JP2010024649A - Seismic strengthening structure and seismic strengthening method for double floor - Google Patents

Seismic strengthening structure and seismic strengthening method for double floor Download PDF

Info

Publication number
JP2010024649A
JP2010024649A JP2008184709A JP2008184709A JP2010024649A JP 2010024649 A JP2010024649 A JP 2010024649A JP 2008184709 A JP2008184709 A JP 2008184709A JP 2008184709 A JP2008184709 A JP 2008184709A JP 2010024649 A JP2010024649 A JP 2010024649A
Authority
JP
Japan
Prior art keywords
floor
double
seismic reinforcement
seismic
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008184709A
Other languages
Japanese (ja)
Inventor
Tatsuo Takahashi
辰雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKI KANKYO TECHNOLOGY KK
Lapis Semiconductor Co Ltd
Original Assignee
OKI KANKYO TECHNOLOGY KK
Oki Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKI KANKYO TECHNOLOGY KK, Oki Semiconductor Co Ltd filed Critical OKI KANKYO TECHNOLOGY KK
Priority to JP2008184709A priority Critical patent/JP2010024649A/en
Priority to US12/458,536 priority patent/US20100011680A1/en
Publication of JP2010024649A publication Critical patent/JP2010024649A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/17Floor structures partly formed in situ
    • E04B5/23Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated
    • E04B5/29Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated the prefabricated parts of the beams consisting wholly of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/43Floor structures of extraordinary design; Features relating to the elastic stability; Floor structures specially designed for resting on columns only, e.g. mushroom floors
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/024Sectional false floors, e.g. computer floors
    • E04F15/02447Supporting structures
    • E04F15/02458Framework supporting the panels
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Floor Finish (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively enhance earthquake resisting performance of a double floor. <P>SOLUTION: A steel-frame support 100 is installed on the floor joists 70 and 72 of the double floor 20, which is composed of a concrete floor of the building 10 and a free-access panel fixed onto the floor joists (beams) 70 and 72 forming a space in an upper section, so as to enhance rigidity of a floor section. Thus, a natural frequency of the floor section is increased, and the amplification of the shaking of the free-access panel constituting a floor surface is prevented or restrained from being caused by resonance, so that the earthquake resisting performance can be enhanced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、二重床の耐震補強構造及び二重床の耐震補強方法に関する。   The present invention relates to a seismic reinforcement structure for a double floor and a seismic reinforcement method for a double floor.

縦型拡散炉などが設置された半導体製造用クリーンルーム等の精密環境施設では、躯体床(床版)の上に所定床高でフリーアクセスフロアを設けた二重床構造となっていることが多い。   Precision environment facilities such as semiconductor manufacturing clean rooms with vertical diffusion furnaces, etc., often have a double floor structure in which a free access floor is provided at a predetermined floor height on a frame floor (floor slab). .

このような二重床構造において、フリーアクセスフロアの固定を強化することで二重床の耐震性能を向上させる方法が提案されている(例えば、特許文献1、特許文献2を参照)。
特開2001−107547号公報 特開平10−299146号公報
In such a double floor structure, a method for improving the seismic performance of the double floor by reinforcing fixation of the free access floor has been proposed (see, for example, Patent Document 1 and Patent Document 2).
JP 2001-107547 A JP-A-10-299146

しかし、二重床の耐震性能を効果的に向上させることが求められている。   However, it is required to effectively improve the seismic performance of the double floor.

本発明は、上記課題を解決すべく成されたもので、二重床の耐震性能を効果的に向上させることが目的である。   The present invention has been made to solve the above-described problems, and an object thereof is to effectively improve the seismic performance of a double floor.

請求項1に記載の二重床の耐震補強構造は、建物の床版の上に配置された脚体と、前記脚体に支持され前記床版との間に空間を形成する床部と、耐震補強領域の前記床版に設けられ耐震補強領域の前記床部に固定された支柱と、を備える。   The seismic reinforcement structure for a double floor according to claim 1, a leg disposed on a floor slab of a building, and a floor portion that is supported by the leg and forms a space between the floor slab, And a column provided on the floor slab of the seismic reinforcement region and fixed to the floor of the seismic reinforcement region.

したがって、地震等において、耐震補強領域の床部と建物とが共振による耐震補強領域の床部の揺れの増幅が防止又は抑制される。つまり、二重床の耐震性能が効果的に向上する。   Therefore, in an earthquake or the like, amplification of shaking of the floor portion of the seismic strengthening region due to resonance between the floor portion of the seismic strengthening region and the building is prevented or suppressed. That is, the seismic performance of the double floor is effectively improved.

また、床部における耐震性能の向上が望まれる耐震補強領域の床下にのみ支柱を設け、選択的に耐震補強を行なうことが可能である。   In addition, it is possible to selectively perform seismic reinforcement by providing a post only under the floor of the seismic reinforcement area where improvement of seismic performance in the floor is desired.

請求項2に記載の二重床の耐震補強構造は、前記支柱が、前記床版と前記床部とに接着剤によって接合されている。   In the seismic reinforcement structure for a double floor according to claim 2, the support column is joined to the floor slab and the floor portion by an adhesive.

したがって、支柱を床版と床部とに接合する際の振動が防止又は抑制される。   Therefore, the vibration at the time of joining a support | pillar to a floor slab and a floor part is prevented or suppressed.

請求項3に記載の二重床の耐震補強構造は、前記床部が、前記脚体に支持された梁と、前記梁の上に固定され床面を構成する床板と、を有し、前記支柱が、前記梁に固定されている。   The seismic reinforcement structure for a double floor according to claim 3, wherein the floor portion includes a beam supported by the leg body, and a floor plate fixed on the beam and constituting a floor surface, A column is fixed to the beam.

したがって、床面を構成する床板は梁の上に固定されているので、床板の着脱が容易である。よって、例えば、支柱を床下に設ける補強工事が容易である。また、支柱を設けた後であっても、床板の交換が容易である。   Therefore, since the floor board which comprises a floor surface is being fixed on the beam, attachment / detachment of a floor board is easy. Therefore, for example, the reinforcement work for providing the column under the floor is easy. Further, even after the support is provided, the floor board can be easily replaced.

請求項4に記載の二重床の耐震補強構造は、前記空間は、空気が循環するクリーンルームの床下空間である。     The seismic reinforcement structure for a double floor according to claim 4 is an underfloor space of a clean room in which the air circulates.

したがって、クリーンルームに設置する半導体製造装置などの嫌震装置の地震時に受けるダメージが軽減される。   Therefore, the damage received during an earthquake of a seismic isolation device such as a semiconductor manufacturing apparatus installed in a clean room is reduced.

