JP2010006713A - Porous fine particle formed by spherically agglomerating tubular structural material, and method for producing the same - Google Patents

Porous fine particle formed by spherically agglomerating tubular structural material, and method for producing the same Download PDF

Info

Publication number
JP2010006713A
JP2010006713A JP2008164790A JP2008164790A JP2010006713A JP 2010006713 A JP2010006713 A JP 2010006713A JP 2008164790 A JP2008164790 A JP 2008164790A JP 2008164790 A JP2008164790 A JP 2008164790A JP 2010006713 A JP2010006713 A JP 2010006713A
Authority
JP
Japan
Prior art keywords
fine particles
porous fine
tubular structure
compound
spherical shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008164790A
Other languages
Japanese (ja)
Other versions
JP5245158B2 (en
Inventor
Maki Ogiso
真樹 小木曽
Hiroyuki Namikawa
博之 南川
Masumi Asakawa
真澄 浅川
Toshimi Shimizu
敏美 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008164790A priority Critical patent/JP5245158B2/en
Publication of JP2010006713A publication Critical patent/JP2010006713A/en
Application granted granted Critical
Publication of JP5245158B2 publication Critical patent/JP5245158B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide porous fine particles, different from vesicles formed from a surfactant or a polymer, having pores on their surfaces and also having characteristics which have not seen in an inorganic porous material represented by zeolite-mesoporous silica. <P>SOLUTION: The porous fine particles formed by spherically agglomerating tubular structural materials are produced by a method comprising a step of dissolving each of a peptide lipid expressed by the following formula (I): RCO(NH-CHR'-CO)<SB>m</SB>OH [wherein, R is a 6-24C hydrocarbon group; R' is an amino acid side chain; and (m) is an integer of 1 to 10] and a metal salt in a solvent heated to a temperature at or lower than its boiling point, a step of mixing each of the solutions, a step of standing the above mixture still at a room temperature, a step of forming the tubular structural materials by self-agglomerating in the solution and a step of spherically agglomerating each of the tubular structural materials to precipitate as the porous fine particles. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、医薬、化成品分野などにおける包接・分離・徐放材料として、あるいは触媒や蛍光材料など高機能性材料として有用な多孔性微細粒子とその製造方法に関し、特に、これまでに得られていない平均内径が5〜250nmであるチューブ状の空間を無数にもつ、平均直径が0.1〜100μmである多孔性微細粒子、及びその製造方法に関するものである。   The present invention relates to porous fine particles useful as inclusion / separation / sustained release materials in the fields of pharmaceuticals, chemical products, etc., or as highly functional materials such as catalysts and fluorescent materials, and a method for producing the same. The present invention relates to porous fine particles having an infinite number of tubular spaces having an average inner diameter of 5 to 250 nm and an average diameter of 0.1 to 100 μm, and a method for producing the same.

ナノテクノロジーを代表する材料として0.5〜500ナノメートル(以下nmと記す)の細孔を有するナノチューブ状材料が注目を集めている。
本発明者らは長鎖炭化水素基に糖残基を結合させた糖脂質を自己集合させることにより形成される中空繊維状有機ナノチューブを合成することに成功している(特許文献1、非特許文献1)。この中空繊維状有機ナノチューブは、中空シリンダー部の内孔サイズが5〜500nmであり、5〜500nmのタンパク質、ウイルス、金属微粒子やその他の無機微粒子等をその中空シリンダー内部に捕捉できる可能性があり、その用途開発が期待されている。
また本発明者らは、長鎖脂肪酸のカルボキシル基とオリゴペプチドのN端を結合させたペプチド脂質の自己集合により形成される中空繊維状有機ナノチューブの合成検討を進めた。その結果、水中でペプチド脂質と遷移金属を共存させることにより、ナノサイズの中空繊維状構造物が形成することを見出している(特許文献2、非特許文献2)。
しかしながら、このようなナノメーターサイズの材料は、直接取り扱うことが出来ないため、これを捕捉剤等として用いる場合には、別の高分子や界面活性剤からなる材料と混合して用いることが想定されている。
As a material representative of nanotechnology, a nanotube-like material having pores of 0.5 to 500 nanometers (hereinafter referred to as nm) has attracted attention.
The present inventors have succeeded in synthesizing a hollow fiber-like organic nanotube formed by self-assembling a glycolipid having a sugar residue bonded to a long-chain hydrocarbon group (Patent Document 1, Non-Patent Document 1). Reference 1). This hollow fibrous organic nanotube has a hollow cylinder portion with an inner pore size of 5 to 500 nm, and may trap proteins, viruses, metal fine particles and other inorganic fine particles of 5 to 500 nm inside the hollow cylinder. , Its application development is expected.
In addition, the present inventors proceeded with the synthesis study of hollow fiber organic nanotubes formed by self-assembly of peptide lipids in which the carboxyl group of a long-chain fatty acid and the N-terminus of the oligopeptide were bound. As a result, it has been found that a nano-sized hollow fibrous structure is formed by allowing a peptide lipid and a transition metal to coexist in water (Patent Document 2, Non-Patent Document 2).
However, since such nanometer-sized materials cannot be handled directly, when used as a scavenger or the like, it is assumed that they are used in combination with a material comprising another polymer or surfactant. Has been.

