JP2010022190A - Gate driving device of voltage driving type semiconductor device - Google Patents

Gate driving device of voltage driving type semiconductor device Download PDF

Info

Publication number
JP2010022190A
JP2010022190A JP2009244730A JP2009244730A JP2010022190A JP 2010022190 A JP2010022190 A JP 2010022190A JP 2009244730 A JP2009244730 A JP 2009244730A JP 2009244730 A JP2009244730 A JP 2009244730A JP 2010022190 A JP2010022190 A JP 2010022190A
Authority
JP
Japan
Prior art keywords
voltage
igbt
driven semiconductor
semiconductor element
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009244730A
Other languages
Japanese (ja)
Inventor
Hideaki Kakigi
秀昭 柿木
Kunio Matsubara
邦夫 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2009244730A priority Critical patent/JP2010022190A/en
Publication of JP2010022190A publication Critical patent/JP2010022190A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the surge voltage of a free-wheeling diode provided to a semiconductor device constituting each arm of a power converting apparatus, and reduce the turn-on loss of the semiconductor device. <P>SOLUTION: In the gate driving device, a delaying circuit comprising a resistance R and a capacitor C, a resistance Rg(on)1, and a transistor TR10 are connected so as to be different from conventional gate driving circuits which have a problem. Thereby, a semiconductor device IGBT is turned on by the resistance Rg(on) in the low-current region of the reverse recovery time of a free-wheeling diode, and is turned on by the parallel resistance comprising a resistance Rg(on) and the Rg(on)1 in the high-current region of the reverse recovery time of the free-wheeling diode respectively so as to solve the problem. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、電力変換装置を構成する電圧駆動型半導体素子のゲート駆動装置、特に電力変換装置を高電圧化するために、電圧駆動型半導体素子を直列接続して構成される電力変換装置に用いて好適なゲート駆動装置に関する。   INDUSTRIAL APPLICABILITY The present invention is used in a voltage-driven semiconductor element gate driving device constituting a power conversion device, in particular, a power conversion device configured by connecting voltage-driven semiconductor elements in series in order to increase the voltage of the power conversion device. And a suitable gate driving device.

図3に、電圧駆動型半導体素子としてIGBT(絶縁ゲートバイポーラトランジスタ)を用いたチョッパ回路の例を示す。これは、直流電源Edに対し上アームにはIGBT1と、これに逆並列に接続されたフリーホイーリングダイオードFWD1と、下アームにはIGBT2とこれに逆並列に接続されたFWD2とが設けられ、IGBT1には負荷が接続されている。GDU1,GDU2はゲート駆動装置で、具体的には例えば図4に示すように、IGBTをオン,オフさせるためのトランジスタTR1,TR2、抵抗Rg(on),Rg(off)およびインターフェイス回路IFなどから構成される。   FIG. 3 shows an example of a chopper circuit using an IGBT (insulated gate bipolar transistor) as a voltage-driven semiconductor element. The DC power supply Ed is provided with an IGBT 1 on the upper arm and a freewheeling diode FWD1 connected in antiparallel with the DC power supply Ed, and an IGBT 2 and FWD2 connected in antiparallel with the lower arm on the lower arm. A load is connected to the IGBT 1. GDU1 and GDU2 are gate drive devices. Specifically, for example, as shown in FIG. 4, transistors TR1 and TR2 for turning on and off IGBTs, resistors Rg (on) and Rg (off), an interface circuit IF, and the like. Composed.