請求項5に記載の二重床の耐震補強方法は、建建物の床版の上に配置された脚体に支持された床部が前記床版との間に空間を形成した二重床の耐震補強方法であって、前記床版に支柱を設け、前記支柱を耐震補強領域の前記床部に固定する。   The seismic reinforcement method for a double floor according to claim 5 is a double floor in which a floor portion supported by a leg disposed on a floor slab of a building forms a space between the floor slab. In the seismic reinforcement method, a column is provided on the floor slab, and the column is fixed to the floor portion in the earthquake resistance reinforcement region.

したがって、既存の二重床に支柱を設けることで、耐震補強領域の床部と建物との共振が防止又は抑制され、その結果、効果的に二重床の耐震補強領域の耐震性能が向上する。   Therefore, by providing the support on the existing double floor, resonance between the floor portion of the seismic reinforcement region and the building is prevented or suppressed, and as a result, the seismic performance of the seismic reinforcement region of the double floor is effectively improved. .

また、床部における耐震性能の向上が望まれる耐震補強領域の床下にのみ支柱を設け、選択的に耐震補強を行なうことが可能である。   In addition, it is possible to selectively perform seismic reinforcement by providing a post only under the floor of the seismic reinforcement area where improvement of seismic performance in the floor is desired.

請求項6に記載の二重床の耐震補強方法は、前記支柱を前記床版と前記床部とに接着剤で接合する。   The double floor seismic reinforcement method according to claim 6 joins the support column to the floor slab and the floor portion with an adhesive.

したがって、支柱を床版と床部とに接合する際の振動が防止又は抑制されるので、例えば、床部に振動を嫌う嫌振装置を設置した状態であっても、或いは、設置した装置が稼動中であっても、支柱を設け耐震補強を行なうことが可能となる。   Therefore, since vibration at the time of joining the column to the floor slab and the floor is prevented or suppressed, for example, even when the vibration isolator that dislikes vibration is installed on the floor, or the installed device is Even during operation, it is possible to provide a column and perform seismic reinforcement.

請求項7に記載の二重床の耐震補強方法は、前記床部が、前記脚体に支持された梁と、前記梁の上に固定され床面を構成する床板と、を有し、前記支柱を、前記梁に固定する。   The seismic reinforcement method for a double floor according to claim 7, wherein the floor portion includes a beam supported by the leg body, and a floor plate which is fixed on the beam and forms a floor surface, A column is fixed to the beam.

したがって、床面を構成する床板は梁の上に固定されているので、床板の着脱が容易である。よって、例えば、支柱を床下に設ける補強工事が容易である。また、支柱を設けた後であっても、床板の交換が容易である。   Therefore, since the floor board which comprises a floor surface is being fixed on the beam, attachment / detachment of a floor board is easy. Therefore, for example, the reinforcement work for providing the column under the floor is easy. Further, even after the support is provided, the floor board can be easily replaced.

請求項8に記載の二重床の耐震補強方法は、前記空間は、空気が循環するクリーンルームの床下空間である。     The double floor seismic reinforcement method according to claim 8 is an underfloor space of a clean room in which the air circulates.

したがって、クリーンルームに設置する半導体製造装置などの嫌震装置の地震時に受けるダメージが軽減される。   Therefore, the damage received during an earthquake of a seismic isolation device such as a semiconductor manufacturing apparatus installed in a clean room is reduced.

請求項1に記載の二重床の耐震補強構造によれば、耐震補強領域の床部と建物との共振による耐震補強領域の床部の揺れの増幅を防止又は抑制し、二重床の耐震性能を効果的に向上させることができる。   According to the seismic reinforcement structure of the double floor according to claim 1, the amplification of the vibration of the floor part of the seismic strengthening area due to resonance between the floor part of the seismic strengthening area and the building is prevented or suppressed, and the seismic resistance of the double floor The performance can be improved effectively.

請求項2に記載の二重床の耐震補強構造によれば、支柱を床版と床部とに接合する際の振動を防止又は抑制することができる。   According to the seismic reinforcement structure for a double floor according to claim 2, it is possible to prevent or suppress vibration when the column is joined to the floor slab and the floor portion.

請求項3に記載の二重床の耐震補強構造によれば、床面を構成する床板は梁の上に固定されているので、例えば、支柱を設けた後であっても、床板を容易に交換することができる。   According to the seismic reinforcement structure for a double floor according to claim 3, since the floor board constituting the floor surface is fixed on the beam, for example, even after the support is provided, the floor board can be easily Can be exchanged.

請求項4に記載の二重床の耐震補強構造によれば、クリーンルームに設置する半導体製造装置などの嫌震装置が地震時に受けるダメージを軽減させることができる。   According to the double-floor seismic reinforcement structure according to claim 4, it is possible to reduce the damage that the seismic device such as a semiconductor manufacturing apparatus installed in a clean room receives during an earthquake.

請求項5に記載の二重床の耐震補強方法によれば、既存の二重床に支柱を設けることで、耐震補強領域の床部と建物との共振による耐耐震補強領域の床部の揺れの増幅を防止又は抑制し、二重床の耐震性能を効果的に向上させることができる。   According to the seismic reinforcement method of a double floor according to claim 5, by providing a support on an existing double floor, the vibration of the floor of the seismic reinforcement region due to resonance between the floor of the seismic reinforcement region and the building Can be prevented or suppressed, and the seismic performance of the double floor can be effectively improved.

請求項6に記載の二重床の耐震補強方法によれば、支柱を床版と床部とに接合する際の振動を防止又は抑制しつつ、二重床の耐震補強を行なうことができる。   According to the seismic reinforcement method for a double floor according to the sixth aspect, the seismic reinforcement of the double floor can be performed while preventing or suppressing vibrations when the support column is joined to the floor slab and the floor portion.

請求項7に記載の二重床の耐震補強方法によれば、床面を構成する床板を容易に着脱することができる。   According to the seismic reinforcement method for a double floor according to claim 7, the floor board constituting the floor surface can be easily attached and detached.

請求項8に記載の二重床の耐震補強方法によれば、クリーンルームに設置する半導体製造装置などの嫌震装置が地震時に受けるダメージを軽減させることができる   According to the seismic reinforcement method for a double floor according to claim 8, it is possible to reduce the damage that seismic devices such as semiconductor manufacturing equipment installed in a clean room receive during an earthquake.

以下、図1〜図4を用いて、本発明における二重床の耐震補強構造の実施形態の一例を詳細に説明する。   Hereinafter, an example of an embodiment of the double floor seismic reinforcement structure according to the present invention will be described in detail with reference to FIGS.

