JP2010027871A - Dust core and manufacturing method thereof - Google Patents

Dust core and manufacturing method thereof Download PDF

Info

Publication number
JP2010027871A
JP2010027871A JP2008187791A JP2008187791A JP2010027871A JP 2010027871 A JP2010027871 A JP 2010027871A JP 2008187791 A JP2008187791 A JP 2008187791A JP 2008187791 A JP2008187791 A JP 2008187791A JP 2010027871 A JP2010027871 A JP 2010027871A
Authority
JP
Japan
Prior art keywords
soft magnetic
amorphous soft
magnetic alloy
alloy powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008187791A
Other languages
Japanese (ja)
Inventor
Yasuo Oshima
泰雄 大島
Susumu Shigeta
進 繁田
Hiroshi Uematsu
宏 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2008187791A priority Critical patent/JP2010027871A/en
Publication of JP2010027871A publication Critical patent/JP2010027871A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-loss dust core by forming an insulating layer so that an organic insulating material, such as an acryl-based resin, blocks a gap formed by annealing, and to provide a method of manufacturing the same. <P>SOLUTION: Fe-Si-B-Cr-C based Fe-based amorphous soft magnetic alloy powder, glass powder having a softening point lower than the crystallization temperature of the amorphous soft magnetic alloy powder, and a binding resin are mixed. The mixture is subjected to compression molding to manufacture a molded body. The molded body is annealed at temperature lower than the crystallization temperature of the amorphous soft magnetic alloy powder. The annealed molded body is subjected to vacuum impregnation treatment by an organic insulating material, and a gap formed by annealing is blocked by the organic insulating material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、スイッチング電源等に用いられる平滑用チョークコイル等の磁心とその製造方法に関する。   The present invention relates to a magnetic core such as a smoothing choke coil used in a switching power supply and the like, and a method for manufacturing the same.

各種電子機器の高性能化及び多機能化に伴い大電流化が進み、それに使用されるチョークコイル等の磁心に用いられる軟磁性材料においては、大電流でも特性変化が小さい特性、すなわち、優れた直流重畳特性と低損失が求められている。   With the increase in performance and functionality of various electronic devices, currents have increased, and soft magnetic materials used for magnetic cores such as choke coils used in such electronic devices have characteristics that have small characteristic changes even at large currents, that is, excellent DC superposition characteristics and low loss are required.

高周波で用いられるチョークコイルとして、フェライト磁心や圧粉磁心が使用されている。これらの中で、フェライト磁心は飽和磁束密度が小さいという欠点を有している。これに対して、金属合金粉末を成形して作製される圧粉磁心は、軟磁性フェライトに比べて高い飽和磁束密度を持つため、直流重畳特性に優れている。   Ferrite cores and dust cores are used as choke coils used at high frequencies. Among these, the ferrite core has a defect that the saturation magnetic flux density is small. On the other hand, a dust core produced by molding metal alloy powder has a higher saturation magnetic flux density than soft magnetic ferrite, and thus has excellent DC superposition characteristics.

この金属合金粉末として、珪素とアルミと鉄の合金であるセンダスト、ニッケルと鉄の合金であるパーマロイ、珪素と鉄の合金である珪素鋼等が用いられている。また、より低損失な合金として、非晶質軟磁性合金であるアモルファス合金を使用することが検討されている。   As this metal alloy powder, Sendust, which is an alloy of silicon, aluminum, and iron, Permalloy, which is an alloy of nickel and iron, silicon steel, which is an alloy of silicon and iron, and the like are used. Further, the use of an amorphous alloy, which is an amorphous soft magnetic alloy, has been studied as a lower loss alloy.

非晶質軟磁性合金を用いて圧粉磁心を作製するためには、非晶質軟磁性合金粉末を低融点ガラスと有機バインダーなどと混合して高圧で圧縮成形した後、熱処理を行う方法が知られている。   In order to fabricate a powder magnetic core using an amorphous soft magnetic alloy, an amorphous soft magnetic alloy powder is mixed with a low-melting glass and an organic binder, and compression-molded at a high pressure, followed by heat treatment. Are known.

例えば、従来技術として、特許文献1のように、成形時に金型と粉末を高温にして高密度成形を行う方法や、特許文献2のように、金属合金粉末を低融点ガラスと有機バインダーなどと混合して、室温にて高圧で成形を行う方法がある。   For example, as a conventional technique, as in Patent Document 1, a method of performing high-density molding with a mold and powder at a high temperature during molding, or as disclosed in Patent Document 2, a metal alloy powder is made of a low-melting glass and an organic binder. There is a method of mixing and molding at high pressure at room temperature.

