JP2010032109A - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
JP2010032109A
JP2010032109A JP2008194277A JP2008194277A JP2010032109A JP 2010032109 A JP2010032109 A JP 2010032109A JP 2008194277 A JP2008194277 A JP 2008194277A JP 2008194277 A JP2008194277 A JP 2008194277A JP 2010032109 A JP2010032109 A JP 2010032109A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
gas
pipe
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008194277A
Other languages
English (en)
Inventor
Shoji Takaku
昭二 高久
Kenji Nagoshi
健二 名越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2008194277A priority Critical patent/JP2010032109A/ja
Publication of JP2010032109A publication Critical patent/JP2010032109A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

【課題】
室内熱交換器配管途中に除湿弁を兼ね備えた空気調和機において、室外熱交換器の配管内冷媒圧力損失を低減し、暖房運転時の室外熱交換性能を向上させ、エネルギー効率の高い空気調和機を提供する。
【解決手段】
室外熱交換器6の冷媒配管途中に気液分離器9を設け、分離したガス冷媒を流量調整弁11を介して室外熱交換器出口配管10に合流するようにバイパス配管12を設け、圧縮機1の回転数に応じて前記流量調整弁の開度を調整する制御を備えることにより、室外熱交換器6内を流れる冷媒の圧力損失を低減し、暖房性能を向上させる。
【選択図】図1

