JP2000353528A - Electrode catalyst layer and manufacture thereof and fuel cell using electrode catalyst layer - Google Patents

Electrode catalyst layer and manufacture thereof and fuel cell using electrode catalyst layer

Info

Publication number
JP2000353528A
JP2000353528A JP11293515A JP29351599A JP2000353528A JP 2000353528 A JP2000353528 A JP 2000353528A JP 11293515 A JP11293515 A JP 11293515A JP 29351599 A JP29351599 A JP 29351599A JP 2000353528 A JP2000353528 A JP 2000353528A
Authority
JP
Japan
Prior art keywords
electrode
catalyst
polymer
catalyst layer
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11293515A
Other languages
Japanese (ja)
Inventor
Masayuki Kidai
聖幸 希代
Hirobumi Morikawa
博文 森川
Sadao Kojima
定雄 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP11293515A priority Critical patent/JP2000353528A/en
Publication of JP2000353528A publication Critical patent/JP2000353528A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an electrode catalyst layer superior in gas diffusibility, electron conductivity, proton conductivity, and discharge of water. SOLUTION: This electrode catalyst layer features that a catalyst-polymer complex, containing catalyst carrying carbon particles and polymer, is a three dimensional network porous structure. In manufacturing method of this electrode catalyst layer, a catalyst-polymer solution composition is produced by wet coagulation method for obtaining the electrode catalyst layer having high porosity and superior in gas permeability and drainability. An electrode and a film- electrode complex (MEA) using this electrode catalyst layer are inexpensive and superior in a high output characteristic because they use the electrode catalyst layer having said characteristics and an inexpensive electrode base material superior in gas permeability and drainability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば燃料電池に
用いられる電極触媒層、それを用いた電極、およびその
製造方法に関するものである。
The present invention relates to an electrode catalyst layer used for, for example, a fuel cell, an electrode using the same, and a method for producing the same.

【0002】[0002]

【従来の技術】燃料電池は、低排出物、高エネルギー効
率で環境への負担の低い発電装置である。このため、近
年の地球環境保護への高まりの中で再び脚光を浴びてい
る。従来の大規模発電施設に比べ比較的小規模の分散型
発電施設、自動車や船舶など移動体の発電装置として、
将来的にも期待されている発電装置である。
2. Description of the Related Art A fuel cell is a power generation device with low emission, high energy efficiency and low environmental burden. For this reason, they have been spotlighted again with the recent rise of global environmental protection. As a relatively small-scale distributed power generation facility compared to conventional large-scale power generation facilities, as a power generation device for mobile objects such as cars and ships,
It is a power generator that is expected in the future.

【0003】燃料電池には、用いられる電解質の種類に
より、固体高分子型、リン酸型、固体酸化物型、溶融炭
酸塩型、アルカリ型などの種類がある。なかでも固体高
分子型燃料電池は、他の燃料電池に比べて、運転温度が
低温で起動時間が短く、高出力が得やすい、小型軽量化
が見込める、振動に強いなどの特徴を有し移動体の電力
供給源に適している。
[0003] Fuel cells are classified into a solid polymer type, a phosphoric acid type, a solid oxide type, a molten carbonate type, and an alkaline type depending on the type of electrolyte used. Among them, polymer electrolyte fuel cells have the characteristics of lower operating temperature, shorter start-up time, higher power output, smaller size and lighter weight, strong vibration resistance, etc., compared to other fuel cells. Suitable for body power supply.

【0004】燃料電池は、発電を担う反応の起こるアノ
ードとカソードの電極と、アノードとカソード間のイオ
ン伝導体となる電解質とがそれぞれの間でセパレータで
挟まれたセルをユニットとして構成されている。電極
は、ガス拡散の促進と集(給)電を行う電極基材(集電
体とも云う)と、実際に電気化学反応場となる電極触媒
層とから構成されている。たとえば固体高分子型燃料電
池のアノード電極では、燃料ガスが触媒表面で反応して
プロトンと電子を生じ、電子は電極基材に伝導し、プロ
トンは電解質のプロトン交換膜へと伝導する。このた
め、アノード電極には、ガス拡散性、電子電導性、イオ
ン電導性が良好なことが要求される。一方、カソード電
極では、酸化ガスが触媒層表面で、電解質から伝導して
きたプロトンと、電極基材から伝導してきた電子とが反
応して水を生成する。このため、ガス拡散性、電子電導
性、イオン電導性とともに、生成した水を効率よく排出
することも必要となる。
[0004] A fuel cell is constituted as a unit in which an anode electrode and a cathode electrode where a reaction responsible for power generation occurs, and an electrolyte serving as an ion conductor between the anode and the cathode are sandwiched between separators. . The electrode is composed of an electrode substrate (also referred to as a current collector) for promoting gas diffusion and collecting (supplying) electricity, and an electrode catalyst layer that actually acts as an electrochemical reaction field. For example, in an anode electrode of a polymer electrolyte fuel cell, a fuel gas reacts on a catalyst surface to generate protons and electrons, the electrons are conducted to an electrode substrate, and the protons are conducted to a proton exchange membrane of an electrolyte. For this reason, the anode electrode is required to have good gas diffusivity, electron conductivity, and ion conductivity. On the other hand, in the cathode electrode, on the surface of the catalyst layer, the oxidizing gas reacts with protons conducted from the electrolyte and electrons conducted from the electrode base material to generate water. For this reason, it is necessary to efficiently discharge generated water as well as gas diffusivity, electron conductivity, and ion conductivity.

【0005】このような要求を満たすために、これまで
電極触媒層にはさまざまな検討が加えられてきた。ガス
拡散性を向上させた例として、特開平8−88007号
公報、特開平7−183035号公報、特開平6−20
3852号公報、特開平8−213027号公報、特開
平6−236762号公報、特開平6−203840号
公報などに記載の技術があり、プロトン伝導性を向上さ
せた例として、特開平4−329264号公報、特開平
7−296818号公報、特開平7−254420号公
報、特開平6−251779号公報、特開平9−245
802号公報に記載の技術などがこれまで報告されてい
る。
In order to satisfy such requirements, various studies have been made on the electrode catalyst layer. Examples of improved gas diffusivity are disclosed in JP-A-8-88007, JP-A-7-183035, and JP-A-6-20.
Japanese Patent Application Laid-Open No. 4-329264, Japanese Patent Application Laid-Open No. 8-213,027, Japanese Patent Application Laid-Open No. 6-236762, and Japanese Patent Application Laid-Open No. 6-203840 disclose techniques for improving proton conductivity. JP, JP-A-7-296818, JP-A-7-254420, JP-A-6-251779, JP-A-9-245
The technology described in Japanese Patent Publication No. 802 has been reported so far.

【0006】これらの公報には、ガス拡散性向上を目的
として多孔化触媒層にするために、触媒担持カーボンや
ポリマ(プロトン伝導性向上のためにはプロトン交換樹
脂を用い、生成水の排出性向上のためにはPTFE:ポ
リテトラフルオロエチレンを用いる)の粒径を大きくし
た例や、プロトン伝導性向上を目的として、触媒担持カ
ーボンとプロトン交換樹脂を混ぜて触媒層を作成した出
願例、触媒層にプロトン交換樹脂を塗布した後にプロト
ン交換膜と接合した例などが、記載されている。
[0006] These publications disclose that a catalyst-supporting carbon or a polymer (proton exchange resin is used to improve proton conductivity, and that the generated water Examples of increasing the particle size of PTFE: polytetrafluoroethylene for improvement), application examples in which a catalyst layer is prepared by mixing a catalyst-supporting carbon and a proton exchange resin for the purpose of improving proton conductivity, catalysts Examples are described in which a layer is coated with a proton exchange resin and then bonded to a proton exchange membrane.

【0007】また、電極基材(集電体)の従来技術とし
ては、特開平6−20710号公報、特開平7−326
362号公報、あるいは、特開平7−220735号公
報のものが提案されている。これらに開示された集電体
は、短い長さの炭素繊維が炭素で結着されてなる多孔質
炭素板からなる。
[0007] Further, as the prior art of the electrode base material (current collector), there are Japanese Patent Application Laid-Open Nos. 6-20710 and 7-326.
No. 362 or Japanese Patent Application Laid-Open No. 7-220735 has been proposed. The current collectors disclosed therein consist of a porous carbon plate formed by binding carbon fibers of short length with carbon.

【0008】この多孔質炭素板からなる集電体の製造工
程は、炭素繊維またはその前駆体繊維からなる短繊維の
集合体が形成される工程、この短繊維の集合体に樹脂が
付着される工程、および、この樹脂が付着された短繊維
の集合体が焼成される工程からなる。
In the process of manufacturing the current collector made of the porous carbon plate, a process of forming an aggregate of short fibers made of carbon fibers or precursor fibers thereof is performed, and a resin is attached to the aggregate of short fibers. And a step of firing the aggregate of short fibers to which the resin is attached.

【0009】この製造工程により製造された集電体は、
密度が低い。そのため、電極製造時に受ける加圧や電池
に組んだときに受ける加圧により、集電体の結着炭素が
壊れやすいという問題を有している。更に、この製造工
程は、安価な集電体を製造するには、製造コストが高い
という問題を有している。
[0009] The current collector manufactured by this manufacturing process is:
Low density. For this reason, there is a problem that the binder carbon of the current collector is easily broken by the pressure received during the manufacture of the electrode or the pressure received when the battery is assembled. Furthermore, this manufacturing process has a problem that the manufacturing cost is high in order to manufacture an inexpensive current collector.

【0010】製造コストの問題を解決する方法として、
特開平7−105957号公報、あるいは、特開平8−
7897号公報に、短い長さの炭素繊維から作られた紙
状の炭素繊維集合体を、集電体を形成する素材として用
いることが提案されている。しかし、この集電体は、厚
さ方向の電気抵抗が高くなると云う欠点を有する。
As a method of solving the problem of the manufacturing cost,
JP-A-7-105957 or JP-A-8-105957
No. 7897 proposes using a paper-like carbon fiber aggregate made of short length carbon fibers as a material for forming a current collector. However, this current collector has a disadvantage that the electric resistance in the thickness direction increases.

【0011】厚さ方向の電気抵抗を改善する方法とし
て、WO9827606号公報に、不織布状の繊維集合
体に、導電性フィラーを添加する方法が提案され、この
フィラーとして、カーボンブラック、黒鉛、あるいは、
炭化ホウ素の粒子が好ましく用いられることが開示され
ている。しかし、カーボンブラック粒子は、粒子径が非
常に小さいため、脱落や流出により、繊維集合体からの
離脱現象を起こし易い。この離脱を防止するために、カ
ーボンブラック粒子を結着する材料を多く加えた場合、
電気抵抗が高くなる。黒鉛粒子や炭化ホウ素粒子は、粒
子が硬いため、繊維集合体が加圧されたときに、繊維集
合体からの離脱現象を起こし易い。更に、粒子と繊維間
の接触面積も少なく、電気抵抗が高くなるという問題が
ある。
As a method for improving the electrical resistance in the thickness direction, WO9827606 proposes a method of adding a conductive filler to a nonwoven fabric aggregate, and the filler may be carbon black, graphite, or
It is disclosed that particles of boron carbide are preferably used. However, since the carbon black particles have a very small particle diameter, the carbon black particles are likely to be separated from the fiber aggregate by dropping or flowing out. To prevent this detachment, if a large amount of material that binds carbon black particles is added,
Electric resistance increases. Since graphite particles and boron carbide particles are hard particles, when the fiber aggregate is pressurized, a phenomenon of detachment from the fiber aggregate is likely to occur. Further, there is a problem that the contact area between the particles and the fibers is small and the electric resistance is high.

【0012】[0012]

【発明が解決しようとする課題】前述のように、燃料電
池用の電極には、電極触媒層、電極基材(集電体)とも
に下記のような課題がある。
As described above, the electrode for a fuel cell has the following problems in both the electrode catalyst layer and the electrode substrate (current collector).

【0013】電極触媒層においては、ガス拡散性、電子
伝導性、プロトン伝導性、水の排出が良好なことが要求
されている。ガス拡散性を良好にするためには空隙を大
きくすること、つまり粗な構造であることが必要であ
る。それに対して、電子伝導性を良好にするためには触
媒層中の導電剤カーボン間の接触抵抗を下げること、つ
まり密な構造が必要となる。プロトン伝導性について
も、触媒層に加えるプロトン伝導物質(プロトン交換樹
脂)が連続的につながった構造、つまり密な構造が必要
となる。一方、カソードでの生成水の排出には水が抜け
る空隙を大きくすること、つまり粗な構造が必要であ
る。
The electrode catalyst layer is required to have good gas diffusivity, electron conductivity, proton conductivity, and good water discharge. In order to improve gas diffusivity, it is necessary to increase the gap, that is, to have a rough structure. On the other hand, in order to improve the electron conductivity, it is necessary to lower the contact resistance between the conductive carbons in the catalyst layer, that is, to have a dense structure. Regarding proton conductivity, a structure in which proton conductive substances (proton exchange resins) added to the catalyst layer are continuously connected, that is, a dense structure is required. On the other hand, discharge of generated water at the cathode requires an increase in the space through which water can escape, that is, a rough structure.

【0014】このように電極触媒層に求められる構造
は、ガス拡散性や水の排出には粗な構造が求められ、電
子伝導性やプロトン伝導性には密な構造が求められると
いう二律背反となっている。このため、従来の触媒層に
おいては、ガス拡散あるいは水の排出と電子伝導あるい
はプロトン伝導との両立は充分とはいえなかった。
As described above, the structure required for the electrode catalyst layer is a trade-off between the need for a rough structure for gas diffusion and water discharge, and the need for a dense structure for electron conductivity and proton conductivity. ing. For this reason, in the conventional catalyst layer, compatibility between gas diffusion or water discharge and electron conduction or proton conduction was not sufficient.