しかしながら、特許文献1や特許文献2の方法は、低損失の圧粉磁心を得ることは可能であるが、非晶質軟磁性合金粉末の表面に低融点ガラス粉末を固着させ、ガラスの軟化点より高く、しかも非晶質軟磁性合金粉末の結晶化温度よりも低い温度で加圧成形を行うものであり、装置が高価且つ工程が複雑であるために、量産化に向いていない。   However, although the methods of Patent Document 1 and Patent Document 2 can obtain a low-loss powder magnetic core, the low melting point glass powder is fixed to the surface of the amorphous soft magnetic alloy powder, and the softening point of the glass. The pressure molding is performed at a higher temperature and lower than the crystallization temperature of the amorphous soft magnetic alloy powder, and the apparatus is expensive and the process is complicated, so that it is not suitable for mass production.

さらに、特許文献1や特許文献2の方法は、ガラス粉末の添加量もしくは結着性樹脂の種類及び添加量については特別な配慮をしていない。また、磁気特性も透磁率のみしか評価しておらず、鉄損については測定対象となっていない。   Furthermore, the methods of Patent Document 1 and Patent Document 2 do not give special consideration to the amount of glass powder added or the type and amount of binder resin. Further, only magnetic permeability is evaluated for magnetic characteristics, and iron loss is not a measurement target.

そこで、特許文献3のように、2種類の粒径の違う非晶質軟磁性合金粉末とガラス粉末を用い、成形圧力が低くても小さな粒径の粉末が隙間を埋めることにより成形密度を高くし、圧粉磁心の特性を高める方法が提案されている。   Therefore, as in Patent Document 3, two types of amorphous soft magnetic alloy powders and glass powders having different particle sizes are used, and even if the molding pressure is low, the small particle size powder fills the gap to increase the molding density. However, methods for improving the properties of the dust core have been proposed.

特開平10−212503JP-A-10-212503 特開2001−73062JP 2001-73062 A 特開2006−176817JP 2006-176817 A

ところが、特許文献3の方法は、小さな粒径の非晶質軟磁性合金粉末を得るために、非晶質軟磁性合金に対して、水素雰囲気中で脆化処理を行い、その後、脆化処理した非晶質軟磁性合金を粉砕する。しかし、この方法では、工程が複雑になってしまい量産には向いていない。また、粉砕することで、微粉末内部に歪みが発生してヒステリシス損失の増加の問題が起こる。   However, in the method of Patent Document 3, in order to obtain amorphous soft magnetic alloy powder having a small particle size, the amorphous soft magnetic alloy is embrittled in a hydrogen atmosphere, and then embrittled. The obtained amorphous soft magnetic alloy is pulverized. However, this method is not suitable for mass production because the process becomes complicated. In addition, the pulverization causes distortion in the fine powder and causes an increase in hysteresis loss.

以上のように、非晶質軟磁性合金粉末による圧粉磁心においては、その優れた磁気特性にもかかわらず成形性が他の金属と比較して悪く、量産上の点で問題がある。また、粉末自身が固いため、成形時圧力を高くすると絶縁被膜が破壊(破れる)するため、渦電流損失が増加する。。そのため十分な密度が得られず、優れた直流特性を得ることができない。   As described above, a powder magnetic core made of amorphous soft magnetic alloy powder has a problem in terms of mass production due to its poor formability compared to other metals despite its excellent magnetic properties. In addition, since the powder itself is hard, if the pressure at the time of molding is increased, the insulating coating is broken (broken), and eddy current loss increases. . Therefore, sufficient density cannot be obtained, and excellent direct current characteristics cannot be obtained.

本発明の目的は、上記問題点を解決するために、非晶質軟磁性合金粉末とガラス粉末と結着性樹脂を混合した圧粉磁心に、有機絶縁剤、例えばアクリル系樹脂を真空含浸することで、鉄損を低減させ低損失な圧粉磁心とその製造方法を提供することである。   In order to solve the above problems, an object of the present invention is to impregnate an organic insulating agent, for example, an acrylic resin, into a powder magnetic core obtained by mixing amorphous soft magnetic alloy powder, glass powder, and a binder resin. Thus, it is to provide a dust core having a low loss by reducing iron loss and a manufacturing method thereof.

