JP2010003564A - Method of manufacturing electrode substrate for solid polymer fuel cell - Google Patents

Method of manufacturing electrode substrate for solid polymer fuel cell Download PDF

Info

Publication number
JP2010003564A
JP2010003564A JP2008161976A JP2008161976A JP2010003564A JP 2010003564 A JP2010003564 A JP 2010003564A JP 2008161976 A JP2008161976 A JP 2008161976A JP 2008161976 A JP2008161976 A JP 2008161976A JP 2010003564 A JP2010003564 A JP 2010003564A
Authority
JP
Japan
Prior art keywords
resin
base material
fuel cell
electrode base
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008161976A
Other languages
Japanese (ja)
Other versions
JP5297701B2 (en
Inventor
Mitsuo Hamada
光夫 浜田
Makoto Nakamura
誠 中村
Kazushige Mihara
和茂 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2008161976A priority Critical patent/JP5297701B2/en
Publication of JP2010003564A publication Critical patent/JP2010003564A/en
Application granted granted Critical
Publication of JP5297701B2 publication Critical patent/JP5297701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an electrode substrate with high productivity by suppressing wrinkles of resin-impregnated paper during resin curing after a hot press process. <P>SOLUTION: In the method of manufacturing the electrode substrate for a solid polymer fuel cell having the hot press process of producing a resin cured sheet by continuously carrying out hot press of the resin-impregnated paper of impregnating thermosetting resin in carbon fiber paper, and a carbonization process of continuously baking the resin cured sheet, tension of when drawing the resin cured sheet right after hot press is ≥10 Mpa, and ≤150 MPa. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は外観が優れた固体高分子型燃料電池用電極基材の製造方法に関する。   The present invention relates to a method for producing an electrode substrate for a polymer electrolyte fuel cell having an excellent appearance.

固体高分子型燃料電池に用いられる電極基材は電極反応に関わる物質の拡散性、高い導電性といった特性が求められている。これら機能の他に電極部材の加工性を高めるために、ハンドリング性の高いロール形態の電極基材が求められている。   Electrode substrates used for polymer electrolyte fuel cells are required to have characteristics such as diffusibility of substances involved in electrode reactions and high conductivity. In addition to these functions, in order to improve the workability of the electrode member, there is a demand for a roll-shaped electrode substrate with high handling properties.

このような固体高分子型燃料電池用電極基材の製造方法としては、例えば特許文献1や2などのように、炭素短繊維を主成分とする炭素繊維紙に熱硬化性樹脂を含浸させ、この樹脂含浸紙を連続で加熱プレス成型し、炭素化する方法が開示されている。また、特許文献3には、前記方法で得られた電極基材を巻き崩れなく巻取り体に巻き取る方法が示されている。   As a method for producing such an electrode base material for a polymer electrolyte fuel cell, for example, as in Patent Documents 1 and 2, carbon fiber paper mainly composed of carbon short fibers is impregnated with a thermosetting resin, A method is disclosed in which this resin-impregnated paper is continuously heat-press molded and carbonized. Patent Document 3 discloses a method of winding the electrode base material obtained by the above-described method around a wound body without rolling.

しかしながら、これらの製造方法により電極基材を製造した場合、樹脂含浸紙を加熱プレスする工程において、長手方向あるいは幅方向に熱硬化性樹脂の硬化時の収縮により皺が発生するケースがある。このように皺が生じた電極基材は、このあとの電極を形成する後加工工程(MPL処理や撥水処理)において塗工ムラなどが生じやすく、歩留まり低下をもたらす場合があり、更なる改善が望まれている。
国際公開第01/056103号パンフレット 国際公開第02/006032号パンフレット 特開2002−302557号公報
However, when the electrode base material is manufactured by these manufacturing methods, there is a case where wrinkles are generated due to shrinkage when the thermosetting resin is cured in the longitudinal direction or the width direction in the step of heat-pressing the resin-impregnated paper. In the electrode base material in which wrinkles are generated in this way, uneven coating is likely to occur in the post-processing step (MPL treatment or water repellent treatment) for forming the subsequent electrodes, which may lead to a decrease in yield, and further improvement. Is desired.
International Publication No. 01/056103 Pamphlet International Publication No. 02/006032 Pamphlet JP 2002-302557 A

本発明においては、加熱プレス工程後の樹脂硬化シートの皺の発生を抑制し、高い生産性で電極基材を製造する方法を提供することにある。   In this invention, it is providing the method of suppressing generation | occurrence | production of the flaw of the resin cured sheet after a heat press process, and manufacturing an electrode base material with high productivity.

上記目的を達成するために、本発明は、熱硬化性樹脂を炭素繊維紙に含浸した樹脂含浸紙を連続的に加熱プレスして樹脂硬化シートを作製する加熱プレス工程と、前記樹脂硬化シートを連続的に焼成する炭素化工程とを有する固体高分子型燃料電池用電極基材の製造方法において、前記加熱プレス直後の樹脂硬化シートを引き取る際の引き取り張力((引き取り張力(Pa))=(引き取り応力(N))/(樹脂硬化シートの断面積(m2)))が、10MPa以上、150MPa以下である固体高分子型燃料電池用電極基材の製造方法を提供する。 In order to achieve the above-mentioned object, the present invention comprises a heat pressing step in which a resin-impregnated paper obtained by impregnating carbon fiber paper with a thermosetting resin is continuously heat-pressed to produce a resin-cured sheet, and the resin-cured sheet comprises In the method for producing an electrode base material for a polymer electrolyte fuel cell having a carbonization step of continuous firing, a take-up tension ((take-up tension (Pa)) = ( Provided is a method for producing an electrode base material for a polymer electrolyte fuel cell having a take-up stress (N) / (cross-sectional area of a cured resin sheet (m 2 ))) of 10 MPa or more and 150 MPa or less.

加熱プレス工程後の樹脂硬化シートに皺が発生せず、外観が優れた固体高分子型燃料電池用電極基材を提供することができ、その後の後加工工程での塗工ムラが生じにくく、生産性向上に寄与する。   The resin-cured sheet after the hot press process does not generate wrinkles and can provide an electrode substrate for a polymer electrolyte fuel cell having an excellent appearance. Contributes to productivity improvement.

本発明の固体高分子型燃料電池用電極基材の製造方法は、熱硬化性樹脂を炭素繊維紙に含浸した樹脂含浸紙を連続的に加熱プレスして樹脂硬化シートを作製する加熱プレス工程と、前記樹脂硬化シートを連続的に焼成する炭素化工程とを有する固体高分子型燃料電池用電極基材の製造方法において、前記加熱プレス直後の樹脂硬化シートを引き取る際の引き取り張力((引き取り張力(Pa))=(引き取り応力(N))/(樹脂硬化シートの断面積(m2)))が、10MPa以上、150MPa以下であることを特徴とする。 The method for producing an electrode base material for a polymer electrolyte fuel cell according to the present invention comprises a heat press step of continuously heating and pressing a resin-impregnated paper in which a carbon fiber paper is impregnated with a thermosetting resin to produce a resin-cured sheet. In the method for producing an electrode base material for a polymer electrolyte fuel cell having a carbonization step of continuously firing the resin-cured sheet, a take-up tension ((take-off tension) when taking the resin-cured sheet immediately after the heating press is taken. (Pa)) = (take-off stress (N)) / (cross-sectional area of the cured resin sheet (m 2 ))) is 10 MPa or more and 150 MPa or less.

[引き取り張力]
本発明における加熱プレス工程は連続的に行い、加熱プレス直後の引き取り張力は、10MPa以上、150MPa以下にすることが必要である。より好ましくは20MPa以上、140MPa以下である。
[Take-up tension]
The hot pressing step in the present invention is performed continuously, and the take-up tension immediately after the hot pressing needs to be 10 MPa or more and 150 MPa or less. More preferably, it is 20 MPa or more and 140 MPa or less.