【0015】また、燃料電池は移動体の電力供給源とし
て期待されているが、自動車などの大量普及には大幅な
コストダウンが必要である。特に電極触媒層中の触媒粒
子においては、貴金属が用いられるため非常に高価格で
あり、この触媒量を低減させることが強く求められてい
る。電極触媒層中の触媒量を低減させると、触媒粒子へ
のガスの到達確率が低下するために燃料電池性能も低下
してしまう。このため、触媒量を低減させても燃料電池
性能を低下させないためには、これまでより一層の良好
なガス拡散性が電極触媒層には求められる。
Further, fuel cells are expected as a power supply source for mobile objects. However, mass diffusion of automobiles and the like requires a significant cost reduction. In particular, the catalyst particles in the electrode catalyst layer are very expensive because noble metals are used, and there is a strong demand to reduce the amount of the catalyst. When the amount of the catalyst in the electrode catalyst layer is reduced, the probability of the gas reaching the catalyst particles is reduced, so that the performance of the fuel cell is also reduced. For this reason, even if the amount of the catalyst is reduced, the electrode catalyst layer is required to have better gas diffusivity so as not to lower the fuel cell performance.

【0016】さらに、電極基材(集電体)には、集電機
能に対する低電気抵抗、電極反応に関与する物質の拡散
・透過機能が良好な多孔性が要求される。これらに加
え、集電体の製造工程や、集電体が電池に装着されるま
での工程において、損傷を受け難い、すなわち、ハンド
リング性が良好であることが要求されている。更には、
そのような集電体が、安価に製造出来ることが望まれて
いる。
Further, the electrode base material (current collector) is required to have low electric resistance to the current collecting function and good porosity with a function of diffusing and transmitting substances involved in the electrode reaction. In addition, in the current collector manufacturing process and in the process until the current collector is mounted on the battery, it is required that the current collector be hardly damaged, that is, the handleability is good. Furthermore,
It is desired that such a current collector can be manufactured at low cost.

【0017】本発明は、上記課題を解決し、高性能で安
価な電極触媒層およびその製造方法並びに電極触媒層を
提供することを目的とする。
An object of the present invention is to solve the above problems and provide a high-performance and inexpensive electrode catalyst layer, a method for producing the same, and an electrode catalyst layer.

【0018】[0018]

【課題を解決するための手段】本発明において、上記課
題を解決するために下記構成を有する。
In order to solve the above-mentioned problems, the present invention has the following arrangement.

【0019】すなわち、本発明の電極触媒層は、少なく
とも触媒担持カーボン粒子と1種以上のポリマを含む触
媒−ポリマ複合体が、三次元網目微多孔質構造であるこ
とを特徴とする。
That is, the electrode catalyst layer of the present invention is characterized in that the catalyst-polymer composite containing at least the catalyst-supporting carbon particles and one or more polymers has a three-dimensional network microporous structure.

【0020】また、本発明の電極触媒層の製造方法は、
少なくとも均一に分散された触媒粒子を含むポリマ溶液
からなる触媒−ポリマ溶液組成物を基材に塗布した後
に、この塗布層をポリマに対する凝固溶媒と接触させ
て、触媒−ポリマ溶液組成物の凝固と溶媒抽出とを同時
に行うことを特徴とする。
Further, the method for producing an electrode catalyst layer of the present invention comprises:
After a catalyst-polymer solution composition comprising a polymer solution containing at least uniformly dispersed catalyst particles is applied to a substrate, the coating layer is brought into contact with a coagulation solvent for the polymer to solidify the catalyst-polymer solution composition. The solvent extraction is performed simultaneously.

【0021】また、本発明の電極は、少なくとも、触媒
担持カーボン粒子と1種以上のポリマとを含む触媒−ポ
リマ複合体が、三次元方向に網目状の微多孔質構造を有
していることを特徴とする上記電極触媒層と電極基材と
から成ることを特徴とする。
In the electrode of the present invention, the catalyst-polymer composite containing at least the catalyst-supporting carbon particles and at least one polymer has a network-like microporous structure in a three-dimensional direction. Characterized by comprising the above-mentioned electrode catalyst layer and an electrode substrate.

【0022】また、本発明の電気化学装置、燃料電池は
上記電極触媒層が適用されてなることを特徴とする。
Further, an electrochemical device and a fuel cell according to the present invention are characterized in that the above-mentioned electrode catalyst layer is applied.

【0023】さらに、本発明の移動体は、上記燃料電池
を電力供給源としてなることを特徴とする。
Further, the moving body according to the present invention is characterized in that the fuel cell is used as a power supply source.

【0024】[0024]

【発明の実施の形態】以下、本発明の好ましい実施の形
態を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described.

【0025】本発明の電極触媒層は、少なくとも触媒担
持カーボン粒子と1種以上のポリマとを含む触媒−ポリ
マ複合体が、三次元方向に網目状の微多孔質構造(以
下、単に三次元網目微多孔質構造という)を有している
ことを特徴とする。以下、その内容を詳細に説明する。
In the electrode catalyst layer of the present invention, a catalyst-polymer composite containing at least catalyst-supporting carbon particles and one or more kinds of polymers has a three-dimensionally network-like microporous structure (hereinafter simply referred to as a three-dimensional network). (Referred to as a microporous structure). Hereinafter, the contents will be described in detail.

【0026】従来、ポリマのみを湿式凝固する例はある
が、発明者らは鋭意検討の結果、触媒担持カーボンなど
の触媒粒子を分散させたポリマ溶液組成物を湿式凝固す
ることで得られる触媒−ポリマ複合体の三次元網目微多
孔質構造が、優れた燃料電池性能を発現する電極触媒層
となることを見いだしたものである。すなわち、本発明
における触媒−ポリマ複合体は、触媒粒子を含んだポリ
マ複合体であって、この複合体が三次元網目微多孔質構
造となっていることが特徴である。なお、「三次元網目
微多孔構造」とは、触媒−ポリマ複合体が立体的に繋が
った三次元状の網目構造をしている状態をいう。
Conventionally, there is an example in which only a polymer is wet-coagulated. However, as a result of diligent studies, the inventors have found that a catalyst obtained by wet-coagulating a polymer solution composition in which catalyst particles such as catalyst-supporting carbon are dispersed. It has been found that the three-dimensional network microporous structure of the polymer composite becomes an electrode catalyst layer exhibiting excellent fuel cell performance. That is, the catalyst-polymer composite of the present invention is a polymer composite containing catalyst particles, and is characterized in that the composite has a three-dimensional network microporous structure. The “three-dimensional network microporous structure” refers to a state in which the catalyst-polymer composite has a three-dimensional network structure connected three-dimensionally.

【0027】本発明における触媒−ポリマ複合体の三次
元網目微多孔質構造は、その微多孔径が0.05〜5μ
mであることが特徴である。好ましくは、0.1〜1μ
mである。微多孔径は、走査型電子顕微鏡(SEM)な
どで、表面を撮影した写真から、20個以上好ましくは
100個以上の平均から求めることができ、通常は10
0個で測定できる。湿式凝固法によって製造された場合
の本発明の微多孔質構造の触媒層は、微多孔径の分布が
広いのでできるだけ多くの孔径の平均をとることが好ま
しい。
The three-dimensional network microporous structure of the catalyst-polymer composite according to the present invention has a microporous diameter of 0.05 to 5 μm.
m. Preferably, 0.1-1μ
m. The microporous diameter can be determined from an average of 20 or more, preferably 100 or more from a photograph of the surface taken with a scanning electron microscope (SEM) or the like.
It can be measured with 0 pieces. Since the catalyst layer having a microporous structure of the present invention when produced by a wet coagulation method has a wide distribution of microporous diameters, it is preferable to average as many pore diameters as possible.

【0028】三次元網目微多孔質構造の空孔率は、10
〜95%であることが好ましい。より好ましくは50〜
90%である。空孔率は、触媒層全体積から触媒−ポリ
マ複合体の占める体積を減じたものを触媒層全体積で除
した百分率(%)である。触媒層は、電極基材、プロト
ン交換膜、それ以外の基材に塗布した後に湿式凝固を行
うが、触媒層を単独で空孔率を求めることが困難な場合
には、電極基材、プロトン交換膜、それ以外の基材の空
孔率を予め求めておき、これら基材と触媒層とを含む空
孔率を求めた後に、触媒層単独での空孔率を求めること
も可能である。
The porosity of the three-dimensional network microporous structure is 10
It is preferably about 95%. More preferably 50 to
90%. The porosity is a percentage (%) obtained by subtracting the volume occupied by the catalyst-polymer composite from the total volume of the catalyst layer and dividing it by the total volume of the catalyst layer. The catalyst layer is wet-solidified after being applied to an electrode substrate, a proton exchange membrane, and other substrates.If it is difficult to determine the porosity of the catalyst layer alone, the electrode substrate, the proton It is also possible to obtain the porosity of the exchange membrane and the other base material in advance, obtain the porosity including the base material and the catalyst layer, and then obtain the porosity of the catalyst layer alone. .

【0029】電極触媒層は、空孔率が大きくガス拡散性
や生成水の排出が良好であり、かつ電子電導性やプロト
ン伝導性も良好である。従来の多孔化では、触媒粒子径
や添加ポリマの粒子径を増大させたり、造孔剤を用いて
空孔を形成するなどが行われているが、このような多孔
化方式では触媒担持カーボン間やプロトン交換樹脂間の
接触抵抗が電極触媒層に比べて大きくなってしまう。そ
れに対して、本発明の湿式凝固法による三次元網目微多
孔質構造では、触媒担持カーボンを含んだポリマ複合体
が三次元網目状になっているので、このポリマ複合体を
電子やプロトンが伝導しやすく、さらに微多孔質構造の
ためガス拡散性や生成水の排出も良好な構造となってい
る。
The electrode catalyst layer has a high porosity, good gas diffusivity and good discharge of generated water, and good electron conductivity and proton conductivity. In the conventional porous method, the catalyst particle diameter and the particle diameter of the added polymer are increased, and pores are formed by using a pore-forming agent. And the contact resistance between the proton exchange resins becomes larger than that of the electrode catalyst layer. On the other hand, in the three-dimensional network microporous structure formed by the wet coagulation method of the present invention, since the polymer composite containing the catalyst-supporting carbon is formed in a three-dimensional network, electrons and protons conduct through the polymer composite. In addition, the structure is excellent in gas diffusivity and generated water discharge due to the microporous structure.

【0030】触媒−ポリマ複合体の触媒担持カーボンに
含まれる触媒は特に限定されるものではないが、プロト
ン化反応の効率の点から白金、金、パラジウム、ルテニ
ウム、イリジウムなどの貴金属触媒が好ましく用いられ
る。また、これらの貴金属触媒の合金、混合物など、2
種以上の元素が含まれていても構わない。
The catalyst contained in the catalyst-supporting carbon of the catalyst-polymer composite is not particularly limited, but a noble metal catalyst such as platinum, gold, palladium, ruthenium or iridium is preferably used from the viewpoint of the efficiency of the protonation reaction. Can be In addition, alloys and mixtures of these noble metal catalysts,
More than one kind of element may be contained.

【0031】触媒−ポリマ複合体の触媒担持カーボンに
含まれるカーボンは特に限定されるものではないが、チ
ャネルブラック、サーマルブラック、ファーネスブラッ
クなどのカーボンブラックが、電子電導性と比表面積の
大きさから好ましいものである。オイルファーネスブラ
ックとしては、キャボット社製バルカンXC−72、バ
ルカンP、ブラックパールズ880、ブラックパールズ
1100、ブラックパールズ1300、ブラックパール
ズ2000、リーガル400、ライオン社製ケッチェン
ブラックEC、三菱化学社製#3150、#3250な
どが挙げられ、アセチレンブラックとしては電気化学工
業社製デンカブラックなどが挙げられる。特に、キャボ
ット社製のバルカンXC−72が好ましく用いられる。
The carbon contained in the catalyst-supporting carbon of the catalyst-polymer composite is not particularly limited. However, carbon black such as channel black, thermal black, and furnace black is not suitable for its electronic conductivity and specific surface area. It is preferred. Examples of the oil furnace black include Vulcan XC-72, Vulcan P, Black Pearls 880, Black Pearls 1100, Black Pearls 1300, Black Pearls 2000, Regal 400, Lion Corporation Ketjen Black EC, Mitsubishi Chemical Corporation # 3150, manufactured by Cabot Corporation. , # 3250, and the like, and acetylene black includes Denka Black manufactured by Denki Kagaku Kogyo KK. Particularly, Vulcan XC-72 manufactured by Cabot Corporation is preferably used.

【0032】触媒−ポリマ複合体に用いられるポリマと
しては、特に限定されるものではないが、触媒粒子を良
く分散し、燃料電池内の酸化−還元雰囲気で劣化しない
ポリマが好ましい。このようなポリマとしては、フッ素
原子を含むポリマが挙げられ、特に限定されるものでは
ないが、たとえば、ポリフッ化ビニル(PVF)、ポリ
フッ化ビニリデン(PVDF)、ポリヘキサフルオロプ
ロピレン(FEP)、ポリテトラフルオロエチレン、ポ
リパーフルオロアルキルビニルエーテル(PFA)な
ど、あるいはこれらの共重合体、これらモノマ単位とエ
チレンやスチレンなどの他のモノマとの共重合体、さら
には、ブレンドなども用いることができる。
The polymer used in the catalyst-polymer composite is not particularly limited, but is preferably a polymer that disperses catalyst particles well and does not deteriorate in an oxidation-reduction atmosphere in a fuel cell. Examples of such a polymer include polymers containing a fluorine atom, and are not particularly limited. For example, polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), polyhexafluoropropylene (FEP), Tetrafluoroethylene, polyperfluoroalkyl vinyl ether (PFA), or the like, a copolymer thereof, a copolymer of these monomer units with another monomer such as ethylene or styrene, or a blend can also be used.