一方、現在、包接・分離・薬剤徐放材料として主に用いられているのは、界面活性剤や高分子から形成されるミセルやベシクル(特許文献3)、ゼオライト・メソポーラスシリカ等を代表とする多孔性無機材料(特許文献4、5)である。
特開2004−224717号公報 特開2004−250797号公報 特開2006−206455号公報 特開2006−069824号公報 特開2006−193462号公報 S.Kamiya, H.Minamikawa, J.H.Jung, Y.Bo, M.Masuda, T.Shimizu, Langmuir, 2005, 21, 743 M.Kogiso, Z.Yong, T.Shimizu, Adv.Mater., 2007, 19, 242
On the other hand, as the inclusion / separation / drug sustained release materials, micelles and vesicles formed from surfactants and polymers (Patent Document 3), zeolite / mesoporous silica, etc. are representative. Porous inorganic material (Patent Documents 4 and 5).
JP 2004-224717 A JP 2004-250797 A JP 2006-206455 A JP 2006-069824 A JP 2006-193462 A S. Kamiya, H. Minamikawa, JHJung, Y.Bo, M. Masuda, T. Shimizu, Langmuir, 2005, 21, 743 M. Kogiso, Z. Yong, T. Shimizu, Adv. Mater., 2007, 19, 242

しかしながら、これらの包接・分離・薬剤徐放材料においては、以下のような問題がある。
すなわち、例えば、ベシクルは、微小な水相を脂質膜が包み込んだ、直径が数十nmから数十μmのカプセル状の構造体であって、内部にタンパク質などの10〜1000nm程度の大きな物質を取り込むことが出来るが、内部の物質を取り出すためにはベシクル自体を崩壊させる必要があり、表面に物質の出し入れ可能なナノチューブ開口部をもつ本発明の多孔性微細粒子とは基本的な構造が異なる。また、ゼオライト・メソポーラスシリカは、表面に0.1〜100nm程度の空孔をもち、その大きさは、本発明らが合成した前記のナノチューブの内孔径と一部重なる大きさであるが、無機材料であるため、有機機能物質あるいはタンパク質など生体物質の包接・分離・薬剤徐放材料としての親和性が大きく劣るという問題がある。
このように、有機・生体物質に対して親和性が高い有機物質から形成されており、且つ、表面に微細な孔を無数にもつ多孔性微粒子はこれまでに知られていない。
However, these inclusion / separation / drug release materials have the following problems.
That is, for example, a vesicle is a capsule-like structure having a diameter of several tens of nanometers to several tens of micrometers in which a lipid film is encapsulated in a minute aqueous phase, and a large substance such as a protein of about 10 to 1000 nm is contained therein. Although it is possible to take in the substance, it is necessary to collapse the vesicle itself in order to take out the substance inside, and the basic structure is different from the porous fine particle of the present invention having nanotube openings on the surface where the substance can be taken in and out. . Further, zeolite mesoporous silica has pores of about 0.1 to 100 nm on the surface, and the size thereof is a size that partially overlaps the inner pore diameter of the nanotube synthesized by the present invention. Since the material is a material, there is a problem that the affinity as a material for the inclusion / separation / drug release of biological substances such as organic functional substances or proteins is greatly inferior.
Thus, the porous fine particle which is formed from the organic substance with high affinity with respect to the organic / biological substance and has countless fine pores on the surface has not been known so far.

本発明は、以上のような事情に鑑みてなされたものであって、界面活性剤や高分子から形成されるベシクルと違い、表面に孔をもつ多孔性微細粒子であり、且つ、ゼオライト・メソポーラスシリカに代表される無機多孔性材料にはない特性をもつ、多孔性微粒子とその製造方法を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and unlike a vesicle formed from a surfactant or a polymer, the present invention is a porous fine particle having pores on the surface, and a zeolite mesoporous material. An object of the present invention is to provide a porous fine particle having a characteristic not found in an inorganic porous material typified by silica and a method for producing the same.

本発明者らは、上記課題を解決するため、有機・生体物質に対して親和性が高い有機物質から形成されており、且つ、チューブ状の空間をもつナノチューブについて鋭意検討した結果、ペプチド脂質と金属塩のそれぞれの溶液をアルコール中でただ混合するだけで、チューブ状構造体が球状に凝集して形成する多孔性微細粒子が生じることを見出し、本発明を完成するに至ったものである。
すなわち、ペプチド脂質と金属塩のそれぞれの溶液をアルコール中でただ混合するだけで、これまでに得られていない平均内径が5〜250nmであるチューブ状の空間を無数にもつ、平均直径が0.1〜100μmである多孔性微細粒子が得られることを見いだしたものである。
In order to solve the above problems, the present inventors have made extensive studies on nanotubes that are formed from organic substances having a high affinity for organic and biological substances and have a tubular space. The inventors have found that by simply mixing each solution of metal salt in alcohol, porous fine particles formed by agglomerating the tubular structure into spherical shapes are produced, and the present invention has been completed.
That is, by simply mixing each solution of peptide lipid and metal salt in alcohol, the tube has an infinite number of tube-like spaces having an average inner diameter of 5 to 250 nm, which has not been obtained so far. It has been found that porous fine particles having a size of 1 to 100 μm can be obtained.