図1は、本発明の二重床の耐震補強構造が適用されて耐震補強された耐震補強領域の二重床を示す部分断面斜視図である。図2は、本発明の耐震構造が適用された二重床の平面図である。図3(A)は、二重床を耐震補強する支柱としての鉄骨支柱を示す側面図であり、(B)は(A)をF方向から見た側面図である。また、図4(A)は、図3(A)のA−A線矢視図であり、(B)は(A)のB−B線矢視図である(ボルトは図示していない)。なお、建物の二階部分に本発明の二重床の耐震補強構造が適用されている。   FIG. 1 is a partial cross-sectional perspective view showing a double floor in a seismic reinforcement region to which the double floor seismic reinforcement structure of the present invention is applied to be seismically reinforced. FIG. 2 is a plan view of a double floor to which the seismic structure of the present invention is applied. FIG. 3A is a side view showing a steel column as a column for seismic reinforcement of a double floor, and FIG. 3B is a side view of FIG. 4A is a view taken along the line AA in FIG. 3A, and FIG. 4B is a view taken along the line BB in FIG. 3A (bolts are not shown). . The double-floor seismic reinforcement structure of the present invention is applied to the second floor portion of the building.

図1と図2とに示すように、建物10は、半導体の製造施設とされている。建物10の二階部分は、空気清浄度が確保されたクリーンルームとなっている。また、建物10の二階部分は、本発明の耐震補強構造によって耐震補強がなされた二重床(フリーアクセスフロア)20となっている。二重床20は、躯体床(床スラブ)であるコンクリート製のフロア床(床版)30(図1参照)との間に空間40を形成する床部50と、床版30の上に所定の間隔で配置され床部50を支持する支持脚80と、で構成されている。   As shown in FIGS. 1 and 2, the building 10 is a semiconductor manufacturing facility. The second floor portion of the building 10 is a clean room in which air cleanliness is ensured. In addition, the second floor portion of the building 10 is a double floor (free access floor) 20 that is seismically reinforced by the seismic reinforcement structure of the present invention. The double floor 20 has a floor 50 that forms a space 40 with a concrete floor (floor slab) 30 (see FIG. 1), which is a frame floor (floor slab), and a predetermined floor slab 30. And support legs 80 that are arranged at intervals of and support the floor 50.

床部50は、フロア床30(図1参照)の上方にY方向(南北方向)とX方向(東西方向)とに沿って格子状に設けられた根太(梁)70、72と、根太70、72の上に固定された二階部分の床面を構成するフリーアクセスパネル(床板)60と、で構成されている。なお、フロア床30とフリーアクセスパネル60(図1参照)との距離は、本実施形態では1.5mとされている。   The floor portion 50 includes joists (beams) 70 and 72 provided in a lattice shape along the Y direction (north-south direction) and the X direction (east-west direction) above the floor floor 30 (see FIG. 1). , 72 and a free access panel (floor board) 60 constituting the floor surface of the second floor portion fixed on the second floor portion. In addition, the distance of the floor floor 30 and the free access panel 60 (refer FIG. 1) is 1.5 m in this embodiment.

図1に示すように、根太70、72は鋼鉄等からなる断面略四角形の筒状とされている。また、フリーアクセスパネル60は、根太70、72の上に固定部材62によって固定されている。なお、本実施形態においては、フリーアクセスパネル60は、平面視において略正方向とされ、根太70と根太72とで構成される枠部分に二つ配置されている。   As shown in FIG. 1, the joists 70 and 72 are formed in a cylindrical shape having a substantially square cross section made of steel or the like. The free access panel 60 is fixed on the joists 70 and 72 by a fixing member 62. In the present embodiment, the two free access panels 60 are arranged in a substantially positive direction in a plan view, and two free access panels 60 are arranged in a frame portion composed of joists 70 and joists 72.

根太70、72は、フロア床30の上に設けられた円筒形の支持脚80で支持されている。支持脚80は、本実施形態においては約1.2m間隔で配置されている(図2のL1参照)。また、本実施形態では、支持脚80は、φ−89.1×2.3とされている。   The joists 70 and 72 are supported by cylindrical support legs 80 provided on the floor 30. In this embodiment, the support legs 80 are arranged at an interval of about 1.2 m (see L1 in FIG. 2). In the present embodiment, the support leg 80 has a diameter of φ-89.1 × 2.3.

支持脚80の下部は、縦リブ82が形成された固定プレート84によって固定されている。なお、固定プレート84はフロア床30にアンカーボルト86によって固定されている。一方、支持脚80の上部は、根太70の側壁にボルト固定された取付金具88に連結されている。   The lower portion of the support leg 80 is fixed by a fixing plate 84 on which vertical ribs 82 are formed. The fixing plate 84 is fixed to the floor floor 30 with anchor bolts 86. On the other hand, the upper part of the support leg 80 is connected to a mounting bracket 88 that is bolted to the side wall of the joist 70.

このように建物10の二階部分は、フロア床30の上に配置された各支持脚80によって根太70、72が支持され、この根太70、72の上に固定部材62によってフリーアクセスパネル60が固定された二重床20となっている。   In this way, in the second floor portion of the building 10, the joists 70, 72 are supported by the respective support legs 80 arranged on the floor 30, and the free access panel 60 is fixed on the joists 70, 72 by the fixing members 62. The double floor 20 is made.

なお、フリーアクセスパネル60には、床下と床上との間で空気が循環可能なように通気孔64が形成されている。なお、図1では、図が煩雑になるのを避けるため一部のみ通気孔64を図示しているが、実際には全てのフリーアクセスパネル60の全面に等間隔で通気孔64が形成されている。   The free access panel 60 has a vent hole 64 so that air can circulate between the floor and the floor. In FIG. 1, only a part of the vent holes 64 is shown in order to avoid complication of the drawing, but actually, the vent holes 64 are formed at equal intervals on the entire surface of all the free access panels 60. Yes.

この建物10の二階部分における二重床20のフリーアクセスパネル60の上には、嫌振装置としての縦型拡散炉(図示略)が設置されている。そして、縦型拡散炉装置の設置領域が図2に一点破線Rで示す領域とされ、この領域が耐震補強を行なう耐震補強領域Rとされている。   A vertical diffusion furnace (not shown) as a vibration isolator is installed on the free access panel 60 of the double floor 20 in the second floor portion of the building 10. And the installation area | region of a vertical diffusion furnace apparatus is made into the area | region shown with the dashed-dotted line R in FIG. 2, and this area | region is made into the earthquake-resistant reinforcement area | region R which performs earthquake-proof reinforcement.