Description

本発明はヒートポンプ式空気調和機用室外熱交換器において、暖房運転時の性能を向上させるのに好適な室外熱交換器を具備した空気調和機に係り、さらに除湿運転時に除湿性能を向上させる制御を備えた空気調和機に関する。
一般家庭で多く使用されている空気調和機としては、室内機と室外機が別体で構成されており、室内機内には空気と冷媒を熱交換させるための熱交換器と空気を送り出す送風機が設置されており、室外機内には空気と冷媒を熱交換させるための熱交換器と送風機、冷媒を循環させる圧縮機および冷媒を減圧する減圧機等が設置されている。これらの室内機と室外機の間に接続配管を用いて冷媒流路を接続することで、室内機と室外機の間を冷媒が行き来して冷凍サイクルが成り立っている。
この構成の空気調和機において、冷媒流路切替え弁等により冷媒の流れ方向を変えることにより冷房運転、暖房運転および除湿運転を行っており、これらの各運転条件に関して省エネルギー化を図るための研究が盛んに行われている。
省エネルギー化の有効な手段としては、熱交換器の大型化やファンの高風量化,配管内の冷媒圧力損失低減等があり、特に暖房能力の大きいタイプの空気調和機に関しては配管内冷媒の圧力損失を低減することで熱交換器を大型化することなく、性能を向上させる工夫がなされている。
冷媒配管内の冷媒の圧力損失を低減させる方式の有効な手段としては、冷媒流路を複数流路配列にして、配管内の冷媒流速を低減させる方式があるが、冷媒を分流させる際に生じる各流路の流量バランスを工夫する必要がある。
蒸発器内の冷媒圧力損失を小さくすると共に熱交換性能にほとんど寄与しないガス成分を熱交換器出口にバイパスさせ、性能を向上させる従来技術として、熱交換器に気液分離器を備えた構成で性能向上を図るものがある(例えば、特許文献1参照)。特許文献1では、熱交換器の入口から出口に至る冷媒配管途中に気液分離器を設け、ガス成分を抽出して熱交換器出口配管にバイパスさせることにより、蒸発器としての性能を向上させる。
特開2002−372323号公報
しかしながら、特許文献1では、ガスバイパス配管に逆止弁を設けて、冷媒が逆に流れる状態、すなわち凝縮器として作用させた時の冷媒バイパスについての工夫はなされており、また一定の冷媒循環量、あるいは特定の冷媒の状態では熱交換器を有効に作用させることができるが、冷媒循環量や冷媒の状態が変わった場合の工夫がなされておらず、運転条件によっては液ガス混合でバイパスしてしまう場合や、ガスバイパス量が十分に確保することができなくなると共に各冷媒流路に分流する時に分流割合のアンバランスが生じて性能が悪化する可能性がある。
そこで本発明は上記事情を考慮したものであり、圧縮機,四方弁,室内熱交換器,膨張弁,室外熱交換器等を備え、おのおのを冷媒配管等で接続して冷媒回路を形成し、冷媒を循環させることにより、冷房,暖房及び除湿運転を行うことのできる空気調和機で、前記室内熱交換器は冷媒配管経路の途中に弁を絞ることにより冷媒を減圧することのできる除湿弁を設け、冷房運転時の冷媒流方向にて前記除湿弁上流側の室内熱交換器は第1室内熱交換器、下流側の室内熱交換器は第2室内熱交換器という具合に前記除湿弁を挟んで2つに分割され、前記除湿弁にて減圧することにより、一方を凝縮器、他方を蒸発器とすることのできる空気調和機で、請求項1では、暖房運転時の冷媒流方向に対して前記室外熱交換器の冷媒配管入口近傍にて複数流路に分流させた後、前記室外熱交換器の冷媒入口配管から冷媒出口配管に至るまでの冷媒配管経路の概ね中間地点で一旦冷媒を合流させ、その下流側に気液分離器を設け、前記気液分離器上流側を第1室外熱交換器、下流側を第2室外熱交換器とし、分離したガス冷媒を流量調整弁を介して室外熱交換器の冷媒出口配管に合流するようにバイパス配管を設け、前記圧縮機の回転数に応じて前記流量調整弁の開度を調整する制御を備えることを特徴とする。
また、請求項2では前記第2室外熱交換器の冷媒流路配管径を前記第1室外熱交換器の冷媒流路配管径よりも細径化するとともに、細径管を使用した場合の圧力損失が前記第1室外熱交換器と同じ冷媒流路配管径を使用した場合に対して小さくなるように、冷媒流路の分流数を設定したことを特徴とする。
請求項3では、前記した発明に加え、暖房運転時の冷媒の流れ方向で気液分離を作用させた場合、前記気液分離器に接続する配管を
(流入配管の断面積)≒(ガス冷媒流出配管の断面積)+(液冷媒流出配管の断面積)
(ガス冷媒流出配管の断面積)<(液冷媒流出配管の断面積)
の条件を満たす気液分離器を有することを特徴とする。
請求項4では、前記した発明に加え、前記気液分離器から流出する概ね液冷媒となった冷媒配管を複数流路に分流する際に前記第2室外熱交換器での各冷媒流路の熱交換能力に応じて、前記複数流路に分流する際の各流路の前記第2室外熱交換器入口冷媒配管径を異径にしたことを特徴とする。