本発明は、これらの知見に基づいて完成に至ったものであり、以下のとおりのものである。
[1]下記一般式(I)
RCO(NH−CHR’−CO)OH (I)
(式中、Rは炭素数6〜24の炭化水素基、R’はアミノ酸側鎖、mは1〜10の整数を表す。)で表わされるペプチド脂質及び金属塩を沸点以下に加温された溶媒にそれぞれ溶解させる段階、それぞれの溶液を混合する段階、これを室温で静置する段階、溶液中で自己集合することによりチューブ状構造体が生成する段階、及びそれらのチューブ状構造体が球状に凝集して多孔性微細粒子として析出する段階からなることを特徴とする、チューブ状構造体が球状に凝集した多孔性微細粒子の製造方法。
[2]前記一般式(I)におけるmが、2である前記[1]の、チューブ状構造体が球状に凝集した多孔性微細粒子の製造方法。
[3]前記一般式(I)における(NH−CHR’−CO)が、グリシルグリシンである前記[2]の、チューブ状構造体が球状に凝集した多孔性微細粒子の製造方法。
[4]前記金属塩が、銅化合物、カドミウム化合物、セリウム化合物、ユーロピウム化合物、ガドリニウム化合物、及びテルビウム化合物から選ばれる少なくとも1種以上である前記[1]の、チューブ状構造体が球状に凝集した多孔性微細粒子の製造方法。
[5]前記溶媒が、エタノールあるいはエタノールを含む混合溶媒であることを特徴とする、前記[1]〜[4]のいずれかの、チューブ状構造体が球状に凝集した多孔性微細粒子の製造方法。
[6]下記一般式(I)
RCO(NH−CHR’−CO)OH (I)
(式中、Rは炭素数6〜24の炭化水素基、R’はアミノ酸側鎖、mは1〜10の整数を表す。)で表わされるペプチド脂質及び金属塩を沸点以下に加温された溶媒にそれぞれ溶解させる段階、それぞれの溶液を混合する段階、これを室温で静置する段階、溶液中で自己集合することによりチューブ状構造体が生成する段階、及びそれらのチューブ状構造体が球状に凝集して多孔性微細粒子として析出する段階を経て形成された、チューブ状構造体が球状に凝集した多孔性微細粒子。
[7]前記一般式(I)におけるmが、2である前記[6]の、チューブ状構造体が球状に凝集した多孔性微細粒子。
[8]前記一般式(I)における(NH−CHR’−CO)が、グリシルグリシンである前記[7]の、チューブ状構造体が球状に凝集した多孔性微細粒子。
[9]前記金属塩が、銅化合物、カドミウム化合物、セリウム化合物、ユーロピウム化合物、ガドリニウム化合物、及びテルビウム化合物から選ばれる少なくとも1種以上である前記[6]の、チューブ状構造体が球状に凝集した多孔性微細粒子。
[10]チューブ状構造体の平均内径が5〜250nmである前記[6]の、チューブ状構造体が球状に凝集した多孔性微細粒子。
[11]多孔性微粒子の平均直径が0.1〜100μmである前記[6]の、チューブ状構造体が球状に凝集した多孔性微細粒子。
The present invention has been completed based on these findings, and is as follows.
[1] The following general formula (I)
RCO (NH—CHR′—CO) m OH (I)
(Wherein R represents a hydrocarbon group having 6 to 24 carbon atoms, R ′ represents an amino acid side chain, and m represents an integer of 1 to 10). A step of dissolving each in a solvent, a step of mixing each solution, a step of allowing this to stand at room temperature, a step of forming a tubular structure by self-assembling in the solution, and a spherical structure of those tubular structures A method for producing porous fine particles in which a tubular structure is agglomerated in a spherical shape, comprising the step of agglomerating into particles and precipitating as porous fine particles.
[2] The method for producing porous fine particles in which the tubular structure is agglomerated in a spherical shape according to [1], wherein m in the general formula (I) is 2.
[3] The method for producing porous fine particles according to [2], wherein (NH—CHR′—CO) m in the general formula (I) is glycylglycine, wherein the tubular structure is aggregated in a spherical shape.
[4] The tubular structure according to the above [1], wherein the metal salt is at least one selected from a copper compound, a cadmium compound, a cerium compound, a europium compound, a gadolinium compound, and a terbium compound. A method for producing porous fine particles.
[5] Production of porous fine particles in which the tubular structure is agglomerated in a spherical shape, according to any one of [1] to [4], wherein the solvent is ethanol or a mixed solvent containing ethanol. Method.
[6] The following general formula (I)
RCO (NH—CHR′—CO) m OH (I)
(Wherein R represents a hydrocarbon group having 6 to 24 carbon atoms, R ′ represents an amino acid side chain, and m represents an integer of 1 to 10). A step of dissolving each in a solvent, a step of mixing each solution, a step of allowing this to stand at room temperature, a step of forming a tubular structure by self-assembling in the solution, and a spherical structure of those tubular structures Porous fine particles formed by undergoing a step of agglomerating to precipitate as porous fine particles and having a tubular structure aggregated in a spherical shape.
[7] Porous fine particles in which the tubular structure is agglomerated in a spherical shape according to [6], wherein m in the general formula (I) is 2.
[8] The porous fine particles in which the tubular structure is agglomerated in a spherical shape according to [7], wherein (NH—CHR′—CO) m in the general formula (I) is glycylglycine.
[9] The tubular structure of [6], wherein the metal salt is at least one selected from a copper compound, a cadmium compound, a cerium compound, a europium compound, a gadolinium compound, and a terbium compound, is aggregated in a spherical shape. Porous fine particles.
[10] The porous fine particles obtained by agglomerating the tube-like structure into a spherical shape according to [6], wherein the tube-like structure has an average inner diameter of 5 to 250 nm.
[11] The porous fine particles in which the tubular structure is agglomerated in a spherical shape according to [6], wherein the average diameter of the porous fine particles is 0.1 to 100 μm.

本発明によれば、下記一般式(I)
RCO(NH−CHR’−CO)OH (I)
(式中、Rは炭素数6〜24の炭化水素基、R’はアミノ酸側鎖、mは1〜10の整数を表す。)で表わされるペプチド脂質単体あるいはペプチド脂質の金属錯体からチューブ状構造体が球状に凝集して形成する多孔性微細粒子を容易に製造することが出来る。
また、本発明のチューブ状構造体が球状に凝集して形成する多孔性微細粒子は、例えば、ファインケミカル工業分野、医薬、化粧品分野などにおいて薬剤や有用生体分子の包接・分離用材料、ドラッグデリバリ材料として、金属塩の種類を選ぶことで触媒や蛍光材料などのマイクロ電子部品として電子・情報分野において利用可能である。
According to the present invention, the following general formula (I)
RCO (NH—CHR′—CO) m OH (I)
(Wherein R represents a hydrocarbon group having 6 to 24 carbon atoms, R ′ represents an amino acid side chain, and m represents an integer of 1 to 10). Porous fine particles formed by agglomerating the body into a spherical shape can be easily produced.
In addition, the porous fine particles formed by agglomerating the tubular structure of the present invention into spherical shapes are, for example, materials for inclusion and separation of drugs and useful biomolecules, drug delivery in the fields of fine chemical industry, medicine, cosmetics and the like. By selecting the type of metal salt as the material, it can be used in the electronic and information fields as microelectronic components such as catalysts and fluorescent materials.