つぎに、この耐震補強領域Rの耐震補強について説明する。   Next, the seismic reinforcement of the seismic reinforcement region R will be described.

図1に示すように、耐震補強領域R(図2参照)のフリーアクセスパネル60の下には、支柱としての鉄骨支柱100が設けられている。鉄骨支柱100はフロア床30と根太70、72とに接合されている(図2参照)。なお、鉄骨支柱100は、本実施形態においては、根太70、72の下に約2.4m間隔で配置されている(図2のL2参照)。   As shown in FIG. 1, a steel column 100 as a column is provided below the free access panel 60 in the seismic reinforcement region R (see FIG. 2). The steel column 100 is joined to the floor 30 and joists 70 and 72 (see FIG. 2). In this embodiment, the steel struts 100 are arranged under the joists 70 and 72 at an interval of about 2.4 m (see L2 in FIG. 2).

図1、図3、図4に示すように鉄骨支柱100は、水平断面が略H状の支柱部102を有し、この支柱部102の上部に上部プレート104が設けられ(図4(A))、下部に下部プレート106(図4(B))が設けられている(支柱部102、上部プレート104、下部プレート106は、一体となっている)。なお、本実施形態においては、鉄骨支柱100の支柱部102は、H−396×199×7×11とされている。   As shown in FIGS. 1, 3, and 4, the steel column 100 includes a column part 102 having a substantially H-shaped horizontal section, and an upper plate 104 is provided on the column part 102 (FIG. 4A). ), And a lower plate 106 (FIG. 4B) is provided in the lower portion (the column portion 102, the upper plate 104, and the lower plate 106 are integrated). In the present embodiment, the strut portion 102 of the steel strut 100 is H-396 × 199 × 7 × 11.

そして、図1と図3とに示すように、鉄骨支柱100の下部プレート106がフロア床30にアンカーボルト120にて固定されている。なお、下部プレート106とフロア床30との間にはエポキシ樹脂112が充填されている(下部プレート106とフロア床30との間にエポキシ樹脂(層)112が挟まれている)。   As shown in FIGS. 1 and 3, the lower plate 106 of the steel strut 100 is fixed to the floor floor 30 with anchor bolts 120. An epoxy resin 112 is filled between the lower plate 106 and the floor floor 30 (an epoxy resin (layer) 112 is sandwiched between the lower plate 106 and the floor floor 30).

また、根太70、72の側面にボルト接合されたL字状の取付金具130に、鉄骨支柱100の上部プレート104がボルト122によって固定されている。なお、図3(B)に示すように、根太70、72の側面と取付金具130との間にはエポキシ樹脂114が充填されている(根太70、72の側面と取付金具130との間にエポキシ樹脂(層)114)が挟まれている)。   Further, the upper plate 104 of the steel column 100 is fixed to the L-shaped mounting bracket 130 that is bolted to the side surfaces of the joists 70 and 72 with bolts 122. As shown in FIG. 3B, epoxy resin 114 is filled between the side surfaces of the joists 70 and 72 and the mounting bracket 130 (between the side surfaces of the joists 70 and 72 and the mounting bracket 130. An epoxy resin (layer) 114) is sandwiched).

鉄骨支柱100は上部プレート104と下部プレート106とがボルト固定されているので着脱が可能である。   The steel frame 100 can be attached and detached because the upper plate 104 and the lower plate 106 are bolted.

なお、鉄骨支柱100と、フロア床30及び根太70、72と、の接合(固定)は、どのような接合であってもよい。例えば、エポキシ樹脂等からなる接着剤で接合(固定)してもよい。   In addition, what kind of joining may be sufficient as joining (fixation) of the steel frame support | pillar 100, the floor floor 30, and the joists 70 and 72. For example, you may join (fix) with the adhesive agent which consists of an epoxy resin etc.

つぎに、本実施形態の作用及び効果について説明する。   Next, functions and effects of the present embodiment will be described.

図5と図6は、床部50の伝達関数による固有振動数を示している。そして、図5は鉄骨支柱100(図1、図3を参照)によって耐震補強されている耐震補強領域R(図2参照)の床部50の固有振動数が示され、図6は耐震補強されていない耐震補強領域外Kの床部50の固有振動数が示されている。   5 and 6 show the natural frequency of the floor 50 due to the transfer function. FIG. 5 shows the natural frequency of the floor 50 of the seismic reinforcement region R (see FIG. 2) that is seismically reinforced by the steel column 100 (see FIGS. 1 and 3), and FIG. 6 shows the seismic reinforcement. The natural frequency of the floor 50 outside the non-seismic reinforcement region is shown.

これら図5と図6から判るように、耐震補強領域外Kの床部50の固有振動数は約3.8Hzとなっているのに対して、耐震補強された耐震補強領域Rの床部50の固有振動数は23.3Hzとなっている。   As can be seen from FIGS. 5 and 6, the natural frequency of the floor 50 outside the seismic strengthening region K is about 3.8 Hz, whereas the floor 50 of the seismic strengthening region R subjected to seismic strengthening is about 3.8 Hz. The natural frequency of is 23.3 Hz.

ここで、図7のグラフは、過去の地震時における建物10の1階部分の正規加速度と振動数との関係から求められる応答スペクトルを示している。なお、図7(A)はY方向(南北方向)の応答スペクトルWYを示すグラフであり、図7(B)はX方向(南北方向)の応答スペクトルWXを示すグラフである。   Here, the graph of FIG. 7 has shown the response spectrum calculated | required from the relationship between the normal acceleration and vibration frequency of the 1st floor part of the building 10 at the time of the past earthquake. 7A is a graph showing the response spectrum WY in the Y direction (north-south direction), and FIG. 7B is a graph showing the response spectrum WX in the X direction (north-south direction).

このように、建物10の応答スペクトルWY,WXはいずれも、3Hz〜10Hzにピークがある。よって、耐震補強領域R(図2参照)の固有振動数である23.3Hz(図5参照)は、建物10の固有周波数(3Hz〜10Hz)よりも大幅に高くなっている。しかし、耐震補強されていない耐震補強領域外K(図2参照)の固有振動数である3.8Hz(図6参照)は建物10の固有周波数(3Hz〜10Hz)と一致している。   Thus, the response spectra WY and WX of the building 10 both have a peak at 3 Hz to 10 Hz. Therefore, the natural frequency of 23.3 Hz (see FIG. 5) of the seismic reinforcement region R (see FIG. 2) is significantly higher than the natural frequency (3 Hz to 10 Hz) of the building 10. However, the natural frequency 3.8 Hz (see FIG. 6) outside the seismic reinforcement region K (see FIG. 2) that is not seismically reinforced coincides with the natural frequency (3 Hz to 10 Hz) of the building 10.