請求項5では、前記気液分離器から流出する概ね液冷媒となった冷媒配管を複数流路に分流する際に前記第2室外熱交換器での各流路の熱交換能力に応じて、各流路の冷媒出口までの長さを調節したことを特徴とする。
請求項6では請求項1乃至5の何れかの空気調和機において、除湿運転の際に冷房運転と同じ冷媒流方向にて前記除湿弁を絞ると同時に、前記気液分離器の前記バイパス配管経路途中に設置した流量調整弁を開口する制御を備えたことを特徴とする。
請求項7では気液分離器の形状を円柱形状とし、その内径を35mm以上に設定したことを特徴とする。
本発明に係る請求項1記載の効果は、圧縮機,四方弁,室内熱交換器,膨張弁,室外熱交換器等を備え、おのおのを冷媒配管等で接続して冷媒回路を形成し、冷媒を循環させることにより、冷房,暖房及び除湿運転を行うことのできる空気調和機で、前記室内熱交換器は冷媒配管経路の途中に弁を絞ることにより冷媒を減圧することのできる除湿弁を設け、冷房運転時の冷媒流方向にて前記除湿弁上流側の室内熱交換器は第1室内熱交換器、下流側の室内熱交換器は第2室内熱交換器という具合に前記除湿弁を挟んで2つに分割され、前記除湿弁にて減圧することにより、一方を凝縮器、他方を蒸発器とすることのできる空気調和機で、暖房運転時の冷媒流方向に対して前記室外熱交換器の冷媒配管入口近傍にて複数流路に分流させた後、前記室外熱交換器の冷媒入口配管から冷媒出口配管に至るまでの冷媒配管経路の概ね中間地点で一旦冷媒を合流させ、その下流側に気液分離器を設け、前記気液分離器上流側を第1室外熱交換器、下流側を第2室外熱交換器とし、分離したガス冷媒を流量調整弁を介して室外熱交換器の冷媒出口配管に合流するようにバイパス配管を設けると共に、前記圧縮機の回転数に応じて前記流量調整弁の開度を調整する制御を備え、前記気液分離器を通過させることによりガス成分を概ね除去した冷媒を再度複数流路に分流する構成をなす空気調和機において、ガス冷媒をバイパスすることで、従来生じていた気液混合冷媒状態で複数流路に分流させるときの冷媒分配のアンバランスを解消することができ、かつ、蒸発器として熱交換性能にほとんど寄与しないガス成分を適宜バイパスし、蒸発器としての性能を向上させることができる。
また、請求項2の効果は、前記第2室外熱交換器の冷媒流路配管径を前記第1室外熱交換器の冷媒流路配管径よりも細径化するとともに、細径管を使用した場合の圧力損失が前記第1室外熱交換器と同じ冷媒流路配管径を使用した場合に対して小さくなるように、冷媒流路の分流数を設定することにより、熱交換器として細径管を使用することでの管内の冷媒の濡れぶち長さを増加することによる伝熱性能向上と、複数に分流させることにより蒸発器として作用させた場合の圧力損失を低減することができ、熱交換器を凝縮器として使った場合も含めて総合的に評価した場合、熱交換器の性能を向上させることができる。
また請求項3の効果は、暖房運転時の冷媒の流れ方向で気液分離を作用させた場合、前記気液分離器に接続する配管を
(流入配管の断面積)≒(ガス冷媒流出配管の断面積)+(液冷媒流出配管の断面積)
(ガス冷媒流出配管の断面積)<(液冷媒流出配管の断面積)
の条件を満たす気液分離器を有することで、二相流で流入する冷媒がガス冷媒と液冷媒に分離し易くなり、熱交換器としての性能を促進することができる。
また、請求項4の効果として、前記気液分離器から流出する概ね液冷媒となった冷媒を複数流路に分流する際に、前記第2室外熱交換器での各冷媒流路の熱交換能力、すなわち風速分布等を考慮し、各流路の熱交換器出口温度が概ね等しい冷媒温度になるように、複数流路に分流する際の各流路の入口配管径を異径に設定することで、分流割合を調節でき、各流路に分流した後の熱交換割合を最適に設定することができる。
また、請求項5の効果として、前記気液分離器から流出する概ね液冷媒となった冷媒を複数流路に分流する際に、前記第2室外熱交換器での各冷媒流路の熱交換能力、すなわち風速分布等を考慮し、各流路の熱交換器出口温度が概ね等しい冷媒温度になるように、各冷媒流路の入口から出口までの冷媒配管長さを設定することで、請求項4で得られた効果と同様の効果が得られる。
また請求項6の効果として、除湿運転の際に冷房運転と同じ冷媒流方向にて前記除湿弁を絞ると同時に、前記気液分離器の前記バイパス配管経路途中に設置した流量調整弁を開口する制御を備えたことにより、従来生じていた除湿運転時での室外熱交換器内の液溜まりによる冷媒不足現象を解消することができ、除湿性能を向上させることができる。
また、請求項7の効果として、前記気液分離器は円柱の形状を成し、少なくともその内径を約35mm以上に設定することにより、気液二相流で気液分離器に流入する冷媒をガス冷媒と液冷媒に分離させるときの分離性能を向上させることができ、気液分離器を有する空気調和機の性能を向上させることができる。