本発明のペプチド脂質は、長鎖炭化水素基を有するペプチド脂質、すなわち、下記の一般式(I)
RCO(NH−CHR’−CO)OH (I)
で表わされるペプチド脂質であり、ペプチド脂質単体あるいはペプチド脂質の金属錯体を原料としてチューブ状構造体が球状に凝集して形成する多孔性微細粒子を製造することができる。
本発明で得られる多孔性微粒子は、平均内径が5〜250nmであるチューブ状の空間を無数にもつ、平均直径が0.1〜100μmである多孔性微細粒子である。
以下、詳しく説明する。
The peptide lipid of the present invention is a peptide lipid having a long-chain hydrocarbon group, that is, the following general formula (I)
RCO (NH—CHR′—CO) m OH (I)
It is possible to produce a porous fine particle formed by agglomerating a tubular structure into a spherical shape using a peptide lipid alone or a peptide lipid metal complex as a raw material.
The porous fine particles obtained by the present invention are porous fine particles having an infinite number of tubular spaces having an average inner diameter of 5 to 250 nm and an average diameter of 0.1 to 100 μm.
This will be described in detail below.

この一般式(I)中、R’はアミノ酸側鎖であり、このアミノ酸としては、例えば、グリシン、バリン、ロイシン、イソロイシン、アラニン、アルギニン、グルタミン、リジン、アスパラギン酸、グルタミン酸、プロリン、システイン、スレオニン、メチオニン、ヒスチジン、フェニルアラニン、チロシン、トリプトファン、アスパラギン、及びセリンが挙げられ、好ましくはグリシンである。このアミノ酸側鎖はD、L型、ラセミ体のいずれであってもよいが、天然由来のものは通常L型である。
また、この一般式(I)中、mは1〜10の整数であり、好ましくは2である。
さらに、一般式(I)中の(NH−CHR’−CO)として、mが2であり、R’がいずれもHであるグリシルグリシンが好ましく用いられる。
In this general formula (I), R ′ is an amino acid side chain. Examples of this amino acid include glycine, valine, leucine, isoleucine, alanine, arginine, glutamine, lysine, aspartic acid, glutamic acid, proline, cysteine, and threonine. , Methionine, histidine, phenylalanine, tyrosine, tryptophan, asparagine, and serine, preferably glycine. This amino acid side chain may be any of D, L, and racemate, but naturally derived is usually L.
Moreover, in this general formula (I), m is an integer of 1-10, Preferably it is 2.
Furthermore, as (NH—CHR′—CO) m in the general formula (I), glycylglycine in which m is 2 and all R ′ are H is preferably used.

上記一般式(I)中、Rは炭素数が6〜24の炭化水素基、好ましくは炭素数2以下の側鎖が付いてもよい直鎖炭化水素である。この炭化水素基は飽和であっても不飽和であってもよく。不飽和の場合には3個以下の二重結合を含むことが好ましい。またRの炭素数は6〜24、好ましくは10〜16、より好ましくは11もしくは13である。このような炭化水素基としては、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基、ヘネイコシル基、ドコシル基、トリコシル基、テトラコシル基、ペンタコシル基、及びヘキサコシル基などが挙げられる。   In the general formula (I), R is a hydrocarbon group having 6 to 24 carbon atoms, preferably a linear hydrocarbon which may have a side chain having 2 or less carbon atoms. This hydrocarbon group may be saturated or unsaturated. In the case of unsaturated, it is preferable to contain 3 or less double bonds. The carbon number of R is 6 to 24, preferably 10 to 16, and more preferably 11 or 13. Such hydrocarbon groups include hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl , Eicosyl group, heneicosyl group, docosyl group, tricosyl group, tetracosyl group, pentacosyl group, hexacosyl group and the like.

金属塩はアルカリ金属(Li、Na、K、Rb、Cs、Fr)以外の全ての金属化合物を用いることが出来るが、望ましくは銅、カドミウム、セリウム、ユーロピウム、ガドリニウム、テルビウムの酢酸塩である。これらを単品で用いても良いし、複数種を混合して用いても良いが、好ましくは単品である。   As the metal salt, all metal compounds other than alkali metals (Li, Na, K, Rb, Cs, Fr) can be used, but preferred are acetates of copper, cadmium, cerium, europium, gadolinium, and terbium. These may be used alone or as a mixture of a plurality of types, but are preferably single items.

本発明のペプチド脂質の製法に特に制限はないが、一般式(I)で表されるペプチド脂質は、例えば、一般式R−COOH(式中、Rは一般式(I)のRと同じ意味をもつ)で表わされる長鎖カルボン酸又は一般式R−COCl(式中、Rは一般式(I)のRと同じ意味をもつ)で表わされる長鎖カルボン酸クロライドを、ペプチドのN端側と反応させて、ペプチド結合を形成させることによって、製造することができる。   The method for producing the peptide lipid of the present invention is not particularly limited, but the peptide lipid represented by the general formula (I) is, for example, the general formula R-COOH (wherein R has the same meaning as R in the general formula (I)). The long chain carboxylic acid represented by the general formula R-COCl (wherein R has the same meaning as R in the general formula (I)), the N-terminal side of the peptide It can be produced by reacting with to form a peptide bond.