上記の目的をふまえ、本発明の圧粉磁心は、非晶質軟磁性合金粉末と、軟化点が前記非晶質軟磁性合金粉末の結晶化温度より低いガラス粉末と、結着性樹脂を混合し、これらの混合物を加圧成形して成形体を作製し、その成形体を前記非晶質軟磁性合金粉末の結晶化温度より低い温度で焼鈍処理してなる圧粉磁心において、前記焼鈍処理した成形体に有機絶縁剤を含浸してあることを特徴とする。   Based on the above object, the dust core of the present invention comprises an amorphous soft magnetic alloy powder, a glass powder having a softening point lower than the crystallization temperature of the amorphous soft magnetic alloy powder, and a binder resin. Then, the mixture is pressure-molded to produce a molded body, and the molded body is annealed at a temperature lower than the crystallization temperature of the amorphous soft magnetic alloy powder. The molded body is impregnated with an organic insulating agent.

以上のような本発明によれば、焼鈍処理により作製された圧粉磁心に有機絶縁剤で真空含浸すると、この有機絶縁剤により焼鈍時にできた、空隙を塞ぐことができる。また、有機絶縁体を使用することにより、圧粉磁心の導電率を下げ渦電流損失の増加の影響を低減させることができる。また、焼鈍処理後に有機絶縁剤を含浸させるため、有機絶縁剤は高温で加熱させられないため、熱による絶縁剤の破壊や焼失による渦電流損失の低下は起こらず、鉄損の増加を防止することができる。   According to the present invention as described above, when the powder magnetic core produced by the annealing process is vacuum impregnated with the organic insulating agent, the void formed at the time of annealing can be closed with the organic insulating agent. In addition, by using an organic insulator, the conductivity of the dust core can be lowered and the effect of an increase in eddy current loss can be reduced. In addition, since the organic insulating agent is impregnated after the annealing treatment, the organic insulating agent cannot be heated at a high temperature. Therefore, the insulating agent is not destroyed by heat and the eddy current loss is not reduced by the burning, thus preventing an increase in iron loss. be able to.

本発明の他の態様は、有機絶縁剤は、アクリル系樹脂であることを特徴とする。この態様によれば、有機絶縁剤として、アクリル系樹脂を使用すると、無機絶縁剤の無水ガラスなどを使用した場合に比べて、含浸処理時の封孔効果への信頼性及び生産性が向上する。アクリル系樹脂は焼鈍時にできた空隙を塞いだ後に、重合することにより強固なコア間接合を実現することができる。このため、アクリル系樹脂を使用することで、さらに丈夫な絶縁層が形成され渦電流損失が低減でき、それにより鉄損を低減することができる。   Another aspect of the present invention is characterized in that the organic insulating agent is an acrylic resin. According to this aspect, when an acrylic resin is used as the organic insulating agent, the reliability and productivity with respect to the sealing effect during the impregnation treatment are improved as compared with the case where anhydrous glass of an inorganic insulating agent is used. . Acrylic resin can achieve strong core-to-core bonding by closing the voids formed during annealing and then polymerizing. For this reason, by using an acrylic resin, a stronger insulating layer can be formed and eddy current loss can be reduced, thereby reducing iron loss.

なお、前記の様な、非晶質軟磁性合金粉末と、軟化点が前記非晶質軟磁性合金粉末の結晶化温度より低いガラス粉末と、結着性樹脂を混合し、加圧成形し、焼鈍処理した後、この成形体を有機絶縁剤で含浸処理することによって、低損失な圧粉磁心を得る製造方法も本発明の一態様である。   The amorphous soft magnetic alloy powder, the glass powder having a softening point lower than the crystallization temperature of the amorphous soft magnetic alloy powder, and a binder resin are mixed and pressed. A manufacturing method for obtaining a low-loss powder magnetic core by impregnating the molded body with an organic insulating agent after annealing is also an embodiment of the present invention.

以上のような本発明によれば、アクリル系樹脂などの有機絶縁剤が焼鈍時にできた空隙を塞ぐように絶縁層を形成することにより、低損失な圧粉磁心とその製造方法を提供できる。   According to the present invention as described above, a low-loss powder magnetic core and a method for manufacturing the same can be provided by forming an insulating layer so as to block an air gap formed by an organic insulating agent such as an acrylic resin during annealing.