いま、図3のIGBT2をターンオンすると、負荷を通して電流が流れる。次に、IGBT2をターンオフすると負荷よりIGBT2を流れていた電流は、FWD1へ転流する(フリーホイーリングモード)。この状態でIGBT2がターンオンするとFWD1は逆回復し、電流は再度負荷からIGBT2を通るルートに切り替わる。このとき、FWD1へ転流したフリーホイーリング電流が、素子の定格の1/10以下の低電流時にFWD1が逆回復すると、大きなサージ電圧が発生することが指摘されている。そのときの様子を示すのが図5,図6で、FWD1に定格以上のサージ電圧が印加された例が示されている。なお、図6は図5の部分(要部)拡大図である。   Now, when the IGBT 2 in FIG. 3 is turned on, a current flows through the load. Next, when the IGBT 2 is turned off, the current flowing through the IGBT 2 from the load is commutated to the FWD 1 (free wheeling mode). When the IGBT 2 is turned on in this state, the FWD 1 is reversely recovered, and the current is switched again from the load to the route passing through the IGBT 2. At this time, it is pointed out that a large surge voltage is generated when the FWD1 reversely recovers when the freewheeling current commutated to the FWD1 is a low current of 1/10 or less of the element rating. FIG. 5 and FIG. 6 show the state at that time, and an example in which a surge voltage exceeding the rating is applied to the FWD 1 is shown. FIG. 6 is an enlarged view of the part (main part) of FIG.

図3では1つのアームに1つの電圧駆動型半導体素子を用いる例であるが、上記の問題は図7のように1つのアームに複数(図では2つ)の素子を設けて高電圧化を図る電力変換装置の場合も同様で、そのときの様子を図8に点線で示している。これは、ゲート駆動装置GDU3,4により下アーム素子IGBT3,4を動作させるときの上アームのFWD1,2の逆回復時にIGBT1,2に印加される電圧波形を示している。IGBT1,2のいずれにも点線で示すような定格以上のサージ電圧が印加されていることが分かる。   FIG. 3 shows an example in which one voltage-driven semiconductor element is used for one arm. However, the above problem can be solved by providing a plurality of (two in the figure) elements in one arm as shown in FIG. The same applies to the power conversion device to be achieved, and the state at that time is indicated by a dotted line in FIG. This shows a voltage waveform applied to the IGBTs 1 and 2 during reverse recovery of the FWDs 1 and 2 of the upper arms when the lower arm elements IGBTs 3 and 4 are operated by the gate driving devices GDU3 and 4, respectively. It can be seen that a surge voltage exceeding the rating as indicated by the dotted line is applied to both IGBTs 1 and 2.

このようなサージ電圧は時に素子の定格耐圧を大きく超え、最悪の場合は素子破壊に至るおそれがある。このため、従来は例えば図4に示すゲートオン抵抗Rg(on)の値を大きくすることで、IGBT2のターンオン時間を遅くしIGBT2側で電圧を保持する時間を長くし、FWD1に印加される電圧を低くしてサージ電圧を抑制する方法が用いられている。しかし、ゲート抵抗が大きいと電圧保持時間が増大し、ターンオン損失が増加する。このターンオン損失の増加は、素子全体の総損失を増加させ、動作周波数を低下させたり出力電流を低下させなければならないという問題が生じる。   Such a surge voltage sometimes greatly exceeds the rated breakdown voltage of the element, and in the worst case, the element may be destroyed. Therefore, conventionally, for example, by increasing the value of the gate-on resistance Rg (on) shown in FIG. 4, the turn-on time of the IGBT 2 is delayed, the time for holding the voltage on the IGBT 2 side is lengthened, and the voltage applied to the FWD 1 is increased. A method of suppressing the surge voltage by lowering the voltage is used. However, if the gate resistance is large, the voltage holding time increases and the turn-on loss increases. This increase in turn-on loss increases the total loss of the entire device, causing a problem that the operating frequency must be lowered or the output current must be lowered.

