 16. Specifically, F1 is the residual stress of the first main surface portion 16A and the second main surface portion 16C. F2 is the residual stress of the side surface portion 16B.
The residual stresses F1 and F2 are stresses in the tensile direction (tensile stress). That is, the residual stress F1 is a tensile stress in a direction in which the width (dimension in the X direction) of the first main surface portion 16A and the second main surface portion 16C is expanded. The residual stress F2 is a tensile stress in the direction in which the thickness dimension (dimension in the Y direction) increases in the side surface portion 16B. In the superconducting laminate 15, a repulsive force in the direction opposite to the residual stresses F1 and F2 is generated as shown by broken arrows in FIG.

残留応力F1,F2は、0.2MPa以上であることが好ましい。
超電導コイルでは、線材表面に離型処理を施すことなどにより外部応力を緩和することが可能であるが、前述のコイル冷却時の剥離応力については回避するのが容易ではない。これに対し、残留応力F1,F2が0.2MPa以上であると、前記剥離応力を十分に緩和でき、前記剥離を防ぐことができる。
なお、酸化物超電導線材10では、残留応力F1,F2がともに引張応力であるが、少なくとも残留応力F2が引張応力であればよい。
The residual stresses F1 and F2 are preferably 0.2 MPa or more.
In the superconducting coil, it is possible to relieve the external stress by performing a release treatment on the surface of the wire, but it is not easy to avoid the peeling stress at the time of cooling the coil. On the other hand, when the residual stresses F1 and F2 are 0.2 MPa or more, the peeling stress can be sufficiently relaxed and the peeling can be prevented.
In the oxide superconducting wire 10, the residual stresses F1 and F2 are both tensile stresses, but at least the residual stress F2 only needs to be tensile stress.

安定化層16の少なくとも一部は、超電導積層体15の外周面に、めっきによって形成されためっき層であることが好ましい。安定化層16がめっき層であると、残留応力F1,F2の調整が容易となる。
安定化層16は、電解めっきにより形成することができる。安定化層16の少なくとも一部は、スパッタ法または無電解めっきにより形成した金属膜の上にさらに電解めっきにより金属膜を形成する方法によって形成してもよい。
At least a part of the stabilization layer 16 is preferably a plating layer formed by plating on the outer peripheral surface of the superconducting laminate 15. If the stabilization layer 16 is a plating layer, the residual stresses F1 and F2 can be easily adjusted.
The stabilization layer 16 can be formed by electrolytic plating. At least a part of the stabilization layer 16 may be formed by a method of further forming a metal film by electrolytic plating on a metal film formed by sputtering or electroless plating.

安定化層16を電解めっきにより形成するには、例えば次の方法が可能である。めっき浴に超電導積層体15を浸漬させ、超電導積層体15を引き取りつつ、超電導積層体15の外周面に、電解めっきにより安定化層16を形成する。この際、(i)めっき浴に添加する添加剤の種類および濃度、(ii)めっき浴の温度、(iii)めっき浴のpH、(iv)めっき処理時の電流密度、(v)めっき時間、などの調整によって、安定化層16の残留応力F1,F2を調整できる。例えば、銅(Cu)めっきの場合、安定化層16の残留応力は、アルカリ性浴(シアン浴等)では圧縮応力となりやすく、酸性浴(硫酸銅浴等)では引張応力となりやすい。
なお、めっきにより形成された金属層における残留応力とめっき条件との関係については、例えば、[参考文献1]実務表面技術 Vol.22(1975) No.2 やさしいメッキ理論入門(6)、[参考文献2]表面技術 Vol.43,No.7,1992 電気めっきにより形成された皮膜の内部応力、などに記載がある。
In order to form the stabilization layer 16 by electrolytic plating, for example, the following method is possible. The stabilization layer 16 is formed on the outer peripheral surface of the superconducting laminate 15 by electrolytic plating while immersing the superconducting laminate 15 in the plating bath and taking the superconducting laminate 15. At this time, (i) the type and concentration of the additive added to the plating bath, (ii) the temperature of the plating bath, (iii) the pH of the plating bath, (iv) the current density during the plating treatment, (v) the plating time, The residual stresses F1 and F2 of the stabilization layer 16 can be adjusted by adjusting the above. For example, in the case of copper (Cu) plating, the residual stress of the stabilization layer 16 tends to be compressive stress in an alkaline bath (cyan bath or the like) and tensile stress in an acidic bath (copper sulfate bath or the like).
For the relationship between residual stress and plating conditions in metal layers formed by plating, see [Reference 1] Practical Surface Technology Vol.22 (1975) No.2 Introduction to Easy Plating Theory (6), [Reference Reference 2] Surface Technology Vol.43, No.7,1992 There is a description in the internal stress of the film formed by electroplating.