圧縮機,四方弁,室内熱交換器,膨張弁,室外熱交換器等を備え、おのおのを冷媒配管等で接続して冷媒回路を形成し、冷媒を循環させることにより、冷房,暖房及び除湿運転を行うことのできる空気調和機で、前記室内熱交換器は冷媒配管経路の途中に弁を絞ることにより冷媒を減圧することのできる除湿弁を設け、冷房運転時の冷媒流方向にて前記除湿弁上流側の室内熱交換器は第1室内熱交換器、下流側の室内熱交換器は第2室内熱交換器という具合に前記除湿弁を挟んで2つに分割され、前記除湿弁にて減圧することにより、一方を凝縮器、他方を蒸発器とすることのできる空気調和機で、暖房運転時の冷媒流方向に対して前記室外熱交換器の冷媒配管入口近傍にて複数流路に分流させた後、前記室外熱交換器の冷媒入口配管から冷媒出口配管に至るまでの冷媒配管経路の概ね中間地点で一旦冷媒を合流させ、その下流側に気液分離器を設け、前記気液分離器上流側を第1室外熱交換器、下流側を第2室外熱交換器とし、分離したガス冷媒を流量調整弁を介して室外熱交換器の冷媒出口配管に合流するようにバイパス配管を設け、前記圧縮機の回転数に応じて前記流量調整弁の開度を調整する制御を備えることにより、室外熱交換器を蒸発器として使用した場合の冷媒分配性能を向上させると共に、冷媒の圧力損失を低減することができるため、特に暖房性能を向上させるという目的を実現した。
図1は本発明に係る空気調和機のサイクル構成図である。暖房運転時の冷媒の流れで説明すると、圧縮機1にて高温・高圧ガスにされた冷媒は四方弁2を介して室内熱交換器3に流入し、室内熱交換器3において室内送風ファン4により送られる空気と熱交換し液冷媒に凝縮され、膨張弁5により低温・低圧二相流冷媒になる。そして,低温・低圧となった二相流冷媒は室外熱交換器6に流入し、室外送風ファン7により送られる空気と熱交換した後、四方弁2を介して再び圧縮機1に戻る。
室外熱交換器6内では、冷媒入口配管近傍にて冷媒を分流させた後、室外熱交換器6にて途中まで熱交換させ、その後冷媒を一旦合流させると共にその下流側に気液分離器9を設置し、このときの気液分離器上流側を第1室外熱交換器6A、下流側を第2室外熱交換器6Bとした場合、気液分離器9に流入した冷媒はガスと液に分離され、液冷媒は第2室外熱交換器6Bに、ガス冷媒は流量調整弁11を介してバイパスする回路12により第2室外熱交換器6Bの出口配管10に導かれ合流する。この時、圧縮機1の回転数に応じて流量調整弁11の開度を調整する制御を行う。
このような経路を設けることにより、次の性能向上効果が期待できる。(1)流速の速いガス冷媒をバイパスすることにより、図1−2のモリエル線図に示すように実線で示す通常のサイクルに対して、気液分離器を作用させることで破線で示すようなサイクル形態、すなわち、蒸発過程における冷媒圧力損失の低減。(2)室外熱交換器6の途中で冷媒を一旦合流させ気液分離させることで、概ね液状態にした冷媒を分流させることでパスバランスの最適化が図れる。但し、圧縮機1の回転数が高回転の時は気液分離性能が低下し、液ガス混合冷媒がバイパスするため、流量調整弁11を閉じ気味に設定することで性能を低下させることなく第2室内熱交換器6Bを有効に使うことができる。
あるいは、この流量調整弁11の最適開度を調節するために、例えば圧縮機冷媒吐出温度センサ13をつけ、流量調整弁11を徐々に開いていき、急激に圧縮機冷媒吐出温度が低下した場合は液冷媒もバイパスしているものとみなし、流量調整弁11の開度を閉じていく制御を取り入れることでガスバイパス量を最適にし、性能向上を図ることができる。
また、冷房運転時は気液分離の効果が得られないことから、流量調整弁を閉じて冷媒がバイパスしないようにする。
図2は本発明にかかる第2の実施例であり、第2室外熱交換器6Bの冷媒流路配管径を第1室外熱交換器6Aの配管径d1よりも細径化d2にするとともに、細径管径d2を使用した場合の圧力損失ΔP2が第1室外熱交換器6Aの配管径d1の圧力損失ΔP1よりも小さくなるように冷媒分流数を設定する。
具体的に数値で評価すると例えば、
第1熱交換器と同じ配管 直径d1=7mm、冷媒パス数を2パスとし、圧力損失をΔP1
細径管 直径d2=5mm、冷媒パス数を4パスとし、圧力損失をΔP2
にした場合のケースを概算してみる、代表的な圧力損失は以下の式により導くこととする。
ΔP=(128μ(l/冷媒パス数)×(Q/冷媒パス数))/(πd4) 〔Pa〕
d:配管直径〔m〕
μ:粘性係数〔Pa・s〕
l:配管長さ〔m〕(→パス数に依存)
Q:流量〔m3/s〕(→パス数に依存)
上記の計算式において、流量Q〔m3/s〕,配管長さl〔m〕,粘性係数μ〔Pa・s〕は固定の数値とすると、
ΔP1=(128μ(l/2×Q/2))/(π(7×10-3)4) 〔Pa〕
ΔP2=(128μ(l/4×Q/4))/(π(5×10-3)4) 〔Pa〕