加熱プレス後の引き取り張力が10MPa未満では、樹脂硬化時の収縮により幅方向あるいは長手方向の皺が生じ、好ましくない。また、引き取り張力が150MPaを超えると、製造中の樹脂硬化シートが破断する場合があり好ましくない。ここで、引き取り張力(Pa)とは、引き取り応力(N)を樹脂硬化シートの断面積(m2)で割った値である。 If the take-up tension after hot pressing is less than 10 MPa, wrinkles in the width direction or the longitudinal direction occur due to shrinkage during resin curing, which is not preferable. On the other hand, if the take-up tension exceeds 150 MPa, the cured resin sheet being produced may be broken, which is not preferable. Here, the take-up tension (Pa) is a value obtained by dividing the take-up stress (N) by the cross-sectional area (m 2 ) of the cured resin sheet.

加熱プレス工程は熱硬化性樹脂を硬化し、シート厚みを制御する重要な工程であり、本発明における加熱プレス工程は、生産性の観点から、連続的に行われる必要がある。加熱プレス直後の樹脂硬化シートの引き取り張力を調節する手段としては、巻取り機で制御する方法やプレスと巻取り機の間にニップロールを配置して行う方法などを採用することができる。   The hot pressing process is an important process for curing the thermosetting resin and controlling the sheet thickness, and the hot pressing process in the present invention needs to be performed continuously from the viewpoint of productivity. As a means for adjusting the take-up tension of the resin-cured sheet immediately after the heating press, a method of controlling with a winder, a method of arranging a nip roll between the press and the winder, or the like can be employed.

[加熱プレス工程]
前記加熱プレス工程において使用する加熱プレス装置としては、一対のエンドレスベルトを備えた連続式加熱ダブルベルトプレス装置(以下、ダブルベルト装置とする)、あるいは連続式加熱ロールプレス装置(以下、ロールプレス装置とする)が好ましい。
[Hot press process]
As a heating press apparatus used in the heating press step, a continuous heating double belt press apparatus (hereinafter referred to as a double belt apparatus) provided with a pair of endless belts or a continuous heating roll press apparatus (hereinafter referred to as a roll press apparatus). Is preferred).

前記ダブルベルト装置としては、一例として、図1に示す装置が挙げられる。   An example of the double belt device is the device shown in FIG.

前記熱硬化性樹脂を含浸させた炭素繊維紙である2枚の樹脂含浸紙1は、離型材コーティング基材2の間に挟み、ベルトによりダブルベルト装置内に搬送される。押さえロール1(3a)により2枚の樹脂含浸紙1を重ね合わせた後、熱風発生装置4内で熱風により、また予熱ロール2(5b)により予熱処理が行われる。   Two resin-impregnated papers 1 which are carbon fiber paper impregnated with the thermosetting resin are sandwiched between release material coating base materials 2 and conveyed into a double belt device by a belt. After the two resin-impregnated papers 1 are overlapped by the press roll 1 (3a), the preheat treatment is performed by the hot air in the hot air generator 4 and by the preheating roll 2 (5b).

本発明では、前記方法のように、加熱プレス前に前記樹脂含浸紙を予熱処理することが好ましい。加熱プレス前に樹脂含浸紙に予熱を加えることで熱硬化性樹脂を一旦軟化させ、炭素繊維紙に良くなじませることができる。その上で加熱プレスを行うことで、炭素繊維同士の結着が効果的に行われ、機械特性に優れ、ハンドリング性の高い電極基材を製造することができる。予熱処理において採用される加熱手段は加熱ロールなどの伝熱加熱、加熱領域を設けた対流加熱、遠赤外線等の放射加熱のいずれかあるいはそれらの組み合わせでも良いが、熱ロス低減の観点から加熱ロール等を使用した伝熱加熱であることが好ましい。   In the present invention, it is preferable to pre-heat the resin-impregnated paper before the hot pressing as in the method. By preheating the resin-impregnated paper before the heating press, the thermosetting resin can be once softened and well blended with the carbon fiber paper. Then, by performing a hot press, the carbon fibers can be effectively bound to each other, and an electrode substrate having excellent mechanical properties and high handling properties can be produced. The heating means employed in the preheat treatment may be any one of heat transfer heating such as a heating roll, convection heating provided with a heating region, radiation heating such as far infrared rays, or a combination thereof, but from the viewpoint of reducing heat loss, the heating roll It is preferable that the heat transfer heating is used.

熱風発生装置4内の熱風の温度としては、100℃以上、250℃以下が好ましい。また、予熱ロール2(5b)の温度としては、150℃以上、300℃以下が好ましい。   The temperature of the hot air in the hot air generator 4 is preferably 100 ° C. or higher and 250 ° C. or lower. Moreover, as temperature of the preheating roll 2 (5b), 150 degreeC or more and 300 degrees C or less are preferable.

前記予熱工程後、プレスロール6により、加熱プレスを行う。プレスロール6の温度としては、熱硬化性樹脂の硬化を進める観点から、200℃以上、400℃以下が好ましい。   After the preheating step, heating press is performed by a press roll 6. The temperature of the press roll 6 is preferably 200 ° C. or higher and 400 ° C. or lower from the viewpoint of promoting the curing of the thermosetting resin.

また、プレスロール6の線圧としては、所望の電極基材の厚みになるように調整すれば良いが、電極基材の機械特性向上のために炭素繊維同士の結着を進める観点から、1×102N/m以上、1×106N/m以下でプレスすることが好ましい。 Further, the linear pressure of the press roll 6 may be adjusted so as to have a desired thickness of the electrode base material. From the viewpoint of promoting the binding of carbon fibers to improve the mechanical properties of the electrode base material, 1 It is preferable to press at not less than 10 2 N / m and not more than 1 × 10 6 N / m.

前記得られた樹脂硬化シートを巻取り機により巻き取る。このとき、前述したように、本発明では引き取り張力が10MPa以上、150MPa以下で樹脂硬化シートを引き取る。   The obtained resin cured sheet is wound up by a winder. At this time, as described above, in the present invention, the cured resin sheet is drawn with a take-up tension of 10 MPa or more and 150 MPa or less.

図1のように、巻取り機により引き取り張力を調節する方法以外にも、図3に示すようにプレスロール6と巻取り機の間にニップロール8を設け、ニップロール8により引き取り張力を調節してもよい。   In addition to the method of adjusting the take-up tension with a winder as shown in FIG. 1, a nip roll 8 is provided between the press roll 6 and the winder as shown in FIG. 3, and the take-up tension is adjusted with the nip roll 8. Also good.

なお、図1、図3の例では得られた樹脂硬化シートを一度巻取り機により巻き取っているが、巻き取らずにニップロール8により引き取り張力を調節し、そのまま連続的に後述する炭素化工程を行ってもよい。   In the examples of FIGS. 1 and 3, the obtained resin cured sheet is once wound up by a winder, but the take-up tension is adjusted by the nip roll 8 without winding, and the carbonization process described later is continuously performed as it is. May be performed.

前記ロールプレス装置としては、一例として、図2に示す装置が挙げられる。   As an example of the roll press apparatus, there is an apparatus shown in FIG.

前記熱硬化性樹脂を含浸させた炭素繊維紙である2枚の樹脂含浸紙1は、離型材コーティング基材2に挟まれた状態でロールプレス装置内に搬送され、予熱ロール1(5a)により、予熱しながら2枚の樹脂含浸紙1を重ね合わせる。また、熱風発生装置4内で熱風により、また予熱ロール2(5b)により予熱処理が行われる。   Two resin-impregnated papers 1 which are carbon fiber paper impregnated with the thermosetting resin are conveyed into a roll press apparatus in a state of being sandwiched by a release material coating base material 2, and are preheated by a preheating roll 1 (5a). Then, the two resin-impregnated papers 1 are superposed while preheating. Further, pre-heat treatment is performed by hot air in the hot-air generator 4 and by the pre-heating roll 2 (5b).