本実施形態の圧粉磁心の製造方法は、次のような各工程を有する。
(1)Fe−Si−B−Cr−CのFe系非晶質軟磁性合金粉末とガラス粉末と結着性樹脂を混合する混合工程。
(2)非晶質軟磁性合金粉末とガラス粉末と結着性樹脂の混合物に圧力を加えて成形体を作製する成形工程。
(3)成形工程で得られた成形体を非晶質軟磁性合金粉末の結晶化温度より低い温度で焼鈍処理する焼鈍工程。
(4)焼純工程で得られた焼純した成形体に、有機絶縁剤であるアクリル系樹脂で含浸させる含浸工程。
The manufacturing method of the powder magnetic core of the present embodiment includes the following steps.
(1) A mixing step of mixing Fe-type amorphous soft magnetic alloy powder of Fe—Si—B—Cr—C, glass powder, and binder resin.
(2) A molding step in which a compact is produced by applying pressure to a mixture of amorphous soft magnetic alloy powder, glass powder and binder resin.
(3) An annealing process in which the compact obtained in the molding process is annealed at a temperature lower than the crystallization temperature of the amorphous soft magnetic alloy powder.
(4) An impregnation step of impregnating the tempered molded body obtained in the tempering step with an acrylic resin that is an organic insulating agent.

以下、各工程を具体的に説明する。
(1)混合工程
本実施形態の混合工程では、Fe−Si−B−Cr−C系のFe系非晶質軟磁性合金粉末にシランカップリング剤を1wt%混合して、24時間室温で乾燥する。その後、ガラス粉末0.5wt%を混合機を使用して24時間混合する。さらに、結着性樹脂として、結着剤として平均粒径が5μmのポリエチレン粉末もしくはポリプロピレン粉末などを2.0wt%混合させる。
Hereafter, each process is demonstrated concretely.
(1) Mixing step In the mixing step of this embodiment, 1 wt% of a silane coupling agent is mixed with Fe-Si-B-Cr-C Fe-based amorphous soft magnetic alloy powder and dried at room temperature for 24 hours. To do. Thereafter, 0.5 wt% of the glass powder is mixed for 24 hours using a mixer. Further, as a binder resin, 2.0 wt% of polyethylene powder or polypropylene powder having an average particle diameter of 5 μm as a binder is mixed.

本実施形態の混合工程でシランカップリング剤を混合するのは、当該非晶質軟磁性合金粉末の表面に耐熱性保護皮膜を形成するためであり、当該カップリング剤を使用しない手法よりも、渦電流損失を格段に低減させ、鉄損を低下させることができる。   The reason why the silane coupling agent is mixed in the mixing step of the present embodiment is to form a heat-resistant protective film on the surface of the amorphous soft magnetic alloy powder, rather than a technique that does not use the coupling agent. Eddy current loss can be significantly reduced, and iron loss can be reduced.

(2)成形工程
本実施形態の成形工程では、非晶質軟磁性合金粉末とガラス粉末と結着性樹脂の混合物に、ステアリン酸0.2wtを混合し、1700MPの成形圧力で、外径16mm、内径8mm、高さ5mmの圧粉磁心を作製する。ここで、加圧乾燥された結着性樹脂の被膜は、非晶質軟磁性合金粉末の表面に残り、バインダーとして作用する。
(2) Molding process In the molding process of the present embodiment, 0.2 wt. Of stearic acid is mixed into a mixture of amorphous soft magnetic alloy powder, glass powder and binder resin, and the outer diameter is 16 mm at a molding pressure of 1700 MP. A dust core having an inner diameter of 8 mm and a height of 5 mm is produced. Here, the pressure-dried binder resin film remains on the surface of the amorphous soft magnetic alloy powder and acts as a binder.

また、潤滑剤としてステアリン酸の金属塩であるステアリン酸亜鉛を使用した。   Further, zinc stearate, which is a metal salt of stearic acid, was used as a lubricant.