長鎖カルボン酸として、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、エイコサン酸、ヘネイコサン酸、ドコサン酸、トリコサン酸、テトラコサン酸、ペンタコサン酸、ヘキサコサン酸などを挙げることができる。この中でドデカン酸、テトラデカン酸、等は得られるペプチド脂質の両親媒性のバランス、天然に存在するために安価に入手可能なことなどから望ましい。   As long chain carboxylic acids, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, eicosanoic acid And heneicosanoic acid, docosanoic acid, tricosanoic acid, tetracosanoic acid, pentacosanoic acid and hexacosanoic acid. Of these, dodecanoic acid, tetradecanoic acid, and the like are desirable because of the balance of the amphipathic properties of the obtained peptide lipids and the fact that they can be obtained at low cost because they exist in nature.

次に、このペプチド型脂質を用いてチューブ状構造体が球状に凝集して形成する多孔性微細粒子を製造する方法について述べる。   Next, a method for producing porous fine particles formed by agglomerating a tubular structure into a spherical shape using this peptide type lipid will be described.

ペプチド脂質と金属塩をそれぞれ別々に溶解させて溶液を調製する。ペプチド脂質と金属塩の溶液を混合した後、数秒から数分以内に徐々に溶液が濁り始め、1〜3時間の時間をかけて沈殿として析出させることで、チューブ状構造体が球状に凝集して形成する多孔性微細粒子として得ることが出来る。
この溶媒としては、沸点が120℃以下であるアルコール類を用いることができる。この溶媒は単独でもよいし、2種以上の混合溶媒であってもよい。
A solution is prepared by dissolving the peptide lipid and the metal salt separately. After mixing the peptide lipid and metal salt solution, the solution gradually begins to become cloudy within a few seconds to a few minutes, and the tube-like structure aggregates in a spherical shape by allowing it to precipitate as a precipitate over a period of 1 to 3 hours. Can be obtained as porous fine particles.
As this solvent, alcohols having a boiling point of 120 ° C. or lower can be used. This solvent may be used alone or in combination of two or more.

更に、このアルコール類に、芳香族炭化水素類、パラフィン類、塩化パラフィン類、塩化オレフィン類、塩化芳香族炭化水素類、エーテル類、ケトン類、エステル類、含窒素化合物及び水の1種以上を混合した混合溶媒を用いてもよい。この混合溶媒はこのアルコール類を好ましくは少なくとも10容積%、より好ましくは少なくとも50容積%含む。   Further, to this alcohol, one or more aromatic hydrocarbons, paraffins, chlorinated paraffins, chlorinated olefins, chlorinated aromatic hydrocarbons, ethers, ketones, esters, nitrogen-containing compounds and water are added. You may use the mixed solvent which mixed. The mixed solvent preferably contains at least 10% by volume, more preferably at least 50% by volume of the alcohol.

次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によって何ら限定されるものではない。
(実施例1)
[N−(グリシルグリシン)トリデカンカルボキサミドの合成]
グリシルグリシンベンジルエステル塩酸塩0.57g(2.2ミリモル)にトリエチルアミン0.31ml(2.2ミリモル)を加えエタノール10mlに溶解した。ここにトリデカンカルボン酸0.46g(2ミリモル)を含むクロロホルム溶液50mlを加えた。この混合溶液を−10℃で冷却しながら1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩0.42g(2.2ミリモル)を含むクロロホルム溶液20mlを加え、徐々に室温に戻しながら一昼夜撹拌した。反応溶液を10重量%クエン酸水溶液50ml、4重量%炭酸水素ナトリウム水溶液50ml、純水50mlで洗浄した後、減圧下で濃縮し白色固体(N−(グリシルグリシンベンジルエステル)トリデカンカルボキサミド)0.57g(収率65%)を得た。得られた化合物0.43g(1ミリモル)をジメチルホルムアミド100mlに溶解し、触媒として10重量%パラジウム/炭素を0.5g加え、接触水素還元を行った。6時間後、セライトろ過した後、減圧下で濃縮することにより、N−(グリシルグリシン)トリデカンカルボキサミド0.21g(収率60%)を得た。
この物理的性状及び元素分析値(燃焼法による)の測定結果を次に示す。
融点:158℃
元素分析(C18H34N2O4
計算値(%)C63.13、H10.01、N8.18
実測値(%)C62.09、H9.65、N8.25
EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited at all by these examples.
Example 1
[Synthesis of N- (glycylglycine) tridecane carboxamide]
To 0.57 g (2.2 mmol) of glycylglycine benzyl ester hydrochloride was added 0.31 ml (2.2 mmol) of triethylamine and dissolved in 10 ml of ethanol. 50 ml of chloroform solution containing 0.46 g (2 mmol) of tridecanecarboxylic acid was added thereto. While cooling this mixed solution at −10 ° C., 20 ml of a chloroform solution containing 0.42 g (2.2 mmol) of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride was added and gradually returned to room temperature. Stir all day and night. The reaction solution was washed with 50 ml of 10 wt% aqueous citric acid solution, 50 ml of 4 wt% aqueous sodium hydrogen carbonate solution and 50 ml of pure water, and then concentrated under reduced pressure to give a white solid (N- (glycylglycine benzyl ester) tridecane carboxamide). Obtained .57 g (yield 65%). 0.43 g (1 mmol) of the obtained compound was dissolved in 100 ml of dimethylformamide, and 0.5 g of 10 wt% palladium / carbon was added as a catalyst to perform catalytic hydrogen reduction. Six hours later, the mixture was filtered through celite and concentrated under reduced pressure to obtain 0.21 g (yield 60%) of N- (glycylglycine) tridecane carboxamide.
The measurement results of the physical properties and elemental analysis values (by the combustion method) are shown below.
Melting point: 158 ° C
Elemental analysis (C 18 H 34 N 2 O 4 )
Calculated (%) C63.13, H10.01, N8.18
Actual value (%) C62.09, H9.65, N8.25