予熱ロール1(5a)の温度としては、50℃以上、200℃以下が好ましい。熱風発生装置4内の熱風の温度としては、100℃以上、250℃以下が好ましい。また、予熱ロール2(5b)の温度としては、150℃以上、300℃以下が好ましい。   As temperature of preheating roll 1 (5a), 50 ° C or more and 200 ° C or less are preferred. The temperature of the hot air in the hot air generator 4 is preferably 100 ° C. or higher and 250 ° C. or lower. Moreover, as temperature of the preheating roll 2 (5b), 150 degreeC or more and 300 degrees C or less are preferable.

前記予熱工程後、プレスロール6により、加熱プレスを行う。プレスロール6の温度としては、熱硬化性樹脂の硬化を進める観点から、200℃以上、400℃以下が好ましい。   After the preheating step, heating press is performed by a press roll 6. The temperature of the press roll 6 is preferably 200 ° C. or higher and 400 ° C. or lower from the viewpoint of promoting the curing of the thermosetting resin.

また、プレスロール6の線圧としては、所望の電極基材の厚みになるように調整すれば良いが、電極基材の機械特性向上のために炭素繊維同士の結着を進める観点から、1×102N/m以上、1×106N/m以下が好ましい。 Further, the linear pressure of the press roll 6 may be adjusted so as to have a desired thickness of the electrode base material. From the viewpoint of promoting the binding of carbon fibers to improve the mechanical properties of the electrode base material, 1 It is preferably at least 10 2 N / m and not more than 1 × 10 6 N / m.

前記加熱プレスの後、ニップロール8により引き取り張力を調節し、得られた樹脂硬化シートを巻取り機により巻き取る。このとき、前述したように、本発明では引き取り張力が10MPa以上、150MPa以下で樹脂硬化シートを引き取る。   After the heating press, the take-up tension is adjusted by the nip roll 8, and the resulting cured resin sheet is wound up by a winder. At this time, as described above, in the present invention, the cured resin sheet is drawn with a take-up tension of 10 MPa or more and 150 MPa or less.

なお、図2の例では得られた樹脂硬化シートをニップロール8により引き取り張力を調節し、巻取り機により巻き取っているが、ニップロール8を用いずに巻取り機により引き取り張力を調節し、直接巻き取ってもよい。   In the example of FIG. 2, the take-up tension of the cured resin sheet obtained is adjusted by the nip roll 8 and wound by the winder, but the take-up tension is adjusted by the winder without using the nip roll 8. You may wind up.

また、巻取り機により巻き取らずに、ニップロール8により引き取り張力を調節し、そのまま連続的に後述する炭素化工程を行ってもよい。   Further, the take-up tension may be adjusted by the nip roll 8 without being taken up by the take-up machine, and the carbonization process described later may be performed continuously as it is.

前記ロールプレス装置を用いる場合は、1組あるいは2組以上の多段プレスを採用することができる。また、前記ダブルベルト装置を用いる場合では、予熱処理において熱硬化性樹脂が軟化したところで、樹脂含浸紙にほとんど張力をかけずにベルトで搬送することができるため、製造中の樹脂硬化シートの破壊が生じにくく、工程通過性に優れるため好ましい。   When the roll press apparatus is used, one set or two or more sets of multi-stage presses can be employed. In the case of using the double belt device, when the thermosetting resin is softened in the pre-heat treatment, the resin-impregnated paper can be transported by the belt with almost no tension. Is preferable because it is less likely to occur and has excellent process passability.

[炭素化工程]
本発明において、前記加熱プレス後、樹脂硬化シートを焼成する。前記焼成は、不活性雰囲気に保たれた加熱炉内に樹脂硬化シートを導き、その加熱炉内を連続的に走行させながら行う。最終的に得られる電極基材の機械特性や導電性の観点から、前記焼成は、最高温度が600℃以上、好ましくは700℃以上で熱処理する工程(予備炭素化工程)と、最高温度が1500℃以上、好ましくは1600℃以上で熱処理する工程(炭素化工程)とから構成されることが好ましい。
[Carbonization process]
In the present invention, the cured resin sheet is fired after the hot pressing. The firing is performed while a cured resin sheet is guided into a heating furnace maintained in an inert atmosphere and continuously running in the heating furnace. From the viewpoint of mechanical properties and conductivity of the electrode substrate finally obtained, the firing is performed by a heat treatment at a maximum temperature of 600 ° C. or more, preferably 700 ° C. or more (preliminary carbonization step), and a maximum temperature of 1500. It is preferable to be composed of a step of heat treatment (carbonization step) at a temperature of at least 1 ° C, preferably at least 1600 ° C.

前記予備炭素化工程の昇温速度は、40〜300℃/minが好ましい。また、炭素化工程の昇温速度は、50〜500℃/minが好ましい。   The heating rate in the preliminary carbonization step is preferably 40 to 300 ° C./min. Moreover, as for the temperature increase rate of a carbonization process, 50-500 degrees C / min is preferable.

予備炭素化工程で40℃/min未満あるいは炭素化工程で50℃/min未満の昇温速度の場合は、生産性が低い。また、予備炭素化工程で300℃/minを超える昇温速度あるいは炭素化工程で500℃/minを超える昇温速度の場合は、導電性や機械特性が低下する。   Productivity is low when the heating rate is less than 40 ° C./min in the preliminary carbonization step or less than 50 ° C./min in the carbonization step. Further, in the case of a temperature rising rate exceeding 300 ° C./min in the preliminary carbonization step or a temperature rising rate exceeding 500 ° C./min in the carbonization step, conductivity and mechanical properties are deteriorated.

[炭素繊維紙]
本発明に用いることのできる前記炭素繊維紙としては、液体の媒体中に炭素繊維を分散させて抄造する湿式法、又は空気中に炭素繊維を分散させて降り積もらせる乾式法により製造した炭素繊維紙を適用できるが、中でも湿式法により製造した炭素繊維紙の方が繊維の分散性が良好なため好ましい。
[Carbon fiber paper]
The carbon fiber paper that can be used in the present invention includes a carbon fiber produced by a wet method in which carbon fiber is dispersed in a liquid medium to make paper, or a dry method in which carbon fiber is dispersed in air and accumulated. Although paper can be applied, carbon fiber paper produced by a wet method is preferred because of good fiber dispersibility.

前記炭素繊維紙に含まれる炭素繊維は、ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維などいずれの炭素繊維であっても良いが、機械的強度が比較的高いポリアクリロニトリル系炭素繊維が好ましい。特に、用いる炭素繊維がポリアクリロニトリル系炭素繊維のみからなることが好ましい。   The carbon fiber contained in the carbon fiber paper may be any carbon fiber such as polyacrylonitrile-based carbon fiber, pitch-based carbon fiber, rayon-based carbon fiber, etc., but polyacrylonitrile-based carbon fiber having relatively high mechanical strength. Is preferred. In particular, it is preferable that the carbon fiber to be used consists only of polyacrylonitrile-based carbon fiber.

ここでいうポリアクリロニトリル系炭素繊維とは、原料としてアクリロニトリルを主成分とするポリマーを用いて製造されるものである。具体的には、アクリロニトリル系繊維を紡糸する製糸工程、200〜400℃の空気雰囲気中で該繊維を加熱焼成して酸化繊維に転換する耐炎化工程、窒素、アルゴン、ヘリウム等の不活性雰囲気中でさらに300〜2500℃に加熱して炭化する炭化工程を経て得られる炭素繊維である。前記炭素繊維は、複合材料強化繊維として好適に使用できるものである。そのため、他の炭素繊維に比べて強度が強く、機械的強度の強い炭素繊維紙を形成することができる。   The polyacrylonitrile-based carbon fiber here is produced using a polymer containing acrylonitrile as a main component as a raw material. Specifically, a spinning process for spinning acrylonitrile fibers, a flameproofing process for heating and firing the fibers in an air atmosphere at 200 to 400 ° C. to convert them into oxidized fibers, and in an inert atmosphere such as nitrogen, argon, helium, etc. And carbon fiber obtained through a carbonization step of carbonizing by heating to 300 to 2500 ° C. The carbon fiber can be suitably used as a composite material reinforcing fiber. Therefore, it is possible to form a carbon fiber paper that has higher strength and higher mechanical strength than other carbon fibers.