また、1つのアームに複数の素子を設けて高電圧化を図る場合には、上記の問題に加えてさらに、素子特性のばらつき等による問題が発生する。この問題を説明するのが図9で、複数の素子間の素子特性のばらつき等によりIGBTのターンオンタイミングに違いが生じ、電圧分担にアンバランスが生じた場合を示す。ここでは、例えば図7の上アームのIGBT2の方が早くオンし、このときIGBT1がオフしているため、IGBT1にだけ電圧が印加されると言うアンバランスが生じている例である。このとき、IGBT1のコレクタ−エミッタ間電圧VCE(1)と、IGBT2のコレクタ−エミッタ間電圧VCE(2)を加えた電圧が直流電圧Edに等しくならない期間があるのは、スナバコンデンサCと主回路浮遊インダクタンスLmとの共振動作によるものである。   Further, when a plurality of elements are provided on one arm to increase the voltage, a problem due to variations in element characteristics occurs in addition to the above problems. This problem is illustrated in FIG. 9, which shows a case where there is a difference in IGBT turn-on timing due to variations in element characteristics among a plurality of elements, and an imbalance occurs in voltage sharing. Here, for example, the IGBT 2 of the upper arm in FIG. 7 is turned on earlier, and the IGBT 1 is turned off at this time, so that an imbalance occurs in which a voltage is applied only to the IGBT 1. At this time, there is a period in which the voltage obtained by adding the collector-emitter voltage VCE (1) of the IGBT 1 and the collector-emitter voltage VCE (2) of the IGBT 2 is not equal to the DC voltage Ed. This is due to resonance operation with the floating inductance Lm.

このように電圧アンバランスが発生するが、その対策として、例えば図7にも示すように各IGBTにスナバコンデンサC,スナバ抵抗R等からなるRCスナバ回路を付加することによって、遅れてオンするIGBT1の電圧上昇率(dv/dt)を低減させて、IGBT1にオン信号が入るまでの期間(Δt)、IGBT1に印加される電圧を抑制するようにしている。   In this way, voltage imbalance is generated. As a countermeasure, for example, as shown in FIG. 7, an IGBT 1 that is turned on late by adding an RC snubber circuit including a snubber capacitor C and a snubber resistor R to each IGBT. The voltage increase rate (dv / dt) is reduced, and the voltage applied to the IGBT 1 is suppressed during the period (Δt) until the ON signal is input to the IGBT 1.

IGBTを直列接続して用いる場合、上述のように、各IGBTにRCスナバ回路を付加することにより、ターンオンタイミングがずれた場合の電圧アンバランスによる過電圧印加およびそれによる素子破壊を防ぐことができるが、許容可能なターンオンタイミングの時間差を大きくしようとすると、付加するスナバのコンデンサ容量を大きくしなければならず、そうすると発生損失が増大するために抵抗Rの形状が大きくなり、装置全体も大きくなるなどの問題が生じる。
したがって、この発明の課題は、電力変換装置の各アームを構成する電圧駆動型半導体素子に対し逆並列接続されるフリーホイーリングダイオードのサージ電圧を抑制し、電圧駆動型半導体素子のターンオン損失を低減することにある。
When using IGBTs connected in series, as described above, by adding an RC snubber circuit to each IGBT, it is possible to prevent overvoltage application due to voltage imbalance when the turn-on timing is deviated and element destruction due to this. If an attempt is made to increase the time difference between allowable turn-on timings, the capacitor capacity of the added snubber must be increased, and as a result, the generated loss increases, so that the shape of the resistor R increases and the overall device also increases. Problem arises.
Therefore, an object of the present invention is to suppress the surge voltage of a freewheeling diode connected in reverse parallel to the voltage-driven semiconductor element constituting each arm of the power conversion device, and to reduce the turn-on loss of the voltage-driven semiconductor element. There is to do.