(実施例2)
実施例1で得られたN−(グリシルグリシン)トリデカンカルボキサミド0.5gをエタノール50mlに溶解し、酢酸銅0.5gをエタノール50mlに溶解した溶液と混合した。数分後に青色沈殿が析出した。
得られた固形物を電子顕微鏡により観察したその結果、平均外径が2μmの多孔性微細粒子が形成していることがわかった。図1に、得られた走査電子顕微鏡写真を示す。
また、電子顕微鏡観察により、得られた多孔性微粒子は、平均内径が25nmであるチューブ状構造体が球状に凝集して形成されているものであることが判った。
(Example 2)
0.5 g of N- (glycylglycine) tridecane carboxamide obtained in Example 1 was dissolved in 50 ml of ethanol and mixed with a solution of 0.5 g of copper acetate in 50 ml of ethanol. After a few minutes, a blue precipitate was deposited.
As a result of observing the obtained solid with an electron microscope, it was found that porous fine particles having an average outer diameter of 2 μm were formed. FIG. 1 shows the obtained scanning electron micrograph.
Moreover, it was found by electron microscope observation that the obtained porous fine particles were formed by agglomerating a tubular structure having an average inner diameter of 25 nm into a spherical shape.

(実施例3)
実施例1で得られたN−(グリシルグリシン)トリデカンカルボキサミド0.5gをエタノール50mlに溶解し、酢酸カドミウム0.5gをエタノール50mlに溶解した溶液と混合した。数分後に白色沈殿が析出した。
得られた固形物を電子顕微鏡により観察した結果、平均外径が1.5μmの多孔性微細粒子が形成していることがわかった。図2に、得られた走査電子顕微鏡写真を示す。
また、電子顕微鏡観察により、得られた多孔性微粒子は、平均内径が45nmであるチューブ状構造体が球状に凝集して形成されているものであることが判った。
(Example 3)
0.5 g of N- (glycylglycine) tridecane carboxamide obtained in Example 1 was dissolved in 50 ml of ethanol and mixed with a solution of 0.5 g of cadmium acetate dissolved in 50 ml of ethanol. After a few minutes, a white precipitate was deposited.
As a result of observing the obtained solid with an electron microscope, it was found that porous fine particles having an average outer diameter of 1.5 μm were formed. FIG. 2 shows the obtained scanning electron micrograph.
Moreover, it was found by observation with an electron microscope that the obtained porous fine particles were formed by agglomerating a tubular structure having an average inner diameter of 45 nm into a spherical shape.

(実施例4)
実施例1で得られるN−(グリシルグリシン)トリデカンカルボキサミド0.5gをエタノール50mlに溶解し、酢酸セリウム0.5gをエタノール50mlに溶解した溶液と混合した。数分後に白色沈殿が析出した。
得られた固形物を電子顕微鏡により観察したその結果、平均外径が4μmの多孔性微細粒子が形成していることがわかった。図3に、得られた走査電子顕微鏡写真を示す。
また、電子顕微鏡観察により、得られた多孔性微粒子は、平均内径が30nmであるチューブ状構造体が球状に凝集して形成されているものであることが判った。
Example 4
0.5 g of N- (glycylglycine) tridecane carboxamide obtained in Example 1 was dissolved in 50 ml of ethanol, and mixed with a solution of 0.5 g of cerium acetate in 50 ml of ethanol. After a few minutes, a white precipitate was deposited.
As a result of observing the obtained solid matter with an electron microscope, it was found that porous fine particles having an average outer diameter of 4 μm were formed. FIG. 3 shows the obtained scanning electron micrograph.
In addition, observation with an electron microscope revealed that the obtained porous fine particles were formed by agglomerating a tubular structure having an average inner diameter of 30 nm into a spherical shape.

(実施例5)
実施例1で得られたN−(グリシルグリシン)トリデカンカルボキサミド0.5gをエタノール50mlに溶解し、酢酸ユーロピウム0.5gをエタノール50mlに溶解した溶液と混合した。数分後に白色沈殿が析出した。
得られた固形物を電子顕微鏡により観察したその結果、平均外径が1.5μmの多孔性微細粒子が形成していることがわかった。図4に、得られた走査電子顕微鏡写真を示す。
また、電子顕微鏡観察により、得られた多孔性微粒子は、平均内径が40nmであるチューブ状構造体が球状に凝集して形成されているものであることが判った。
(Example 5)
0.5 g of N- (glycylglycine) tridecane carboxamide obtained in Example 1 was dissolved in 50 ml of ethanol, and mixed with a solution of 0.5 g of europium acetate dissolved in 50 ml of ethanol. After a few minutes, a white precipitate was deposited.
As a result of observing the obtained solid with an electron microscope, it was found that porous fine particles having an average outer diameter of 1.5 μm were formed. FIG. 4 shows the obtained scanning electron micrograph.
In addition, observation with an electron microscope revealed that the obtained porous fine particles were formed by agglomerating a tubular structure having an average inner diameter of 40 nm into a spherical shape.

(実施例6)
実施例1で得られたN−(グリシルグリシン)トリデカンカルボキサミド0.5gをエタノール50mlに溶解し、酢酸テルビウム0.5gをエタノール50mlに溶解した溶液と混合した。数分後に白色沈殿が析出した。
得られた固形物を電子顕微鏡により観察したその結果、平均外径が1.5μmの多孔性微細粒子が形成していることがわかった。図5に、得られた走査電子顕微鏡写真を示す。
また、電子顕微鏡観察により、得られた多孔性微粒子は、平均内径が35nmであるチューブ状構造体が球状に凝集して形成されているものであることが判った。
(Example 6)
0.5 g of N- (glycylglycine) tridecane carboxamide obtained in Example 1 was dissolved in 50 ml of ethanol and mixed with a solution of 0.5 g of terbium acetate dissolved in 50 ml of ethanol. After a few minutes, a white precipitate was deposited.
As a result of observing the obtained solid with an electron microscope, it was found that porous fine particles having an average outer diameter of 1.5 μm were formed. FIG. 5 shows the obtained scanning electron micrograph.
Moreover, it was found by observation with an electron microscope that the obtained porous fine particles were formed by agglomerating a tubular structure having an average inner diameter of 35 nm into a spherical shape.