前記ポリアクリロニトリル系炭素繊維は、電極基材の機械特性維持の観点から炭素繊維紙中に50質量%以上含まれることが好ましく、70質量%以上含まれることがより好ましい。   The polyacrylonitrile-based carbon fiber is preferably contained in the carbon fiber paper in an amount of 50% by mass or more, more preferably 70% by mass or more from the viewpoint of maintaining the mechanical properties of the electrode substrate.

炭素繊維の平均繊維長は、基材の強度や均一な分散性の観点から、2〜18mmにすることが好ましく、2〜10mmとすることがより好ましく、3〜6mmとするのがさらに好ましい。繊維長が2mm未満であると繊維同士の絡み合いが少なくなり、基材の強度が弱くなる場合がある。また、18mmを超えると、繊維の分散媒体中への分散性が低下し、分散斑のある炭素繊維紙となる場合がある。   The average fiber length of the carbon fibers is preferably 2 to 18 mm, more preferably 2 to 10 mm, and further preferably 3 to 6 mm from the viewpoint of the strength of the base material and uniform dispersibility. When the fiber length is less than 2 mm, the entanglement between the fibers decreases, and the strength of the substrate may be weakened. Moreover, when it exceeds 18 mm, the dispersibility in the dispersion medium of a fiber will fall, and it may become a carbon fiber paper with a dispersion spot.

本発明の炭素繊維紙は、バインダーとして有機高分子化合物を含むことが好ましい。   The carbon fiber paper of the present invention preferably contains an organic polymer compound as a binder.

有機高分子化合物としては、ポリビニルアルコール(PVA)、ポリ酢酸ビニル、ポリエステル、ポリプロピレン、ポリエチレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、アクリル樹脂、ポリウレタン樹脂などの熱可塑性樹脂やフェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、不飽和ポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂などの熱硬化樹脂の他、熱可塑性エラストマー、ブタジエン・スチレン共重合体(SBR)、ブタジエン・アクリロニトリル共重合体(NBR)等のエラストマー、ゴム、セルロースなどを用いることができる。また、その形態としては、パルプ状物や短繊維が適している。   Examples of the organic polymer compound include polyvinyl alcohol (PVA), polyvinyl acetate, polyester, polypropylene, polyethylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, acrylic resin, polyurethane resin, and other thermoplastic resins, phenol resins, epoxy resins, Thermosetting resins such as melamine resin, urea resin, alkyd resin, unsaturated polyester resin, acrylic resin, polyurethane resin, thermoplastic elastomer, butadiene / styrene copolymer (SBR), butadiene / acrylonitrile copolymer (NBR) Elastomer such as rubber, rubber, cellulose and the like can be used. Further, as the form, pulp-like materials and short fibers are suitable.

ここでいうパルプ状物とは、繊維状の幹から直径が数μm以下のフィブリルを多数分岐した構造で、このパルプ状物を用いた炭素繊維紙は効率よく繊維同士が絡み合い、薄い炭素繊維紙であってもその取り扱い性に優れている特徴を有している。   The pulp-like material here is a structure in which a large number of fibrils having a diameter of several μm or less are branched from a fibrous trunk, and the carbon fiber paper using this pulp-like material is entangled with fibers efficiently, and is thin carbon fiber paper. Even so, it has the characteristics of excellent handling.

また、短繊維とは繊維糸又は繊維のトウを所定の長さにカットして得られるものである。前記短繊維の長さは、バインダーとしての結着性や分散性の点から、2〜12mmが好ましい。   Short fibers are obtained by cutting fiber yarns or fiber tows into a predetermined length. The length of the short fibers is preferably 2 to 12 mm from the viewpoint of binding properties and dispersibility as a binder.

特に、有機高分子化合物としてはポリビニルアルコール(PVA)、ポリエチレン、ポリアクリロニトリル、セルロース、ポリ酢酸ビニルのパルプ状物若しくは短繊維が好ましく、中でも炭素繊維との取り扱い性、コストの点からポリエチレンのパルプ状物が好ましい。   In particular, the organic polymer compound is preferably polyvinyl alcohol (PVA), polyethylene, polyacrylonitrile, cellulose, polyvinyl acetate pulp or short fibers, and in particular, polyethylene pulp from the viewpoint of handling with carbon fibers and cost. Things are preferred.

これらの有機高分子化合物は抄紙工程での結着力に優れるため、炭素繊維の脱落が少なくバインダーとして好ましい。これらは単一成分で用いても良いし、2種類以上用いることもできる。また、これら有機高分子化合物は電極基材を製造する最終段階の炭素化過程で大部分が分解・揮発し、空孔を形成する。この空孔の存在により、水及びガスの透過性が向上するため好ましい。   Since these organic polymer compounds are excellent in binding power in the paper making process, they are preferable as a binder with less carbon fiber falling off. These may be used as a single component, or two or more types may be used. In addition, most of these organic polymer compounds are decomposed and volatilized in the final carbonization process for producing the electrode substrate to form pores. The presence of these pores is preferable because the permeability of water and gas is improved.

炭素繊維紙における有機高分子化合物の含有率は、5〜60質量%の範囲にあるのが好ましい。より好ましくは10〜50質量%の範囲である。炭素繊維紙に後述する熱硬化性樹脂を含浸し、焼成して得られる電極基材の電気抵抗を低くするためには、有機高分子化合物の含有量は少ない方がよく、含有率は60質量%以下が好ましい。炭素繊維紙の強度及び形状を保つという観点から、含有率は5質量%以上が好ましい。   The content of the organic polymer compound in the carbon fiber paper is preferably in the range of 5 to 60% by mass. More preferably, it is the range of 10-50 mass%. In order to lower the electric resistance of the electrode base material obtained by impregnating a carbon fiber paper with a thermosetting resin described later and firing, it is better that the content of the organic polymer compound is small, and the content is 60 mass. % Or less is preferable. From the viewpoint of maintaining the strength and shape of the carbon fiber paper, the content is preferably 5% by mass or more.

[熱硬化性樹脂]
本発明で用いられる熱硬化性樹脂は、常温において粘着性、或いは流動性を示し、かつ炭素化後も導電性物質として残存する物質が好ましく、フェノール樹脂、フラン樹脂等を用いることができる。
[Thermosetting resin]
The thermosetting resin used in the present invention is preferably a substance that exhibits adhesiveness or fluidity at room temperature and remains as a conductive substance even after carbonization, and a phenol resin, a furan resin, or the like can be used.

前記フェノール樹脂としては、アルカリ触媒存在下においてフェノール類とアルデヒド類の反応によって得られるレゾールタイプフェノール樹脂を用いることができる。また、レゾールタイプの流動性フェノール樹脂に公知の方法によって酸性触媒下においてフェノール類とアルデヒド類の反応によって生成する、固体の熱融着性を示すノボラックタイプのフェノール樹脂を溶解混入させることもできる。この場合は硬化剤、例えばヘキサメチレンジアミンを含有した、自己架橋タイプのものが好ましい。   As the phenol resin, a resol type phenol resin obtained by reaction of phenols and aldehydes in the presence of an alkali catalyst can be used. In addition, a novolac type phenol resin having a solid heat fusion property, which is produced by a reaction of phenols and aldehydes under an acidic catalyst, can be dissolved and mixed in the resol type flowable phenol resin by a known method. In this case, a self-crosslinking type containing a curing agent such as hexamethylenediamine is preferred.

フェノール類としては、例えば、フェノール、レゾルシン、クレゾール、キシレノール等が用いられる。アルデヒド類としては、例えばホルマリン、パラホルムアルデヒド、フルフラール等が用いられる。また、これらを混合物として用いることができる。これらはフェノール樹脂として市販品を利用することも可能である。   Examples of phenols include phenol, resorcin, cresol, xylenol, and the like. As aldehydes, for example, formalin, paraformaldehyde, furfural and the like are used. Moreover, these can be used as a mixture. These can also use a commercial item as a phenol resin.