安定化層16の残留応力F1,F2の測定には、ストリップ電着応力測定法を用いることができる。ストリップ電着応力測定法については、前述の参考文献2に記載がある。ストリップ電着応力測定法による残留応力の測定には、例えば、藤化成株式会社「ストリップ式電着応力試験器」を使用できる。
安定化層16の残留応力F1,F2の測定方法としては、スパイラルコントラクトメーター法、X線回折法なども採用可能である。
A strip electrodeposition stress measurement method can be used to measure the residual stresses F1 and F2 of the stabilization layer 16. The strip electrodeposition stress measurement method is described in the aforementioned Reference 2. For measurement of residual stress by the strip electrodeposition stress measurement method, for example, “Strip Electrodeposition Stress Tester” by Fuji Kasei Co., Ltd. can be used.
As a method for measuring the residual stresses F1 and F2 of the stabilization layer 16, a spiral contractometer method, an X-ray diffraction method, or the like can be employed.

図3は、実施形態の超電導コイルの一例である超電導コイル100を示す図である。
超電導コイル100は、複数のコイル体101が積層されて構成されている。コイル体101は、パンケーキコイルであって、図1に示す酸化物超電導線材10が厚さ方向に積層されて巻回されている。パンケーキコイルとは、テープ状の酸化物超電導線材を重ね巻きするように巻回して構成されたコイルである。図3に示す超電導コイル100のコイル体101は円環状である。コイル体101は、含浸樹脂層(図示略)で覆われている。含浸樹脂層は、エポキシ樹脂、フェノール樹脂等からなる。複数のコイル体101は、互いに電気的に接続されていてよい。超電導コイル100は、超電導機器(図示略)に使用できる。
FIG. 3 is a diagram illustrating a superconducting coil 100 which is an example of the superconducting coil of the embodiment.
The superconducting coil 100 is configured by laminating a plurality of coil bodies 101. The coil body 101 is a pancake coil, and the oxide superconducting wire 10 shown in FIG. 1 is laminated and wound in the thickness direction. The pancake coil is a coil configured by winding a tape-shaped oxide superconducting wire so as to be wound repeatedly. The coil body 101 of the superconducting coil 100 shown in FIG. 3 has an annular shape. The coil body 101 is covered with an impregnating resin layer (not shown). The impregnated resin layer is made of an epoxy resin, a phenol resin, or the like. The plurality of coil bodies 101 may be electrically connected to each other. Superconducting coil 100 can be used for superconducting equipment (not shown).

超電導コイル100において、安定化層16の残留応力F2は、コイル径方向の最大印加応力より大きい。
コイル径方向の最大印加応力は、超電導コイルの内径/外径の比を調整することによって設定できる。コイルの内径/外径の比と、コイル径方向の印加応力との関係については、例えば、次に示す参考文献3〜5に記載されている。
[参考文献3]Generalized plane strain analysis of superconducting solenoids JOURNAL OF APPLIED PHYSICS vol.86、number12
[参考文献4]Degradation-Free Impregnated YBCO Pancake Coils by Decreasing Radial Stress in the Windings and Method for Evaluating Delamination Strength of YBCO-Coated Conductors IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 24, NO. 3,JUNE 2014
[参考文献5]Delamination Strengths of Different Types of REBCO-Coated Conductors and Method for Reducing Radial Thermal Stresses of Impregnated REBCO Pancake Coils DOI 10.1109/TASC.2014.2372048, IEEE Transactions on Applied Superconductivity
In the superconducting coil 100, the residual stress F2 of the stabilization layer 16 is larger than the maximum applied stress in the coil radial direction.
The maximum applied stress in the coil radial direction can be set by adjusting the ratio of the inner diameter / outer diameter of the superconducting coil. The relationship between the inner diameter / outer diameter ratio of the coil and the applied stress in the coil radial direction is described in, for example, the following references 3 to 5.
[Reference 3] Generalized plane strain analysis of superconducting solenoids JOURNAL OF APPLIED PHYSICS vol.86, number12
[Reference 4] Degradation-Free Impregnated YBCO Pancake Coils by Decreasing Radial Stress in the Windings and Method for Evaluating Delamination Strength of YBCO-Coated Conductors IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 24, NO. 3, JUNE 2014
[Reference 5] Delamination Strengths of Different Types of REBCO-Coated Conductors and Method for Reducing Radial Thermal Stresses of Impregnated REBCO Pancake Coils DOI 10.1109 / TASC.2014.2372048, IEEE Transactions on Applied Superconductivity