実施例2で得られた多孔性微粒子の走査電子顕微鏡写真。4 is a scanning electron micrograph of the porous fine particles obtained in Example 2. FIG. 実施例3で得られた多孔性微粒子の走査電子顕微鏡写真。4 is a scanning electron micrograph of the porous fine particles obtained in Example 3. FIG. 実施例4で得られた多孔性微粒子の走査電子顕微鏡写真。4 is a scanning electron micrograph of the porous fine particles obtained in Example 4. 実施例5で得られた多孔性微粒子の走査電子顕微鏡写真。6 is a scanning electron micrograph of the porous fine particles obtained in Example 5. 実施例6で得られた多孔性微粒子の走査電子顕微鏡写真。6 is a scanning electron micrograph of the porous fine particles obtained in Example 6.

Claims (11)

下記一般式(I)
RCO(NH−CHR’−CO)OH (I)
(式中、Rは炭素数6〜24の炭化水素基、R’はアミノ酸側鎖、mは1〜10の整数を表す。)で表わされるペプチド脂質及び金属塩を沸点以下に加温された溶媒にそれぞれ溶解させる段階、それぞれの溶液を混合する段階、これを室温で静置する段階、溶液中で自己集合することによりチューブ状構造体が生成する段階、及びそれらのチューブ状構造体が球状に凝集して多孔性微細粒子として析出する段階からなることを特徴とする、チューブ状構造体が球状に凝集した多孔性微細粒子の製造方法。
The following general formula (I)
RCO (NH—CHR′—CO) m OH (I)
(Wherein R represents a hydrocarbon group having 6 to 24 carbon atoms, R ′ represents an amino acid side chain, and m represents an integer of 1 to 10). A step of dissolving each in a solvent, a step of mixing each solution, a step of allowing this to stand at room temperature, a step of forming a tubular structure by self-assembling in the solution, and a spherical structure of those tubular structures A method for producing porous fine particles in which a tubular structure is agglomerated in a spherical shape, comprising the step of agglomerating into particles and precipitating as porous fine particles.
前記一般式(I)におけるmが、2である請求項1に記載の、チューブ状構造体が球状に凝集した多孔性微細粒子の製造方法。   The method for producing porous fine particles according to claim 1, wherein m in the general formula (I) is 2, wherein the tubular structure is aggregated in a spherical shape. 前記一般式(I)における(NH−CHR’−CO)が、グリシルグリシンである請求項2に記載の、チューブ状構造体が球状に凝集した多孔性微細粒子の製造方法。 3. The method for producing porous fine particles according to claim 2, wherein (NH—CHR′—CO) m in the general formula (I) is glycylglycine. 前記金属塩が、銅化合物、カドミウム化合物、セリウム化合物、ユーロピウム化合物、ガドリニウム化合物、及びテルビウム化合物から選ばれる少なくとも1種以上である請求項1に記載の、チューブ状構造体が球状に凝集した多孔性微細粒子の製造方法。   2. The porous structure in which the tubular structure is spherically aggregated according to claim 1, wherein the metal salt is at least one selected from a copper compound, a cadmium compound, a cerium compound, a europium compound, a gadolinium compound, and a terbium compound. A method for producing fine particles. 前記溶媒が、エタノールあるいはエタノールを含む混合溶媒であることを特徴とする、請求項1〜4のいずれか1項に記載の、チューブ状構造体が球状に凝集した多孔性微細粒子の製造方法。   The method for producing porous fine particles in which the tubular structures are aggregated in a spherical shape according to any one of claims 1 to 4, wherein the solvent is ethanol or a mixed solvent containing ethanol. 下記一般式(I)
RCO(NH−CHR’−CO)OH (I)
(式中、Rは炭素数6〜24の炭化水素基、R’はアミノ酸側鎖、mは1〜10の整数を表す。)で表わされるペプチド脂質及び金属塩を沸点以下に加温された溶媒にそれぞれ溶解させる段階、それぞれの溶液を混合する段階、これを室温で静置する段階、溶液中で自己集合することによりチューブ状構造体が生成する段階、及びそれらのチューブ状構造体が球状に凝集して多孔性微細粒子として析出する段階を経て形成された、チューブ状構造体が球状に凝集した多孔性微細粒子。
The following general formula (I)
RCO (NH—CHR′—CO) m OH (I)
(Wherein R represents a hydrocarbon group having 6 to 24 carbon atoms, R ′ represents an amino acid side chain, and m represents an integer of 1 to 10). A step of dissolving each in a solvent, a step of mixing each solution, a step of allowing this to stand at room temperature, a step of forming a tubular structure by self-assembling in the solution, and a spherical structure of those tubular structures Porous fine particles formed by undergoing a step of agglomerating to precipitate as porous fine particles and having a tubular structure aggregated in a spherical shape.
前記一般式(I)におけるmが、2である請求項6に記載の、チューブ状構造体が球状に凝集した多孔性微細粒子。   M in the general formula (I) is 2, The porous fine particles in which the tubular structure is agglomerated in a spherical shape. 前記一般式(I)における(NH−CHR’−CO)が、グリシルグリシンである請求項7に記載の、チューブ状構造体が球状に凝集した多孔性微細粒子。 The porous fine particles in which the tubular structure is aggregated in a spherical shape according to claim 7, wherein (NH-CHR'-CO) m in the general formula (I) is glycylglycine. 前記金属塩が、銅化合物、カドミウム化合物、セリウム化合物、ユーロピウム化合物、ガドリニウム化合物、及びテルビウム化合物から選ばれる少なくとも1種以上である請求項6に記載の、チューブ状構造体が球状に凝集した多孔性微細粒子。   The porous metal structure according to claim 6, wherein the metal salt is at least one selected from a copper compound, a cadmium compound, a cerium compound, a europium compound, a gadolinium compound, and a terbium compound. Fine particles. チューブ状構造体の平均内径が5〜250nmである請求項6に記載の、チューブ状構造体が球状に凝集した多孔性微細粒子。   The porous fine particles according to claim 6, wherein the tubular structure has an average inner diameter of 5 to 250 nm, and the tubular structure is aggregated in a spherical shape. 多孔性微粒子の平均直径が0.1〜100μmである請求項6に記載の、チューブ状構造体が球状に凝集した多孔性微細粒子。   The porous fine particles according to claim 6, wherein the average diameter of the porous fine particles is 0.1 to 100 µm, and the tubular structure is aggregated in a spherical shape.
JP2008164790A 2008-06-24 2008-06-24 Porous fine particles formed by agglomerating tubular structures into a spherical shape and a method for producing the same Expired - Fee Related JP5245158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008164790A JP5245158B2 (en) 2008-06-24 2008-06-24 Porous fine particles formed by agglomerating tubular structures into a spherical shape and a method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008164790A JP5245158B2 (en) 2008-06-24 2008-06-24 Porous fine particles formed by agglomerating tubular structures into a spherical shape and a method for producing the same