このような課題を解決するため、請求項1の発明では、電力変換装置の各アームに接続される電圧駆動型半導体素子をそれぞれオン,オフ駆動するためのゲート駆動装置であって、
前記電圧駆動型半導体素子を第1の抵抗値で駆動する第1の駆動部と、この第1の駆動部から所定の時間だけ遅延して動作し前記第1の抵抗値よりも低い第2の抵抗値で電圧駆動型半導体素子を駆動する第2の駆動部とを備え、前記電圧駆動型半導体素子と逆並列に接続されるフリーホイーリングダイオード逆回復時の低電流域では前記第1の駆動部により、その高電流域では前記第2の駆動部により電圧駆動型半導体素子をターンオンさせることを特徴とする。
この請求項1の発明においては、前記各アームに接続される電圧駆動型半導体素子を複数個とすることができる(請求項2の発明)。
In order to solve such a problem, the invention of claim 1 is a gate drive device for driving on and off each of the voltage driven semiconductor elements connected to each arm of the power conversion device,
A first driving unit that drives the voltage-driven semiconductor element with a first resistance value, and a second driving unit that operates with a delay of a predetermined time from the first driving unit and is lower than the first resistance value. And a second driving unit that drives the voltage-driven semiconductor element with a resistance value, and the first driving is performed in a low current region during reverse recovery of a freewheeling diode connected in reverse parallel to the voltage-driven semiconductor element. The voltage driving type semiconductor device is turned on by the second driving unit in the high current region.
In the invention of claim 1, a plurality of voltage-driven semiconductor elements connected to each arm can be provided (invention of claim 2).

この発明によれば、電力変換装置の各アームに接続される素子の数に関わらず、FWDの低電流逆回復時に発生するサージ電圧が抑制されるだけでなく、ターンオン損失を増加させることなく過電圧による素子破壊から、IGBT等の電圧駆動型形素子を保護することが可能となる。   According to the present invention, regardless of the number of elements connected to each arm of the power converter, not only the surge voltage generated at the low current reverse recovery of the FWD is suppressed, but also the overvoltage without increasing the turn-on loss. It is possible to protect a voltage driven type element such as an IGBT from element destruction due to.

この発明の実施の形態を示す構成図である。It is a block diagram which shows embodiment of this invention. 図1の動作を説明するための波形図である。It is a wave form diagram for demonstrating the operation | movement of FIG. チョッパ回路の従来例を示す構成図である。It is a block diagram which shows the prior art example of a chopper circuit. ゲート駆動装置の従来例を示す回路図である。It is a circuit diagram which shows the prior art example of a gate drive device. 図4の動作説明図である。It is operation | movement explanatory drawing of FIG. 図5の要部拡大図である。It is a principal part enlarged view of FIG. 素子直列接続式電力変換装置の1相分を示す回路図である。It is a circuit diagram which shows one phase part of an element serial connection type power converter device. 図7の逆回復時の動作説明図である。It is operation | movement explanatory drawing at the time of reverse recovery of FIG. 図7電圧アンバランス動作説明図である。7 is an explanatory diagram of voltage unbalance operation.

図1はこの発明の実施の形態を示す構成図である。
これは、FWD逆回復時のサージ電圧に対処するためのもので、図4に示す従来のゲート駆動装置に対し、抵抗R,コンデンサCからなる遅延回路、抵抗Rg(on)1およびトランジスタTR10を付加して構成される。
したがって、インターフェイス回路IFを介してTR1をオンさせると、まず抵抗Rg(on)を介してIGBTのゲートが駆動される。その後、遅延回路のCR時定数で決まる一定時間が経過するとTR10がオンし、これによりIGBTのゲートは、抵抗Rg(on)と抵抗Rg(on)1の並列抵抗により駆動される。このとき、並列抵抗値は抵抗Rg(on)よりも小さくなるので、このゲート駆動装置を用いれば、IGBTのゲートは最初は高抵抗で、一定時間後は低抵抗で駆動されることになる。なお、トランジスタTR2側の遅延回路は、TR1側で遅延させた分だけターンオフタイミングを調整するためのものである。
FIG. 1 is a block diagram showing an embodiment of the present invention.
This is for coping with a surge voltage at the time of reverse recovery of FWD. Compared to the conventional gate driving device shown in FIG. 4, a delay circuit comprising a resistor R and a capacitor C, a resistor Rg (on) 1 and a transistor TR10 are provided. It is configured by adding.
Therefore, when TR1 is turned on via the interface circuit IF, the gate of the IGBT is first driven via the resistor Rg (on). Thereafter, when a certain time determined by the CR time constant of the delay circuit elapses, TR10 is turned on, whereby the gate of the IGBT is driven by the parallel resistance of the resistor Rg (on) and the resistor Rg (on) 1. At this time, since the parallel resistance value is smaller than the resistance Rg (on), if this gate driving device is used, the gate of the IGBT is driven with a high resistance at the beginning and with a low resistance after a certain time. The delay circuit on the transistor TR2 side is for adjusting the turn-off timing by the amount delayed on the TR1 side.