超電導コイル100を作製するには、酸化物超電導線材10を巻き枠に必要な層数巻き付けて多層巻きコイルを構成した後、巻き付けた酸化物超電導線材10を覆うようにエポキシ樹脂等の樹脂を含浸させて、酸化物超電導線材10を固定する方法を採用できる。   In order to fabricate the superconducting coil 100, the oxide superconducting wire 10 is wound around the winding frame to form a multilayer winding coil, and then impregnated with a resin such as an epoxy resin so as to cover the wound oxide superconducting wire 10. Thus, a method of fixing the oxide superconducting wire 10 can be employed.

超電導コイル100は、酸化物超電導線材10の安定化層16の内部の残留応力F2が引張応力であり、残留応力F2は、超電導コイルの径方向の最大印加応力より大きい。そのため、次に示す効果を奏する。
酸化物超電導線材がコイル状に巻き回され、エポキシ樹脂などの樹脂が含浸された超電導コイルでは、冷却時に酸化物超電導線材と樹脂の熱膨張係数の差に起因して、冷却時に、例えば超電導積層体の層が剥離する方向の応力(剥離応力)が働くことがある。また、酸化物超電導線材は、コイルの製造過程で巻き枠の鍔部、送出(または巻取)リールの鍔部などと接触することにより、エッジ部(側面部)において一部の層に剥離等の損傷が生じるおそれがある。
In the superconducting coil 100, the residual stress F2 inside the stabilization layer 16 of the oxide superconducting wire 10 is a tensile stress, and the residual stress F2 is larger than the maximum applied stress in the radial direction of the superconducting coil. Therefore, the following effects are exhibited.
In a superconducting coil in which an oxide superconducting wire is wound in a coil shape and impregnated with a resin such as an epoxy resin, due to the difference in thermal expansion coefficient between the oxide superconducting wire and the resin during cooling, for example, superconducting lamination Stress (peeling stress) in the direction in which the body layer peels may work. In addition, the oxide superconducting wire is peeled to a part of the layer at the edge portion (side surface portion) by contacting with the flange portion of the winding frame and the flange portion of the feeding (or winding) reel in the manufacturing process of the coil. Damage may occur.

本実施形態の超電導コイル100では、残留応力F2が超電導コイルの径方向の最大印加応力より大きいため、残留応力F2と反対方向の反発力によって、超電導積層体15の剥離応力が緩和され、酸化物超電導層13等の剥離等の破損を回避することができる。よって、前記破損による劣化を防ぐことができる。   In the superconducting coil 100 of this embodiment, since the residual stress F2 is larger than the maximum applied stress in the radial direction of the superconducting coil, the peeling stress of the superconducting laminate 15 is relaxed by the repulsive force in the direction opposite to the residual stress F2, and the oxide Damage such as peeling of the superconducting layer 13 can be avoided. Therefore, deterioration due to the damage can be prevented.

以下、図1に示す酸化物超電導線材10を用いて構成した超電導コイルの試験結果について説明する。なお、本発明は以下に示す実施例に限定されない。   Hereinafter, the test result of the superconducting coil constructed using the oxide superconducting wire 10 shown in FIG. 1 will be described. In addition, this invention is not limited to the Example shown below.

(試験例1〜4)
ハステロイC−276(商品名:米国ヘインズ社製)からなる幅12mm、長さ300m、厚さ75μmのテープ状の基材を用意した。基材の表面を、アルミナからなる研磨剤(平均粒径3μm)を用いて研磨処理した後、有機溶剤(エタノールまたはアセトン)によって脱脂、洗浄した。
次のようにして、基材の主面に中間層を形成した。中間層は、拡散防止層、ベッド層、配向層およびキャップ層をこの順に積層した構成である。
イオンビームスパッタ法により、基材の上にAlからなる厚さ100nmの拡散防止層を形成した。次いで、イオンビームスパッタ法により、拡散防止層の上にYからなる厚さ30nmのベッド層を形成した。次いで、IBAD法により、ベッド層の上にMgOからなる厚さ5〜10nmの配向層を形成した。次いで、配向層の上に、PLD法(パルスレーザ蒸着法)によりCeOからなる厚さ500nmのキャップ層を形成した。
(Test Examples 1 to 4)
A tape-shaped base material having a width of 12 mm, a length of 300 m, and a thickness of 75 μm made of Hastelloy C-276 (trade name: manufactured by Haynes, USA) was prepared. The surface of the substrate was polished with an abrasive made of alumina (average particle size 3 μm), and then degreased and washed with an organic solvent (ethanol or acetone).
An intermediate layer was formed on the main surface of the substrate as follows. The intermediate layer has a configuration in which a diffusion prevention layer, a bed layer, an alignment layer, and a cap layer are laminated in this order.
A diffusion prevention layer made of Al 2 O 3 and having a thickness of 100 nm was formed on the substrate by ion beam sputtering. Next, a 30 nm thick bed layer made of Y 2 O 3 was formed on the diffusion prevention layer by ion beam sputtering. Next, an alignment layer made of MgO and having a thickness of 5 to 10 nm was formed on the bed layer by the IBAD method. Next, a cap layer having a thickness of 500 nm made of CeO 2 was formed on the alignment layer by a PLD method (pulse laser deposition method).