ΔP2/ΔP1=(1/4×1/4)/(1/2×1/2)/(54/74)=0.96
となる。したがって、第1室外熱交換器配管径の2パスに対して細径管の4パスの圧力損失は約4%低減できる試算となるため、この場合の細径管のパス数は4パス以上に設定することで圧力損失を低減できる。また細径管を使用した場合、管内の液冷媒と管壁の接触面積(濡れぶち長さ)が増加することによる配管内の伝熱性能向上が期待できる。
図3は気液分離器11について、気液分離を作用させた時に
(流入配管14の断面積)≒(ガス冷媒流出配管15aの断面積)+(液冷媒流出配 管15の断面積)
(ガス冷媒流出配管15aの断面積)<(液冷媒流出配管15の断面積)
の条件を満たすと共に、流量調整弁11でガス冷媒の流出割合を最適にした場合に、冷媒配管15から流出する冷媒を概ね液冷媒にすることができ、蒸発器としての性能を向上させることができる。例えば、流入配管14の直径をφ9.52にした場合、液冷媒流出配管15をφ7とガス冷媒配管15aをφ6.35にすることで前記の条件を満たすことができる。
図4は本発明に係る第4の実施例を表した図であり、前記気液分離器9から流出する概ね液冷媒となった冷媒配管を複数流路に分流する際に第2室外熱交換器6Bでの各流路の熱交換割合に応じて、前記複数流路に分流する際の各流路の配管径を異径にすることにより熱交換器を有効に使用することができる。例えば第2室外熱交換器6Bに流入する空気の風速分布16が図4のようになっている場合、空気側の風速の遅いパスA,パスDの分岐管出口径17を細くし、風速の速いパスB,パスCの分岐管出口径18を太くすることで冷媒の分流比を調節し室外熱交換器6の配管出口近傍において、各流路とも概ね等しい温度になるように構成することにより熱交換器を有効に使用することができる。
図5は本発明に係る第5の実施例を表した図であり、前記気液分離器から流出する概ね液冷媒となった冷媒配管を複数流路に分流する際に各流路の熱交換能力に応じて、各流路の冷媒長さを調節することにより、熱交換器を有効に使用することができる。
例えば図5のように第2室外熱交換器6Bに流入する空気の風速分布16があった場合、空気側の風速の遅いパスA,パスDの分流後の配管長さを長くし、風速分布の速いパスB,パスC配管長さを短くするようにし、各パスの入口から出口までの配管長さを適切に調節することで第2室外熱交換器6Bの各流路の熱交換を有効に促進することができる。
図6は本発明に係る実施例を表した図であり、本発明のサイクル構成で除湿運転をした場合を表したものである。通常除湿運転をする場合の冷媒の流れは、凝縮器となる室外熱交換器6を通過して室内熱交換器3に流入し、室内熱交換器3の熱交換器途中に設けた除湿弁8を絞ることにより、冷媒の流れ方向で除湿弁8前の熱交換器が凝縮器となり、除湿弁8後の熱交換器が蒸発器となる。この方式により、室内の温度を下げることなく除湿運転ができる。この時、室外熱交換器6には凝縮した冷媒が溜まることで冷媒不足のサイクルになる。そこで、除湿運転時に流量調整弁11を開口することで、冷媒が第2室外熱交換器6Bを通過することなくバイパスすることができ、冷媒不足を回収することができる。
図7は本発明に係る気液分離器9の内径と性能(COP向上割合)の関係を表した実験結果である。本実験では気液分離器の内径をパラメータにして、性能を測定した結果を表したものであり、本実験結果から気液分離器9の内径を概ねφ35mm以上にすることで性能向上を図ることができる。また、気液分離器11の内径がφ48mm程度で性能が収束しているため、気液分離器9の径Dはφ35mm≦D≦φ48mmにすることで必要以上に内径を大きくすることなく、性能向上を図ることができる。
本発明に係る空気調和機の全体の概要を示した説明図である。 本発明に係る空気調和機のモリエル線図を示した説明図である。 本発明に係る空気調和機の実施方法を示した説明図である。(実施例2) 本発明に係る空気調和機の実施方法を示した説明図である。(実施例3) 本発明に係る空気調和機の実施方法を示した説明図である。(実施例4) 本発明に係る空気調和機の実施方法を示した説明図である。(実施例5) 本発明に係る空気調和機の実施方法を示した説明図である。(実施例6) 本発明に係る空気調和機の実施方法を示した説明図である。(実施例7)
符号の説明
1 圧縮機
2 四方弁
3 室内熱交換器
4 室内送風ファン
5 膨張弁
6 室外熱交換器
6A 第1室外熱交換器
6B 第2室外熱交換器
7 室外送風ファン
8 除湿弁
9 気液分離器
10 出口配管
11 流量調整弁
12 バイパス回路
13 圧縮機吐出冷媒温度センサ
14 流入配管
15,15a 流出配管
16 風速分布
17 パスA,Dの分岐管出口径
18 パスB,Cの分岐管出口径