図8(A)と図9(A)は建物10の応答加速度(推定)を示すグラフであり、図8(B)と図9(B)は建物10の応答変位(推定)を示すグラフである。なお、いずれのグラフ共、縦軸は建物10の地上からの高さとなっている。そして、高さ約5.8mが二階部分のフロア床30(図1、図3参照)の応答加速度と応答変位を示している。また、図中の一点破線で囲まれた箇所は、フロア床30よりも1.5m上にあるフリーフアクセスパネル60の応答加速度と応答変位を示している。   8A and 9A are graphs showing the response acceleration (estimation) of the building 10, and FIGS. 8B and 9B are graphs showing the response displacement (estimation) of the building 10. FIG. is there. In any graph, the vertical axis represents the height of the building 10 from the ground. The height of about 5.8 m indicates the response acceleration and response displacement of the floor 30 (see FIGS. 1 and 3) of the second floor. Moreover, the part enclosed with the dashed-dotted line in the figure has shown the response acceleration and response displacement of the free-floor access panel 60 which are 1.5m above the floor floor 30. FIG.

そして、図8には、本発明が適用された、すなわち、鉄骨支柱100(図1、図3参照)によって耐震補強されている耐震補強領域R(図2参照)のフリーアクセスパネル60の応答加速度と応答変位が示されている。一方、図9には、本発明が適用されていない、すなわち、鉄骨支柱100(図1、図3参照)によって耐震補強されていない耐震補強領域外K(図2参照)のフリーアクセスパネル60の応答加速度と応答変位が示されている。   FIG. 8 shows the response acceleration of the free access panel 60 in the seismic reinforcement region R (see FIG. 2) to which the present invention is applied, that is, the seismic reinforcement region R (see FIG. 2) reinforced by the steel column 100 (see FIGS. 1 and 3). And the response displacement is shown. On the other hand, in FIG. 9, the present invention is not applied, that is, the free access panel 60 outside the seismic reinforcement region K (see FIG. 2) not reinforced by the steel column 100 (see FIGS. 1 and 3). Response acceleration and response displacement are shown.

図8と図9とを比較すると判るように、鉄骨支柱100(図1、図3参照)によって耐震補強されていない耐震補強領域外Kのフリーアクセスパネル60は、固有振動数が建物10の固有振動数と近いため共振し揺れが増幅されている。具体的には、耐震補強領域外K(図2参照)のフリーアクセスパネル60の揺れは、最大加速度でX方向470gal、Y方向497gal、最大変位でX方向0.82cm、Y方向0.83cmに増幅されている。   As can be seen from a comparison between FIG. 8 and FIG. 9, the free access panel 60 outside the seismic strengthening region that is not seismically strengthened by the steel column 100 (see FIGS. 1 and 3) has a natural frequency of the building 10. Since it is close to the frequency, it resonates and the vibration is amplified. Specifically, the swing of the free access panel 60 outside the seismic reinforcement region K (see FIG. 2) is 470 gal in the X direction at the maximum acceleration, 497 gal in the Y direction, 0.82 cm in the X direction and 0.83 cm in the Y direction at the maximum displacement. Amplified.

これに対して、鉄骨支柱100(図1、図3参照)によって耐震補強されている耐震補強領域Rのフリーアクセスパネル60は、固有振動数が建物10の固有振動数よりも大幅に高いため共振によるフリーアクセスパネル60の揺れの増幅が防止又は抑制される。この結果、耐震補強領域R(図2、図3参照)のフリーアクセスパネル60は、最大加速度でX方向232gal、Y方向280gal、最大変位でX方向0.23cm、Y方向0.17cmに抑えられている。つまり、本発明を適用した耐震補強を行なうことで、応答加速度が40%以上軽減され且つ応答変位が約1/3に低減される。すなわち、耐震補強領域Rの二重床20(図3参照)の耐震性能が効果的に向上する。   On the other hand, the free access panel 60 in the seismic strengthening region R that is seismically reinforced by the steel column 100 (see FIGS. 1 and 3) resonates because the natural frequency is significantly higher than the natural frequency of the building 10. Amplification of shaking of the free access panel 60 due to is prevented or suppressed. As a result, the free access panel 60 in the seismic strengthening region R (see FIGS. 2 and 3) can be suppressed to 232 gal in the X direction and 280 gal in the Y direction at the maximum acceleration, 0.23 cm in the X direction and 0.17 cm in the Y direction at the maximum displacement. ing. That is, by performing seismic reinforcement to which the present invention is applied, the response acceleration is reduced by 40% or more and the response displacement is reduced to about 1/3. That is, the seismic performance of the double floor 20 (see FIG. 3) in the seismic reinforcement region R is effectively improved.

このように、二重床20に鉄骨支柱100を設けて床部50の剛性を高くすることで、より具体的には、床面を構成するフリーアクセスパネル60を固定する根太70、72の剛性を高くすることで固有振動数を高くし、床面を構成するフリーアクセスパネル60の揺れの増幅を防止又は抑制し、耐震性能を向上させている。   In this way, by providing the steel column 100 on the double floor 20 to increase the rigidity of the floor portion 50, more specifically, the rigidity of the joists 70 and 72 that fix the free access panel 60 constituting the floor surface. By raising the natural frequency, the natural frequency is increased, the amplification of the swing of the free access panel 60 constituting the floor surface is prevented or suppressed, and the seismic performance is improved.

なお、図7に示されるように、建物10の応答スペクトル(応答値)は、10Hzを超えると小さくなる傾向にあるためフリーアクセスパネル60(床部50)の固有振動数を、本実施形態のように、10Hzよりも高くすることで、フリーアクセスパネル60(床部50)と建物10との共振による揺れの増幅を効果的に防止又は抑制し、その結果、耐震性能の向上を効果的に図ることができる。   Note that, as shown in FIG. 7, the response spectrum (response value) of the building 10 tends to decrease when it exceeds 10 Hz, so the natural frequency of the free access panel 60 (floor 50) As described above, by setting the frequency higher than 10 Hz, the amplification of the vibration due to the resonance between the free access panel 60 (floor 50) and the building 10 is effectively prevented or suppressed, and as a result, the seismic performance is effectively improved. Can be planned.