キャップ層の上に、PLD法によりGdBaCu7−xからなる厚さ2μmの酸化物超電導層を形成した。
次いで、酸化物超電導層の上に、DCスパッタ法によりAgからなる厚さ2μmの保護層を形成し、超電導積層体(原材:幅12mm)を得た。
この超電導積層体(原材)を、加熱炉内にて酸素雰囲気中で酸素アニール処理(500℃、10時間)し、26時間の炉冷後、加熱炉から取り出した。
An oxide superconducting layer having a thickness of 2 μm made of GdBa 2 Cu 3 O 7-x was formed on the cap layer by the PLD method.
Next, a 2 μm-thick protective layer made of Ag was formed on the oxide superconducting layer by a DC sputtering method to obtain a superconducting laminate (raw material: width 12 mm).
This superconducting laminate (raw material) was subjected to oxygen annealing treatment (500 ° C., 10 hours) in an oxygen atmosphere in a heating furnace, and after 26 hours of furnace cooling, the superconducting laminate (raw material) was taken out from the heating furnace.

超電導積層体(原材)を3つの超電導積層体(幅4mm)に分割した。
この超電導積層体の外周面(基材裏面および超電導積層体の側面)に、DCスパッタ法により、Cu膜(基材裏面に厚さ1μm、超電導積層体の側面に厚さ0.3μm)を形成した。
長さ300mの超電導積層体を長さ方向の中央で切断し、長さ150mの超電導積層体を得た。
The superconducting laminate (raw material) was divided into three superconducting laminates (width 4 mm).
A Cu film (thickness of 1 μm on the back surface of the base material and thickness of 0.3 μm on the side surface of the superconducting laminate) is formed on the outer peripheral surface (back surface of the base material and side surfaces of the superconducting laminate) by DC sputtering. did.
A superconducting laminate having a length of 300 m was cut at the center in the length direction to obtain a superconducting laminate having a length of 150 m.

複数の超電導積層体の外周面に、Cuからなる厚さ20μmの安定化層を電解めっきにより形成し、酸化物超電導線材を得た。安定化層を形成する際のめっき条件(安定化層の構成材料、めっき浴)を表1に示す。   A stabilizing layer made of Cu having a thickness of 20 μm was formed on the outer peripheral surfaces of the plurality of superconducting laminates by electrolytic plating to obtain an oxide superconducting wire. Table 1 shows the plating conditions (the constituent material of the stabilization layer and the plating bath) when forming the stabilization layer.

酸化物超電導線材を内径30mmの巻き枠に巻き付け、コイル本体を作製した。このコイル本体にエポキシ樹脂を真空含浸して超電導コイルを得た。
コイル径方向の最大印加応力が異なる超電導コイルを、試験例1〜4についてそれぞれ10個作製し、そのうち劣化した超電導コイルの数を記録した。
An oxide superconducting wire was wound around a winding frame having an inner diameter of 30 mm to produce a coil body. The coil body was vacuum impregnated with an epoxy resin to obtain a superconducting coil.
Ten superconducting coils having different maximum applied stresses in the coil radial direction were produced for each of Test Examples 1 to 4, and the number of superconducting coils that deteriorated was recorded.