Publications (2)

Publication Number Publication Date
JP2010006713A true JP2010006713A (en) 2010-01-14
JP5245158B2 JP5245158B2 (en) 2013-07-24

Family

ID=41587614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008164790A Expired - Fee Related JP5245158B2 (en) 2008-06-24 2008-06-24 Porous fine particles formed by agglomerating tubular structures into a spherical shape and a method for producing the same

Country Status (1)

Country Link
JP (1) JP5245158B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170569A1 (en) * 2016-03-31 2017-10-05 国立研究開発法人産業技術総合研究所 Spherical nano capsule and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004250797A (en) * 2003-02-18 2004-09-09 Japan Science & Technology Agency Hollow microfiber
JP2008030185A (en) * 2006-06-14 2008-02-14 National Institute Of Advanced Industrial & Technology Hollow-fiber-like organic nanotube and process for production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004250797A (en) * 2003-02-18 2004-09-09 Japan Science & Technology Agency Hollow microfiber
JP2008030185A (en) * 2006-06-14 2008-02-14 National Institute Of Advanced Industrial & Technology Hollow-fiber-like organic nanotube and process for production thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6012032030; Adv. Mater. (2007) vol.19, no.2, p.242-246 *
JPN6012032031; 高分子学会予稿集 (2007) vol.56, no.1, p.606(3Pc011) *
JPN6012032032; 日本化学会第88春季年会講演予稿集I (Mar-2008) p.646(2PA-192) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170569A1 (en) * 2016-03-31 2017-10-05 国立研究開発法人産業技術総合研究所 Spherical nano capsule and method for producing same
JPWO2017170569A1 (en) * 2016-03-31 2018-10-25 国立研究開発法人産業技術総合研究所 Spherical nanocapsule and method for producing the same

Also Published As

Publication number Publication date
JP5245158B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
JP5062736B2 (en) Hollow fiber organic nanotube and method for producing the same
Zhang et al. Supramolecular hydrogelation with bile acid derivatives: structures, properties and applications
Roy et al. Amino acid based smart hydrogel: formation, characterization and fluorescence properties of silver nanoclusters within the hydrogel matrix
Masoomi et al. Morphological study and potential applications of nano metal–organic coordination polymers
Bag et al. Self-assembly of a renewable nano-sized triterpenoid 18β-glycyrrhetinic acid
Galantini et al. Bile salts and derivatives: Rigid unconventional amphiphiles as dispersants, carriers and superstructure building blocks
Kumar Solid dispersion-a review
US20140120021A1 (en) Method for manufacturing mesoporous materials, materials so produced and use of mesoporous materials
Xie et al. Organo-and hydrogels derived from cyclo (L-Tyr-L-Lys) and its ε-amino derivatives
JP5245158B2 (en) Porous fine particles formed by agglomerating tubular structures into a spherical shape and a method for producing the same
JP6281991B2 (en) Carbon nanohorn carrying boron compound on inner and outer walls and method for producing the same
Mallakpour et al. Sono-assisted preparation of bio-nanocomposite for removal of Pb2+ ions: Study of morphology, thermal and wettability properties
JP5158805B2 (en) Silver nanocluster-containing fine hollow fiber organic nanotube and method for producing the same
US20150375180A1 (en) Separation of nanoparticles
JP5062737B2 (en) Method for producing hollow fiber organic nanotube
Brahmachari et al. Superior SWNT dispersion by amino acid based amphiphiles: designing biocompatible cationic nanohybrids
JP2010005706A (en) Organic nanotube combined with substance having hydrophobic moiety and production method for the same
JP5207359B2 (en) Mass production method of metal coordination type organic nanotube
JP2004261885A (en) Method of leading functional material to organic nanotube
Kim et al. Influence of 1-D silica nanotubes as drug adsorbent on release behaviors of tulobuterol-loaded porous microcapsules
JP5354591B2 (en) AMIDE COMPOUND HAVING PHOTOISOMERIZATION GROUP, ORGANIC NANOTUBE COMPRISING SELF-ASSEMBLING THE COMPOUND, AND METHOD FOR PRODUCING THE SAME
Pasarkar et al. Solid Dispersion-A Review
Xueling et al. Bis-(4-stearoylaminophenyl) methane assembles in organic solvents and used as templates for preparation of SiO2 nanowires
Barbu-Tudoran et al. Self-assembly characteristics of gold nanoparticles in the presence of arginine
JP2018123092A (en) Amino acid-containing amphipathic molecule and organic nanotube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130321

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees