JP2010034075A - Method of assembling optical element assembly - Google Patents

Method of assembling optical element assembly Download PDF

Info

Publication number
JP2010034075A
JP2010034075A JP2009256361A JP2009256361A JP2010034075A JP 2010034075 A JP2010034075 A JP 2010034075A JP 2009256361 A JP2009256361 A JP 2009256361A JP 2009256361 A JP2009256361 A JP 2009256361A JP 2010034075 A JP2010034075 A JP 2010034075A
Authority
JP
Japan
Prior art keywords
optical element
optical
optical elements
element assembly
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009256361A
Other languages
Japanese (ja)
Inventor
Yutaka Kudo
裕 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009256361A priority Critical patent/JP2010034075A/en
Publication of JP2010034075A publication Critical patent/JP2010034075A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of assembling an optical element assembly for an electron beam device capable of achieving advanced positioning accuracy of a plurality of optical element interaction of an electron optical system with an easy structure. <P>SOLUTION: The method of assembling the optical element assembly includes a plurality of optical elements and a cylinder housing the optical elements, and a plurality of through-holes formed on a side surface of the cylinder. The method of assembling the optical element assembly includes a step of inserting a plurality of optical elements into the cylinder, a step of inserting positioning members into the plurality of through-holes and making the plurality of optical elements abutted with an inner peripheral surface side of the cylinder to be faced to the plurality of through-holes, a step of fixing the plurality of optical elements to the cylinder, and a step of making the positioning members to be pulled out from the plurality of through-holes. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば、電子線装置に用いられる電子光学系のレンズ、アパーチャ部材及び偏向器等(以下、光学要素と呼ぶ)を保持する光学要素組立体の組立方法に関し、特に、電子線装置に配置されている電子光学系の光学要素に対して、高い位置決め精度で保持できる光学要素組立体の組立方法に関する。   The present invention relates to a method for assembling an optical element assembly that holds a lens, an aperture member, a deflector and the like (hereinafter referred to as an optical element) of an electron optical system used in an electron beam apparatus, and more particularly to an electron beam apparatus. The present invention relates to an assembling method of an optical element assembly that can be held with high positioning accuracy with respect to an optical element of an arranged electron optical system.

電子線装置は、電子線を放出する電子銃、電子銃からの電子線を集束して試料に照射するための光学要素からなる一次電子光学系、試料からの二次電子を検出器に入射させる二次電子光学系及び二次電子を検出する装置などを備えている。   The electron beam apparatus is an electron gun that emits an electron beam, a primary electron optical system that includes an optical element that focuses the electron beam from the electron gun and irradiates the sample, and makes secondary electrons from the sample incident on the detector. A secondary electron optical system and a device for detecting secondary electrons are provided.

従来、上記一次電子光学系に用いられる光学要素は、高精度の真円度及び同軸度で加工されていて、高精度のはめあい公差加工された筒状の部品にそれぞれ個々に挿入することにより、これら光学要素相互の高い位置決め精度が得られていた。また、光学要素自体を一段ずつ積み重ねて、段毎の調整を行いながら積み重ねることにより、高い位置決め精度が得られていた。   Conventionally, the optical elements used in the primary electron optical system have been processed with high accuracy roundness and coaxiality, and are inserted individually into cylindrical parts that have been processed with high precision fitting tolerance, High positioning accuracy between these optical elements was obtained. In addition, high positioning accuracy has been obtained by stacking the optical elements themselves one by one and stacking them while adjusting each stage.

一方、近年において、例えば、シリコンウエハに電子線を照射して回路を形成する場合、シリコンウエハ上に描画する線などが、ますます微細化するに従い、描画精度を高精度に制御する電子線装置が要求されるようになっている。   On the other hand, in recent years, for example, when forming a circuit by irradiating a silicon wafer with an electron beam, an electron beam apparatus that controls the drawing accuracy with high precision as the lines drawn on the silicon wafer become increasingly finer. Is now required.

従って、電子線装置に設けられる各光学要素相互の位置決め精度についても極めて高い精度が必要となってきている。しかしながら、上述のような加工精度に頼る方法では、要求される精度を現状の機械加工精度で達成することが困難であるという問題があった。また、はめあい公差を厳しくすると、僅かな加工誤差でも筒状の部材に光学要素を組み付けることや、筒状の部材から光学要素を取り外すことは困難であった。   Therefore, extremely high accuracy is required for the positioning accuracy between the optical elements provided in the electron beam apparatus. However, the method that relies on the machining accuracy as described above has a problem that it is difficult to achieve the required accuracy with the current machining accuracy. In addition, when fitting tolerances are tightened, it is difficult to assemble an optical element to a cylindrical member or remove an optical element from the cylindrical member even with a slight processing error.

そこで、これらを解決する方法として、特許文献1には、複数の光学要素を収納する筒体が円周方向に等間隔に3分割して構成するとともに、各分割点を保持する保持器に設けられたボルトによって加工前の光学要素を3点保持した後、光学要素の光軸加工を行うとともに、光学要素をマーキングした後、筒体から光学要素を取り外して電極形成等の後処理を行い、その後、再度、筒体の保持器に光学要素を挿入して3点にて微調整を行う光学要素組立方法が提案されている。   Therefore, as a method for solving these problems, Patent Document 1 discloses that a cylindrical body that stores a plurality of optical elements is divided into three parts at equal intervals in the circumferential direction, and is provided in a cage that holds each division point. After holding the optical element before processing by three bolts, the optical axis of the optical element is processed, and after marking the optical element, the optical element is removed from the cylinder and post-processing such as electrode formation is performed. Thereafter, an optical element assembling method is proposed in which the optical element is inserted into the cylindrical holder again and fine adjustment is performed at three points.

特開2002−341216号公報JP 2002-341216 A

しかしながら、上述したように高精度の真円度、同軸度で加工するために、一般的な光学要素の位置決めは、高精度のはめあい公差にて加工された部品に挿入することにより行われ、また、作業者が一段ずつ精度を確認しながら積み上げ式に組み立てるので、各々の光学要素の位置決めに関しては、熟練者による組立技術が必要で、組立にも時間がかかるものであった。   However, as described above, in order to process with high precision roundness and coaxiality, the positioning of a general optical element is performed by inserting it into a part processed with high precision fitting tolerance, and Since the workers are assembled in a stacked manner while checking the accuracy one by one, the positioning of each optical element requires an assembling technique by an expert and takes time for assembly.

これに対して、位置決め精度を高くしようとすると、高精度のはめあい公差を、より一層厳しくする必要があるが、はめあい公差を厳しくすると、組立や分解の作業時に噛み込みが生じるといった課題があった。また、金属製や樹脂の筒体や光学要素であれば、組立時の変形が懸念されていた。   On the other hand, when trying to increase the positioning accuracy, it is necessary to further tighten the tolerance of high precision, but if the tolerance of tightness is tightened, there is a problem that biting occurs during assembly and disassembly work. . Moreover, if it is a metal or resin cylinder or an optical element, there has been a concern about deformation during assembly.

しかしながら、近年において、評価されるべき対象物が高度に微細化されることにより、ますます高度な検出精度を有する装置が要求され、単純に熟練者の精度に負うのではなく、誰でもが簡易に組み立てる方法が望まれていた。   However, in recent years, an object to be evaluated has been highly miniaturized, and thus an apparatus having an increasingly higher detection accuracy is required. The method of assembling was desired.

また、上記特許文献1のような光学要素の組立方法によれば、光学要素を保持、光軸加工を経て再度光学要素を筒体に組み込むようにしているために、作業が繁雑となるばかりか、3点で微調整を行うので精度が出ないといった課題があった。また、光学要素の内周面に金属膜などで独立した電極部を形成することは非常に困難であるという課題もあった。   Further, according to the method of assembling the optical element as described in Patent Document 1, since the optical element is held and the optical element is assembled again after the optical axis processing, not only the work becomes complicated. There is a problem that accuracy is not obtained because fine adjustment is performed at three points. In addition, there is a problem that it is very difficult to form an independent electrode portion with a metal film or the like on the inner peripheral surface of the optical element.

本発明は上述の課題に鑑みて案出されたものであり、電子光学系における複数の光学要素相互の高度な位置決め精度を簡易な構成で実現することができる光学要素組立体の組立方法を提供することにある。   The present invention has been devised in view of the above-described problems, and provides an assembly method of an optical element assembly that can realize high positioning accuracy among a plurality of optical elements in an electron optical system with a simple configuration. There is to do.

そこで、本発明の光学要素組立体の組立方法は、複数の光学要素と、該光学要素を収容する筒体とを備え、前記筒体の側面に複数の貫通孔が形成された光学要素組立体の組立方法であって、前記筒体の中に前記複数の光学要素を挿入する工程と、前記複数の貫通孔に位置決め部材を挿入して、前記複数の貫通孔と対向する前記筒体の内周面側に前記複数の光学要素を当接させる工程と、前記複数の光学要素を前記筒体に固定する工程と、前記位置決め部材を前記複数の貫通孔から脱抜させる工程とを有することを特徴とする。   Therefore, an optical element assembly assembling method of the present invention comprises an optical element assembly comprising a plurality of optical elements and a cylindrical body that accommodates the optical elements, and a plurality of through holes formed in a side surface of the cylindrical body. An assembly method comprising: inserting the plurality of optical elements into the cylinder; and inserting a positioning member into the plurality of through-holes to oppose the plurality of through-holes. A step of bringing the plurality of optical elements into contact with the peripheral surface side, a step of fixing the plurality of optical elements to the cylindrical body, and a step of removing the positioning member from the plurality of through holes. Features.

本発明の光学要素組立体の組立方法において、好ましくは、前記複数の光学要素の外周面に溝又は孔が形成されており、前記複数の貫通孔に前記位置決め部材を挿入する際に、前記位置決め部材の先端が前記溝又は孔に挿入されることを特徴とする。   In the assembling method of the optical element assembly of the present invention, preferably, grooves or holes are formed in the outer peripheral surfaces of the plurality of optical elements, and the positioning member is inserted when the positioning member is inserted into the plurality of through holes. The tip of the member is inserted into the groove or hole.

本発明の光学要素組立体の組立方法において、好ましくは、前記筒体及び前記光学要素がセラミックスにて形成されたことを特徴とする。   In the assembling method of the optical element assembly according to the present invention, preferably, the cylindrical body and the optical element are formed of ceramics.

本発明の光学要素組立体の組立方法において、好ましくは、前記セラミックスがアルミナから形成されたことを特徴とする。   In the assembling method of the optical element assembly according to the present invention, it is preferable that the ceramic is made of alumina.

本発明の構成によれば、電子光学系における複数の光学要素相互の高度な位置決め精度を簡易な構成で実現することができる光学要素組立体の組立方法を提供することができる。   According to the configuration of the present invention, it is possible to provide an assembling method of an optical element assembly that can realize high positioning accuracy between a plurality of optical elements in an electron optical system with a simple configuration.