【0033】この中でも、ポリフッ化ビニリデン(PV
DF)やヘキサフルオロプロピレン−フッ化ビニリデン
共重合体は、非プロトン性極性溶媒をを用い、プロトン
性極性溶媒などを凝固溶媒とする湿式凝固法により、本
発明の三次元網目微多孔質構造を有する触媒−ポリマ複
合体が得られる点で、特に好ましいポリマである。これ
らポリマの溶媒としてはN−メチルピロリドン(NM
P)、ジメチルホルムアミド(DMF)、ジメチルアセ
トアミド(DMAC)、プロピレンカーボネート(P
C)、ジメチルイミダゾリジノン(DMI)などが挙げ
られ、凝固溶媒としては水や、メタノール、エタノー
ル、イソプロパノールなどの低級アルコール類などのほ
か、酢酸エチルや酢酸ブチルなどのエステル類、芳香族
系あるいはハロゲン系の種々の有機溶剤が用いられる。
Among them, polyvinylidene fluoride (PV
DF) and hexafluoropropylene-vinylidene fluoride copolymer are obtained by using a non-protonic polar solvent and a wet coagulation method using a protic polar solvent or the like as a coagulation solvent to obtain the three-dimensional network microporous structure of the present invention. This is a particularly preferred polymer in that a catalyst-polymer composite having the same can be obtained. As a solvent for these polymers, N-methylpyrrolidone (NM
P), dimethylformamide (DMF), dimethylacetamide (DMAC), propylene carbonate (P
C), dimethylimidazolidinone (DMI), and the like. Examples of the coagulating solvent include water, lower alcohols such as methanol, ethanol, and isopropanol; esters such as ethyl acetate and butyl acetate; Various halogen-based organic solvents are used.

【0034】本発明の触媒−ポリマ複合体のポリマとし
ては、触媒層内のプロトン伝導性を向上させるためにプ
ロトン交換基を有するポリマも好ましいものである。こ
のようなポリマに含まれるプロトン交換基としては、ス
ルホン酸基、カルボン酸基、リン酸基などがあるが特に
限定されるものではない。また、このようなプロトン交
換基を有するポリマも、特に限定されることなく選ばれ
るが、フルオロアルキルエーテル側鎖とフルオロアルキ
ル主鎖とから構成されるプロトン交換基を有するポリマ
が好ましく用いられる。たとえば、DuPont社製のNafion
なども好ましいものである。また、プロトン交換基を有
する上述のフッ素原子を含むポリマや、エチレンやスチ
レンなどの他のポリマ、これらの共重合体やブレンドで
あっても構わない。
As the polymer of the catalyst-polymer composite of the present invention, a polymer having a proton exchange group for improving the proton conductivity in the catalyst layer is also preferable. Examples of the proton exchange group contained in such a polymer include a sulfonic acid group, a carboxylic acid group, and a phosphoric acid group, but are not particularly limited. Further, such a polymer having a proton exchange group is also selected without particular limitation, but a polymer having a proton exchange group composed of a fluoroalkyl ether side chain and a fluoroalkyl main chain is preferably used. For example, DuPont's Nafion
Are also preferable. Further, a polymer containing the above-described fluorine atom having a proton exchange group, another polymer such as ethylene or styrene, a copolymer or a blend thereof may be used.

【0035】Nafionのポリマ溶液は、市販のNafion膜を
非プロトン性極性溶媒に溶かしても良いし、Aldrich社
製の水−メタノール−イソプロパノール混合溶媒のNafi
on溶液あるいはこのNafion溶液を溶媒置換したもの用い
ても良い。この場合、湿式凝固の際の凝固溶媒は、Nafi
on溶液の溶媒により適宜決められるべきものであるが、
Nafion溶液の溶媒が非プロトン性極性溶媒である場合に
は、凝固溶媒としては水やアルコール類、エステル類の
ほか、種々の有機溶媒などが好ましく、水−メタノール
−イソプロパノール混合溶媒などの場合には、酢酸ブチ
ルなどのエステル類、種々の有機溶媒が好ましく用いら
れる。
The Nafion polymer solution may be obtained by dissolving a commercially available Nafion membrane in an aprotic polar solvent, or by using a water-methanol-isopropanol mixed solvent, Nafi, manufactured by Aldrich.
An on solution or a solution obtained by replacing the Nafion solution with a solvent may be used. In this case, the coagulation solvent during wet coagulation is Nafi
On should be appropriately determined by the solvent of the solution,
When the solvent of the Nafion solution is an aprotic polar solvent, as the coagulating solvent, other than water, alcohols, and esters, various organic solvents are preferable, and in the case of a water-methanol-isopropanol mixed solvent, etc. And esters such as butyl acetate and various organic solvents are preferably used.

【0036】触媒−ポリマ複合体に用いられるポリマ
は、上記のフッ素原子を含むポリマやプロトン交換膜を
含むポリマを共重合あるいはブレンドして用いることも
好ましいものである。特にポリフッ化ビニリデン、ポリ
(ヘキサフルオロプロピレン−フッ化ビニリデン)共重
合体などと、プロトン交換基にフルオロアルキルエーテ
ル側鎖とフルオロアルキル主鎖を有するNafionなどのポ
リマを、ブレンドすることは電極性能の点から好ましい
ものである。
As the polymer used in the catalyst-polymer composite, it is also preferable to use a polymer containing a fluorine atom or a polymer containing a proton exchange membrane by copolymerization or blending. In particular, blending polyvinylidene fluoride, poly (hexafluoropropylene-vinylidene fluoride) copolymer, and a polymer such as Nafion, which has a fluoroalkyl ether side chain and a fluoroalkyl main chain in the proton exchange group, can improve electrode performance. It is preferable from the point.

【0037】触媒−ポリマ複合体の主たる成分は触媒担
持カーボンとポリマであり、それらの比率は必要とされ
る電極特性に応じて適宜決められるべきもので特に限定
されるものではないが、触媒担持カーボン/ポリマの重
量比率で5/95〜95/5が好ましく用いられる。特
に固体高分子型燃料電池用電極触媒層として用いる場合
には、触媒担持カーボン/ポリマ重量比率で40/60
〜85/15が好ましいものである。
The main components of the catalyst-polymer composite are catalyst-supporting carbon and polymer, the ratio of which is to be appropriately determined according to the required electrode characteristics, and is not particularly limited. The weight ratio of carbon / polymer of 5/95 to 95/5 is preferably used. In particular, when used as an electrode catalyst layer for a polymer electrolyte fuel cell, the catalyst-supporting carbon / polymer weight ratio is 40/60.
~ 85/15 is preferred.

【0038】触媒−ポリマ複合体には、触媒担持カーボ
ンに担持している前述のカーボンのほか、電子電導性向
上のために種々の導電剤を添加することも好ましい実施
態様となる。このような導電剤としては、前述の触媒担
持カーボンに用いられるカーボンと同種のカーボンブラ
ックに加えて、種々の黒鉛質や炭素質の炭素材、あるい
は金属や半金属が挙げられるが特に限定されるものでは
ない。このような炭素材としては、前述のカーボンブラ
ックのほか、天然の黒鉛、ピッチ、コークス、ポリアク
リロニトリル、フェノール樹脂、フラン樹脂などの有機
化合物から得られる人工黒鉛や炭素などがある。これら
の炭素材の形態としては、粒子状のほか繊維状も用いる
ことができる。また、これら炭素材を後処理加工した炭
素材も用いることが可能である。これら導電材の添加量
としては、触媒−ポリマ複合体に対する重量比率として
1〜80%が好ましく、5〜50%がさらに好ましい。
In a preferred embodiment, in addition to the above-described carbon supported on the catalyst-supporting carbon, various conductive agents are added to the catalyst-polymer composite to improve electron conductivity. Examples of such a conductive agent include, in addition to carbon black of the same type as the carbon used for the catalyst-supporting carbon, various graphite or carbonaceous carbon materials, or metals and metalloids, but are particularly limited. Not something. Examples of such a carbon material include artificial graphite and carbon obtained from organic compounds such as natural graphite, pitch, coke, polyacrylonitrile, phenol resin, and furan resin, in addition to the above-described carbon black. These carbon materials may be in the form of fibers in addition to particles. It is also possible to use carbon materials obtained by post-processing these carbon materials. The amount of the conductive material to be added is preferably 1 to 80%, more preferably 5 to 50%, as a weight ratio to the catalyst-polymer composite.

【0039】三次元網目微多孔質構造を有する触媒−ポ
リマ複合体の製造方法としては、湿式凝固法によるもの
が好ましい。この湿式凝固法は、触媒−ポリマ溶液組成
物を塗布した後に、この塗布層をポリマに対する凝固溶
媒と接触させて、触媒−ポリマ溶液組成物の凝固析出と
溶媒抽出とが同時に行なわれる。
As a method for producing a catalyst-polymer composite having a three-dimensional network microporous structure, a method based on a wet coagulation method is preferable. In the wet coagulation method, after the catalyst-polymer solution composition is applied, the coating layer is brought into contact with a coagulation solvent for the polymer, and coagulation precipitation of the catalyst-polymer solution composition and solvent extraction are simultaneously performed.

【0040】この触媒−ポリマ溶液組成物は、ポリマ溶
液中に触媒担持カーボンが均一に分散したものである。
触媒担持カーボンとポリマは前述のものが好ましく用い
られる。ポリマを溶かす溶媒については、用いられるポ
リマに応じて適宜決められるべきもので、特に限定され
るものではない。ポリマ溶液は触媒担持カーボンを良く
分散していることが重要である。分散状態が悪い場合に
は、湿式凝固の際に、触媒担持カーボンとポリマとが複
合体を形成することができず、ポリマのみが三次元網目
微多孔質構造を有することになり、本発明の特徴とは異
なる実施態様となる。
This catalyst-polymer solution composition is obtained by uniformly dispersing the catalyst-supporting carbon in the polymer solution.
The above-mentioned catalyst-supporting carbon and polymer are preferably used. The solvent for dissolving the polymer should be appropriately determined according to the polymer used, and is not particularly limited. It is important that the polymer solution disperse the catalyst-supporting carbon well. When the dispersion state is poor, the catalyst-carrying carbon and the polymer cannot form a composite during wet coagulation, and only the polymer has a three-dimensional network microporous structure. The embodiment will be different from the feature.

【0041】塗布方法については、触媒−ポリマ溶液組
成物の粘度や固形分などに応じた塗布方法が選択され、
特に限定されるべきものではないが、ナイフコーター、
バーコーター、スプレー、ディップコーター、スピンコ
ーター、ロールコーター、ダイコーター、カーテンコー
ターなどの一般的な塗布方法が用いられる。
As for the coating method, a coating method is selected according to the viscosity and solid content of the catalyst-polymer solution composition.
Although not particularly limited, a knife coater,
General coating methods such as a bar coater, a spray, a dip coater, a spin coater, a roll coater, a die coater and a curtain coater are used.

【0042】一方、ポリマを湿式凝固させる凝固溶媒に
ついても特に限定されるものではないが、用いられるポ
リマを凝固析出しやすく、かつポリマ溶液の溶媒と相溶
性がある溶媒が好ましい。湿式凝固が実際に行われる凝
固溶媒との接触方法についても、特に限定されるもので
はないが、凝固溶媒に基材ごと浸漬する、塗布層のみを
凝固溶媒の液面に接触させる、凝固溶媒を塗布層にシャ
ワリングあるいはスプレーする、など特に限定されるも
のではない。
On the other hand, the coagulation solvent for wet coagulation of the polymer is not particularly limited, but a solvent which is easy to coagulate and precipitate the polymer to be used and which is compatible with the solvent of the polymer solution is preferable. The method of contact with the coagulation solvent in which wet coagulation is actually performed is not particularly limited, but the base material is immersed in the coagulation solvent, only the coating layer is brought into contact with the liquid surface of the coagulation solvent, There is no particular limitation such as showering or spraying the coating layer.

【0043】この触媒−ポリマ溶液組成物が塗布される
基材については、電極基材や固体電解質の何れにおいて
も塗布、その後に湿式凝固を行うことが可能である。ま
た、電極基材や固体電解質以外の基材に塗布し、その後
に湿式凝固を行い、三次元網目微多孔質構造を作成した
後に、この触媒層を電極基材や固体電解質に転写あるい
は狭持させても良い。この場合の基材としては、ポリテ
トラフルオロエチレン(PTFE)のシート、あるいは
表面をフッ素やシリコーン系の離型剤処理したガラス板
や金属板なども用いられる。
The substrate to which the catalyst-polymer solution composition is applied can be applied to any of the electrode substrate and the solid electrolyte, and thereafter can be subjected to wet coagulation. In addition, after applying to a substrate other than the electrode substrate and the solid electrolyte, and then performing wet solidification to create a three-dimensional network microporous structure, the catalyst layer is transferred or sandwiched to the electrode substrate or the solid electrolyte. You may let it. As a substrate in this case, a polytetrafluoroethylene (PTFE) sheet, a glass plate or a metal plate whose surface is treated with a fluorine or silicone-based release agent, or the like is used.

【0044】触媒−ポリマ複合体が形成される電極基材
としては、燃料電池に一般に用いられる電極基材が特に
限定されることなく用いられる。たとえば、導電性無機
物質を主たる構成材とする多孔質導電シートなどが挙げ
られ、この導電性無機物質としては、ポリアクリロニト
リルからの焼成体、ピッチからの焼成体、黒鉛及び膨張
黒鉛などの炭素材、ステンレススチール、モリブデン、
チタンなどが例示される。導電性無機質の形態は繊維状
あるいは粒子状など特に限定されない。なかでも、東レ
製カーボンペーパーTGPシリーズ、SOシリーズ、E
−TEK社製カーボンクロスなどが好ましく用いられ
る。
As the electrode substrate on which the catalyst-polymer composite is formed, an electrode substrate generally used for a fuel cell is used without any particular limitation. For example, a porous conductive sheet containing a conductive inorganic material as a main constituent material may be mentioned. Examples of the conductive inorganic material include fired bodies from polyacrylonitrile, fired bodies from pitch, and carbon materials such as graphite and expanded graphite. , Stainless steel, molybdenum,
Titanium and the like are exemplified. The form of the conductive inorganic material is not particularly limited, such as fibrous or particulate. Above all, Toray carbon paper TGP series, SO series, E
-A carbon cloth manufactured by TEK is preferably used.