なお、本実施形態では、フリーアクセスパネル60(床部50)の固有振動数を23.3Hzとしたが、これに限定されない。床部50の固有振動数は、建物の固有周波数に応じて、建物との共振を効果的に防止又は抑制する固有振動数とすればよい。   In the present embodiment, the natural frequency of the free access panel 60 (floor 50) is 23.3 Hz, but is not limited to this. The natural frequency of the floor 50 may be a natural frequency that effectively prevents or suppresses resonance with the building according to the natural frequency of the building.

さて、今まで説明してきたように、建物10とフリーアクセスパネル60(床部50)との共振を防止又は抑制させるためには、建物10の固有周波数とフリーアクセスパネル60(床部50)の固有振動との周波数領域をずらすことができればよい。   As described above, in order to prevent or suppress the resonance between the building 10 and the free access panel 60 (floor 50), the natural frequency of the building 10 and the free access panel 60 (floor 50) What is necessary is just to be able to shift the frequency region with the natural vibration.

このためには、二重床20を取り止め、剛性の高い鉄骨架台床やコンクリート床とする方法も考えられる。しかしながら、これらの対策を実行するためには、耐震補強領域Rにある縦型拡散炉装置(図示略)を一時移動させて、しかも長期間生産稼動を中止する必要がある。また、フリーアクセスパネル60とフロア床30との空間(床下)は、ユーティリティスペースとなっていることが多く、配管、ダクト、電源ケーブルなどが縦横無尽に走っているため、大きな鉄骨架台床やコンクリート床を設置することは大変困難な作業となる。仮に施工可能な状況にしてもコンクリート打設などによるクリーンルーム環境汚染の影響、高額な工事費用など、課題が多い。   For this purpose, a method in which the double floor 20 is stopped and a highly rigid steel frame floor or concrete floor is considered. However, in order to implement these measures, it is necessary to temporarily move the vertical diffusion furnace device (not shown) in the seismic strengthening region R and to stop the production operation for a long time. In addition, the space (under the floor) between the free access panel 60 and the floor floor 30 is often a utility space, and pipes, ducts, power cables, etc. run in length and width, so a large steel frame floor or concrete floor It is a very difficult task to install. Even if the construction is possible, there are many problems such as the effects of clean room environmental pollution due to concrete placement, and expensive construction costs.

これに対して、本実施形態は、既存の二重床20のフリーアクセスパネル60の耐震補強領域R(図2参照)に縦型拡散炉装置(図示略)を配置した後に、その装置下部(耐震補強領域R)のみに鉄骨支柱100を設けて選択的に耐震補強をし、耐震性能を向上させている。よって、縦型拡散炉装置の稼動を休止することなく、或いは休止させるとしても短期間ですむ。また、装置下部の床下空間に配線、ガスパイプなどを通す空間を十分に確保できる。   On the other hand, this embodiment arrange | positions a vertical diffusion furnace apparatus (not shown) in the earthquake-proof reinforcement area | region R (refer FIG. 2) of the free access panel 60 of the existing double floor 20, Then, the apparatus lower part ( The steel strut 100 is provided only in the seismic reinforcement region R) to selectively perform seismic reinforcement to improve the seismic performance. Therefore, the operation of the vertical diffusion furnace apparatus is not stopped or even if it is stopped, a short period is required. In addition, it is possible to secure a sufficient space for wiring, gas pipes, and the like to pass under the floor under the apparatus.

なお、鉄骨支柱100と、フロア床30及び根太70、72と、の接合(固定)は、エポキシ樹脂等からなる接着剤で接合(固定)とすることで、接合時の振動が防止又抑制される。よって、縦型拡散炉の生産稼動中に耐震補強を行なう場合は、鉄骨支柱100とフロア床30及び根太70、72とを接着剤によって接合することが望ましい。   In addition, the joining (fixing) of the steel column 100, the floor floor 30 and the joists 70 and 72 is made by joining (fixing) with an adhesive made of epoxy resin or the like, so that vibration at the time of joining is prevented or suppressed. The Therefore, when performing seismic reinforcement during production operation of the vertical diffusion furnace, it is desirable to join the steel column 100, the floor floor 30, and the joists 70 and 72 with an adhesive.

また、本実施形態のように鉄骨支柱100をボルト固定することで鉄骨支柱100の着脱が容易である。よって、レイアウト変更等にともない縦型拡散炉装置を他の領域に移動する場合でも、鉄骨支柱100を外し移動させることで、容易に対応が可能である。なお、ボルト固定以外の方法で着脱が容易に鉄骨支柱100を固定してもよい。   Moreover, the steel column 100 can be easily attached and detached by bolting the steel column 100 as in the present embodiment. Therefore, even when the vertical diffusion furnace apparatus is moved to another area due to a layout change or the like, it can be easily handled by removing the steel strut 100 and moving it. The steel strut 100 may be fixed easily by a method other than bolt fixing.

また、床面を構成するフリーアクセスパネル60は根太70、72の上に固定部材62によって固定されているだけなので、容易に着脱が可能である。よって、例えば、フリーアクセスパネル60を外して、床下(フリーアクセスパネル60とフロア床30との間の空間)に配線を行なったり、フリーアクセスパネル60を容易に交換したりすることができる。   Further, since the free access panel 60 constituting the floor surface is simply fixed on the joists 70 and 72 by the fixing member 62, it can be easily attached and detached. Therefore, for example, it is possible to remove the free access panel 60 and perform wiring under the floor (a space between the free access panel 60 and the floor floor 30) or to easily replace the free access panel 60.

なお、本発明は上記実施形態に限定されない。   In addition, this invention is not limited to the said embodiment.

例えば、上記実施形態では、既存の二重床20に後から耐震補強を行なったがこれに限定されない。新築時や二重床の施工時に耐震補強を行なってもよい。   For example, in the said embodiment, although the earthquake-proof reinforcement was performed afterwards to the existing double floor 20, it is not limited to this. Seismic reinforcement may be performed at the time of new construction or double floor construction.

また、例えば、上記実施形態では、二重床20の一部の耐震補強領域に耐震補強を行なったがこれに限定されない。二重床20の複数の耐震補強領域に耐震補強を行なってもよい。或いは、二重床20の全領域に耐震補強を行なってもよい。   For example, in the said embodiment, although the earthquake-proof reinforcement was performed to some earthquake-proof reinforcement area | regions of the double floor 20, it is not limited to this. Seismic reinforcement may be performed on a plurality of seismic reinforcement areas of the double floor 20. Alternatively, seismic reinforcement may be performed on the entire area of the double floor 20.