図2は図1の動作を説明するための波形図である。
図1のゲート駆動装置が先の図3に示すGDU2に対応するものとし、インターフェイス回路IFを介してTR1をオンとしIGBT2を動作させる場合、図2のGDU2波形に示すように、FWD1の低電流逆回復時の期間t1までは高抵抗で駆動し、IGBT2側で電圧を保持することでFWD1側のサージ電圧を抑制する。また、大電流逆回復時である期間t2では低抵抗で駆動することによりターンオン時間を早め、ターンオン損失を低減するようにしている。その結果、IGBT2のコレクタ−エミッタ間電圧,FWD1電圧,電流波形は図示のようになり、図5,6の場合に比べてサージ電圧が抑制されていることが分かる。なお、IGBT2のコレクタ−エミッタ間電圧,FWD1電圧,電流波形は実線で大電流時の動作を、また、点線で低電流時の動作を示している。
FIG. 2 is a waveform diagram for explaining the operation of FIG.
When the gate driver of FIG. 1 corresponds to the GDU2 shown in FIG. 3 and when the TR1 is turned on and the IGBT 2 is operated via the interface circuit IF, as shown in the GDU2 waveform of FIG. It drives by high resistance until the period t1 at the time of reverse recovery, and suppresses the surge voltage on the FWD1 side by holding the voltage on the IGBT2 side. In the period t2, which is the time of reverse recovery of a large current, the turn-on time is shortened by driving with a low resistance, and the turn-on loss is reduced. As a result, the collector-emitter voltage, the FWD1 voltage, and the current waveform of the IGBT 2 are as shown in the figure, and it can be seen that the surge voltage is suppressed as compared with the cases of FIGS. Note that the collector-emitter voltage, the FWD1 voltage, and the current waveform of the IGBT 2 indicate the operation at a large current with a solid line and the operation at a low current with a dotted line.

以上は、図3の如きアームの素子が1つの場合であるが、図7のようにアームの素子が複数の場合も上記と同様に、図1に示すゲート駆動装置により最初は高抵抗で駆動し、一定時間後は低抵抗で駆動することにより、サージ電圧を抑制しターンオン損失を低減させることが可能となる。このときの様子を示すのが図8で、ゲート駆動装置GDU3,4で下アーム素子IGBT3,4を動作させるときの上アームのFWDの逆回復時にIGBT1,2に印加される電圧波形を示している。すなわち、Δtだけ早く逆回復するIGBT2側の電圧は、IGBT1側で分担する電圧が重畳し、点線で示すようにさらにサージ電圧が発生し、素子破壊に至る可能性がある。しかし、図1に示すゲート駆動装置を用いた場合の逆回復動作では、実線で示すようにサージ電圧の発生を抑制し、Δtだけ早く
逆回復するIGBT2側の電圧分担を最小限に抑えることが可能となり、素子破壊を防止できることになる。
The above is the case where there is a single element of the arm as shown in FIG. 3. However, in the case where there are a plurality of elements of the arm as shown in FIG. 7, the gate drive device shown in FIG. In addition, by driving with a low resistance after a certain time, the surge voltage can be suppressed and the turn-on loss can be reduced. FIG. 8 shows the state at this time, and shows voltage waveforms applied to the IGBTs 1 and 2 during reverse recovery of the FWD of the upper arm when the lower arm elements IGBT 3 and 4 are operated by the gate drive units GDU 3 and 4. Yes. That is, the voltage on the IGBT 2 side that reversely recovers as early as Δt overlaps with the voltage shared on the IGBT 1 side, and a surge voltage is generated as indicated by the dotted line, which may lead to element destruction. However, in the reverse recovery operation when the gate drive device shown in FIG. 1 is used, the generation of a surge voltage is suppressed as shown by the solid line, and the voltage sharing on the IGBT 2 side that reversely recovers earlier by Δt can be minimized. This makes it possible to prevent element destruction.