(3)焼鈍工程
焼鈍工程では、前記成形体に対して、非晶質軟磁性合金粉末の結晶化温度以下、例えば480℃以下で焼鈍処理を行うことで圧粉磁心を作製する。ここで、非晶質軟磁性合金粉末の結晶化温度以下で熱処理を行うのは、ある程度の圧環強度を維持するためである。一方で、焼鈍温度を上げ過ぎると絶縁性能の劣化から磁気特性が劣化し、特に渦電流損失が大きく増加してしまうことで、鉄損が増加してしまうが、このような不都合を抑制するためでもある。
(3) Annealing process In an annealing process, a powder magnetic core is produced by performing the annealing process below the crystallization temperature of an amorphous soft magnetic alloy powder, for example, 480 degrees C or less with respect to the said molded object. Here, the reason why the heat treatment is performed below the crystallization temperature of the amorphous soft magnetic alloy powder is to maintain a certain degree of crushing strength. On the other hand, if the annealing temperature is raised too much, the magnetic properties deteriorate due to the deterioration of the insulation performance, and especially the eddy current loss increases greatly, which increases the iron loss. But there is.

(4)含浸工程
含浸工程では、前記焼鈍体に対して、有機絶縁剤であるアクリル系結着樹脂のビステックスV101(商標:マツモトファインケミカル株式会社販売)を使用して真空中で含浸を行い、その後170℃で加熱乾燥した。真空中で含浸を行うことにより、内部の空気を追い出し隅々までアクリル系樹脂を行き渡らせることによって、効率よく圧粉磁心の渦電流損失を低減することができる。
(4) Impregnation step In the impregnation step, the annealed body is impregnated in vacuum using an acrylic binder resin Vistex V101 (trademark: sold by Matsumoto Fine Chemical Co., Ltd.) which is an organic insulating agent. Thereafter, it was dried by heating at 170 ° C. By performing the impregnation in a vacuum, the internal air is driven out and the acrylic resin is spread to every corner, so that the eddy current loss of the dust core can be efficiently reduced.

次に、本実施形態に係る複数の実施例の特性比較試験について、図1及び表1を参照して、以下に説明する。   Next, characteristic comparison tests of a plurality of examples according to the present embodiment will be described below with reference to FIG.

[1.測定項目]
特性比較試験における測定項目として、鉄損を次のような手法により測定した。鉄損については、各圧粉磁心に1次巻線及び2次巻線を施し、磁気計測機器であるBHアナライザ(岩通計測株式会社:SY−8232)を用いて、最大磁束密度Bm=0.1Tの条件下で鉄損を算出した。この算出は、鉄損の周波数曲線を次の(1)〜(3)式で最小2乗法により、ヒステリシス損係数、渦電流損失係数を算出することで行った。
[1. Measurement item]
As a measurement item in the characteristic comparison test, iron loss was measured by the following method. For iron loss, each powder magnetic core is provided with a primary winding and a secondary winding, and a maximum magnetic flux density Bm = 0 by using a BH analyzer (Iwatsu Measurement Co., Ltd .: SY-8232) as a magnetic measurement device. The iron loss was calculated under the condition of 1T. This calculation was performed by calculating the hysteresis loss coefficient and the eddy current loss coefficient of the iron loss frequency curve by the following method (1) to (3) by the least square method.

Pc=Kh×f+Ke×f2・・・(1)
Ph=Kh×f・・・(2)
Pe=Ke×f2・・・(3)
Pc:鉄損
Kh:ヒステリシス損係数
Ke:渦電流損係数
f:周波数
Ph:ヒステリシス損失
Pe:渦電流損失
Pc = Kh × f + Ke × f2 (1)
Ph = Kh × f (2)
Pe = Ke × f2 (3)
Pc: Iron loss Kh: Hysteresis loss coefficient Ke: Eddy current loss coefficient f: Frequency Ph: Hysteresis loss Pe: Eddy current loss

[2.特性比較結果]
特性比較で使用する試料は、下記のように作製した。まず、平均粒径が45μmのFe−Si−B−Cr−CのFe系非晶質軟磁性合金粉末により、鉄損が異なる4種類の試料(実施例1〜4)の圧粉磁心を作製した。この作製方法は、前記本実施形態の圧粉磁心の製造方法の(1)〜(4)に記載の通りである。
[2. Characteristics comparison result]
The sample used for the characteristic comparison was prepared as follows. First, dust cores of four types of samples (Examples 1 to 4) having different iron losses were prepared from Fe-Si-B-Cr-C Fe-based amorphous soft magnetic alloy powder having an average particle size of 45 μm. did. This manufacturing method is as described in (1) to (4) of the manufacturing method of the dust core of the present embodiment.

この実施例1〜4の圧粉磁心を含浸処理する前の鉄損を計測した後に、アクリル系含浸剤であるビステックスV101を使用して真空中で含浸を行い、その後170℃で加熱乾燥し、その後各磁心についての鉄損の計測を行った。   After measuring the iron loss before impregnating the dust cores of Examples 1 to 4, impregnation was performed in vacuum using Vistex V101, which is an acrylic impregnating agent, and then heat drying at 170 ° C. Then, the iron loss of each magnetic core was measured.