劣化の判定は、液体窒素中で測定したn値(10−8〜10−6V/cm範囲)の結果に基づく。n値とは、I−V特性の近似曲線をべき乗数で表したときの乗数であり、このn値が変わると局所的にコイルの内部の線材から電圧が発生した(酸化物超電導線材が劣化した)と判断できる指標である。測定されたn値が20以下である場合に、酸化物超電導線材が劣化したと判定した。 Determination of deterioration is based on the result of n value (10 < -8 > -10 < -6 > V / cm range) measured in liquid nitrogen. The n value is a multiplier when the approximate curve of the IV characteristic is expressed by a power multiplier. When this n value changes, a voltage is locally generated from the wire inside the coil (the oxide superconducting wire deteriorates). It is an indicator that can be judged. When the measured n value was 20 or less, it was determined that the oxide superconducting wire was deteriorated.

コイル径方向の最大印加応力は、超電導コイルの内径/外径の比を調整することによって設定した。
安定化層の残留応力(図2に示す残留応力F2)を測定した。残留応力は、藤化成株式会社「ストリップ式電着応力試験器」を使用し、ストリップ電着応力測定法によって測定した。
表1における「圧縮」は圧縮応力を意味し、「引張」は引張応力を意味する。残留応力は、圧縮応力については負の数で表し、引張応力については正の数で表す。
The maximum applied stress in the coil radial direction was set by adjusting the ratio of the inner diameter / outer diameter of the superconducting coil.
The residual stress (residual stress F2 shown in FIG. 2) of the stabilization layer was measured. Residual stress was measured by a strip electrodeposition stress measurement method using a “strip type electrodeposition stress tester” manufactured by Fuji Kasei Co., Ltd.
“Compression” in Table 1 means compressive stress, and “tensile” means tensile stress. The residual stress is expressed as a negative number for compressive stress and as a positive number for tensile stress.

Figure 0006349439
Figure 0006349439

表1に示すように、安定化層の残留応力(図2に示す残留応力F2)が引張応力であって、その残留応力が、超電導コイルの径方向の最大印加応力より大きい試験例では、コイルの劣化が起きなかったことが確認された。   As shown in Table 1, in the test example in which the residual stress of the stabilization layer (residual stress F2 shown in FIG. 2) is a tensile stress and the residual stress is larger than the maximum applied stress in the radial direction of the superconducting coil, It was confirmed that no deterioration occurred.

以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
図2に示す酸化物超電導線材10では、残留応力F1と残留応力F2の両方が引張応力であるが、残留応力F2のみが引張応力であってもよい。
安定化層は、めっき以外の方法(例えばスパッタ法等)によって形成されていてもよいが、めっきによって形成するのが好ましい。
安定化層は、超電導積層体のすべての面(第1主面、側面および第2主面)を覆う構成が好ましいが、少なくとも超電導積層体の側面を覆う構成であればよい。例えば、安定化層は超電導積層体の第1主面と両側面を覆う構成であってもよい。
As mentioned above, although this invention has been demonstrated based on suitable embodiment, this invention is not limited to the above-mentioned embodiment, A various change is possible in the range which does not deviate from the summary of this invention.
In the oxide superconducting wire 10 shown in FIG. 2, both the residual stress F1 and the residual stress F2 are tensile stresses, but only the residual stress F2 may be tensile stress.
The stabilization layer may be formed by a method other than plating (for example, a sputtering method), but is preferably formed by plating.
The stabilizing layer is preferably configured to cover all the surfaces (first main surface, side surface, and second main surface) of the superconducting laminate, but may be configured to cover at least the side surfaces of the superconducting laminate. For example, the stabilization layer may be configured to cover the first main surface and both side surfaces of the superconducting laminate.

10…酸化物超電導線材、11…基材、12…中間層、13…酸化物超電導層、14…保護層、15…超電導積層体、16…安定化層、16B…側面部、F2…残留応力。 DESCRIPTION OF SYMBOLS 10 ... Oxide superconducting wire, 11 ... Base material, 12 ... Intermediate layer, 13 ... Oxide superconducting layer, 14 ... Protective layer, 15 ... Superconducting laminate, 16 ... Stabilization layer, 16B ... Side surface part, F2 ... Residual stress .