この熱硬化性樹脂は、その種類や炭素繊維紙への含浸量により、最終的に電極基材に炭化物として残る割合が異なる。電極基材を100質量%とした時、炭素繊維分を除いた熱硬化樹脂由来の炭化物の含有量は、電極基材中の炭素繊維の結着の観点から10質量%以上であることが好ましい。さらに好ましくは20質量%以上である。また熱硬化性樹脂量が多い場合はプレス時の収縮量が大きくなり皺がよりやすいこと、そして電極基材柔軟性発現の観点から、熱硬化性樹脂由来の炭化物含有量は50質量%以下であることが好ましい。さらに好ましくは40質量%以下である。   The proportion of the thermosetting resin that remains as a carbide on the electrode base material varies depending on the type and the amount of carbon fiber paper impregnated. When the electrode substrate is 100% by mass, the content of the carbide derived from the thermosetting resin excluding the carbon fiber content is preferably 10% by mass or more from the viewpoint of binding of the carbon fibers in the electrode substrate. . More preferably, it is 20 mass% or more. In addition, when the amount of the thermosetting resin is large, the amount of shrinkage at the time of pressing becomes large and wrinkles are easier, and from the viewpoint of electrode substrate flexibility expression, the content of carbide derived from the thermosetting resin is 50% by mass or less. Preferably there is. More preferably, it is 40 mass% or less.

前記熱硬化性樹脂の前記炭素繊維紙への含浸方法としては、特段の制限はないが、コーターを用いて炭素繊維紙表面に樹脂を均一にコートする方法、しぼり装置を用いるディップ・ニップ法、もしくは炭素繊維紙と樹脂フィルムを重ねて、樹脂を炭素繊維紙に転写する方法などが連続的に樹脂を含浸することができ、生産性及び長尺物も製造できるという点で好ましい。   The method for impregnating the carbon fiber paper with the thermosetting resin is not particularly limited, but a method of uniformly coating the resin on the surface of the carbon fiber paper using a coater, a dip nip method using a squeezing device, Alternatively, a method of superposing carbon fiber paper and a resin film and transferring the resin to the carbon fiber paper can be impregnated with the resin continuously, which is preferable in terms of productivity and production of a long product.

以下、本発明を実施例により、さらに具体的に説明する。なお、本発明はこれら実施例の方法に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, this invention is not limited to the method of these Examples.

実施例中の引き取り張力の算出方法及び外観検査の方法については以下の通りである。   The method of calculating the take-up tension and the method of appearance inspection in the examples are as follows.

1)引き取り張力
引き取り応力(N)を樹脂硬化シートの断面積(m2)で割り、引き取り張力(Pa)を算出した。
1) Take-up tension The take-up tension (Pa) was calculated by dividing the take-up stress (N) by the cross-sectional area (m 2 ) of the cured resin sheet.

2)外観検査
樹脂硬化シートを30cm×30cmに切り出し、机上に置き、ライト(商品名:「National BF−680」、松下電器産業(株))を試験片に対し斜め上から照射した。ライトは試験片から20cm離れた所から照射し、照射角度を水平面に対して30°から0°までゆっくり変えていき、皺がないか目視にて検査した。さらにライトを樹脂硬化シートの長手方向に照射する場合と、幅方向に照射する場合の2条件で検査した。前記2条件のいずれか1条件でも皺が見えた場合は、外観不良とした。
2) Appearance inspection The resin-cured sheet was cut into 30 cm × 30 cm, placed on a desk, and light (trade name: “National BF-680”, Matsushita Electric Industrial Co., Ltd.) was irradiated diagonally from above the test piece. The light was irradiated from a location 20 cm away from the test piece, and the irradiation angle was slowly changed from 30 ° to 0 ° with respect to the horizontal plane, and visually inspected for wrinkles. Furthermore, it inspected on two conditions, the case where light is irradiated to the longitudinal direction of a resin cured sheet, and the case where it irradiates to the width direction. If wrinkles were seen under any one of the two conditions, the appearance was poor.

3)熱硬化性樹脂由来炭化物含有量
電極基材を100質量%とした時の、炭素繊維分を除いた熱硬化樹脂由来の炭化物の含有量であり、下記式(1)により算出した。
3) Thermosetting resin-derived carbide content This is the content of the thermosetting resin-derived carbide excluding the carbon fiber content when the electrode substrate is 100% by mass, and was calculated by the following formula (1).

Figure 2010003564
Figure 2010003564

C:電極基材中の熱硬化性樹脂由来炭化物含有量(質量%)
Gw:電極基材の目付(g/m2
Pw:炭素繊維紙の目付(g/m2
F:炭素繊維紙中の炭素繊維の割合(質量%)。
C: Carbide content derived from thermosetting resin in electrode substrate (mass%)
Gw: basis weight of electrode substrate (g / m 2 )
Pw: basis weight of carbon fiber paper (g / m 2 )
F: The ratio (mass%) of the carbon fiber in carbon fiber paper.

(実施例1)
平均繊維長3mmにカットしたポリアクリロニトリル系炭素繊維(商品名:「パイロフィル TR50S」、三菱レイヨン株式会社製(平均単繊維径:7μm))、ポリビニルアルコール(PVA)短繊維(商品名:「VBP105−1」、クラレ株式会社製(繊維長3mm))、さらにポリエチレンパルプ(商品名:「SWP」、三井化学株式会社製)を用意した。前記ポリアクリロニトリル系炭素繊維を湿式短網連続抄紙装置のスラリータンクで水中に均一に分散解繊し、十分に分散したところに前記PVA短繊維及びポリエチレンパルプを表1の組成になるように均一に分散し、送り出した。
Example 1
Polyacrylonitrile-based carbon fibers cut to an average fiber length of 3 mm (trade name: “Pyrofil TR50S”, manufactured by Mitsubishi Rayon Co., Ltd. (average single fiber diameter: 7 μm)), polyvinyl alcohol (PVA) short fibers (trade name: “VBP105- 1 ”(manufactured by Kuraray Co., Ltd. (fiber length: 3 mm)) and polyethylene pulp (trade name:“ SWP ”, manufactured by Mitsui Chemicals, Inc.) were prepared. The polyacrylonitrile-based carbon fiber is uniformly dispersed and defibrated in water in a slurry tank of a wet short net continuous paper making machine, and the PVA short fiber and polyethylene pulp are uniformly distributed to a composition shown in Table 1 when sufficiently dispersed. Dispersed and sent out.

送り出されたウェブを短網板に通し、ドライヤー乾燥後、坪量25g/m2のロール形態の炭素繊維紙Aを得た。 The fed web was passed through a short mesh plate, and after drying the dryer, a carbon fiber paper A in roll form having a basis weight of 25 g / m 2 was obtained.

次に、炭素繊維紙Aを、フェノール樹脂(商品名:「フェノライトJ−325」、大日本インキ化学(株)社製)のメタノール溶液(フェノール樹脂:40質量%)に浸漬し、炭素繊維紙A100重量部に対し84重量部付着させた。   Next, the carbon fiber paper A is immersed in a methanol solution (phenol resin: 40% by mass) of a phenol resin (trade name: “Phenolite J-325”, manufactured by Dainippon Ink & Chemicals, Inc.) to obtain carbon fiber. 84 parts by weight were adhered to 100 parts by weight of paper A.