IGBT…絶縁ゲートバイポーラトランジスタスイッチ、IF…インターフェイス回路、R,Rg(on),Rg(on)1,Rg(off)…抵抗、C…コンデンサ、TR1,TR2,TR10…トランジスタ、GDU…ゲート駆動装置、Ed…直流電源、FWD…フリーホイーリングダイオード。   IGBT ... insulated gate bipolar transistor switch, IF ... interface circuit, R, Rg (on), Rg (on) 1, Rg (off) ... resistor, C ... capacitor, TR1, TR2, TR10 ... transistor, GDU ... gate drive device , Ed: DC power supply, FWD: Free wheeling diode.

Claims (2)

電力変換装置の各アームに接続される電圧駆動型半導体素子をそれぞれオン,オフ駆動するためのゲート駆動装置であって、
前記電圧駆動型半導体素子を第1の抵抗値で駆動する第1の駆動部と、この第1の駆動部から所定の時間だけ遅延して動作し前記第1の抵抗値よりも低い第2の抵抗値で電圧駆動型半導体素子を駆動する第2の駆動部とを備え、前記電圧駆動型半導体素子と逆並列に接続されるフリーホイーリングダイオード逆回復時の低電流域では前記第1の駆動部により、その高電流域では前記第2の駆動部により電圧駆動型半導体素子をターンオンさせることを特徴とする電圧駆動型半導体素子のゲート駆動装置。
A gate driving device for driving on and off a voltage-driven semiconductor element connected to each arm of a power converter,
A first driving unit that drives the voltage-driven semiconductor element with a first resistance value, and a second driving unit that operates with a delay of a predetermined time from the first driving unit and is lower than the first resistance value. And a second driving unit that drives the voltage-driven semiconductor element with a resistance value, and the first driving is performed in a low current region during reverse recovery of a freewheeling diode connected in reverse parallel to the voltage-driven semiconductor element. The voltage-driven semiconductor element gate drive apparatus is characterized in that the voltage-driven semiconductor element is turned on by the second drive unit in the high current region.
前記各アームに接続される電圧駆動型半導体素子を複数個とすることを特徴とする電圧駆動型半導体素子のゲート駆動装置。 A gate drive device for a voltage-driven semiconductor element, comprising a plurality of voltage-driven semiconductor elements connected to each arm.
JP2009244730A 1999-08-10 2009-10-23 Gate driving device of voltage driving type semiconductor device Pending JP2010022190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009244730A JP2010022190A (en) 1999-08-10 2009-10-23 Gate driving device of voltage driving type semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP22612799 1999-08-10
JP2009244730A JP2010022190A (en) 1999-08-10 2009-10-23 Gate driving device of voltage driving type semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000226759A Division JP4449190B2 (en) 1999-08-10 2000-07-27 Voltage-driven semiconductor device gate drive device

Publications (1)

Publication Number Publication Date
JP2010022190A true JP2010022190A (en) 2010-01-28

Family

ID=41706531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009244730A Pending JP2010022190A (en) 1999-08-10 2009-10-23 Gate driving device of voltage driving type semiconductor device

Country Status (1)