また、上記実施形態では、支持脚80に支持された根太70、72の上に床面を構成するフリーアクセスパネル60を固定した構造であったが、これに限定されない。根太70、72を設けることなく、フリーアクセスパネルの外枠部や角部等の剛性が高い部位を直接支持脚が支える構造であってもよい。或いは、フリーアクセスパネルと支持脚とが一体となった構成であってもよい。なお、このような場合、支柱はフリーアクセスパネルの剛性が高い部位に接合される。   Moreover, in the said embodiment, although it was the structure which fixed the free access panel 60 which comprises a floor surface on the joists 70 and 72 supported by the support leg 80, it is not limited to this. A structure in which the support legs directly support a portion having high rigidity such as an outer frame portion and a corner portion of the free access panel without providing the joists 70 and 72 may be employed. Alternatively, the free access panel and the support leg may be integrated. In such a case, the support column is joined to a portion of the free access panel having high rigidity.

本発明の二重床の耐震補強構造が適用されて耐震補強された耐震補強領域の二重床を示す部分断面斜視図である。It is a fragmentary sectional perspective view which shows the double floor of the seismic reinforcement area | region where the seismic reinforcement structure of the double floor of this invention was applied and it was reinforced. 本発明の耐震構造が適用された二重床の平面図である。It is a top view of the double floor to which the seismic structure of this invention was applied. (A)は二重床を耐震補強する鉄骨支柱を示す側面図であり、(B)は(A)のF方向から見た側面図である。(A) is a side view which shows the steel-frame support | pillar which carries out earthquake-proof reinforcement of a double floor, (B) is the side view seen from F direction of (A). (A)は、図3(A)のA−A線矢視図であり、(B)は(A)の図3(A)B−B線矢視図である(A) is an AA arrow view of FIG. 3 (A), (B) is an (A) FIG. 3 (A) BB arrow view. 耐震補強領域の床部の伝達関数からみる固有振動数を示すグラフである。It is a graph which shows the natural frequency seen from the transfer function of the floor part of a seismic reinforcement area | region. 耐震補強領域外の床部の伝達関数からみる固有振動数を示すグラフである。固有振動数と示している。It is a graph which shows the natural frequency seen from the transfer function of the floor part outside a seismic reinforcement area | region. It is shown as the natural frequency. (A)は過去の地震時における建物の1階部分のY方向(南北方向)の正規加速度と振動数との関係からY方向の応答スペクトルWYを求めたグラフであり、(B)はX方向(南北方向)の正規加速度と振動数との関係からX方向の応答スペクトルWXを求めたグラフである。(A) is the graph which calculated | required the response spectrum WY of the Y direction from the relationship between the normal acceleration of the Y direction (north-south direction) and the frequency of the 1st floor part of the building at the time of the past earthquake, and (B) is the X direction. It is the graph which calculated | required the response spectrum WX of the X direction from the relationship between the normal acceleration of (north-south direction) and a frequency. 耐震補強領域のフリーアクセスパネルを含む、(A)は建物の応答加速度を示すグラフであり、(B)は建物の応答変位を示すグラフである。(A) is a graph which shows the response acceleration of a building including the free access panel of a seismic reinforcement area | region, (B) is a graph which shows the response displacement of a building. 耐震補強領域外のフリーアクセスパネルを含む、(A)は建物の応答加速度を示すグラフであり、(B)は建物の応答変位を示すグラフである。Including the free access panel outside the seismic reinforcement region, (A) is a graph showing the response acceleration of the building, and (B) is a graph showing the response displacement of the building.

符号の説明Explanation of symbols

10 建物
20 二重床
30 フロア床(床版)
40 空間
50 床部
60 フリーアクセスパネル(床板)
70 根太(梁)
72 根太(梁)
80 支持脚(脚体)
100 鉄骨支柱(支柱)
R 耐震補強領域
10 Building 20 Double floor 30 Floor floor (floor slab)
40 space 50 floor 60 free access panel (floor board)
70 joist (beam)
72 joist (beam)
80 Support legs (legs)
100 Steel columns (posts)
R Seismic reinforcement area

Claims (8)

建物の床版の上に配置された脚体と、
前記脚体に支持され、前記床版との間に空間を形成する床部と、
前記床版に設けられ、耐震補強領域の前記床部に固定された支柱と、
を備える二重床の耐震補強構造。
Legs placed on the floor slab of the building,
A floor part supported by the legs and forming a space with the floor slab;
A column provided on the floor slab and fixed to the floor portion of the seismic reinforcement region,
A double-floor seismic reinforcement structure.
前記支柱が、前記床版と前記床部とに接着剤によって接合されている請求項1に記載の二重床の耐震補強構造。   The seismic reinforcement structure for a double floor according to claim 1, wherein the support column is joined to the floor slab and the floor portion by an adhesive. 前記床部が、前記脚体に支持された梁と、前記梁の上に固定され床面を構成する床板と、を有し、
前記支柱が、前記梁に固定されている請求項1又は請求項2に記載の二重床の耐震補強構造。
The floor has a beam supported by the leg, and a floor plate fixed on the beam and constituting a floor surface,
The double-floor seismic reinforcement structure according to claim 1 or 2, wherein the support column is fixed to the beam.
前記空間は、空気が循環するクリーンルームの床下空間である請求項1〜請求項3のいずれか1項に記載の二重床の耐震補強構造。   The seismic reinforcement structure for a double floor according to any one of claims 1 to 3, wherein the space is an underfloor space of a clean room in which air circulates. 建物の床版の上に配置された脚体に支持された床部が前記床版との間に空間を形成した二重床の耐震補強方法であって、
前記床版に支柱を設け、前記支柱を耐震補強領域の前記床部に固定する二重床の耐震補強方法。
The floor supported by the legs arranged on the floor slab of the building is a method for seismic reinforcement of a double floor in which a space is formed between the floor slab,
A seismic reinforcement method for a double floor, in which a column is provided on the floor slab, and the column is fixed to the floor portion of the earthquake-proof reinforcement region.
前記支柱を、前記床版と前記床部とに接着剤によって接合する請求項5に記載の二重床の耐震補強方法。   The method for seismic reinforcement of a double floor according to claim 5, wherein the support column is joined to the floor slab and the floor portion by an adhesive. 前記床部が、前記脚体に支持された梁と、前記梁の上に固定され床面を構成する床板と、を有し、
前記支柱を、前記梁に固定する請求項5又は請求項6に記載の二重床の耐震補強方法。
The floor has a beam supported by the leg, and a floor plate fixed on the beam and constituting a floor surface,
The method for seismic reinforcement of a double floor according to claim 5 or 6, wherein the support column is fixed to the beam.
前記空間は、空気が循環するクリーンルームの床下空間であることを特徴とする請求項5〜請求項7のいずれか1項に記載の二重床の耐震補強方法。   The said space is the underfloor space of the clean room where air circulates, The earthquake-proof reinforcement method of the double floor of any one of Claims 5-7 characterized by the above-mentioned.
JP2008184709A 2008-07-16 2008-07-16 Seismic strengthening structure and seismic strengthening method for double floor Pending JP2010024649A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008184709A JP2010024649A (en) 2008-07-16 2008-07-16 Seismic strengthening structure and seismic strengthening method for double floor
US12/458,536 US20100011680A1 (en) 2008-07-16 2009-07-15 Aseismatic reinforcing structure of double flooring and aseismatic reinforcing method of double flooring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008184709A JP2010024649A (en) 2008-07-16 2008-07-16 Seismic strengthening structure and seismic strengthening method for double floor