【0045】本発明の電極基材は、厚み方向に2.9M
Paの一様な面圧を加えたときの厚みが0.02〜0.
3mmであるのが好ましい。より好ましくは0.04〜
0.2mmである。0.02mmより薄いと電極基材が
触媒層に埋没し、面方向への拡散・透過性が低くなって
くる。0.3mmよりも厚いと厚み方向の電気抵抗が増
えてくる。なお、厚みは、電極基材を均一な厚みで平滑
な表面を有する2枚のガラス状炭素板で挟み、2.9M
Paの一様の面圧で加圧し、電極基材を挟まないときと
挟んだときの上下の圧子の間隔の差から求める。圧子の
間隔の測定においては、圧子の中心点を挟む両端で微小
変位検出装置により圧子の間隔を測定し、両端の間隔の
平均値として圧子の間隔を算出する。一様な面圧とする
ために、一方の圧子は球座で受けて上下の圧子の加圧面
のなす角度を可変にする。
The electrode substrate of the present invention has a thickness of 2.9M in the thickness direction.
When a uniform surface pressure of Pa is applied, the thickness is 0.02 to 0.
It is preferably 3 mm. More preferably 0.04 to
0.2 mm. If the thickness is less than 0.02 mm, the electrode substrate is buried in the catalyst layer, and the diffusion and permeability in the plane direction decrease. If it is thicker than 0.3 mm, the electric resistance in the thickness direction increases. The thickness was 2.9 M by sandwiching the electrode base material between two glassy carbon plates having a uniform thickness and a smooth surface.
Pressure is applied at a uniform surface pressure of Pa, and the pressure is determined from the difference between the upper and lower indenters when the electrode substrate is not sandwiched and when the electrode substrate is sandwiched. In measuring the interval between the indenters, the interval between the indenters is measured by a minute displacement detection device at both ends of the center point of the indenter, and the interval between the indenters is calculated as an average value of the intervals between both ends. In order to make the surface pressure uniform, one of the indenters is received by a ball seat, and the angle between the pressing surfaces of the upper and lower indenters is made variable.

【0046】厚み方向に2.9MPaの一様な面圧を加
えたとき上記の厚みとなる電極基材に含まれる炭素繊維
紙の、13kPaの面圧で測定した厚みは0.1〜2.
0mmが好ましく、0.2〜1.2mmがより好まし
い。2mmを超えると炭素繊維紙が嵩高になり、炭素短
繊維が厚み方向を向いたり、炭素繊維紙の強度が弱くな
る。0.1mm未満の厚みにするためには、多量の高分
子物質によって炭素短繊維の結着を強固に行う必要がで
てくる。
When a uniform surface pressure of 2.9 MPa is applied in the thickness direction, the thickness of the carbon fiber paper contained in the electrode base material having the above thickness measured at a surface pressure of 13 kPa is 0.1 to 2.0.
0 mm is preferable, and 0.2 to 1.2 mm is more preferable. If it exceeds 2 mm, the carbon fiber paper becomes bulky, the short carbon fibers face the thickness direction, or the strength of the carbon fiber paper becomes weak. In order to reduce the thickness to less than 0.1 mm, it is necessary to strongly bind short carbon fibers with a large amount of a polymer substance.

【0047】電極基材の目付としては10〜220g/
2であるのが好ましい。より好ましくは20〜120
g/m2である。10g/m2未満では電極基材の強度が
低くなる。また、高分子電解質膜、触媒層、電極基材の
一体化時や電池に組んだときに電極基材が薄くなり触媒
層に埋没して面方向への拡散・透過効果が不十分にな
る。220g/m2を超えると電池に組んだ時に電極基材
が厚くなり抵抗が大きくなる。
The basis weight of the electrode substrate is 10 to 220 g /
m 2 is preferred. More preferably, 20 to 120
g / m 2 . If it is less than 10 g / m 2 , the strength of the electrode substrate will be low. In addition, when the polymer electrolyte membrane, the catalyst layer, and the electrode base material are integrated or assembled into a battery, the electrode base material becomes thin, and is buried in the catalyst layer, and the diffusion / permeation effect in the surface direction becomes insufficient. If it exceeds 220 g / m 2 , when assembled into a battery, the electrode base material becomes thick and the resistance increases.

【0048】本発明の電極基材は、厚み方向に2.9M
Paの一様な面圧を加えたときの密度が0.3〜0.8
g/cm3 であるのが好ましい。より好ましいのは0.
35〜0.7g/cm3であり、さらに好ましいのは
0.4〜0.6g/cm3である。厚み方向に2.9M
Paの一様な面圧を加えたときの電極基材の密度は、電
極基材の目付と厚み方向に2.9MPaの一様な面圧を
加えたときの電極基材の厚みから計算によって求める。
The electrode substrate of the present invention has a thickness of 2.9M in the thickness direction.
The density when a uniform surface pressure of Pa is applied is 0.3 to 0.8.
g / cm 3 . More preferred is 0.
It is 35 to 0.7 g / cm 3 , more preferably 0.4 to 0.6 g / cm 3 . 2.9M in thickness direction
The density of the electrode substrate when a uniform surface pressure of Pa is applied is calculated from the basis weight of the electrode substrate and the thickness of the electrode substrate when a uniform surface pressure of 2.9 MPa is applied in the thickness direction. Ask.

【0049】本発明の電極基材においては、拡散・透過
性を高くするためには気孔率を高くする必要があるが、
厚み方向に2.9MPaの一様な面圧を加えたときの密
度が0.8g/cm3 よりも大きくなると気孔率が下が
り、拡散・透過性が不十分になる。また、0.3g/c
3 よりも小さいと、厚み方向の抵抗値が大きくなる。
In the electrode substrate of the present invention, it is necessary to increase the porosity in order to increase the diffusion and permeability.
If the density when a uniform surface pressure of 2.9 MPa is applied in the thickness direction exceeds 0.8 g / cm 3 , the porosity decreases, and the diffusion and permeability become insufficient. 0.3g / c
When it is smaller than m 3 , the resistance value in the thickness direction increases.

【0050】電極基材は、厚み方向への面圧による加圧
を行わない状態で、厚み方向に14cm/secの空気
を透過させたときの圧力損失が、98Pa(10mmA
q)以下であるのが電極基材のガス拡散性の点で好まし
い。より好ましいのは29Pa(3mmAq)以下であ
り、さらに好ましいのは9.8Pa(1mmAq)以下
である。
The electrode substrate has a pressure loss of 98 Pa (10 mmA) when air of 14 cm / sec is transmitted in the thickness direction without pressurization by surface pressure in the thickness direction.
q) The following is preferred from the viewpoint of gas diffusibility of the electrode substrate. More preferred is 29 Pa (3 mmAq) or less, and even more preferred is 9.8 Pa (1 mmAq) or less.

【0051】多孔質導電シートの引っ張り強さは、0.
49N/10mm幅以上が好ましく、1.96N/10
mm幅以上がより好ましく、4.9N/10mm幅以上
が更に好ましい。引っ張り強さが低いと、シートが燃料
電池集電体とされる高次加工において、シートが破損す
る可能性が増すという問題がある。
The tensile strength of the porous conductive sheet is 0.5.
The width is preferably 49 N / 10 mm or more, and 1.96 N / 10.
mm width or more is more preferable, and 4.9 N / 10 mm width or more is further preferable. When the tensile strength is low, there is a problem that the possibility of breakage of the sheet increases in high-order processing in which the sheet is used as a fuel cell current collector.

【0052】電極基材には、上記の電極基材外にも、実
質的に二次元平面内において無作為な方向に配向された
炭素短繊維を高分子物質で結着してなる炭素繊維紙を含
み、炭素短繊維の長さが、少なくとも3mmで、かつ、
炭素繊維紙の厚みの少なくとも5倍である多孔質導電シ
ートを用いることもできる。ここで、炭素繊維紙の厚み
はJIS P8118に準じて測定する。測定時の面圧
は13kPaとする。炭素短繊維が実質的に二次元平面
内において配向されているということの意味は、炭素短
繊維がおおむね一つの面を形成するように横たわってい
るという意味である。このことにより炭素短繊維による
対極との短絡や炭素短繊維の折損を防止することができ
る。
A carbon fiber paper formed by binding short carbon fibers oriented in a random direction in a substantially two-dimensional plane with a polymer substance, in addition to the above-mentioned electrode base material. And the length of the short carbon fiber is at least 3 mm, and
A porous conductive sheet that is at least five times the thickness of the carbon fiber paper can also be used. Here, the thickness of the carbon fiber paper is measured according to JIS P8118. The surface pressure during the measurement is 13 kPa. The meaning that the short carbon fibers are substantially oriented in a two-dimensional plane means that the short carbon fibers lie substantially to form one plane. This can prevent short-circuit with the counter electrode due to the short carbon fiber and breakage of the short carbon fiber.

【0053】炭素繊維紙において、炭素短繊維を実質的
に二次元平面内において無作為な方向に配向させる方法
としては、液体の媒体中に炭素短繊維を分散させて抄造
する湿式法や、空気中で炭素短繊維を分散させて降り積
もらせる乾式法がある。炭素短繊維を確実に実質的に二
次元平面内において配向させるため、また、炭素繊維紙
の強度を高くするためには、湿式法が好ましい。
In carbon fiber paper, a method of orienting carbon short fibers in a random direction in a substantially two-dimensional plane includes a wet method in which carbon short fibers are dispersed in a liquid medium to form a paper, and an air method. There is a dry method in which short carbon fibers are dispersed and accumulated. In order to ensure that the short carbon fibers are oriented substantially in a two-dimensional plane and to increase the strength of the carbon fiber paper, a wet method is preferred.

【0054】また、炭素短繊維を高分子物質で結着する
ことにより、圧縮や引張りに強くなり、炭素繊維紙の強
度、ハンドリング性を高め、炭素短繊維が炭素繊維紙か
ら外れたり、炭素繊維紙の厚み方向を向くのを防止でき
る。
Further, by binding the short carbon fiber with a polymer substance, the carbon fiber becomes strong in compression and tension, the strength and handleability of the carbon fiber paper are improved, and the short carbon fiber is separated from the carbon fiber paper, It is possible to prevent the paper from turning in the thickness direction.

【0055】高分子物質を結着させる方法としては、炭
素短繊維を実質的に二次元平面内において無作為な方向
に配向させるときに繊維状、粒状、液状の高分子物質を
混合する方法と、炭素短繊維が実質的に二次元平面内に
おいて無作為な方向に配向された集合体に繊維状、液状
の高分子物質を付着させる方法等がある。液状の概念に
は、エマルジョン、ディスパージョンやラテックス等、
液体中に高分子物質の微粒子が分散して実質的に液体と
して取り扱うことができるものも含まれる。
As a method of binding the high molecular substance, there is a method of mixing fibrous, granular or liquid high molecular substances when the short carbon fibers are oriented in a random direction in a substantially two-dimensional plane. There is a method of attaching a fibrous, liquid polymer substance to an aggregate in which short carbon fibers are oriented in a random direction in a substantially two-dimensional plane. The concept of liquid includes emulsion, dispersion, latex, etc.
Also included are those in which fine particles of a polymer substance are dispersed in a liquid and can be handled substantially as a liquid.

【0056】炭素短繊維の結着を強くしたり、炭素繊維
紙、ひいては集電体の電気抵抗を低くしたりするために
は、炭素短繊維を結着する高分子物質は繊維状、エマル
ジョン、ディスパージョン、ラテックスであるのが好ま
しい。繊維状の高分子物質の場合、含有率を低くするた
め、フィラメント糸を使用することが好ましい。
In order to strengthen the binding of short carbon fibers and to reduce the electrical resistance of carbon fiber paper and, hence, the current collector, the polymer substance binding the short carbon fibers is fibrous, emulsion, It is preferably a dispersion or a latex. In the case of a fibrous polymer substance, it is preferable to use a filament yarn to reduce the content.

【0057】炭素短繊維を結着する高分子物質として
は、炭素またはケイ素を主鎖に持つ高分子物質が好まし
く、たとえば、ポリビニルアルコール(PVA)、ポリ
酢酸ビニル(酢ビ)、ポリエチレンテレフタレート(P
ET)、ポリプロピレン(PP)、ポリエチレン、ポリ
スチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、アク
リル樹脂、ポリウレタン等の熱可塑性樹脂や、フェノー
ル樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、アル
キド樹脂、不飽和ポリエステル樹脂、アクリル樹脂、ポ
リウレタン樹脂等の熱硬化性樹脂のほか、熱可塑性エラ
ストマー、ブタジエン・スチレン共重合体(SBR)、
ブタジエン・アクリロニトリル共重合体(NBR)等の
エラストマー、ゴム、セルロース、パルプ等を用いるこ
とができる。フッ素樹脂等の撥水性の樹脂を用い、炭素
短繊維の結着と同時に炭素繊維紙の撥水化処理を行って
もよい。
As the polymer substance binding the short carbon fiber, a polymer substance having carbon or silicon in its main chain is preferable. For example, polyvinyl alcohol (PVA), polyvinyl acetate (vinyl acetate), polyethylene terephthalate (P
ET), polypropylene (PP), polyethylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, acrylic resin, polyurethane and other thermoplastic resins, phenolic resin, epoxy resin, melamine resin, urea resin, alkyd resin, unsaturated polyester resin , Acrylic resin, thermosetting resin such as polyurethane resin, thermoplastic elastomer, butadiene-styrene copolymer (SBR),
Elastomers such as butadiene-acrylonitrile copolymer (NBR), rubber, cellulose, pulp and the like can be used. Using a water-repellent resin such as a fluororesin, the carbon fiber paper may be subjected to the water-repellent treatment simultaneously with the binding of the short carbon fibers.