Country Link
JP (1) JP2010022190A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102934339A (en) * 2011-06-02 2013-02-13 丰田自动车株式会社 Drive device for driving voltage-driven element
KR101261944B1 (en) 2010-09-17 2013-05-09 기아자동차주식회사 Inverter control system
KR101907687B1 (en) 2017-07-03 2018-10-12 현대오트론 주식회사 Insulated gate bipolar mode transistor gate driver

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08172769A (en) * 1994-12-20 1996-07-02 Nippondenso Co Ltd Inverter device
JPH0947015A (en) * 1995-05-23 1997-02-14 Fuji Electric Co Ltd Drive circuit for self-extinguishing semiconductor element
JPH1032976A (en) * 1996-07-16 1998-02-03 Fuji Electric Co Ltd Drive circuit of self-quenching-type semiconductor device
JPH10127045A (en) * 1996-10-17 1998-05-15 Fuji Electric Co Ltd Gate driving circuit for power converter
JPH1169778A (en) * 1997-08-21 1999-03-09 Fuji Electric Co Ltd Gate drive circuit in power converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08172769A (en) * 1994-12-20 1996-07-02 Nippondenso Co Ltd Inverter device
JPH0947015A (en) * 1995-05-23 1997-02-14 Fuji Electric Co Ltd Drive circuit for self-extinguishing semiconductor element
JPH1032976A (en) * 1996-07-16 1998-02-03 Fuji Electric Co Ltd Drive circuit of self-quenching-type semiconductor device
JPH10127045A (en) * 1996-10-17 1998-05-15 Fuji Electric Co Ltd Gate driving circuit for power converter
JPH1169778A (en) * 1997-08-21 1999-03-09 Fuji Electric Co Ltd Gate drive circuit in power converter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101261944B1 (en) 2010-09-17 2013-05-09 기아자동차주식회사 Inverter control system
US8451045B2 (en) 2010-09-17 2013-05-28 Hyundai Motor Company Inverter control system
CN102934339A (en) * 2011-06-02 2013-02-13 丰田自动车株式会社 Drive device for driving voltage-driven element
US8866515B2 (en) 2011-06-02 2014-10-21 Toyota Jidosha Kabushiki Kaisha Drive unit for driving voltage-driven element
KR101907687B1 (en) 2017-07-03 2018-10-12 현대오트론 주식회사 Insulated gate bipolar mode transistor gate driver

Similar Documents

Publication Publication Date Title
JP6617571B2 (en) Semiconductor switching element gate drive circuit
JP4445036B2 (en) Power converter
JP5746954B2 (en) Inverter device
JP5993749B2 (en) Gate drive circuit of semiconductor device and power conversion device using the same
JP4120329B2 (en) Voltage-driven semiconductor device gate drive device
WO2017221417A1 (en) Gate drive circuit, power conversion apparatus, and railway vehicle
JP2013162590A (en) Semiconductor switching element drive circuit and power converter circuit using the same
JP4396036B2 (en) Control device for voltage-driven semiconductor elements connected in series
JP7099075B2 (en) Semiconductor module
JP2004242475A (en) Driving system for switching device
JP2010022190A (en) Gate driving device of voltage driving type semiconductor device
JP5298557B2 (en) Voltage-driven semiconductor device gate drive device
JP4506276B2 (en) Drive circuit for self-extinguishing semiconductor device
JP4449190B2 (en) Voltage-driven semiconductor device gate drive device
JP4946103B2 (en) Power converter
JP6930266B2 (en) How to drive the power converter
JP2008043003A (en) Gate drive unit of voltage-driven type semiconductor element
JP4848714B2 (en) Semiconductor power converter
JP3598870B2 (en) Drive circuit
JP2002153043A (en) Gate-driving device for voltage-driving semiconductor element
JP4722341B2 (en) Gate noise suppression circuit
JPH10209832A (en) Semiconductor switch circuit
JP2000049581A (en) Semiconductor electric power converting device
JP4639687B2 (en) Voltage variation suppression method for voltage-driven semiconductor devices
JP2001231247A (en) Gate driving method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091026

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100310

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100310

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102