前記フェノール樹脂を付着させた樹脂含浸紙を、図1に示したダブルベルトプレス装置を用いて加熱プレスを行った。加熱プレス前の予熱条件として、熱風発生装置4における熱風温度が150℃、予熱ロール2(5b)の温度が230℃で行った。また、プレスロール6による加熱プレスの条件として、プレスロール6の温度が260℃、線圧が8×104N/mで行った。プレスロール6通過後の引き取り張力は、巻取り機により調節し、その張力は21MPaで行った。得られた樹脂硬化シートは、外観検査において、その外観は良好であった。 The resin-impregnated paper to which the phenolic resin was adhered was subjected to heat press using the double belt press apparatus shown in FIG. As preheating conditions before the heating press, the hot air temperature in the hot air generator 4 was 150 ° C., and the temperature of the preheating roll 2 (5b) was 230 ° C. Moreover, as conditions of the heat press by the press roll 6, the temperature of the press roll 6 was 260 degreeC, and the linear pressure was 8 * 10 < 4 > N / m. The take-up tension after passing through the press roll 6 was adjusted by a winder, and the tension was 21 MPa. The appearance of the obtained cured resin sheet was good in the appearance inspection.

前記樹脂硬化シートを、窒素ガス雰囲気中にて140℃/minの昇温速度条件にて、最高温度800℃で熱処理を行った。その後、さらに窒素ガス雰囲気中で昇温速度230℃/minの昇温速度条件にて、最高温度2000℃で熱処理を行い、電極基材を得た。   The resin cured sheet was heat-treated at a maximum temperature of 800 ° C. under a temperature rising rate condition of 140 ° C./min in a nitrogen gas atmosphere. Thereafter, heat treatment was further performed at a maximum temperature of 2000 ° C. under a temperature increase rate condition of 230 ° C./min in a nitrogen gas atmosphere to obtain an electrode substrate.

外観検査において、得られた電極基材の外観は良好であった。また、熱硬化性樹脂(フェノール樹脂)由来の炭化物の含有量は28質量%であった。   In the appearance inspection, the appearance of the obtained electrode base material was good. Moreover, content of the carbide | carbonized_material derived from a thermosetting resin (phenol resin) was 28 mass%.

(実施例2)
実施例1と同様に樹脂硬化シートを作製した。但し、引き取り張力を54MPaで行った。外観検査において、得られた樹脂硬化シートの外観は良好であった。
(Example 2)
A resin cured sheet was produced in the same manner as in Example 1. However, the take-up tension was 54 MPa. In the appearance inspection, the appearance of the obtained cured resin sheet was good.

前記樹脂硬化シートを窒素ガス雰囲気中にて120℃/minの昇温速度条件にて最高温度700℃で熱処理を行った。その後、さらに窒素ガス雰囲気中で昇温速度250℃/minの昇温速度条件にて最高温度2000℃で熱処理を行い、電極基材を得た。   The resin cured sheet was heat-treated at a maximum temperature of 700 ° C. under a temperature increase rate of 120 ° C./min in a nitrogen gas atmosphere. Thereafter, heat treatment was further performed at a maximum temperature of 2000 ° C. under a temperature increase rate condition of a temperature increase rate of 250 ° C./min in a nitrogen gas atmosphere to obtain an electrode substrate.

外観検査において、得られた電極基材の外観は良好であった。また、熱硬化性樹脂(フェノール樹脂)由来の炭化物の含有量は25質量%であった。   In the appearance inspection, the appearance of the obtained electrode base material was good. Moreover, content of the carbide | carbonized_material derived from a thermosetting resin (phenol resin) was 25 mass%.

(実施例3)
実施例1と同様の樹脂含浸紙を図2に示したロールプレス装置を用いて加熱プレスを行った。加熱プレス前の予熱条件として、熱風発生装置4における熱風温度が130℃、予熱ロール2(5b)の温度が200℃で行った。また、プレスロール6による加熱プレスの条件として、プレスロール6の温度が230℃、線圧が5×104N/mで行った。加熱プレス直後の樹脂硬化シートの引き取り張力はニップロール8により調節し、その張力は30MPaで行った。その外観は良好であった。
(Example 3)
The same resin-impregnated paper as in Example 1 was hot pressed using the roll press apparatus shown in FIG. As preheating conditions before the heating press, the hot air temperature in the hot air generator 4 was 130 ° C., and the temperature of the preheating roll 2 (5b) was 200 ° C. Moreover, as conditions for the heat press by the press roll 6, the temperature of the press roll 6 was 230 ° C., and the linear pressure was 5 × 10 4 N / m. The take-up tension of the resin-cured sheet immediately after the heating press was adjusted by the nip roll 8, and the tension was 30 MPa. The appearance was good.

前記樹脂硬化シートを窒素ガス雰囲気中にて140℃/minの昇温速度条件にて最高温度800℃で熱処理を行った。その後、さらに窒素ガス雰囲気中で昇温速度230℃/minの昇温速度条件にて最高温度2000℃で熱処理を行い、電極基材を得た。   The resin-cured sheet was heat-treated at a maximum temperature of 800 ° C. under a temperature increase rate condition of 140 ° C./min in a nitrogen gas atmosphere. Thereafter, heat treatment was further performed at a maximum temperature of 2000 ° C. under a temperature rising rate condition of 230 ° C./min in a nitrogen gas atmosphere to obtain an electrode substrate.

外観検査において、得られた電極基材の外観は良好であった。また、熱硬化性樹脂(フェノール樹脂)由来の炭化物の含有量は29質量%であった。   In the appearance inspection, the appearance of the obtained electrode base material was good. Moreover, content of the carbide | carbonized_material derived from a thermosetting resin (phenol resin) was 29 mass%.

(実施例4)
実施例1と同様の樹脂含浸紙を図3に示したダブルベルト装置を用いて加熱プレスを行った。本実施例で用いたダブルベルト装置は、実施例1のダブルベルト装置にニップロール8が備えられている。加熱プレス前の予熱条件として、熱風発生装置4における熱風温度が150℃、予熱ロール2(5b)の温度が230℃で行った。また、プレスロール6による加熱プレスの条件として、プレスロール6の温度が260℃、線圧が8×104N/mで行った。加熱プレス直後の樹脂硬化シートの引き取り張力はニップロール8により調節し、その張力は15MPaで行った。得られた樹脂硬化シートの外観は良好であった。
Example 4
The same resin-impregnated paper as in Example 1 was hot-pressed using the double belt apparatus shown in FIG. The double belt device used in this embodiment is provided with a nip roll 8 in the double belt device of the first embodiment. As preheating conditions before the heating press, the hot air temperature in the hot air generator 4 was 150 ° C., and the temperature of the preheating roll 2 (5b) was 230 ° C. Moreover, as conditions of the heat press by the press roll 6, the temperature of the press roll 6 was 260 degreeC, and the linear pressure was 8 * 10 < 4 > N / m. The take-up tension of the resin-cured sheet immediately after the heating press was adjusted by the nip roll 8 and the tension was 15 MPa. The appearance of the obtained cured resin sheet was good.

前記樹脂硬化シートを窒素ガス雰囲気中にて140℃/minの昇温速度条件にて最高温度800℃で熱処理を行った。その後、さらに窒素ガス雰囲気中で昇温速度230℃/minの昇温速度条件にて最高温度2000℃で熱処理を行い、電極基材を得た。   The resin-cured sheet was heat-treated at a maximum temperature of 800 ° C. under a temperature increase rate condition of 140 ° C./min in a nitrogen gas atmosphere. Thereafter, heat treatment was further performed at a maximum temperature of 2000 ° C. under a temperature rising rate condition of 230 ° C./min in a nitrogen gas atmosphere to obtain an electrode substrate.

外観検査において、得られた電極基材の外観は良好であった。また、熱硬化性樹脂(フェノール樹脂)由来の炭化物の含有量は30質量%であった。   In the appearance inspection, the appearance of the obtained electrode base material was good. Moreover, content of the carbide | carbonized_material derived from a thermosetting resin (phenol resin) was 30 mass%.