表1は、実施例1〜4について、含浸処理の前後での鉄損の関係について示した表である。また、図1は、含浸処理の前後での鉄損の関係を示したグラフである。

Figure 2010027871
Table 1 is a table showing the relationship between the iron loss before and after the impregnation treatment in Examples 1 to 4. FIG. 1 is a graph showing the relationship between iron loss before and after the impregnation treatment.
Figure 2010027871

表1から判るように、実施例1〜4は、それぞれ有機絶縁剤であるアクリル結着樹脂のビステックスV101を使用して、真空中で含浸処理を行うことにより鉄損が減少する。また、図1からは、含浸処理を行うことにより、減少できる鉄損の割合は、含浸前の鉄損の大小にかかわらず、ほぼ一定で約10パーセントの割合で減少することが判る。   As can be seen from Table 1, in Examples 1 to 4, iron loss is reduced by performing impregnation treatment in vacuum using an acrylic binder resin Vistex V101, which is an organic insulating agent. Further, it can be seen from FIG. 1 that the ratio of the iron loss that can be reduced by performing the impregnation treatment is substantially constant and decreases at a rate of about 10 percent regardless of the magnitude of the iron loss before the impregnation.

本実施形態における含浸処理の前後での磁心の最大磁束密度100mTにおける鉄損の周波数特性を示したグラフ。The graph which showed the frequency characteristic of the iron loss in the maximum magnetic flux density of 100 mT of the magnetic core before and after the impregnation process in this embodiment.

Claims (4)

非晶質軟磁性合金粉末と、軟化点が前記非晶質軟磁性合金粉末の結晶化温度より低いガラス粉末と、結着性樹脂を混合し、これらの混合物を加圧成形して成形体を作製し、その成形体を前記非晶質軟磁性合金粉末の結晶化温度より低い温度で焼鈍処理してなる圧粉磁心において、
前記焼鈍処理した成形体に有機絶縁剤を含浸したことを特徴とする圧粉磁心。
An amorphous soft magnetic alloy powder, a glass powder having a softening point lower than the crystallization temperature of the amorphous soft magnetic alloy powder, and a binder resin are mixed, and the mixture is pressed to form a compact. In the dust core formed by annealing and annealing the molded body at a temperature lower than the crystallization temperature of the amorphous soft magnetic alloy powder,
A dust core, wherein the annealed molded body is impregnated with an organic insulating agent.
前記有機絶縁剤は、アクリル系樹脂であることを特徴とする請求項1に記載の圧粉磁心。   The dust core according to claim 1, wherein the organic insulating agent is an acrylic resin. 非晶質軟磁性合金粉末と、軟化点が前記非晶質軟磁性合金粉末の結晶化温度より低いガラス粉末と結着性樹脂を混合する混合工程と、
前記混合工程で得られた混合物を加圧成形し、成形体を作製する成形工程と、
成形工程で得られた成形体を、前記非晶質軟磁性合金粉末の結晶化温度より低い温度で焼鈍処理する焼鈍工程と、
前記焼鈍した成形体に、有機絶縁剤を含浸する含浸工程を有することを特徴とする圧粉磁心の製造方法。
A mixing step of mixing an amorphous soft magnetic alloy powder, a glass powder having a softening point lower than the crystallization temperature of the amorphous soft magnetic alloy powder, and a binder resin;
A molding step of pressure-molding the mixture obtained in the mixing step to produce a molded body;
An annealing step of annealing the molded body obtained in the molding step at a temperature lower than the crystallization temperature of the amorphous soft magnetic alloy powder,
A method for producing a powder magnetic core, comprising an impregnation step of impregnating the annealed molded body with an organic insulating agent.
前記含浸工程において、前記焼鈍した成形体に、有機絶縁剤であるアクリル系樹脂を含浸することを特徴とする請求項3に記載の圧粉磁心の製造方法。   The method of manufacturing a dust core according to claim 3, wherein, in the impregnation step, the annealed molded body is impregnated with an acrylic resin that is an organic insulating agent.
JP2008187791A 2008-07-18 2008-07-18 Dust core and manufacturing method thereof Pending JP2010027871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008187791A JP2010027871A (en) 2008-07-18 2008-07-18 Dust core and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008187791A JP2010027871A (en) 2008-07-18 2008-07-18 Dust core and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2010027871A true JP2010027871A (en) 2010-02-04