Publications (1)

Publication Number Publication Date
JP2010024649A true JP2010024649A (en) 2010-02-04

Family

ID=41529025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008184709A Pending JP2010024649A (en) 2008-07-16 2008-07-16 Seismic strengthening structure and seismic strengthening method for double floor

Country Status (2)

Country Link
US (1) US20100011680A1 (en)
JP (1) JP2010024649A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106088650A (en) * 2016-07-19 2016-11-09 山东建筑大学 A kind of building with brick-concrete structure underground that is applicable to increases method and the building of layer
CN109469203A (en) * 2018-12-25 2019-03-15 中国电建集团成都勘测设计研究院有限公司 Highlight lines area frame structure node of column and beam overall structure

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2477161B (en) * 2010-01-26 2014-04-02 Piers St John Spencer Galliard Cave Loft flooring system
CN103352584B (en) * 2013-07-09 2015-10-14 北京筑福国际工程技术有限责任公司 A kind of jacket-type reinforcement means
CN108035554B (en) * 2017-11-24 2020-09-08 常州第一建筑集团有限公司 Construction method of section steel column support frame of super high-rise building frame column
CN110056201A (en) * 2019-02-21 2019-07-26 北京筑福建筑科学研究院有限责任公司 A kind of old house increases area structure using jacket-type and reinforces and its construction method
TWI718687B (en) * 2019-09-27 2021-02-11 黃建德 Support structure of raised floor
TWI807127B (en) * 2019-10-30 2023-07-01 黃建德 A floor steel frame support device
TWI765187B (en) * 2019-10-30 2022-05-21 黃建德 A floor steel frame support device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855131U (en) * 1981-10-12 1983-04-14 沖電気工事株式会社 Earthquake-resistant structure of free access floor
JPS6327667A (en) * 1986-07-21 1988-02-05 株式会社竹中工務店 Vibrationproof housing of free access floor
JP2007186961A (en) * 2006-01-16 2007-07-26 Kajima Corp Double structure of structure

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3418915A (en) * 1966-08-18 1968-12-31 Farr Co Clean air ceiling module
US3986850A (en) * 1974-12-05 1976-10-19 Flanders Filters, Inc. Flow control apparatus and air filters
US4995670A (en) * 1988-08-05 1991-02-26 Rodas Wilson A Hairdresser foot rest
EP0398547A1 (en) * 1989-05-17 1990-11-22 Naka Corporation Device and structure for supporting floor panels
US5461214A (en) * 1992-06-15 1995-10-24 Thermtec, Inc. High performance horizontal diffusion furnace system
US5791096A (en) * 1997-03-07 1998-08-11 Chen; Kingbow Raised floor supporting structure
US5946867A (en) * 1997-10-29 1999-09-07 Ericsson, Inc. Modular earthquake support for raised floor
US6061984A (en) * 1998-07-30 2000-05-16 Rose; Robert L. Under floor reconfigurable utilities support structure
US6772564B2 (en) * 2001-07-11 2004-08-10 Richard Joseph Leon Unitized, pre-fabricated raised access floor arrangement, installation and leveling method, and automatized leveling tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855131U (en) * 1981-10-12 1983-04-14 沖電気工事株式会社 Earthquake-resistant structure of free access floor
JPS6327667A (en) * 1986-07-21 1988-02-05 株式会社竹中工務店 Vibrationproof housing of free access floor
JP2007186961A (en) * 2006-01-16 2007-07-26 Kajima Corp Double structure of structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106088650A (en) * 2016-07-19 2016-11-09 山东建筑大学 A kind of building with brick-concrete structure underground that is applicable to increases method and the building of layer
CN109469203A (en) * 2018-12-25 2019-03-15 中国电建集团成都勘测设计研究院有限公司 Highlight lines area frame structure node of column and beam overall structure
CN109469203B (en) * 2018-12-25 2023-09-19 中国电建集团成都勘测设计研究院有限公司 High intensity area frame construction post beam node overall structure

Also Published As

Publication number Publication date
US20100011680A1 (en) 2010-01-21

Similar Documents

Publication Publication Date Title
JP2010024649A (en) Seismic strengthening structure and seismic strengthening method for double floor
US9145701B2 (en) Earthquake resistant reinforcement apparatus, earthquake resistant building, and an earthquake resistant reinforcing method
KR20090090469A (en) Pilotis reinforcement structure of building
JP5674269B2 (en) Structure
JP5106878B2 (en) Seismic isolation structure
JP4957955B2 (en) Seismic Isolated Building Construction Act
KR101323589B1 (en) Vibration isolation system in transfer story of apartment housing
JP2010248835A (en) Vibration control structure and method of vibration control
JP4228308B2 (en) Reinforcement method for existing floors and seismic isolation method for existing buildings
JP6383533B2 (en) Seismic retrofit method for existing buildings
JP2006016910A (en) Apparatus installing structure in clean room
JP4054729B2 (en) Living room unit with vibration control device and unit building with the living room unit
JP2015063852A (en) Underground pit structure
JP2002115401A (en) Base isolation construction method
JP2001182366A (en) Underfloor dressed body, base isolation bearing equipment and base isolated building
JP6359349B2 (en) Mounting structure and mounting method
JP2007284969A (en) Base isolation structure of building and its construction method
JP2009263897A (en) Building unit and unit building using the same
JP5102578B2 (en) Building unit, unit type building and method of constructing unit type building
JP2017110418A (en) Building structure
JP2015117562A (en) Flat slab structure
JP2016130431A (en) Vibration control structure and method of constructing the same
JP6049139B2 (en) Reinforced structure
JP2015025358A (en) Installation structure of base plate assembly for seismic isolator
JP5465606B2 (en) Foundation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110624

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305