(実施例5)
平均繊維長3mmにカットしたポリアクリロニトリル系炭素繊維(平均単繊維径:4μm)、ポリビニルアルコール(PVA)短繊維(商品名:「VBP105−1」、クラレ株式会社製(繊維長3mm))を用意した。前記ポリアクリロニトリル系炭素繊維を湿式短網連続抄紙装置のスラリータンクで水中に均一に分散解繊し、十分に分散したところに前記PVA短繊維を表1の組成になるように均一に分散し、送り出した。
(Example 5)
Prepared are polyacrylonitrile-based carbon fibers (average single fiber diameter: 4 μm) and polyvinyl alcohol (PVA) short fibers (trade name: “VBP105-1”, manufactured by Kuraray Co., Ltd. (fiber length: 3 mm)) cut to an average fiber length of 3 mm. did. The polyacrylonitrile-based carbon fiber is uniformly dispersed and defibrated in water in a slurry tank of a wet short net continuous paper machine, and the PVA short fiber is uniformly dispersed so as to have the composition shown in Table 1 when sufficiently dispersed. Sent out.

送り出されたウェブを短網板に通し、ドライヤー乾燥後、坪量30g/m2ロール形態の炭素繊維紙Bを得た。 The fed web was passed through a short mesh plate, and after drying with a dryer, carbon fiber paper B in the form of a roll having a basis weight of 30 g / m 2 was obtained.

次に炭素繊維紙Bにフェノール樹脂(商品名:「フェノライトJ−325」、大日本インキ化学(株)社製)のメタノール溶液(フェノール樹脂:40質量%)に浸漬し、炭素繊維紙B100重量部に対し83重量部付着させた。   Next, the carbon fiber paper B is immersed in a methanol solution (phenol resin: 40% by mass) of a phenol resin (trade name: “Phenolite J-325”, manufactured by Dainippon Ink and Chemicals, Inc.) in the carbon fiber paper B. 83 parts by weight was adhered to parts by weight.

前記フェノール樹脂を付着させた樹脂含浸紙を図1に示したダブルベルトプレス装置を用いてプレスを行った。加熱プレス前の予熱条件として、熱風発生装置4における熱風温度が180℃、予熱ロール2(5b)の温度が250℃で行った。また、プレスロール6による加熱プレスの条件として、プレスロール6の温度が270℃、線圧が10×104N/mで行った。プレスロール6通過後の引き取り張力は25MPaで行った。得られた樹脂硬化シートの外観は良好であった。 The resin-impregnated paper to which the phenol resin was adhered was pressed using the double belt press apparatus shown in FIG. As preheating conditions before the heating press, the hot air temperature in the hot air generator 4 was 180 ° C., and the temperature of the preheating roll 2 (5b) was 250 ° C. Moreover, as conditions of the heat press by the press roll 6, the temperature of the press roll 6 was 270 degreeC, and the linear pressure was 10 * 10 < 4 > N / m. The take-up tension after passing through the press roll 6 was 25 MPa. The appearance of the obtained cured resin sheet was good.

前記樹脂硬化シートを窒素ガス雰囲気中にて140℃/minの昇温速度条件にて最高温度800℃で熱処理を行った。その後、さらに窒素ガス雰囲気中で昇温速度230℃/minの昇温速度条件にて最高温度2000℃で熱処理を行い、電極基材を得た。   The resin-cured sheet was heat-treated at a maximum temperature of 800 ° C. under a temperature increase rate condition of 140 ° C./min in a nitrogen gas atmosphere. Thereafter, heat treatment was further performed at a maximum temperature of 2000 ° C. under a temperature rising rate condition of 230 ° C./min in a nitrogen gas atmosphere to obtain an electrode substrate.

外観検査において、得られた電極基材の外観は良好であった。また、熱硬化性樹脂(フェノール樹脂)由来の炭化物の含有量は28質量%であった。   In the appearance inspection, the appearance of the obtained electrode base material was good. Moreover, content of the carbide | carbonized_material derived from a thermosetting resin (phenol resin) was 28 mass%.

(比較例1)
実施例1と同様に樹脂硬化シートを作製した。但し、引き取り張力を5MPaで行った。外観検査において、得られた樹脂硬化シートに皺が認められた。
(Comparative Example 1)
A resin cured sheet was produced in the same manner as in Example 1. However, the take-up tension was 5 MPa. In the appearance inspection, wrinkles were observed in the obtained cured resin sheet.

前記樹脂硬化シートを窒素ガス雰囲気中にて120℃/minの昇温速度条件にて最高温度700℃で熱処理を行った。その後、さらに窒素ガス雰囲気中で昇温速度250℃/minの昇温速度条件にて最高温度2000℃で熱処理を行い、電極基材を得た。   The resin cured sheet was heat-treated at a maximum temperature of 700 ° C. under a temperature increase rate of 120 ° C./min in a nitrogen gas atmosphere. Thereafter, heat treatment was further performed at a maximum temperature of 2000 ° C. under a temperature increase rate condition of a temperature increase rate of 250 ° C./min in a nitrogen gas atmosphere to obtain an electrode substrate.

外観検査において、得られた電極基材の外観も樹脂硬化シートと同様の皺が認められた。また、熱硬化性樹脂(フェノール樹脂)由来の炭化物の含有量は27質量%であった。   In the appearance inspection, the appearance of the obtained electrode base material was also found to have the same wrinkles as the resin cured sheet. Moreover, content of the carbide | carbonized_material derived from a thermosetting resin (phenol resin) was 27 mass%.

Figure 2010003564
Figure 2010003564

本発明において加熱プレスに用いるダブルベルト装置の一例である。It is an example of the double belt apparatus used for a heating press in this invention. 本発明において加熱プレスに用いるロールプレス装置の一例である。It is an example of the roll press apparatus used for a heating press in this invention. 本発明において加熱プレスに用いるニップロールを備えたダブルベルト装置の一例である。It is an example of the double belt apparatus provided with the nip roll used for a heating press in this invention.

符号の説明Explanation of symbols

1 樹脂含浸紙
2 離型剤コーティング基材
3a 押さえロール1
3b 押さえロール2
4 熱風発生装置
5a 予熱ロール1
5b 予熱ロール2
6 プレスロール
7 樹脂硬化シート
8 ニップロール
DESCRIPTION OF SYMBOLS 1 Resin impregnated paper 2 Release agent coating base material 3a Pressing roll 1
3b Pressing roll 2
4 Hot air generator 5a Preheating roll 1
5b Preheating roll 2
6 Press roll 7 Resin cured sheet 8 Nip roll

Claims (9)