本発明に係る光学要素組立体の一実施例を示す図であり、(a)は斜視図を、(b)は(a)のX−X断面図を、(c)は(a)のY−Y断面図をそれぞれ示している。It is a figure which shows one Example of the optical element assembly which concerns on this invention, (a) is a perspective view, (b) is XX sectional drawing of (a), (c) is Y of (a). -Y sectional drawing is shown, respectively. 本発明に係る電子線装置を示す概略図である。It is the schematic which shows the electron beam apparatus which concerns on this invention. 本発明に係る光学要素組立体の一実施例を示す断面図である。It is sectional drawing which shows one Example of the optical element assembly which concerns on this invention. 本発明に係る光学要素組立体の一実施例を示す断面図である。It is sectional drawing which shows one Example of the optical element assembly which concerns on this invention. 本発明に係る光学要素組立体の一実施例を示す断面図である。It is sectional drawing which shows one Example of the optical element assembly which concerns on this invention.

以下、本発明の実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1は本発明に係る光学要素組立体の一実施例を示す図であり、(a)は斜視図を、(b)は(a)のX−X断面図を、(c)は(a)のY−Y断面図をそれぞれ示している。
また、図2は、本発明に係る電子線装置を示す概略図である。
1A and 1B are diagrams showing an embodiment of an optical element assembly according to the present invention. FIG. 1A is a perspective view, FIG. 1B is a sectional view taken along line XX in FIG. Y-Y cross-sectional view of FIG.
FIG. 2 is a schematic view showing an electron beam apparatus according to the present invention.

本発明の光学要素組立体1は、複数の光学要素2と、光学要素2を収容する筒体3とからなり、電子線装置10に組み込み可能に構成された光学要素組立体1において、筒体3の側面に、複数の貫通孔5が筒体3の軸方向に略一列に形成されており、かつ、貫通孔5と対向する筒体3の内周面3aに光学要素2が当接した状態で固定されている。   An optical element assembly 1 according to the present invention includes a plurality of optical elements 2 and a cylindrical body 3 that accommodates the optical element 2. The optical element assembly 1 is configured to be incorporated in an electron beam apparatus 10. A plurality of through holes 5 are formed on the side surface of the cylinder 3 in a substantially line in the axial direction of the cylindrical body 3, and the optical element 2 is in contact with the inner peripheral surface 3 a of the cylindrical body 3 facing the through hole 5. It is fixed in the state.

光学要素2が、筒体3の内周面3aに一方向に押圧された状態で位置決めがなされるので、組立や分解を繰り返しても毎回同じ精度を維持した光学要素組立体1を提供することが可能となる。この時、押圧する方向が一方向になるので、調整を必要としない。   Since the optical element 2 is positioned in a state where it is pressed in one direction against the inner peripheral surface 3a of the cylindrical body 3, the optical element assembly 1 that maintains the same accuracy every time even when assembly and disassembly are repeated is provided. Is possible. At this time, since the pressing direction is one direction, no adjustment is required.

ところで、光学要素2とは電子光学に用いられる電子光学系におけるレンズ、アパーチャ部材や偏光器のことであり、形状は中央に貫通穴を有する円盤状体をなし、内周の貫通孔には電極が形成されている。電極としては非磁性の金属膜であればよく、Cu、Ni、Au、Pt、Ag、TiN、TiC等の金属の1種または複数の金属膜から形成される。   By the way, the optical element 2 is a lens, an aperture member, or a polarizer in an electron optical system used for electron optics, and the shape is a disk-like body having a through hole in the center, and the inner through hole has an electrode. Is formed. The electrode may be a non-magnetic metal film, and is formed of one or more metal films of metals such as Cu, Ni, Au, Pt, Ag, TiN, and TiC.

光学要素2は中心軸線と同軸上に且つ同一円周上に配置される複数の電極を有しており、同一円周上にある電極は1個または2個以上の偶数個で形成されており、2個以上の偶数個ある場合は、その面積はほぼ等しいことが望ましい。また、2個以上の偶数個ある場合は、基本的に電気的に独立した電極となる。また、各光学要素2間にはシールドと呼ばれる超硬や金属製の内周に光学要素2と同様な穴形状を有する薄板を介在させても良い。   The optical element 2 has a plurality of electrodes arranged coaxially with the central axis and on the same circumference, and the electrodes on the same circumference are formed by one or an even number of two or more. In the case where there are two or more even numbers, it is desirable that the areas are substantially equal. When there are two or more even numbers, the electrodes are basically electrically independent. Further, a thin plate having a hole shape similar to that of the optical element 2 may be interposed between the optical elements 2 on the inner periphery of a carbide or metal called a shield.

各光学要素2は、高精度な円筒度と同軸度で加工されていることが重要で、大きさに係わらず、外内径の円筒度は2μ以下、外径と内径の同軸度は2μm以下で仕上げることが好ましい。また、光学要素2の外周部と筒体3の内周部3aのクリアランスは3μm以下に仕上げられおり、好ましくは2μ以下のクリアランスに仕上げられている。   It is important that each optical element 2 is machined with high precision cylindricity and coaxiality. Regardless of size, the cylindricity of the outer diameter is 2 μm or less, and the coaxiality of the outer diameter and inner diameter is 2 μm or less. It is preferable to finish. The clearance between the outer peripheral portion of the optical element 2 and the inner peripheral portion 3a of the cylindrical body 3 is finished to 3 μm or less, and preferably finished to a clearance of 2 μm or less.

また、本発明では、筒体3の外周面側3bから貫通孔5に挿入して、光学要素2の位置を決める位置決めピン4を具備したことを特徴としている。この位置決めピン4によって光学要素2を一方向に容易に押圧可能とできる。なお、位置決めピン4は光学要素2を押圧した後、光学要素2を、ボルト6で上下の蓋8を筒体3に固定することで、光学要素2を挟み込んで固定すればよく、その後に位置決めピン4を脱抜しても、しなくてもどちらでも問題はない。   Further, the present invention is characterized in that the positioning pin 4 that is inserted into the through hole 5 from the outer peripheral surface side 3b of the cylindrical body 3 and determines the position of the optical element 2 is provided. With this positioning pin 4, the optical element 2 can be easily pressed in one direction. The positioning pin 4 may be fixed by sandwiching the optical element 2 by pressing the optical element 2 and then fixing the upper and lower lids 8 to the cylindrical body 3 with bolts 6. It does not matter whether the pin 4 is removed or not.

光学要素2は位置決めピン4によって位置が決定されるが、その固定方法に関しては、ボルト6を締結することによって蓋5を介して、上下方向で挟み込んで固定を行う。   The position of the optical element 2 is determined by the positioning pin 4. With respect to the fixing method, the optical element 2 is fixed by being sandwiched in the vertical direction via the lid 5 by fastening the bolt 6.

さらに、複数の光学要素2の外周面に、位置決めピン4で位置を決める為の位置決め領域7を備えたことを特徴としている。   Further, a positioning region 7 for determining the position by the positioning pin 4 is provided on the outer peripheral surface of the plurality of optical elements 2.

複数の光学要素の外周面に位置決め領域を備えたことによって、安定した繰り返し組立と分解を実現でき、熟練者でなくとも作業が容易となる。   By providing the positioning area on the outer peripheral surface of the plurality of optical elements, stable repeated assembly and disassembly can be realized, and the work can be facilitated even by a non-expert.

ところで、位置決め領域7とは、位置決めピン4を取り付けるザグリ孔や溝、切り欠き、Dカット面などであり、位置決めピン4の押圧に対して光学要素2が動かない形状であればよく、特に回転方向の力を抑止して位置決めを行う形状であればよい。形状としてはV字形状の溝や円錐形状のザグリ孔が好ましく、テーパ形状を有することによって、位置決めピン4が奥に入るに従い、光学要素2がより動かなくなる。   By the way, the positioning region 7 is a counterbore hole, groove, notch, D-cut surface or the like to which the positioning pin 4 is attached, and may be any shape as long as the optical element 2 does not move against the pressing of the positioning pin 4. Any shape may be used as long as positioning is performed while suppressing the force in the direction. As a shape, a V-shaped groove or a conical counterbore hole is preferable, and by having a tapered shape, the optical element 2 becomes more difficult to move as the positioning pin 4 enters the back.

次に筒体3の外周形状は、円筒形、多角形体のいずれでもよく、一例を示すと、図3〜5のような形状である。   Next, the outer peripheral shape of the cylindrical body 3 may be either a cylindrical shape or a polygonal shape. For example, the outer peripheral shape is as shown in FIGS.

好ましくは筒体3の内周形状は、加工性から考えると図4に示す円筒形状がよく、円筒研削加工やホーニング加工で精度よく仕上げることが可能となる。   Preferably, the inner peripheral shape of the cylindrical body 3 is preferably the cylindrical shape shown in FIG. 4 in view of workability, and can be accurately finished by cylindrical grinding or honing.

筒体3の側面には、複数の貫通孔5が形成されているが、この貫通孔5は筒体3の中心軸に対して放射線状に配置され、筒体3の軸方向に直線的に配置さることが好ましい。直線的に配置されることで、同一方向に光学要素2を押圧することが可能となる。但し、厳密な一直線でなくとも、クリアランスが小さい場合には、その影響は少ないので、構造によっては他の部品と干渉する場合には、若干避けるような直線状であっても構わない。   A plurality of through holes 5 are formed on the side surface of the cylindrical body 3, and the through holes 5 are arranged in a radial pattern with respect to the central axis of the cylindrical body 3 and linearly extend in the axial direction of the cylindrical body 3. It is preferable to arrange. By arranging in a straight line, the optical element 2 can be pressed in the same direction. However, even if it is not a strict straight line, when the clearance is small, the influence is small. Therefore, depending on the structure, it may be a straight line that is slightly avoided when interfering with other parts.

また、蓋8は片側のみに取り付ける構造であっても良い。また、位置決めピン4だけでも固定できるのであれば、蓋8を用いずに固定しても構わない。   Further, the lid 8 may be structured to be attached only to one side. Further, as long as only the positioning pin 4 can be fixed, it may be fixed without using the lid 8.

ところで、筒体3及び光学要素2の材質としては、非磁性で、組立に充分な強度があればよく、金属でも良いが、好ましくはセラミックスにて形成されたことが良い。   By the way, the material of the cylindrical body 3 and the optical element 2 may be nonmagnetic as long as it has sufficient strength for assembly and may be a metal, but is preferably formed of ceramics.

セラミックスで形成されることにより、組立や分解時においても変形することがなく、摩耗による精度劣化が少なく、さらに熱がかかっても変形量を小さく抑えることが可能となる。   By being formed of ceramics, there is no deformation even during assembly or disassembly, there is little deterioration in accuracy due to wear, and even when heat is applied, the amount of deformation can be kept small.

セラミックスとしては、アルミナ、ジルコニア、炭化珪素、窒化珪素、窒化アルミニウム、AlTiCなどであれば良く、筒体3や光学要素2としては、剛性や硬度、絶縁性を考慮して、アルミナや窒化珪素が好ましい。また、光学要素2は、印加される電流がチャージアップを防ぐために必要に応じて、半導電性のセラミックスを用いればよい。   The ceramic may be alumina, zirconia, silicon carbide, silicon nitride, aluminum nitride, AlTiC, etc., and the cylinder 3 and the optical element 2 are made of alumina or silicon nitride in consideration of rigidity, hardness, and insulation. preferable. The optical element 2 may be made of semiconductive ceramics as necessary in order to prevent the applied current from being charged up.

次に位置決めピン4の形状は、特に決まった形状はないが、光学要素2に形成された位置決め領域7にガタ無くスムーズに挿入できることが必要であり、材質としては、非磁性で位置決めに耐えうる強度を有することが必要で、金属やセラミックスで形成したものでよい。また、位置決めピン4はネジ形状を有するものであっても構わない。   Next, the shape of the positioning pin 4 is not particularly fixed, but it needs to be able to be smoothly inserted into the positioning region 7 formed in the optical element 2 without any play. The material is non-magnetic and can withstand positioning. It is necessary to have strength, and it may be formed of metal or ceramics. Moreover, the positioning pin 4 may have a screw shape.

また、位置決め後に上下の蓋5によって光学要素2を固定できるのであれば、位置決めピン4を抜脱しても問題ない。   If the optical element 2 can be fixed by the upper and lower lids 5 after positioning, there is no problem even if the positioning pins 4 are removed.

蓋5の材質としては、筒体と同様に、非磁性で、組立に充分な強度があればよく、金属でも良いが、好ましくはセラミックスにて形成されたことが良い。   The material of the lid 5 may be nonmagnetic as long as it is a cylinder and has sufficient strength for assembly, and may be a metal, but is preferably formed of ceramics.

本実施形態の構成によれば、筒体に形成した貫通孔と対向する前記筒体の内周面に前記光学要素が当接した状態で固定されているだけであるため、組立時間が非常に短縮でき、且つ、分解、組立を繰り返しても精度良く組立が出来る。特に複数の光学要素の相互の高度な位置決め精度に対して、簡易な構成で実現し、且つ互換性のある光学要素組立体を提供することができる。   According to the configuration of the present embodiment, since the optical element is only fixed in contact with the inner peripheral surface of the cylinder facing the through hole formed in the cylinder, the assembly time is very long. It can be shortened and can be assembled with high accuracy even if disassembly and assembly are repeated. In particular, it is possible to provide an optical element assembly which is realized with a simple configuration and compatible with the high positioning accuracy of a plurality of optical elements.

次に、上述したセラミックスの製造方法に関して説明する。   Next, a method for manufacturing the above-described ceramic will be described.

例えば、アルミナとしては、アルミナ(Al)99〜99.9重量%に対し、焼結助剤としてシリカ(SiO)、マグネシア(MgO)、カルシア(CaO)を合計で0.1〜1重量%添加して、所望の形状に成形した後、大気雰囲気中や真空雰囲気中にて1500〜1800℃の温度で焼成したものや、アルミナ(Al)92〜99重量%に対し、イットリア(Y)、マグネシア(MgO)、カルシア(CaO)、セリア(CeO)等の安定化剤で安定化あるいは部分安定化されたジルコニアを1〜7重量%添加し、所望の形状に成形した後、大気雰囲気中あるいは水素雰囲気中や窒素雰囲気中にて1500〜1700℃の温度で焼成したものが良い。 For example, as alumina, alumina (Al 2 O 3 ) 99 to 99.9 wt%, silica (SiO 2 ), magnesia (MgO), calcia (CaO) as a total of 0.1 to 0.1% as a sintering aid. 1% by weight added to form a desired shape, and then fired at 1500 to 1800 ° C. in an air atmosphere or vacuum atmosphere, or 92 to 99% by weight of alumina (Al 2 O 3 ) 1 to 7% by weight of zirconia stabilized or partially stabilized with a stabilizer such as yttria (Y 2 O 3 ), magnesia (MgO), calcia (CaO), ceria (CeO 2 ), etc. After being formed into a shape, it may be fired at a temperature of 1500 to 1700 ° C. in an air atmosphere, a hydrogen atmosphere, or a nitrogen atmosphere.

あるいは、半導電性材料のアルミナであれば、アルミナ(Al)60〜80重量%に対し、炭化チタン(TiC)またはチタン酸アルミニウムを40〜20重量%添加して、所望の形状に成形した後、大気雰囲気中あるいは減圧雰囲気下にて1500〜1700℃の温度で焼成した後、還元雰囲気中で熱処理を行う。即ち、窒素あるいはアルゴンなどの還元雰囲気の焼成炉にて500〜1400℃にて熱処理を行えば良い。 Alternatively, if the alumina of the semiconductive material, to alumina (Al 2 O 3) 60~80 wt%, and titanium carbide (TiC) or aluminum titanate was added 40 to 20 wt%, the desired shape After molding, firing is performed at a temperature of 1500 to 1700 ° C. in an air atmosphere or a reduced pressure atmosphere, and then heat treatment is performed in a reducing atmosphere. That is, heat treatment may be performed at 500 to 1400 ° C. in a firing furnace in a reducing atmosphere such as nitrogen or argon.

また、ジルコニアとしては、3〜9mol%のイットリア(Y)で部分安定化したジルコニア(ZrO)や、16〜26mol%のマグネシア(MgO)で部分安定化したジルコニア(ZrO)、あるいは8〜12mol%のカルシア(CaO)で部分安定化したジルコニア(ZrO)や8〜16mol%のセリア(CeO)で部分安定化したジルコニア(ZrO)を所望の形状に成形した後、大気雰囲気中あるいは真空雰囲気中にて1400〜1700℃の温度で焼成したものを用いれば良い。 As the zirconia, 3~9Mol% of yttria (Y 2 O 3) in partially stabilized zirconia (ZrO 2) and, 16~26Mol% magnesia (MgO) in partially stabilized zirconia (ZrO 2), or after forming 8~12Mol% of calcia (CaO) in partially stabilized zirconia (ZrO 2) and 8~16Mol% of ceria zirconia partially stabilized with (CeO 2) a (ZrO 2) into a desired shape, What is necessary is just to use what was baked at the temperature of 1400-1700 degreeC in air | atmosphere atmosphere or a vacuum atmosphere.

また、炭化珪素を用いる場合、SiC90重量%〜99重量%に対し、焼結助剤としてBとC、あるいはAlとYを合計で10重量%〜1重量%添加したものを所望の形状に成形した後、不活性ガス雰囲気中あるいは真空雰囲気中にて1900℃〜2100℃の温度で焼成したものを用いることができる。 Further, when silicon carbide is used, B and C or Al 2 O 3 and Y 2 O 3 are added as a sintering aid to SiC in an amount of 90 wt. After being formed into a desired shape, a material fired at a temperature of 1900 ° C. to 2100 ° C. in an inert gas atmosphere or a vacuum atmosphere can be used.

また、窒化珪素としては、Si96重量%〜98重量%に対し、焼結助剤としてAlとYを合計で2重量%〜4重量%添加したものを、所望の形状に成形した後、窒素雰囲気中あるいは真空雰囲気中にて1800℃〜2000℃の温度で焼成したものを用いれば良い。 As the silicon nitride, Si 3 N 4 96 wt% to 98 wt% relative to the material obtained by adding 2 wt% to 4 wt% in total of Al 2 O 3 and Y 2 O 3 as a sintering aid, What is necessary is just to use what was baked at the temperature of 1800 degreeC-2000 degreeC in a nitrogen atmosphere or a vacuum atmosphere after shape | molding in a desired shape.

また、AlTiCとしては、Al60〜80重量%に対し、炭化チタン(TiC)を40〜20重量%添加して所望の形状に成形した後、大気雰囲気中あるいは減圧雰囲気中にて1300℃〜2000℃の温度で焼成したものを用いれば良い。 As the AlTiC, to Al 2 O 3 60-80% by weight, after it titanium carbide (TiC) was added 40 to 20% by weight and molded into a desired shape, in the air atmosphere or in a vacuum atmosphere 1300 What is necessary is just to use what was baked at the temperature of 2,000 degreeC.

次に、光学要素組立体1の組立方法について説明する。   Next, an assembling method of the optical element assembly 1 will be described.

筒体3の中に複数の光学要素2を挿入し、位置決めピン4を貫通孔5に挿入して、貫通孔5と対向する筒体3の内周面3a側に光学要素2を当接させた後、光学要素2を筒体3に固定する。また、位置決めピン4で筒体3の内周面3a側に光学要素2を当接させた状態で、位置決めピン4を、貫通孔5から脱抜させることで組立が完了する。   A plurality of optical elements 2 are inserted into the cylinder 3, the positioning pins 4 are inserted into the through holes 5, and the optical elements 2 are brought into contact with the inner peripheral surface 3 a side of the cylinder 3 facing the through holes 5. After that, the optical element 2 is fixed to the cylinder 3. Further, the assembly is completed by removing the positioning pin 4 from the through hole 5 in a state where the optical element 2 is brought into contact with the inner peripheral surface 3a side of the cylindrical body 3 with the positioning pin 4.

次に本発明に用いられる電子線装置10について図2を用いて説明する。この電子線装置10は、上述した光学要素組立体1上に電子銃100を配置するとともに、下側に被加工体用台板101を配置してなる。そして、上述のような高精度に複数の光学要素(図2では不図示)を組み込まれた光学要素組立体1を用いることで、電子ビームが電子銃100より照射されて、光学要素組立体1の内部を通過する際に、光学軸の調整を行い、電子ビームの照射される位置を微調整できるので、被加工体用台板101上の被加工体については良好な描画精度を有するものである。   Next, the electron beam apparatus 10 used for this invention is demonstrated using FIG. The electron beam apparatus 10 includes an electron gun 100 disposed on the optical element assembly 1 described above, and a workpiece base plate 101 disposed on the lower side. Then, by using the optical element assembly 1 in which a plurality of optical elements (not shown in FIG. 2) are incorporated with high accuracy as described above, an electron beam is irradiated from the electron gun 100, and the optical element assembly 1. Since the optical axis is adjusted and the position irradiated with the electron beam can be finely adjusted when passing through the inside of the workpiece, the workpiece on the workpiece base plate 101 has good drawing accuracy. is there.

なお、図2に示すような配置で使用すれば、より高い検出精度を有し、且つ組立、分解やレンズを取り替えて繰り返し使用してもその精度を維持することができる電子線装置10が得られる。   When used in the arrangement as shown in FIG. 2, an electron beam apparatus 10 having higher detection accuracy and capable of maintaining the accuracy even after repeated assembly and disassembly or lens replacement is obtained. It is done.

以上のように、良好な描画精度や検出精度を有し、高精度で安価な電子線装置を提供することができる。   As described above, it is possible to provide a highly accurate and inexpensive electron beam apparatus having good drawing accuracy and detection accuracy.

次に本発明の実施例について説明する。   Next, examples of the present invention will be described.

外径φ40mm、内径φ20mm、全長63mm、側面に7個のφ3mmの貫通孔を形成した99%純度アルミナ製の筒体と、外径φ20mm、内径φ5mm、全長8mmで、内周に金メッキの電極を4個備えたアルミナ製の光学要素と、外径φ3mm、全長10mmのアルミナ製の位置決めピンと、外径φ20、内径φ22、厚み8mmの蓋と、外径φ20mm、内径φ5mm、厚み1mmのステンレス製のシールド6枚を準備し、光学要素組立体の組立を行った。   A cylinder made of 99% purity alumina with an outer diameter of 40 mm, an inner diameter of 20 mm, a total length of 63 mm, and seven through-holes of 7 mm on the side, an outer diameter of 20 mm, an inner diameter of 5 mm, and a total length of 8 mm. Four optical elements made of alumina, an alumina positioning pin with an outer diameter of 3 mm and a total length of 10 mm, a lid with an outer diameter of φ20, an inner diameter of φ22, and a thickness of 8 mm, and a stainless steel with an outer diameter of φ20 mm, an inner diameter of φ5 mm, and a thickness of 1 mm Six shields were prepared, and an optical element assembly was assembled.

前記筒体の中に前記光学要素と前記シールドを交互に挿入し、前記位置決めピンを前記貫通孔に挿入して、前記貫通孔と対向する前記筒体の内周面側に前記光学要素を当接させて位置決めを行った後、前記光学要素を前記筒体に固定した。   The optical element and the shield are alternately inserted into the cylindrical body, the positioning pin is inserted into the through-hole, and the optical element is applied to the inner peripheral surface of the cylindrical body facing the through-hole. After positioning by contact, the optical element was fixed to the cylinder.

前記光学要素は、外内径の円筒度は2μ以下、外径と内径の同軸度は2μm以下で仕上げたものを使用し、前記光学要素の外周部と前記筒体の内周部のクリアランスは3μm以下に仕上げたものを用いたところ、組立と分解を繰り返しても毎回同じ値の同軸度の光学要素組立体を得ることができた。   The optical element is finished with an outer diameter of 2 μm or less and an outer diameter and an inner diameter of 2 μm or less, and the clearance between the outer periphery of the optical element and the inner periphery of the cylinder is 3 μm. As a result, it was possible to obtain an optical element assembly having the same coaxiality every time even when assembly and disassembly were repeated.

本発明は、電子線装置の電子光学系におけるレンズ、アパーチャ部材及び偏向器等を保持する光学要素組立体、及びそれを用いた電子線装置に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for an optical element assembly that holds a lens, an aperture member, a deflector, and the like in an electron optical system of an electron beam apparatus, and an electron beam apparatus using the same.

1・・・光学要素組立体
2・・・光学要素
3・・・筒体
3a・・内周部
4・・・位置決めピン
5・・・貫通孔
6・・・ボルト
7・・・位置決め領域
8・・・蓋
10・・・電子線装置
DESCRIPTION OF SYMBOLS 1 ... Optical element assembly 2 ... Optical element 3 ... Cylindrical body 3a ... Inner peripheral part 4 ... Positioning pin 5 ... Through-hole 6 ... Bolt 7 ... Positioning area 8 ... Lid 10 ... Electron beam device

Claims (4)

複数の光学要素と、該光学要素を収容する筒体とを備え、前記筒体の側面に複数の貫通孔が形成された光学要素組立体の組立方法であって、
前記筒体の中に前記複数の光学要素を挿入する工程と、
前記複数の貫通孔に位置決め部材を挿入して、前記複数の貫通孔と対向する前記筒体の内周面側に前記複数の光学要素を当接させる工程と、
前記複数の光学要素を前記筒体に固定する工程と、
前記位置決め部材を前記複数の貫通孔から脱抜させる工程と
を有することを特徴とする光学要素組立体の組立方法。
A method of assembling an optical element assembly comprising a plurality of optical elements and a cylindrical body that accommodates the optical elements, wherein a plurality of through holes are formed in a side surface of the cylindrical body,
Inserting the plurality of optical elements into the cylinder;
Inserting a positioning member into the plurality of through holes and bringing the plurality of optical elements into contact with the inner peripheral surface of the cylindrical body facing the plurality of through holes;
Fixing the plurality of optical elements to the cylinder;
And a step of removing the positioning member from the plurality of through holes.
前記複数の光学要素の外周面に溝又は孔が形成されており、
前記複数の貫通孔に前記位置決め部材を挿入する際に、前記位置決め部材の先端が前記溝又は孔に挿入されることを特徴とする請求項1に記載の光学要素組立体の組立方法。
Grooves or holes are formed in the outer peripheral surface of the plurality of optical elements,
2. The method of assembling an optical element assembly according to claim 1, wherein when the positioning member is inserted into the plurality of through holes, a tip of the positioning member is inserted into the groove or hole.
前記筒体及び前記光学要素がセラミックスにて形成されたことを特徴とする請求項1に記載の光学要素組立体の組立方法。 The method of assembling an optical element assembly according to claim 1, wherein the cylindrical body and the optical element are formed of ceramics. 前記セラミックスがアルミナから形成されたことを特徴とする請求項1又は2に記載の光学要素組立体の組立方法。 The method for assembling an optical element assembly according to claim 1, wherein the ceramic is made of alumina.
JP2009256361A 2009-11-09 2009-11-09 Method of assembling optical element assembly Pending JP2010034075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009256361A JP2010034075A (en) 2009-11-09 2009-11-09 Method of assembling optical element assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009256361A JP2010034075A (en) 2009-11-09 2009-11-09 Method of assembling optical element assembly

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003429417A Division JP2005191204A (en) 2003-12-25 2003-12-25 Optical element assembling body, assembling method, and electron beam apparatus using the same

Publications (1)

Publication Number Publication Date
JP2010034075A true JP2010034075A (en) 2010-02-12

Family

ID=41738247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009256361A Pending JP2010034075A (en) 2009-11-09 2009-11-09 Method of assembling optical element assembly

Country Status (1)

Country Link
JP (1) JP2010034075A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017134927A (en) * 2016-01-26 2017-08-03 株式会社荏原製作所 Inspection apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113455A (en) * 1984-06-28 1986-01-21 Matsushita Electric Ind Co Ltd Information carrier and its manufacture
JPS61165514A (en) * 1985-01-11 1986-07-26 Matsushita Electric Ind Co Ltd Flame holder for swirl combustion of gas
JPS6481151A (en) * 1987-09-22 1989-03-27 Meitec Corp Electrostatic type charged particle beam deflecting converging device
JPH075352A (en) * 1993-06-16 1995-01-10 Nikon Corp Lens supporting barrel frame
JPH08329872A (en) * 1995-06-05 1996-12-13 Toshiba Corp Electrostatic lens and its manufacture
JPH09274126A (en) * 1996-04-09 1997-10-21 Minolta Co Ltd Lens holding structure
JP2002341216A (en) * 2001-05-14 2002-11-27 Ebara Corp Optical element assembly for electron-beam device, treating method for the same optical element assembly, and device manufacturing method using electron-beam device equipped with the same optical element assembly
JP2003241051A (en) * 2002-02-15 2003-08-27 Canon Inc Support means for optical element, optical system relying on the support means for the optical element, exposure device, and device manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113455A (en) * 1984-06-28 1986-01-21 Matsushita Electric Ind Co Ltd Information carrier and its manufacture
JPS61165514A (en) * 1985-01-11 1986-07-26 Matsushita Electric Ind Co Ltd Flame holder for swirl combustion of gas
JPS6481151A (en) * 1987-09-22 1989-03-27 Meitec Corp Electrostatic type charged particle beam deflecting converging device
JPH075352A (en) * 1993-06-16 1995-01-10 Nikon Corp Lens supporting barrel frame
JPH08329872A (en) * 1995-06-05 1996-12-13 Toshiba Corp Electrostatic lens and its manufacture
JPH09274126A (en) * 1996-04-09 1997-10-21 Minolta Co Ltd Lens holding structure
JP2002341216A (en) * 2001-05-14 2002-11-27 Ebara Corp Optical element assembly for electron-beam device, treating method for the same optical element assembly, and device manufacturing method using electron-beam device equipped with the same optical element assembly
JP2003241051A (en) * 2002-02-15 2003-08-27 Canon Inc Support means for optical element, optical system relying on the support means for the optical element, exposure device, and device manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017134927A (en) * 2016-01-26 2017-08-03 株式会社荏原製作所 Inspection apparatus

Similar Documents

Publication Publication Date Title
US11473182B2 (en) Component for use in plasma processing apparatus, plasma processing apparatus, and method for manufacturing the component
TWI292937B (en)
KR101374488B1 (en) Arc evaporation source and method for manufacturing film using same
KR20140069198A (en) Electrostatic chuck
JP6487548B2 (en) Cutting device and material for dental parts
JP2009508344A (en) Optical element unit
JP3402998B2 (en) Manufacturing method of electrostatic deflection electrode for charged beam writing apparatus
EP2541590B1 (en) Plasma processing device
JP2010034075A (en) Method of assembling optical element assembly
JP2005191204A (en) Optical element assembling body, assembling method, and electron beam apparatus using the same
JP4614760B2 (en) Electrostatic deflector and electron beam apparatus using the same
KR20210018531A (en) Sample holder
JP6526588B2 (en) Method of manufacturing pellicle frame and pellicle frame
CN112334433B (en) Ceramic sintered body and member for plasma processing apparatus
JP2005236114A (en) Working apparatus and working method
JP2010247308A (en) Workpiece holding device
KR20150073710A (en) Improved linearity of tool holder the FTS
CN110739195B (en) Cathode and focusing electrode coaxiality adjusting device, system and method of electron gun
JP5244489B2 (en) Workpiece holding device
JP2010240760A (en) Centering device for workpiece
CN107234475B (en) It is machined accurate hard turning bearing outer ring special fixture
CN105252091A (en) Electric discharge machining method for supporting faces of optical element flexible supporting structures
JP2005294654A (en) Substrate holder
JP3092491U (en) Electrode mounting jig
WO2013001675A1 (en) Optical fiber holding component and optical receptacle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110310

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110317

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416