Claims (7)

  1. 圧縮機,四方弁,室内熱交換器,膨張弁、及び室外熱交換器を冷媒配管で接続して形成された冷媒回路に冷媒を循環させることにより、冷房,暖房及び除湿運転を行う空気調和機において、
    前記室内熱交換器は冷媒流路配管の途中に弁を絞ることにより冷媒を減圧する除湿弁を備え、前記除湿弁を挟んで、冷房運転時の冷媒流方向にて、前記除湿弁の上流側の室内熱交換器が第1室内熱交換器、前記除湿弁の下流側の室内熱交換器が第2室内熱交換器として分割され、前記除湿弁にて減圧することにより、第1室内熱交換器を凝縮器、第2室内熱交換器を蒸発器とし、
    暖房運転時の冷媒流方向に対して前記室外熱交換器の冷媒配管入口近傍にて複数流路に分流させた後、前記室外熱交換器の冷媒入口配管から冷媒出口配管に至るまでの冷媒配管経路において冷媒を合流させ、その下流側に気液分離器を設け、前記気液分離器の上流側を第1室外熱交換器、下流側を第2室外熱交換器とし、分離したガス冷媒を流量調整弁を介して室外熱交換器の冷媒出口配管に合流するようにバイパス配管を設け、
    前記圧縮機の回転数に応じて前記流量調整弁の開度を調整することを特徴とする空気調和機。
  2. 請求項1において、前記第2室内熱交換器の冷媒流路配管径を前記第1室内熱交換器の冷媒流路配管径よりも細径化するとともに、前記第2室内熱交換器の圧力損失が前記第1室内熱交換器と同じ冷媒流路配管径を使用した場合に対して小さくなるように冷媒流路の分流数を設定したことを特徴とする空気調和機。
  3. 請求項1又は2において、暖房運転時の冷媒の流れ方向で気液分離を作用させた場合、前記気液分離器に接続する配管を、
    (流入配管の断面積)≒(ガス冷媒流出配管の断面積)+(液冷媒流出配管の断面積)
    (ガス冷媒流出配管の断面積)<(液冷媒流出配管の断面積)
    の条件を満たす気液分離器を有することを特徴とする空気調和機。
  4. 請求項1乃至3の何れかにおいて、前記気液分離器から流出する液冷媒となった冷媒を複数流路に分流する際に、前記第2室内熱交換器での各冷媒流路における風速分布等を考慮し、各流路の熱交換器出口温度が等しい冷媒温度になるように、複数流路に分流する際の各流路の入口配管径を異径に設定したことを特徴とする空気調和機。
  5. 請求項1乃至3の何れかにおいて、前記気液分離器から流出する液冷媒となった冷媒を複数流路に分流する際に、前記第2室外熱交換器での各冷媒流路の熱交換能力を考慮し、各流路の熱交換器出口温度が等しい冷媒温度になるように、各冷媒流路の入口から出口までの冷媒流路配管長さを設定したことを特徴とする空気調和機。
  6. 請求項1乃至5の何れかにおいて、除湿運転の際に冷房運転と同じ冷媒流方向にて前記除湿弁を絞ると同時に、前記気液分離器の前記バイパス配管経路途中に設置した流量調整弁を開口することを特徴とする空気調和機。
  7. 請求項1乃至6の何れかにおいて、前記気液分離器は円柱の形状を成し、その内径を35mm以上としてことを特徴とする空気調和機。
JP2008194277A 2008-07-29 2008-07-29 空気調和機 Withdrawn JP2010032109A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008194277A JP2010032109A (ja) 2008-07-29 2008-07-29 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008194277A JP2010032109A (ja) 2008-07-29 2008-07-29 空気調和機