熱硬化性樹脂を炭素繊維紙に含浸した樹脂含浸紙を連続的に加熱プレスして樹脂硬化シートを作製する加熱プレス工程と、
前記樹脂硬化シートを連続的に焼成する炭素化工程とを有する固体高分子型燃料電池用電極基材の製造方法において、
前記加熱プレス直後の樹脂硬化シートを引き取る際の引き取り張力((引き取り張力(Pa))=(引き取り応力(N))/(樹脂硬化シートの断面積(m2)))が、10MPa以上、150MPa以下である固体高分子型燃料電池用電極基材の製造方法。
A heat pressing step of continuously heating and pressing a resin-impregnated paper impregnated with a carbon fiber paper with a thermosetting resin to produce a resin-cured sheet;
In the method for producing an electrode base material for a polymer electrolyte fuel cell having a carbonization step of continuously firing the resin-cured sheet,
The take-up tension ((take-off tension (Pa)) = (take-off stress (N)) / (cross-sectional area of the resin-cured sheet (m 2 ))) when taking out the cured resin sheet immediately after the heating press is 10 MPa or more and 150 MPa. The manufacturing method of the electrode base material for polymer electrolyte fuel cells which is the following.
前記加熱プレス工程が、前記樹脂含浸紙を一対のエンドレスベルトにより搬送しながら行う請求項1に記載の固体高分子型燃料電池用電極基材の製造方法。   The method for producing an electrode base material for a polymer electrolyte fuel cell according to claim 1, wherein the heat pressing step is performed while the resin-impregnated paper is conveyed by a pair of endless belts. 前記加熱プレス工程において、加熱プレス前に前記樹脂含浸紙を予熱処理する請求項1又は2に記載の固体高分子型燃料電池用電極基材の製造方法。   3. The method for producing an electrode base material for a polymer electrolyte fuel cell according to claim 1, wherein in the heat pressing step, the resin-impregnated paper is preheated before the heat pressing. 前記炭素化工程が、予備炭素化工程と炭素化工程とから構成される請求項1に記載の固体高分子型燃料電池用電極基材の製造方法。   The method for producing an electrode base material for a polymer electrolyte fuel cell according to claim 1, wherein the carbonization step comprises a preliminary carbonization step and a carbonization step. 前記予備炭素化工程の最高温度が、600℃以上である請求項4に記載の固体高分子型燃料電池用電極基材の製造方法。   The method for producing an electrode base material for a polymer electrolyte fuel cell according to claim 4, wherein the maximum temperature in the preliminary carbonization step is 600 ° C or higher. 前記炭素化工程の最高温度が、1500℃以上である請求項4に記載の固体高分子型燃料電池用電極基材の製造方法。   The method for producing an electrode base material for a polymer electrolyte fuel cell according to claim 4, wherein the maximum temperature in the carbonization step is 1500 ° C or higher. 前記予備炭素化工程の昇温速度が、40から300℃/minである請求項4又は5に記載の固体高分子型燃料電池用電極基材の製造方法。   The method for producing an electrode base material for a polymer electrolyte fuel cell according to claim 4 or 5, wherein a temperature increase rate in the preliminary carbonization step is 40 to 300 ° C / min. 前記炭素化工程の昇温速度が、50から500℃/minである請求項4又は6に記載の固体高分子型燃料電池用電極基材の製造方法。   The method for producing an electrode base material for a polymer electrolyte fuel cell according to claim 4 or 6, wherein the temperature raising rate in the carbonization step is 50 to 500 ° C / min. 前記炭素繊維紙が、バインダーとして有機高分子化合物を含み、該有機高分子化合物がポリエチレンのパルプ状物である請求項1に記載の固体高分子型燃料電池用電極基材の製造方法。   2. The method for producing an electrode base material for a polymer electrolyte fuel cell according to claim 1, wherein the carbon fiber paper contains an organic polymer compound as a binder, and the organic polymer compound is a polyethylene pulp.
JP2008161976A 2008-06-20 2008-06-20 Method for producing electrode substrate for polymer electrolyte fuel cell Active JP5297701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008161976A JP5297701B2 (en) 2008-06-20 2008-06-20 Method for producing electrode substrate for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008161976A JP5297701B2 (en) 2008-06-20 2008-06-20 Method for producing electrode substrate for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2010003564A true JP2010003564A (en) 2010-01-07
JP5297701B2 JP5297701B2 (en) 2013-09-25

Family

ID=41585123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008161976A Active JP5297701B2 (en) 2008-06-20 2008-06-20 Method for producing electrode substrate for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5297701B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086969A1 (en) 2010-01-12 2011-07-21 株式会社小糸製作所 Vehicle headlamp
JP2011243578A (en) * 2010-05-20 2011-12-01 Kyosin Ltd Method of manufacturing carbon substrate for gas diffusion layer of polymer electrolyte fuel cell, carbon substrate formed thereby, and system used for manufacturing the same
JP2014127310A (en) * 2012-12-26 2014-07-07 Mitsubishi Rayon Co Ltd Method for producing porous electrode base material precursor sheet, and porous electrode base material precursor sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103794821B (en) * 2014-02-11 2015-12-09 宁德时代新能源科技有限公司 Battery hot pressing changes into machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162838A (en) * 1996-11-29 1998-06-19 Toray Ind Inc Collector for solid high polymer fuel cell
WO1999062134A1 (en) * 1998-05-27 1999-12-02 Toray Industries, Inc. Carbon fiber paper for solid polymer fuel cells
JP2000353528A (en) * 1999-04-09 2000-12-19 Toray Ind Inc Electrode catalyst layer and manufacture thereof and fuel cell using electrode catalyst layer
JP2004235134A (en) * 2002-12-02 2004-08-19 Mitsubishi Rayon Co Ltd Porous electrode substrate for polymer electrolyte fuel cell and its manufacturing method
JP2005297547A (en) * 2004-03-17 2005-10-27 Toray Ind Inc Carbon fiber sheet and porous carbon board and its production method
WO2007037084A1 (en) * 2005-09-29 2007-04-05 Toray Industries, Inc. Porous carbon sheet and process for production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162838A (en) * 1996-11-29 1998-06-19 Toray Ind Inc Collector for solid high polymer fuel cell
WO1999062134A1 (en) * 1998-05-27 1999-12-02 Toray Industries, Inc. Carbon fiber paper for solid polymer fuel cells
JP2000353528A (en) * 1999-04-09 2000-12-19 Toray Ind Inc Electrode catalyst layer and manufacture thereof and fuel cell using electrode catalyst layer
JP2004235134A (en) * 2002-12-02 2004-08-19 Mitsubishi Rayon Co Ltd Porous electrode substrate for polymer electrolyte fuel cell and its manufacturing method
JP2005297547A (en) * 2004-03-17 2005-10-27 Toray Ind Inc Carbon fiber sheet and porous carbon board and its production method
WO2007037084A1 (en) * 2005-09-29 2007-04-05 Toray Industries, Inc. Porous carbon sheet and process for production thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086969A1 (en) 2010-01-12 2011-07-21 株式会社小糸製作所 Vehicle headlamp
JP2011243578A (en) * 2010-05-20 2011-12-01 Kyosin Ltd Method of manufacturing carbon substrate for gas diffusion layer of polymer electrolyte fuel cell, carbon substrate formed thereby, and system used for manufacturing the same
US8747796B2 (en) 2010-05-20 2014-06-10 Hyup Jin I&C Co., Ltd. Method of preparing carbon substrate for gas diffusion layer of polymer electrolyte fuel cell, carbon substrate prepared by using the method, and system for manufacturing the same
JP2014127310A (en) * 2012-12-26 2014-07-07 Mitsubishi Rayon Co Ltd Method for producing porous electrode base material precursor sheet, and porous electrode base material precursor sheet

Also Published As

Publication number Publication date
JP5297701B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP3612518B2 (en) Porous carbon electrode substrate, method for producing the same, and carbon fiber paper
WO2003087470A1 (en) Carbon fiber paper and porous carbon electrode substrate for fuel cell therefrom
JP5485212B2 (en) Porous carbon electrode substrate and method for producing the same
JP2010182681A (en) Porous electrode substrate and method for manufacturing the same
JP7136252B2 (en) Electrodes for redox flow batteries and redox flow batteries
WO2005124907A1 (en) Porous electrode base material and process for producing the same
JP2006040886A (en) Porous electrode substrate and its manufacturing method
JP5988009B1 (en) Porous carbon sheet and precursor fiber sheet thereof
JP2003183994A (en) Carbon fiber paper, and porous carbon electrode material for fuel battery using the same
JP6575281B2 (en) Winding method of porous carbon fiber sheet for polymer electrolyte fuel cell
KR102630169B1 (en) Carbon sheets, gas diffusion electrode substrates, and fuel cells
JP5297701B2 (en) Method for producing electrode substrate for polymer electrolyte fuel cell
JP4187683B2 (en) Porous carbon electrode substrate for fuel cells
JP4730888B2 (en) Porous electrode substrate and method for producing the same
JP6172131B2 (en) Porous carbon electrode substrate
JP5728802B2 (en) Porous carbon electrode substrate and method for producing the same
JP6750192B2 (en) Gas diffusion layer for polymer electrolyte fuel cells
JP5398297B2 (en) Method for producing porous carbon electrode substrate
JP2008214120A (en) Method of manufacturing carbon fiber sheet
JP6497179B2 (en) Gas diffusion layer and gas diffusion layer roll
JP2009280437A (en) Method for producing porous carbon sheet
JP2023549666A (en) electrode material
JP5250328B2 (en) Method for producing carbonaceous electrode substrate
JP2006190518A (en) Electrode base material for solid polymer fuel cell and its manufacturing method
JP2006004858A (en) Porous electrode base material and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R151 Written notification of patent or utility model registration

Ref document number: 5297701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250