Claims (3)

超電導線材が厚さ方向に積層された超電導コイルであって、
前記超電導線材は、テープ状の基材に中間層を介して超電導層が形成された超電導積層体と、前記超電導積層体の少なくとも側面を覆う安定化層とを備え、
前記安定化層のうち前記超電導積層体の側面を覆う側面部における内部の残留応力は、前記超電導積層体の厚さ方向に沿う引張応力であり、
前記残留応力は、前記超電導コイルの径方向の最大印加応力より大きい、超電導コイル。
A superconducting coil in which superconducting wires are laminated in the thickness direction,
The superconducting wire comprises a superconducting laminate in which a superconducting layer is formed on a tape-like substrate via an intermediate layer, and a stabilization layer covering at least the side surface of the superconducting laminate,
The residual stress inside the side surface covering the side surface of the superconducting laminate among the stabilizing layers is a tensile stress along the thickness direction of the superconducting laminate,
The superconducting coil, wherein the residual stress is larger than a maximum applied stress in a radial direction of the superconducting coil.
前記残留応力は、0.2MPa以上である、請求項1に記載の超電導コイル。   The superconducting coil according to claim 1, wherein the residual stress is 0.2 MPa or more. 前記安定化層は、めっき層である、請求項1または2に記載の超電導コイル。   The superconducting coil according to claim 1, wherein the stabilization layer is a plating layer.
JP2017095548A 2017-05-12 2017-05-12 Superconducting coil Active JP6349439B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017095548A JP6349439B1 (en) 2017-05-12 2017-05-12 Superconducting coil
CN201880024565.XA CN110494935A (en) 2017-05-12 2018-05-07 Superconducting wire and superconducting coil
US16/612,238 US20200211741A1 (en) 2017-05-12 2018-05-07 Superconducting wire and superconducting coil
PCT/JP2018/017614 WO2018207727A1 (en) 2017-05-12 2018-05-07 Superconducting wire and superconducting coil
RU2019135320A RU2719388C1 (en) 2017-05-12 2018-05-07 Superconducting wire and superconducting coil
EP18798094.1A EP3624143A4 (en) 2017-05-12 2018-05-07 Superconducting wire and superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017095548A JP6349439B1 (en) 2017-05-12 2017-05-12 Superconducting coil

Publications (2)

Publication Number Publication Date
JP6349439B1 true JP6349439B1 (en) 2018-06-27
JP2018195612A JP2018195612A (en) 2018-12-06

Family

ID=62706244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017095548A Active JP6349439B1 (en) 2017-05-12 2017-05-12 Superconducting coil

Country Status (1)

Country Link
JP (1) JP6349439B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022219857A1 (en) * 2021-04-13 2022-10-20 住友電気工業株式会社 Joined body and method for producing joined body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212134A (en) * 2009-03-11 2010-09-24 Sumitomo Electric Ind Ltd Thin-film superconducting wire rod, and superconducting cable conductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212134A (en) * 2009-03-11 2010-09-24 Sumitomo Electric Ind Ltd Thin-film superconducting wire rod, and superconducting cable conductor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H.MIYAZAKI, S.IWAI.T.TOSAKA,K.TASAKI AND Y.ISHII: "Delamination Strengths of Different Types of REBCO", IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, vol. Vol.25、No.3, JPN6018015583, 9 January 2015 (2015-01-09), US, pages 6602305 *

Also Published As

Publication number Publication date
JP2018195612A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
US10186651B2 (en) Oxide superconducting wire and method of manufacturing oxide superconducting wire
US20140155269A1 (en) Oxide superconductor wire and superconducting coil
US10490321B2 (en) Superconducting wire and superconducting coil
US10332656B2 (en) Oxide superconducting wire
JP6688914B1 (en) Oxide superconducting wire and superconducting coil
JP6349439B1 (en) Superconducting coil
WO2018207727A1 (en) Superconducting wire and superconducting coil
JP6751054B2 (en) Oxide superconducting wire, superconducting coil, and method for manufacturing oxide superconducting wire
JP2014220194A (en) Oxide superconductive wire material and production method thereof
JP6069269B2 (en) Oxide superconducting wire, superconducting equipment, and oxide superconducting wire manufacturing method
JP6318284B1 (en) Superconducting wire
JP2013247281A (en) Oxide superconducting coil
JP5405069B2 (en) Tape-shaped oxide superconductor and substrate used therefor
US11756709B2 (en) Oxide superconducting wire
JP6743233B1 (en) Oxide superconducting wire
US11710583B2 (en) Oxide superconducting wire and superconducting coil
JP6743232B1 (en) Oxide superconducting wire
JP6724125B2 (en) Oxide superconducting wire and method for producing the same
JP2017103178A (en) Superconducting wire rod and method of manufacturing superconducting wire rod
JP2020167039A (en) Superconducting coil and method for manufacturing the same
JP2019125436A (en) Oxide superconducting wire
JP2014022228A (en) Oxide superconductive conductor and production method of oxide superconductive conductor, and superconduction device using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180604

R150 Certificate of patent or registration of utility model

Ref document number: 6349439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250