Publications (1)

Publication Number Publication Date
JP2010032109A true JP2010032109A (ja) 2010-02-12

Family

ID=41736795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008194277A Withdrawn JP2010032109A (ja) 2008-07-29 2008-07-29 空気調和機

Country Status (1)

Country Link
JP (1) JP2010032109A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063083A (ja) * 2010-09-16 2012-03-29 Daikin Industries Ltd 熱源ユニット
JP2013195034A (ja) * 2012-03-22 2013-09-30 Fujitsu General Ltd 冷凍サイクル装置
CN103868291A (zh) * 2012-12-14 2014-06-18 美的集团股份有限公司 用于换热***的储液罐及具有它的换热***和空调器
CN104634001A (zh) * 2013-11-14 2015-05-20 美的集团股份有限公司 换热器组件和具有其的换热***、空调器
CN104634000A (zh) * 2013-11-14 2015-05-20 美的集团股份有限公司 换热器组件、换热***和空调器
CN114992920A (zh) * 2022-04-22 2022-09-02 美的集团武汉暖通设备有限公司 气液分离器、空调器及其控制方法、存储介质
CN115183404A (zh) * 2022-07-11 2022-10-14 青岛海尔空调电子有限公司 空调***及其控制方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063083A (ja) * 2010-09-16 2012-03-29 Daikin Industries Ltd 熱源ユニット
JP2013195034A (ja) * 2012-03-22 2013-09-30 Fujitsu General Ltd 冷凍サイクル装置
CN103868291A (zh) * 2012-12-14 2014-06-18 美的集团股份有限公司 用于换热***的储液罐及具有它的换热***和空调器
CN103868291B (zh) * 2012-12-14 2016-05-18 美的集团股份有限公司 用于换热***的储液罐及具有它的换热***和空调器
CN104634001A (zh) * 2013-11-14 2015-05-20 美的集团股份有限公司 换热器组件和具有其的换热***、空调器
CN104634000A (zh) * 2013-11-14 2015-05-20 美的集团股份有限公司 换热器组件、换热***和空调器
CN114992920A (zh) * 2022-04-22 2022-09-02 美的集团武汉暖通设备有限公司 气液分离器、空调器及其控制方法、存储介质
CN114992920B (zh) * 2022-04-22 2023-11-28 美的集团武汉暖通设备有限公司 气液分离器、空调器及其控制方法、存储介质
CN115183404A (zh) * 2022-07-11 2022-10-14 青岛海尔空调电子有限公司 空调***及其控制方法
CN115183404B (zh) * 2022-07-11 2024-06-07 青岛海尔空调电子有限公司 空调***的控制方法

Similar Documents

Publication Publication Date Title
JP6644154B2 (ja) 空気調和装置
EP2722616B1 (en) Air conditioner
WO2016051606A1 (ja) 空気調和装置
WO2018002983A1 (ja) 冷凍サイクル装置
JP2010032109A (ja) 空気調和機
KR101146460B1 (ko) 냉매시스템
JP2008180422A (ja) 空気調和装置
KR100589913B1 (ko) 공기조화장치
JP2006071137A (ja) 冷凍装置
JP2017101855A (ja) 空気調和装置
JP2008170063A (ja) マルチ型空気調和機
JP4303032B2 (ja) 空気調和装置
JP2017015299A (ja) 冷却装置
JP2006275435A (ja) 気液分離装置および空気調和装置
JP2009156496A (ja) 空気調和装置
JP2017101854A (ja) 空気調和装置
KR102122510B1 (ko) 공기조화 시스템
JP2007032857A (ja) 冷凍装置
JP2010032106A (ja) 空気調和機
JP5645413B2 (ja) 空気調和装置
JP2010032105A (ja) 空気調和機
JP2005273923A (ja) 空気調和機
JP2014109416A (ja) 空気調和装置
JP2018059673A (ja) 熱交換器及びこれを用いたヒートポンプ装置
JP2008051464A (ja) 空気調和装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111004