Family

ID=41733407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008187791A Pending JP2010027871A (en) 2008-07-18 2008-07-18 Dust core and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2010027871A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095496A1 (en) * 2009-02-20 2010-08-26 アルプス・グリーンデバイス株式会社 Compressed powder core
CN103500646A (en) * 2013-09-29 2014-01-08 青岛云路新能源科技有限公司 Method for manufacturing modified silicon iron boron soft magnetic powder core with magnetic conductivity of 26
CN103500645A (en) * 2013-09-29 2014-01-08 青岛云路新能源科技有限公司 Method for manufacturing modified silicon iron boron soft magnetic powder core with magnetic conductivity of 50
CN103500643A (en) * 2013-09-29 2014-01-08 青岛云路新能源科技有限公司 Method for modified silicon iron boron soft magnetic powder core with magnetic conductivity of 90
JP2014120723A (en) * 2012-12-19 2014-06-30 Tamura Seisakusho Co Ltd Powder magnetic core and manufacturing method thereof
JP2016012715A (en) * 2014-06-06 2016-01-21 アルプス・グリーンデバイス株式会社 Powder compact core, manufacturing method thereof, electronic/electric part having powder compact core, and electronic/electric device with electronic/electric part mounted thereon

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095496A1 (en) * 2009-02-20 2010-08-26 アルプス・グリーンデバイス株式会社 Compressed powder core
JP2014120723A (en) * 2012-12-19 2014-06-30 Tamura Seisakusho Co Ltd Powder magnetic core and manufacturing method thereof
CN103500646A (en) * 2013-09-29 2014-01-08 青岛云路新能源科技有限公司 Method for manufacturing modified silicon iron boron soft magnetic powder core with magnetic conductivity of 26
CN103500645A (en) * 2013-09-29 2014-01-08 青岛云路新能源科技有限公司 Method for manufacturing modified silicon iron boron soft magnetic powder core with magnetic conductivity of 50
CN103500643A (en) * 2013-09-29 2014-01-08 青岛云路新能源科技有限公司 Method for modified silicon iron boron soft magnetic powder core with magnetic conductivity of 90
JP2016012715A (en) * 2014-06-06 2016-01-21 アルプス・グリーンデバイス株式会社 Powder compact core, manufacturing method thereof, electronic/electric part having powder compact core, and electronic/electric device with electronic/electric part mounted thereon

Similar Documents

Publication Publication Date Title
JP5501970B2 (en) Powder magnetic core and manufacturing method thereof
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
KR101527268B1 (en) Reactor and method for producing same
JP5372481B2 (en) Powder magnetic core and manufacturing method thereof
JP5208881B2 (en) Powder magnetic core and manufacturing method thereof
US8797137B2 (en) Soft magnetic powder, granulated powder, dust core, electromagnetic component, and method for producing dust core
TWI578338B (en) Powder core and its manufacturing method
KR101385756B1 (en) Manufacturing methods of fe-based amorphous metallic powders and soft magnetic cores
JP5715614B2 (en) Powder magnetic core and manufacturing method thereof
JP2009158652A (en) Compound magnetic material and manufacturing method thereof
JP5053195B2 (en) Powder magnetic core and manufacturing method thereof
JP2010027871A (en) Dust core and manufacturing method thereof
JP2003217919A (en) Dust core and high-frequency reactor using the same
JP4908546B2 (en) Powder magnetic core and manufacturing method thereof
JP2008172257A (en) Method for manufacturing insulating soft magnetic metal powder molding
JP2010245460A (en) Dust core, and method of manufacturing the same
JP2011243830A (en) Powder magnetic core and method for manufacturing the same
JP5023041B2 (en) Powder magnetic core and manufacturing method thereof
JP2014175580A (en) Dust core, coil component using the same and method of producing dust core
JP5150535B2 (en) Powder magnetic core and manufacturing method thereof
JP2000232014A (en) Manufacture of composite magnetic material
JP4723609B2 (en) Dust core, dust core manufacturing method, choke coil and manufacturing method thereof
JP2008140929A (en) Powder magnetic core and its manufacturing method
JP6325790B2 (en) Powder magnetic core and manufacturing method thereof
JP7254449B2 (en) Soft magnetic materials, dust cores, and inductors