【0058】電極基材の加圧時の壊れにくさのために
は、炭素短繊維を結着する高分子物質は軟らかいほうが
よく、繊維状または粒状の形態で用いる場合には、高分
子物質は、熱可塑性樹脂、エラストマー、ゴム、セルロ
ース、パルプなどの柔らかい高分子物質が電極基材の加
圧時の壊れにくさのために好ましい。また、液状の形態
で用いる場合には、高分子物質は、熱可塑性樹脂、エラ
ストマー、ゴムや、熱可塑性樹脂、エラストマー、ゴム
等の軟質材料で変性した熱硬化性樹脂が好ましく、熱可
塑性樹脂、エラストマー、ゴムが電極基材の加圧時の壊
れにくさのためにより好ましい。
In order to prevent the electrode base material from being broken during pressurization, it is preferable that the polymer substance binding the short carbon fiber is soft. When the electrode substance is used in a fibrous or granular form, the polymer substance is Soft polymer materials such as thermoplastic resins, elastomers, rubbers, celluloses, and pulp are preferable because the electrode base material is not easily broken when pressed. When used in a liquid form, the polymer substance is preferably a thermoplastic resin, an elastomer, a rubber, a thermoplastic resin, an elastomer, a thermosetting resin modified with a soft material such as a rubber, and a thermoplastic resin. Elastomers and rubbers are more preferred because they are less likely to break when the electrode substrate is pressed.

【0059】高分子物質は、23℃における圧縮弾性率
が4, 000MPa以下であることが好ましく、2, 0
00MPa以下であるのがより好ましく、1, 000M
Pa以下であるのがさらに好ましい。圧縮弾性率の低い
高分子物質は結着部にかかる応力を緩和して結着を外れ
にくくし、また、炭素短繊維にかかる応力を緩和して炭
素短繊維を折れにくくするためである。
The high-molecular substance preferably has a compression elastic modulus at 23 ° C. of 4,000 MPa or less, preferably 2.0 or less.
More preferably, the pressure is not more than 00 MPa.
More preferably, it is Pa or less. The reason is that the polymer substance having a low compression modulus relieves the stress applied to the binding portion so that the binding is not easily dislodged, and also reduces the stress applied to the short carbon fiber so that the short carbon fiber is hardly broken.

【0060】後述の炭素繊維紙の集電体への加工時や一
体化時に水を使用する場合には、炭素短繊維を結着する
高分子物質が水に溶解して結着が外れるのを防ぐため
に、非水溶性の高分子物質を使用することが好ましい。
非水溶性の高分子物質としては、例えば、酢酸ビニル、
PET、PP、ポリエチレン、ポリ塩化ビニリデン、エ
ポキシ樹脂、不飽和ポリエステル樹脂、SBR、NBR
等がある。また、水溶性高分子物質としてはPVAが使
用できる。その場合、他の高分子物質と混合したり、共
重合物として用いたりすることができるが、PVAは、
ケン化度の高いものを使用することが好ましい。ケン化
度は85mol%以上が水に溶けやすいという点で好ま
しく、95mol%以上がより好ましい。
In the case where water is used at the time of processing the carbon fiber paper into a current collector or integrating the same, the polymer substance that binds the short carbon fibers dissolves in the water and loses the binding. In order to prevent this, it is preferable to use a water-insoluble polymer substance.
Examples of the water-insoluble polymer substance include, for example, vinyl acetate,
PET, PP, polyethylene, polyvinylidene chloride, epoxy resin, unsaturated polyester resin, SBR, NBR
Etc. PVA can be used as the water-soluble polymer substance. In that case, PVA can be mixed with other polymer substances or used as a copolymer.
It is preferable to use one having a high degree of saponification. The saponification degree is preferably 85 mol% or more in that it is easily soluble in water, and more preferably 95 mol% or more.

【0061】固体高分子型燃料電池は、カソード(空気
極、酸素極)において、電極反応生成物としての水や、
電解質を透過した水が発生する。また、アノード(燃料
極)においては、高分子電解質膜の乾燥防止のために燃
料を加湿して供給する。これらの水の結露と滞留、水に
よる高分子物質の膨潤が電極反応物を供給する際の妨げ
になるので、高分子物質の吸水率は低いほうがよい。好
ましくは20%以下、より好ましくは7%以下である。
In the polymer electrolyte fuel cell, at the cathode (air electrode, oxygen electrode), water as an electrode reaction product,
Water permeating the electrolyte is generated. At the anode (fuel electrode), the fuel is supplied humidified to prevent the polymer electrolyte membrane from drying. Since the condensation and stagnation of water and the swelling of the polymer substance due to water hinder the supply of the electrode reactant, the lower the water absorption of the polymer substance, the better. It is preferably at most 20%, more preferably at most 7%.

【0062】電極基材における高分子物質の含有率は、
0.1〜30重量%の範囲にあるのが好ましい。炭素繊
維紙の電気抵抗を低くするためには、高分子物質の含有
率は少ないほうがよいが、0.1重量%未満ではハンド
リングに耐える強度が不足し、炭素短繊維の脱落も多く
なる。逆に、30重量%を超えると炭素繊維紙の電気抵
抗が増えてくるという問題が生じる。より好ましくは、
1〜20重量%の範囲である。
The content of the polymer substance in the electrode substrate is
Preferably it is in the range of 0.1 to 30% by weight. In order to reduce the electrical resistance of the carbon fiber paper, the content of the polymer substance is preferably low. However, if it is less than 0.1% by weight, the strength to withstand handling is insufficient, and the carbon short fibers are often dropped. Conversely, if it exceeds 30% by weight, a problem arises in that the electrical resistance of the carbon fiber paper increases. More preferably,
It is in the range of 1 to 20% by weight.

【0063】炭素繊維紙は、そのまま電極基材として用
いる場合と、さらに後処理して用いる場合とがある。後
処理の例としては、水の滞留によるガス拡散・透過性の
低下を防ぐために行う撥水処理、水の排出路を形成する
ための部分的撥水、親水処理や、抵抗を下げるために行
われる炭素質粉末の添加等がある。
The carbon fiber paper may be used as it is as an electrode base material, or may be used after further post-treatment. Examples of post-treatments include water repellency treatment to prevent gas diffusion and permeability decrease due to water retention, partial water repellency to form a water discharge path, hydrophilic treatment, and treatment to reduce resistance. And the addition of carbonaceous powder.

【0064】炭素繊維紙の強度、ハンドリング性を高く
したり、炭素短繊維を実質的に二次元平面内において配
向させるために、炭素短繊維の長さは3mm以上、好ま
しくは4.5mm以上、さらに好ましくは6mm以上と
する。3mm未満では、強度、ハンドリング性を保つの
が難しくなる。
In order to increase the strength and handleability of the carbon fiber paper and to orient the carbon fiber in a substantially two-dimensional plane, the length of the carbon fiber is 3 mm or more, preferably 4.5 mm or more. More preferably, it is 6 mm or more. If it is less than 3 mm, it is difficult to maintain strength and handleability.

【0065】また、炭素短繊維を実質的に二次元平面内
において無作為な方向に配向させるために、炭素短繊維
の長さは炭素繊維紙の厚みの5倍以上、好ましくは8倍
以上、さらに好ましくは12倍以上とする。5倍未満で
は、二次元への配向の確保が難しくなる。
In order to orient the short carbon fibers in a random direction in a substantially two-dimensional plane, the length of the short carbon fibers is at least 5 times, preferably at least 8 times the thickness of the carbon fiber paper. More preferably, it is 12 times or more. If it is less than 5 times, it is difficult to secure the orientation in two dimensions.

【0066】炭素単繊維の長さの上限は、実質的に二次
元平面内において無作為な方向に配向させるためには3
0mm以下が好ましく、15mm以下がより好ましく、
8mm以下がさらに好ましい。炭素短繊維が長すぎると
分散不良を発生しやすく、多数の炭素短繊維が束状のま
ま残る場合がある。その場合、束状の部分は空隙率が低
く、加圧時の厚みが厚くなるために加圧時に高い圧力が
かかり、炭素繊維紙の破壊や、高分子電解質膜や触媒層
の局部的な薄層化等の問題が起こりやすくなる。
The upper limit of the length of the carbon single fiber is 3 in order to orient the carbon single fiber in a random direction in a substantially two-dimensional plane.
0 mm or less is preferable, 15 mm or less is more preferable,
8 mm or less is more preferable. If the short carbon fibers are too long, poor dispersion is likely to occur, and many short carbon fibers may remain in a bundle. In such a case, the porosity of the bundle-shaped portion is low, and the thickness under pressure is large, so high pressure is applied during pressurization, which causes breakage of the carbon fiber paper and local thinning of the polymer electrolyte membrane and the catalyst layer. Problems such as layering are likely to occur.

【0067】また、炭素短繊維の形態は、炭素短繊維に
よる対局との短絡をより完全に防止できるため、直線状
であるのが好ましい。ここで、直線状の炭素短繊維と
は、炭素短繊維を曲げる外力を取り除いた状態で炭素短
繊維の長さ方向にある長さL(mm)をとったときに、
長さLに対する直線性からのずれΔ(mm)を測定し、
Δ/Lがおおむね0.1以下であるものをいう。一方、
非直線状の炭素短繊維は、実質的に二次元平面内におい
て無作為な方向に配向させるときに三次元方向を向きや
すいという欠点がある。
The form of the short carbon fiber is preferably a straight line so that a short circuit with the game due to the short carbon fiber can be more completely prevented. Here, the linear short carbon fiber is defined as a length L (mm) in the length direction of the short carbon fiber in a state where the external force for bending the short carbon fiber is removed.
The deviation Δ (mm) from the linearity with respect to the length L is measured,
Δ / L is about 0.1 or less. on the other hand,
Non-linear carbon short fibers have the disadvantage that they tend to be oriented in a three-dimensional direction when oriented in a random direction in a substantially two-dimensional plane.

【0068】一般に、電極基材は、高分子電解質膜、触
媒層、電極基材の一体化時や電池として使用する際に厚
み方向に加圧され、壊れることがある。また、電池とし
て使用するときには溝付セパレータと向かい合った状態
で厚み方向に加圧されるため、溝付セパレータの山と向
かい合う部分に大きな圧力がかかるのに加えて、山と谷
の境と向かい合う部分が壊れやすい。電極基材が壊れる
と、折れた炭素短繊維の脱落、電極基材の強度低下、面
方向の電気抵抗増大等が起こり、電池として使用できな
くなることがある。
In general, the electrode substrate is sometimes pressed and broken in the thickness direction when the polymer electrolyte membrane, the catalyst layer, and the electrode substrate are integrated or used as a battery. In addition, when used as a battery, since pressure is applied in the thickness direction while facing the grooved separator, a large pressure is applied to the portion of the grooved separator facing the peak, and in addition to the portion facing the boundary between the peak and valley. Is fragile. When the electrode substrate is broken, the broken carbon short fibers may fall off, the strength of the electrode substrate may be reduced, the electric resistance in the plane direction may be increased, and the battery may not be used.

【0069】上記のことから、電極基材として用いるこ
とができる本発明の多孔質導電性シートは、厚み方向に
2.9MPaの一様な面圧を2分間加え、その面圧を解
除した後の重量減少率が3%以下であるのが好ましい。
重量減少率が3%より高い電極基材は面圧解除後弱くな
っており、ハンドリングで壊れやすいという問題がある
からである。これにより、加圧時に壊れにくく、電極基
材の破壊により燃料電池が使用できなくなるのを防止で
きる。
As described above, the porous conductive sheet of the present invention, which can be used as an electrode base material, is obtained by applying a uniform surface pressure of 2.9 MPa in the thickness direction for 2 minutes and releasing the surface pressure. Is preferably 3% or less.
This is because an electrode substrate having a weight reduction rate of more than 3% is weak after the surface pressure is released, and has a problem that it is easily broken by handling. Thereby, it is hard to be broken at the time of pressurization, and it can be prevented that the fuel cell cannot be used due to the breakage of the electrode substrate.

【0070】好ましくは2%以下、さらに好ましくは1
%以下である。
It is preferably 2% or less, more preferably 1% or less.
% Or less.

【0071】なお、重量減少率の測定は、以下のように
して行う。まず、電極基材を直径46mmの円形にカッ
トし、重量を測定する。次に、その電極基材よりも大き
く、平滑表面を有する2枚のガラス状炭素板でカットし
た電極基材を挟み、電極基材の面積当たり2.9MPa
の圧力になるよう加圧し、2分保つ。圧力を取り除いて
電極基材を取り出し、その面方向を垂直方向に向けて3
0mmの高さから落下させる。この落下を10回行った
後に重量を測定し、重量減少率を算出する。
The measurement of the weight loss rate is performed as follows. First, the electrode substrate is cut into a circle having a diameter of 46 mm, and the weight is measured. Next, the electrode base material, which is larger than the electrode base material and cut by two glassy carbon plates having a smooth surface, is sandwiched between the electrode base materials and 2.9 MPa per area of the electrode base material.
And keep it for 2 minutes. Remove the electrode substrate by removing the pressure and turn the surface of the electrode substrate to the vertical direction.
Drop from a height of 0 mm. After performing this drop 10 times, the weight is measured, and the weight reduction rate is calculated.

【0072】炭素短繊維の折損を防止し、重量減少率を
3%以下とするために、使用する炭素短繊維は、炭素連
続繊維をカットしたものが好ましく、熱処理時に張力を
かけたものがより好ましく、熱処理時に延伸したものが
さらに好ましい。
In order to prevent breakage of the short carbon fiber and to reduce the weight reduction rate to 3% or less, it is preferable that the short carbon fiber used is a cut carbon continuous fiber, and that a fiber which is tensioned during heat treatment is more used. Preferably, it is stretched at the time of heat treatment.

【0073】炭素繊維としては、ポリアクリロニトリル
(PAN)系炭素繊維、フェノール系炭素繊維、ピッチ
系炭素繊維、レーヨン系炭素繊維などが例示される。な
かでも、PAN系炭素繊維が好ましい。PAN系炭素繊
維はピッチ系炭素繊維にくらべて圧縮強さ、引張破断伸
度が大きく、折れにくい。このことは、炭素繊維を構成
する炭素の結晶化の相異によると考えられる。折れにく
い炭素繊維を得るためには、炭素繊維の熱処理温度は
2,500℃以下が好ましく、2,000℃がより好ま
しい。
Examples of the carbon fiber include polyacrylonitrile (PAN) -based carbon fiber, phenol-based carbon fiber, pitch-based carbon fiber, rayon-based carbon fiber and the like. Among them, PAN-based carbon fibers are preferred. PAN-based carbon fibers have higher compressive strength and tensile breaking elongation than pitch-based carbon fibers, and are less likely to break. This is considered to be due to a difference in crystallization of carbon constituting carbon fibers. In order to obtain a carbon fiber that is difficult to break, the heat treatment temperature of the carbon fiber is preferably 2,500 ° C. or less, more preferably 2,000 ° C.

【0074】本発明の電極基材中に用いられる炭素短繊
維は、直径D(μm)と、引張強さσ(MPa)と、引
張弾性率E(MPa)との関係が次式を満足しているの
がよい。そのような炭素短繊維からなる炭素繊維紙を含
む電極基材は、壊れにくいためである。すなわち、炭素
短繊維の直径が細く、引張強さが強く、引張弾性率が低
いほうが炭素短繊維は折れにくく、加圧時に電極基材が
壊れにくくなる。
The short carbon fiber used in the electrode substrate of the present invention has a relationship among a diameter D (μm), a tensile strength σ (MPa), and a tensile modulus E (MPa) satisfying the following expression. Good to be. This is because an electrode substrate including carbon fiber paper made of such short carbon fibers is hard to break. That is, the shorter carbon fibers have a smaller diameter, a higher tensile strength, and a lower tensile modulus, the harder the carbon short fibers are to be broken, and the more difficult the electrode substrate is to be broken when pressurized.

【0075】σ/(E×D)≧0.5×10-3 ここで、炭素繊維の引張強さ、引張弾性率はJIS R
7601に準じて測定する。偏平な断面の炭素繊維の場
合、長径と短径の平均値を直径とする。種類の異なる炭
素短繊維が混合されている場合、D、σ、Eについてそ
れぞれ重量平均した値を用いる。好ましくはσ/(E×
D)≧1.1×10-3であり、より好ましくはσ/(E
×D)≧2.4×10-3である。
Σ / (E × D) ≧ 0.5 × 10 -3 where the tensile strength and tensile modulus of the carbon fiber are JIS R
It is measured according to 7601. In the case of a carbon fiber having a flat cross section, the average value of the major axis and minor axis is defined as the diameter. When different types of short carbon fibers are mixed, values obtained by weighting D, σ, and E are used. Preferably, σ / (E ×
D) ≧ 1.1 × 10 −3 , and more preferably σ / (E
× D) ≧ 2.4 × 10 −3 .

【0076】炭素短繊維の引張破断伸度は電極基材の強
度のため、0.7%以上であるのが好ましく、より好ま
しくは1.2%以上であり、さらに好ましくは1.8%
以上である。引張破断伸度は引張強さ(σ)を引張弾性
率(E)で除した値である。
The tensile elongation at break of short carbon fibers is preferably 0.7% or more, more preferably 1.2% or more, and further preferably 1.8%, because of the strength of the electrode substrate.
That is all. The tensile elongation at break is a value obtained by dividing the tensile strength (σ) by the tensile modulus (E).

【0077】また、炭素短繊維の折損は様々な状況で発
生するため、炭素短繊維の引張強さは500MPa以上
であるのが好ましく、1, 000MPa以上であるのが
より好ましく、2, 000MPa以上であるのがさらに
好ましい。
Further, since breakage of short carbon fibers occurs in various situations, the tensile strength of short carbon fibers is preferably 500 MPa or more, more preferably 1,000 MPa or more, and more preferably 2,000 MPa or more. Is more preferred.

【0078】電極基材に用いられる炭素短繊維の直径
は、20μm以下であるのが好ましい。より好ましいの
は12μm以下、さらに好ましいのは8μm以下であ
る。電極基材に含まれる炭素繊維紙の表面には、炭素短
繊維の直径の5〜10倍の直径の空隙が観察される。触
媒層との一体化時に電極基材表面の炭素短繊維と空隙に
よって高分子電解質膜、触媒層、電極基材の面を凹凸化
して電極反応を起こりやすくする。このため、炭素短繊
維の直径は細いほうがよい。直径が20μmを超えると
電極基材表面の空隙の半径が触媒層の厚みと同程度にな
り、触媒層内の触媒粒子と電極基材中の炭素短繊維の間
の電子の流れる距離が長くなり、燃料電池としての性能
が低下するという問題が生じる。また、炭素短繊維は細
いほど厚み方向の加圧時に折れにくい。直径の異なる炭
素短繊維が混合されている場合は、重量平均によって直
径を求める。一方、炭素短繊維の直径が細くなりすぎる
と、一体化時に触媒層の電極基材への浸入が起こりにく
くなるため、炭素短繊維の直径は2μm以上であるのが
好ましい。
The diameter of the short carbon fiber used for the electrode substrate is preferably 20 μm or less. More preferably, it is 12 μm or less, and still more preferably, 8 μm or less. On the surface of the carbon fiber paper included in the electrode substrate, a void having a diameter of 5 to 10 times the diameter of the short carbon fiber is observed. When integrated with the catalyst layer, the surfaces of the polymer electrolyte membrane, the catalyst layer, and the electrode substrate are made uneven by the short carbon fibers and the voids on the surface of the electrode substrate, so that the electrode reaction easily occurs. For this reason, the diameter of the short carbon fiber is preferably small. If the diameter exceeds 20 μm, the radius of the voids on the surface of the electrode substrate becomes almost the same as the thickness of the catalyst layer, and the flow distance of electrons between the catalyst particles in the catalyst layer and the short carbon fibers in the electrode substrate increases. This causes a problem that the performance as a fuel cell is reduced. Further, the thinner the carbon short fiber is, the harder it is to break when pressurized in the thickness direction. When short carbon fibers having different diameters are mixed, the diameter is determined by weight average. On the other hand, if the diameter of the short carbon fiber is too small, it is difficult for the catalyst layer to penetrate into the electrode substrate at the time of integration, so the diameter of the short carbon fiber is preferably 2 μm or more.

【0079】電極基材に用いられる炭素短繊維の体積抵
抗率は電極基材の低抵抗化のため200μΩ・m以下が
好ましく、50μΩ・m以下がより好ましく、15μΩ
・m以下がさらに好ましい。炭素短繊維の体積抵抗率の
測定はJIS R7601に準じて行う。定められた繊
維長さが得られない場合、得られた繊維長さで測定を行
う。
The volume resistivity of the short carbon fiber used for the electrode substrate is preferably 200 μΩ · m or less, more preferably 50 μΩ · m or less, and more preferably 15 μΩ
・ M is more preferable. The measurement of the volume resistivity of the short carbon fiber is performed according to JIS R7601. If the specified fiber length cannot be obtained, the measurement is performed using the obtained fiber length.

【0080】電極基材に用いられる炭素短繊維は、X線
光電子分光分析法による表面の酸素原子と炭素原子との
原子数比(酸素原子数/炭素原子数)が0.35以下、
好ましくは0.20以下、さらに好ましくは0.10以
下であるものがよい。湿式抄紙法によって炭素繊維紙を
得る場合、酸素原子と炭素原子との原子数比が高いと炭
素短繊維の分散が難しくなって分散不良が増加するため
である。0.35を超えると均一な炭素繊維紙を得るこ
とが難しくなる。酸素原子と炭素原子との原子数比を低
くするためには、炭素繊維の表面処理やサイジング剤の
付与をやめたり、不活性または還元雰囲気中での熱処理
によって表面の酸素原子を取り除く方法がある。
The short carbon fiber used for the electrode substrate has an atomic ratio of oxygen atoms to carbon atoms (oxygen atom number / carbon atom number) of 0.35 or less by X-ray photoelectron spectroscopy.
Preferably it is 0.20 or less, more preferably 0.10 or less. This is because, when a carbon fiber paper is obtained by a wet papermaking method, if the atomic ratio of oxygen atoms to carbon atoms is high, dispersion of short carbon fibers becomes difficult and dispersion failure increases. If it exceeds 0.35, it becomes difficult to obtain a uniform carbon fiber paper. In order to lower the atomic ratio between oxygen atoms and carbon atoms, there are methods to stop the surface treatment of carbon fiber and the application of a sizing agent, and to remove oxygen atoms from the surface by heat treatment in an inert or reducing atmosphere. .

【0081】本発明に用いられる電極基材は、柔軟性を
有する無機導電粒子がシート状に配列されてなる多孔質
導電シートを用いてなることも好ましい。これにより構
成成分の脱落が少ない、あるいは、機械的力が作用して
も壊れ難く、電気抵抗が低く、かつ、安価な電極基材を
提供するという目的が可能となる。特に、柔軟性を有す
る無機導電粒子として、膨張黒鉛粒子を用いることで上
記目的が達成可能である。
The electrode substrate used in the present invention is also preferably made of a porous conductive sheet in which flexible inorganic conductive particles are arranged in a sheet shape. This makes it possible to provide an inexpensive electrode base material in which components are less likely to fall off or hard to be broken by a mechanical force, have low electric resistance, and are inexpensive. In particular, the above object can be achieved by using expanded graphite particles as the inorganic conductive particles having flexibility.

【0082】ここで、膨張黒鉛粒子とは、黒鉛粒子が、
硫酸、硝酸などにより層間化合物化された後、急速に加
熱することにより膨張せしめられて得られる黒鉛粒子を
いう。通常、膨張黒鉛粒子の結晶構造における層間距離
は、原料黒鉛粒子のそれの約50〜500倍である。
Here, the expanded graphite particles are defined as graphite particles,
Graphite particles obtained by being intercalated with sulfuric acid, nitric acid, etc., and then expanded by rapid heating. Usually, the interlayer distance in the crystal structure of the expanded graphite particles is about 50 to 500 times that of the raw graphite particles.

【0083】膨張黒鉛粒子は、それ自体、形状の変形性
に富む。この性質は、柔軟性と云う言葉で表現される。
この柔軟性は、膨張黒鉛粒子とそれに隣接する他の物体
に対する膨張黒鉛粒子の形態的融和性により観察され
る。この形態的融和性は、膨張黒鉛粒子同士が、少なく
とも一部が重なり合った状態で加圧作用を受けると、加
圧状態に応じて、互いに変形し、粒子同士が少なくとも
部分的に接合することにより、観察される。また、この
形態的融和性は、膨張黒鉛粒子と、それらが気体透過性
が確保される状態でシート状に配列せしめられる場合に
用いられる補助材(例えば、カーボンブラックなどの従
来用いられている柔軟性を有しない無機導電粒子、ある
いは、炭素繊維などの従来用いられている無機導電繊
維)とが、共に加圧された場合、膨張黒鉛粒子が、補助
材の外形状に沿って、変形され、この補助材に接合され
ることにより、観察される。
The expanded graphite particles themselves are rich in shape deformability. This property is expressed in terms of flexibility.
This flexibility is observed due to the morphological compatibility of the expanded graphite particles with the other objects adjacent thereto. This morphological compatibility is that, when the expanded graphite particles are subjected to a pressurizing action in a state where at least a part of them are overlapped, they are deformed to each other according to the pressurized state, and the particles are at least partially bonded. To be observed. In addition, the morphological compatibility is based on expanded graphite particles and an auxiliary material used when they are arranged in a sheet shape while ensuring gas permeability (for example, a conventionally used flexible material such as carbon black). When the inorganic conductive particles having no property, or the inorganic conductive fibers conventionally used such as carbon fiber) are pressed together, the expanded graphite particles are deformed along the outer shape of the auxiliary material, Observed by joining to this auxiliary material.

【0084】本発明の電極基材に用いられる多孔質導電
シートは、柔軟性を有する導電性微粒子に加えて、他の
導電性粒子や導電性繊維を含むことも好ましい実施態様
であるが、この導電性繊維と導電性粒子の双方が、無機
材料からなることにより、耐熱性、耐酸化性、耐溶出性
に優れた電極基材が得られる。
In a preferred embodiment, the porous conductive sheet used for the electrode substrate of the present invention contains, in addition to the conductive fine particles having flexibility, other conductive particles and conductive fibers. When both the conductive fibers and the conductive particles are made of an inorganic material, an electrode substrate excellent in heat resistance, oxidation resistance, and elution resistance can be obtained.

【0085】また、多孔質導電シートには、柔軟性を有
しない無機導電性粒子、例えば、カーボンブラック粉
末、黒鉛粉末、金属粉末、セラミックス粉末などを含ん
でも良いが、無機導電性粒子の30重量%以上が柔軟性
を有する無機導電性粒子であることが好ましく、50重
量%以上がより好ましく、70重量%以上が更に好まし
い。
The porous conductive sheet may contain inorganic conductive particles having no flexibility, for example, carbon black powder, graphite powder, metal powder, ceramic powder and the like. % Or more are preferably the inorganic conductive particles having flexibility, more preferably 50% by weight or more, and even more preferably 70% by weight or more.

【0086】他に、本発明の電極基材に用いられる多孔
質導電シートは、無撥水性の高分子を含むことができ
る。特にポリテトラフルオロエチレン(PTFE)、テ
トラフルオロエチレン−ヘキサフルオロプロピレン共重
合体(FEP)、テトラフルオロエチレン−パーフルオ
ロアルキルビニルエーテル共重合体(PFA)などのフ
ッ素樹脂が高い撥水性を有するため好ましく用いられ
る。
In addition, the porous conductive sheet used for the electrode substrate of the present invention can contain a water-repellent polymer. Particularly, fluororesins such as polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-perfluoroalkylvinyl ether copolymer (PFA) are preferably used because they have high water repellency. Can be

【0087】多孔質導電シートが燃料電池用電極基材
(集電体)として用いられる場合は、撥水処理が必須で
あり、その際の撥水性の高分子は、無機導電繊維と無機
導電粒子との接着効果ももたらす。このことは、シート
の強度、電気抵抗の点から有用である。PTFE、FE
P、PFAは、燃料電池集電体に求められる撥水性や耐
酸化性が高く、PTFEは、更に電気抵抗が低い効果を
もたらすためさらに好ましい。
When the porous conductive sheet is used as an electrode substrate (current collector) for a fuel cell, a water-repellent treatment is indispensable. In this case, the water-repellent polymer includes inorganic conductive fibers and inorganic conductive particles. Also provides an adhesive effect with This is useful in terms of sheet strength and electrical resistance. PTFE, FE
P and PFA are more preferable because they have high water repellency and oxidation resistance required for a fuel cell current collector, and PTFE has an effect of further lowering electric resistance.

【0088】撥水性高分子の含有量は、シート全重量に
対し、10〜50重量%が好ましく、より好ましくは1
5〜45重量%、更に好ましくは20〜40重量%であ
る。含有量が少ないと撥水性やシート強度が低くなり、
含有量が多いと電気抵抗が高くなる。
The content of the water-repellent polymer is preferably from 10 to 50% by weight, more preferably from 1 to 50% by weight, based on the total weight of the sheet.
It is 5 to 45% by weight, more preferably 20 to 40% by weight. If the content is small, water repellency and sheet strength will be low,
When the content is large, the electric resistance increases.

【0089】多孔質導電シートの電気抵抗Rの測定は、
次による。幅50mm、長さ200mm、厚み1.5m
mの表面が平滑な平面を有するガラス状炭素板の片面
に、幅50mm、長さ200mm、厚み0.1mmの銅
箔が貼着された試験電極板が、2枚用意される。2枚の
試験電極板は、実質的に均一な間隔を保ち、ガラス状炭
素板の面同士が対向して位置せしめられる。2枚の試験
電極板のそれぞれの一端には、電流用の端子が、それぞ
れの他端には、電圧用の端子が、設けられている。直径
46mmの円形に切り出されたシートが、前記間隙に挿
入され、2枚の試験電極板の中央部に、載置される。載
置されたシートに0.98MPaの圧力が作用するよう
に、試験電極板が移動される。電流用の端子にて、2枚
の試験電極板間に1Aの電流が流される。電圧用の端子
にて、この時の電圧V(V)が測定される。測定された
電圧Vの値が用いられ、次式により、抵抗R(mΩ・c
2)が求められる。
The measurement of the electric resistance R of the porous conductive sheet is as follows.
According to the following. Width 50mm, length 200mm, thickness 1.5m
Two test electrode plates are prepared in which a copper foil having a width of 50 mm, a length of 200 mm, and a thickness of 0.1 mm is adhered to one side of a glassy carbon plate having a flat surface of m. The two test electrode plates are maintained at a substantially uniform distance, and the surfaces of the glassy carbon plate are positioned facing each other. One end of each of the two test electrode plates is provided with a terminal for current, and the other end is provided with a terminal for voltage. A sheet cut into a circle having a diameter of 46 mm is inserted into the gap and placed on the center of two test electrode plates. The test electrode plate is moved so that a pressure of 0.98 MPa acts on the placed sheet. At the current terminal, a current of 1 A flows between the two test electrode plates. The voltage V (V) at this time is measured at the voltage terminal. The value of the measured voltage V is used, and the resistance R (mΩ · c
m 2 ) is required.

【0090】R=V×2.4×2.4×π×1000 ここで、πは円周率である。R = V × 2.4 × 2.4 × π × 1000 where π is a circular constant.

【0091】多孔質導電性シートの電気抵抗は、100
mΩ・cm2以下であることが好ましく、50mΩ・c
2以下であることがより好ましく、15mΩ・cm2
下であることが更に好ましい。撥水性のフッ素樹脂を含
む多孔質導電シートの電気抵抗は、150mΩ・cm2
以下であることが好ましく、70mΩ・cm2以下であ
ることがより好ましく、30mΩ・cm2以下であるこ
とが更に好ましい。
The electric resistance of the porous conductive sheet is 100
mΩ · cm 2 or less, preferably 50 mΩ · c
m 2 or less, more preferably 15 mΩ · cm 2 or less. The electric resistance of the porous conductive sheet containing a water-repellent fluororesin is 150 mΩ · cm 2
Preferably less, more preferably 70mΩ · cm 2 or less, still more preferably 30 m [Omega] · cm 2 or less.

【0092】本発明の電極触媒層は、前述の電極基材と
固体電解質層とを組み合わせることにより膜−電極複合
体(MEA:Membrane Electrode Assembly)とするこ
とも好ましい実施態様である。
In a preferred embodiment, the electrode catalyst layer of the present invention is formed into a membrane-electrode assembly (MEA: Membrane Electrode Assembly) by combining the above-mentioned electrode substrate and the solid electrolyte layer.

【0093】固体電解質としては、通常の燃料電池に用
いられる固体電解質であれば特に限定されるものではな
いが、プロトン交換膜が本発明の燃料電池性能を発現す
るうえで好ましく用いられる。プロトン交換膜のプロト
ン交換基としては、スルホン酸基、カルボン酸基、リン
酸基など特に限定されるものではない。
The solid electrolyte is not particularly limited as long as it is a solid electrolyte used in a normal fuel cell, but a proton exchange membrane is preferably used for exhibiting the fuel cell performance of the present invention. The proton exchange group of the proton exchange membrane is not particularly limited, such as a sulfonic acid group, a carboxylic acid group, and a phosphoric acid group.

【0094】このプロトン交換膜は、スチレン−ジビニ
ルベンゼン共重合体などの炭化水素系と、フルオロアル
キルエーテル側鎖とフルオロアルキル主鎖とから構成さ
れる共重合体のパーフルオロ系に大別され、燃料電池が
用いられる用途や環境に応じて適宜選択されるべきもの
であるが、パーフルオロ系が燃料電池寿命の点から好ま
しいものである。また、部分的にフッ素原子置換した部
分フッ素膜も好ましく用いられる。パーフルオロ膜で
は、DuPont社製Nafion、旭化成製Aciplex、旭硝子製Fle
mionなどが例示され、部分フッ素膜では、トリフルオロ
スチレンスルホン酸の重合体やポリフッ化ビニリデンに
スルホン酸基を導入したものなどがある。
The proton exchange membrane is roughly classified into a hydrocarbon system such as a styrene-divinylbenzene copolymer and a perfluoro system of a copolymer composed of a fluoroalkyl ether side chain and a fluoroalkyl main chain. Although it should be appropriately selected according to the use or environment in which the fuel cell is used, a perfluoro-based fuel cell is preferable from the viewpoint of the fuel cell life. Further, a partial fluorine film partially substituted with fluorine atoms is also preferably used. For perfluoro membranes, DuPont Nafion, Asahi Kasei Aciplex, Asahi Glass Fle
Examples of the partial fluorine film include a polymer of trifluorostyrene sulfonic acid and a material in which a sulfonic acid group is introduced into polyvinylidene fluoride.

【0095】プロトン交換膜は1種のポリマばかりでな
く、2種以上のポリマの共重合体やブレンドポリマ、2
種以上の膜を貼り合わせた複合膜、プロトン交換膜を不
織布や多孔フィルムなどで補強した膜なども用いること
ができる。
The proton exchange membrane is not only one kind of polymer but also a copolymer or blend polymer of two or more kinds of polymers.
A composite membrane obtained by laminating more than two kinds of membranes, a membrane obtained by reinforcing a proton exchange membrane with a nonwoven fabric, a porous film, or the like can also be used.

【0096】膜−電極複合体の製造方法としては、特に
限定されるものではない。触媒−ポリマ複合体からなる
電極触媒層が電極基材上に作成されている場合には、こ
の触媒層付き電極基材をプロトン交換膜などの電解質と
接合するが、この接合条件についても触媒層あるいは電
気化学装置の特性に応じて適宜決められるべきものであ
る。また、触媒−ポリマ複合体からなる電極触媒層がプ
ロトン交換膜などの固体電解質に作成されている場合に
は、この触媒層付き固体電解質を電極基材と接合する
が、この接合条件についても触媒層あるいは電気化学装
置の特性に応じて適宜決められるべきものである。
The method for producing the membrane-electrode composite is not particularly limited. When an electrode catalyst layer comprising a catalyst-polymer composite is formed on an electrode substrate, the electrode substrate with a catalyst layer is bonded to an electrolyte such as a proton exchange membrane. Alternatively, it should be appropriately determined according to the characteristics of the electrochemical device. When the electrode catalyst layer composed of the catalyst-polymer composite is formed on a solid electrolyte such as a proton exchange membrane, the solid electrolyte with the catalyst layer is bonded to the electrode substrate. It should be appropriately determined according to the characteristics of the layer or the electrochemical device.

【0097】また、本発明の電極触媒層、および電極触
媒層と電極基材とからなる電極、あるいは電極触媒層と
電極基材と固体電解質膜からなる膜−電極複合体(ME
A)は、種々の電気化学装置に適応することができる。
なかでも燃料電池や水電解層が好ましく、さらに燃料電
池のなかでも固体高分子型燃料電池に好適である。燃料
電池には、水素を燃料とするものとメタノールなどの炭
化水素を燃料とするものがあるが、特に限定されること
なく用いることができる。
Further, an electrode comprising the electrode catalyst layer of the present invention, an electrode catalyst layer and an electrode substrate, or a membrane-electrode composite (ME) comprising an electrode catalyst layer, an electrode substrate and a solid electrolyte membrane
A) can be applied to various electrochemical devices.
Among them, a fuel cell and a water electrolysis layer are preferable, and among the fuel cells, a polymer electrolyte fuel cell is suitable. There are fuel cells that use hydrogen as fuel and fuel cells that use hydrocarbons such as methanol as fuel, but they can be used without any particular limitation.

【0098】さらに、本発明の電極触媒層を用いた燃料
電池の用途としては、特に限定されることなく考えられ
るが、固体高分子型燃料電池において有用な用途である
移動体の電力供給源が好ましいものである。特に、乗用
車、バス、トラックなどの自動車や船舶、鉄道なども好
ましい移動体である。
Further, the use of the fuel cell using the electrode catalyst layer of the present invention can be considered without any particular limitation. However, the power supply source of the moving body, which is a useful application in the polymer electrolyte fuel cell, can be used. It is preferred. In particular, automobiles such as passenger cars, buses and trucks, ships, railways, and the like are also preferable moving bodies.

【0099】[0099]

【実施例】以下、本発明の詳細につき実施例を用いて、
各手順に従ってさらに説明する。 <実施例1> (1)触媒−ポリマ組成物の調製 Aldrich社製Nafion溶液に、触媒担持カーボン(触媒;
Pt、カーボン;Cabot社製VulcanXC-72、白金担持量;
50重量%)を加え、良く攪拌して触媒−ポリマ組成物
を調製した。 (2)触媒−ポリマ組成物の塗布および湿式凝固 予め撥水処理(PTFEを40重量%含浸し焼結する)
を行った電極基材(東レ製カーボンペーパーTGP−H
−060)に、前記(1)で調製した触媒−ポリマ組成
物を塗布した。塗布直後に、これを基材ごと酢酸ブチル
に含浸後に乾燥して、電極基材上に湿式凝固法による触
媒−ポリマ複合体から成る電極触媒層を作成した。 (3)触媒−ポリマ複合体の評価 得られた触媒層は、白金の付着量1mg/cm2、Nafio
nの付着量0.5mg/cm2であった。この触媒層をS
EM観察すると、触媒−ポリマ複合体が三次元網目微多
孔質構造を有しており、微多孔径は平均0.5μm、空
孔率は80%であった。図1がSEM観察写真を転写し
た模式図である。この触媒層付き電極基材とプロトン交
換膜としてDuPont社製Nafion112を用いてMEAを作
成した。このMEAの燃料電池性能を電流−電圧(I−
V)測定により行った。セル温度は60℃、ガス圧力は
常圧において、限界電流(燃料電池端電圧が0Vになる
時点の電流値)は、2A/cm2であり優れた高出力特
性を示した。 <比較例1> (1)触媒−ポリマ組成物の塗布および乾燥 実施例1と同じ触媒−ポリマ組成物を用い、同様に電極
基材に塗布した。これを湿式凝固を行うことなく、直ち
に乾燥して従来方式の電極触媒層を作成した。 (2)触媒−ポリマ複合体の評価 得られた従来方式の電極触媒層は、白金の付着量1mg
/cm2、Nafionの付着量0.5mg/cm2であった。
この触媒層をSEM観察すると、触媒−ポリマ複合体が
三次元網目微多孔質構造を有しておらず、微多孔径は観
察されなかった。この触媒層付き電極基材を実施例1と
同様にMEA作成し、燃料電池においてI−V測定を行
った。限界電流は、0.8A/cm2であり実施例1に
比べて高出力特性は不良であった。 <実施例2> (1)触媒−ポリマ組成物の調製 Aldrich社製Nafion溶液を用いて溶媒置換を行いN−メ
チルピロリドン(NMP)溶液とした。このNafion−N
MP溶液にPVDF、触媒担持カーボン(触媒;Pt、
カーボン;Cabot社製VulcanXC-72、白金担持量;50重
量%)を加え、良く攪拌して触媒−ポリマ組成物を調製
した。 (2)触媒−ポリマ組成物の塗布および湿式凝固 予め撥水処理(PTFEを40重量%含浸し焼結する)
を行った電極基材(東レ製カーボンペーパーTGP−H
−060)に、前記(1)で調製した触媒−ポリマ組成
物を塗布した。塗布直後に、これを基材ごと水に含浸後
に乾燥して、電極基材上に湿式凝固法による触媒−ポリ
マ複合体から成る電極触媒層を作成した。 (3)触媒−ポリマ複合体の評価 得られた触媒層は、白金の付着量1mg/cm2、Nafio
nの付着量0.25mg/cm2、PVDFの付着量0.
25mg/cm2であった。この触媒層をSEM観察す
ると、触媒−ポリマ複合体が三次元網目微多孔質構造を
有しており、微多孔径は平均0.7μm、空孔率は85
%であった。この触媒層付き電極基材を実施例1と同様
にMEA化し、燃料電池においてI−V測定を行った。
セル温度70℃、ガス圧力0.1MPaにおいて、限界
電流は、2.5A/cm2であり優れた高出力特性を示
した。 <比較例2> (1)触媒−ポリマ組成物の塗布および乾燥 実施例2と同じ触媒−ポリマ組成物を用い、同様に電極
基材に塗布した。これを湿式凝固を行うことなく、直ち
に乾燥して従来方式の電極触媒層を作成した。 (2)触媒−ポリマ複合体の評価 得られた従来方式の電極触媒層は、白金の付着量1mg
/cm2、Nafionの付着量0.25mg/cm2、PVD
Fの付着量0.25mg/cm2であった。この触媒層
をSEM観察すると、触媒−ポリマ複合体が三次元網目
微多孔質構造を有しておらず、微多孔径は観察されなか
った。この触媒層付き電極基材を実施例2と同様にME
A作成し、燃料電池においてI−V測定を行った。限界
電流は、1.2A/cm2であり実施例2に比べて高出
力特性は不良であった。 <実施例3> (1)触媒−ポリマ組成物の調製 Aldrich社製Nafion溶液を用いて溶媒置換を行いN−メ
チルピロリドン(NMP)溶液とした。このNafion−N
MP溶液にPVDF、触媒担持カーボン(触媒;Pt、
カーボン;Cabot社製VulcanXC-72、白金担持量;50重
量%)、導電剤としてアセチレンブラック(電気化学工
業製デンカブラック)を加え、良く攪拌して触媒−ポリ
マ組成物を調製した。 (2)触媒−ポリマ組成物の塗布および湿式凝固 予め撥水処理(PTFEを40重量%含浸し焼結する)
を行った電極基材(東レ製カーボンペーパーTGP−H
−060)に、前記(1)で調製した触媒−ポリマ組成
物を塗布した。塗布直後に、これを基材ごとメタノール
に含浸後に乾燥して、電極基材上に湿式凝固法による触
媒−ポリマ複合体から成る電極触媒層を作成した。 (3)触媒−ポリマ複合体の評価 得られた触媒層は、白金の付着量0.6mg/cm2、N
afionの付着量0.2mg/cm2、PVDFの付着量
0.1mg/cm2であった。この触媒層をSEM観察
すると、触媒−ポリマ複合体が三次元網目微多孔質構造
を有しており、微多孔径は平均0.6μm、空孔率は8
0%であった。この触媒層付き電極基材を実施例1と同
様にMEA化し、燃料電池においてI−V測定を行っ
た。セル温度60℃、ガス圧力常圧において、限界電流
は、2A/cm2であり優れた高出力特性を示した。 <比較例3> (1)触媒−ポリマ組成物の塗布および乾燥 実施例3と同じ触媒−ポリマ組成物を用い、同様に電極
基材に塗布した。これを湿式凝固を行うことなく、直ち
に乾燥して従来方式の電極触媒層を作成した。 (2)触媒−ポリマ複合体の評価 得られた従来方式の電極触媒層は、白金の付着量0.6
mg/cm2、Nafionの付着量0.2mg/cm2、PV
DFの付着量0.1mg/cm2であった。この触媒層
をSEM観察すると、触媒−ポリマ複合体が三次元網目
微多孔質構造を有しておらず、微多孔径は観察されなか
った。この触媒層付き電極基材を実施例2と同様にME
A作成し、燃料電池においてI−V測定を行った。限界
電流は、0.6A/cm2であり実施例3に比べて高出
力特性は不良であった。 <実施例4> (1)触媒−ポリマ組成物の調製 Aldrich社製Nafion溶液に、触媒担持カーボン(触媒;
Pt、カーボン;Cabot社製VulcanXC-72、白金担持量;
20重量%)を加え、良く攪拌して触媒−ポリマ組成物
を調製した。 (2)触媒−ポリマ組成物の塗布および湿式凝固 予め撥水処理(PTFEを40重量%含浸し焼結する)
を行った電極基材(E−TEK社製カーボンクロス)
に、前記(1)で調製した触媒−ポリマ組成物を塗布し
た。塗布直後に、これを基材ごと酢酸ブチルに含浸後に
乾燥して、電極基材上に湿式凝固法による触媒−ポリマ
複合体から成る電極触媒層を作成した。 (3)触媒−ポリマ複合体の評価 得られた触媒層は、白金の付着量1mg/cm2、Nafio
nの付着量0.5mg/cm2であった。この触媒層をS
EM観察すると、触媒−ポリマ複合体が三次元網目微多
孔質構造を有しており、微多孔径は平均0.5μm、空
孔率は80%であった。この触媒層付き電極基材を用い
て実施例1と同様にMEA化し、燃料電池性能をI−V
測定により行った。セル温度は80℃、ガス圧力は0.
2MPaにおいて、限界電流は、3A/cm2であり優
れた高出力特性を示した。 <比較例4> (1)触媒−ポリマ組成物の塗布および乾燥 実施例4と同じ触媒−ポリマ組成物を用い、同様に電極
基材に塗布した。これを湿式凝固を行うことなく、直ち
に乾燥して従来方式の電極触媒層を作成した。 (2)触媒−ポリマ複合体の評価 得られた従来方式の電極触媒層は、白金の付着量1mg
/cm2、Nafionの付着量0.5mg/cm2であった。
この触媒層をSEM観察すると、触媒−ポリマ複合体が
三次元網目微多孔質構造を有しておらず、微多孔径は観
察されなかった。この触媒層付き電極基材を実施例1と
同様にMEA作成し、燃料電池においてI−V測定を行
った。限界電流は、1.5A/cm2であり実施例1に
比べて高出力特性は不良であった。 <実施例5> (1)触媒−ポリマ組成物の調製 Aldrich社製Nafion溶液を用いて溶媒置換を行いN−メ
チルピロリドン(NMP)溶液とした。このNafion−N
MP溶液にPVDF、触媒担持カーボン(触媒;Pt、
カーボン;Cabot社製VulcanXC-72、白金担持量;50重
量%)、導電剤としてアセチレンブラック(電気化学工
業製デンカブラック)を加え、良く攪拌して触媒−ポリ
マ組成物を調製した。 (2)触媒−ポリマ組成物の塗布および湿式凝固 前記(1)で調製した触媒−ポリマ組成物をDuPont社製
Nafion117に塗布した。塗布直後に、これをプロトン
交換膜ごとメタノールに含浸後に乾燥して、プロトン交
換膜上に湿式凝固法による触媒−ポリマ複合体から成る
電極触媒層を作成した。 (3)触媒−ポリマ複合体の評価 得られた触媒層は、白金の付着量0.8mg/cm2、N
afionの付着量0.2mg/cm2、PVDFの付着量
0.2mg/cm2であった。この触媒層をSEM観察
すると、触媒−ポリマ複合体が三次元網目微多孔質構造
を有しており、微多孔径は平均0.6μm、空孔率は8
0%であった。この触媒層付きプロトン交換膜と、予め
撥水処理(PTFEを40重量%含浸し焼結する)を行
った電極基材(東レ製カーボンペーパーTGP−H−0
60)とを用いて、MEA化し、燃料電池においてI−
V測定を行った。セル温度60℃、ガス圧力常圧におい
て、限界電流は、1.8A/cm2であり優れた高出力
特性を示した。 <比較例5> (1)触媒−ポリマ組成物の塗布および乾燥 実施例5と同じ触媒−ポリマ組成物を用い、同様にプロ
トン交換膜に塗布した。これを湿式凝固を行うことな
く、直ちに乾燥して従来方式の電極触媒層を作成した。 (2)触媒−ポリマ複合体の評価 得られた従来方式の電極触媒層は、白金の付着量0.8
mg/cm2、Nafionの付着量0.2mg/cm2、PV
DFの付着量0.2mg/cm2であった。この触媒層
をSEM観察すると、触媒−ポリマ複合体が三次元網目
微多孔質構造を有しておらず、微多孔径は観察されなか
った。この触媒層付き電極基材を実施例5と同様にME
A作成し、燃料電池においてI−V測定を行った。限界
電流は、0.8A/cm2であり実施例5に比べて高出
力特性は不良であった。 <実施例6> (1)多孔質導電シートの作成 長さ12mmにカットしたPAN系炭素繊維(直径7μ
m)の短繊維を水中で分散、金網上に抄造し、炭素短繊
維を結着する高分子物質であるPVAと酢ビの混合物か
らなるエマルジョンを付着させて乾燥し、炭素繊維紙を
得た。使用した炭素繊維の体積固有抵抗:20μΩ・c
m、引っ張り破断伸度:1.5%、σ/(E×D):
2.2×10-3であった。結着高分子含有率は22%、
炭素繊維紙の目付は30g/m2、厚みは0.4mmで
あった。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to Examples.
Each step will be further described. Example 1 (1) Preparation of Catalyst-Polymer Composition A catalyst-supporting carbon (catalyst;
Pt, carbon; VulcanXC-72, manufactured by Cabot, platinum loading;
50% by weight) and stirred well to prepare a catalyst-polymer composition. (2) Application of catalyst-polymer composition and wet coagulation Water repellent treatment (impregnated with 40% by weight of PTFE and sintered)
Substrate (Carbon paper TGP-H manufactured by Toray)
-060), the catalyst-polymer composition prepared in the above (1) was applied. Immediately after the application, the substrate was impregnated with butyl acetate and then dried to form an electrode catalyst layer comprising a catalyst-polymer composite on the electrode substrate by a wet coagulation method. (3) Evaluation of Catalyst-Polymer Composite The obtained catalyst layer had a platinum adhesion amount of 1 mg / cm 2 , Nafio
The attached amount of n was 0.5 mg / cm 2 . This catalyst layer is
Upon EM observation, the catalyst-polymer composite had a three-dimensional network microporous structure, a microporous diameter of 0.5 μm on average, and a porosity of 80%. FIG. 1 is a schematic diagram in which an SEM observation photograph is transferred. An MEA was prepared using this electrode substrate with a catalyst layer and Nafion 112 manufactured by DuPont as a proton exchange membrane. The fuel cell performance of this MEA was determined by comparing current-voltage (I-
V) Performed by measurement. At a cell temperature of 60 ° C. and a gas pressure of normal pressure, the limiting current (current value at the time when the fuel cell terminal voltage becomes 0 V) was 2 A / cm 2 , showing excellent high output characteristics. Comparative Example 1 (1) Coating and Drying of Catalyst-Polymer Composition The same catalyst-polymer composition as in Example 1 was used and applied to an electrode substrate in the same manner. This was immediately dried without performing wet coagulation to prepare a conventional electrode catalyst layer. (2) Evaluation of Catalyst-Polymer Composite The obtained conventional electrode catalyst layer had a platinum adhesion amount of 1 mg.
/ Cm 2 , and the adhesion amount of Nafion was 0.5 mg / cm 2 .
When this catalyst layer was observed by SEM, the catalyst-polymer composite did not have a three-dimensional network microporous structure, and no microporous diameter was observed. This electrode substrate with a catalyst layer was prepared by MEA in the same manner as in Example 1, and the IV measurement was performed in a fuel cell. The limiting current was 0.8 A / cm 2 , and the high output characteristics were poor compared to Example 1. <Example 2> (1) Preparation of catalyst-polymer composition Solvent replacement was performed using a Nafion solution manufactured by Aldrich to obtain an N-methylpyrrolidone (NMP) solution. This Nafion-N
PVDF and catalyst-supporting carbon (catalyst; Pt,
Carbon; Vulcan XC-72, manufactured by Cabot Co., platinum loading: 50% by weight) was added thereto, and the mixture was stirred well to prepare a catalyst-polymer composition. (2) Application of catalyst-polymer composition and wet coagulation Water repellent treatment (impregnated with 40% by weight of PTFE and sintered)
Substrate (Carbon paper TGP-H manufactured by Toray)
-060), the catalyst-polymer composition prepared in the above (1) was applied. Immediately after the application, this was impregnated with water together with the substrate, and dried to form an electrode catalyst layer comprising a catalyst-polymer composite by a wet coagulation method on the electrode substrate. (3) Evaluation of Catalyst-Polymer Composite The obtained catalyst layer had a platinum adhesion amount of 1 mg / cm 2 , Nafio
n of 0.25 mg / cm 2 , PVDF of 0.
It was 25 mg / cm 2 . When this catalyst layer was observed by SEM, the catalyst-polymer composite had a three-dimensional network microporous structure, a microporous diameter of 0.7 μm on average, and a porosity of 85%.
%Met. This electrode substrate with a catalyst layer was formed into an MEA in the same manner as in Example 1, and an IV measurement was performed in a fuel cell.
At a cell temperature of 70 ° C. and a gas pressure of 0.1 MPa, the limiting current was 2.5 A / cm 2 , showing excellent high-output characteristics. Comparative Example 2 (1) Coating and Drying of Catalyst-Polymer Composition The same catalyst-polymer composition as in Example 2 was used and applied to an electrode substrate in the same manner. This was immediately dried without performing wet coagulation to prepare a conventional electrode catalyst layer. (2) Evaluation of Catalyst-Polymer Composite The obtained conventional electrode catalyst layer had a platinum adhesion amount of 1 mg.
/ Cm 2 , Nafion adhesion amount 0.25 mg / cm 2 , PVD
The amount of F attached was 0.25 mg / cm 2 . When this catalyst layer was observed by SEM, the catalyst-polymer composite did not have a three-dimensional network microporous structure, and no microporous diameter was observed. This electrode substrate with a catalyst layer was treated with ME in the same manner as in Example 2.
A was prepared and IV measurement was performed in the fuel cell. The limiting current was 1.2 A / cm 2 , and the high output characteristics were poor compared to Example 2. Example 3 (1) Preparation of Catalyst-Polymer Composition Solvent replacement was performed using a Nafion solution manufactured by Aldrich to obtain an N-methylpyrrolidone (NMP) solution. This Nafion-N
PVDF and catalyst-supporting carbon (catalyst; Pt,
Carbon: Vulcan XC-72 manufactured by Cabot, platinum loading: 50% by weight), and acetylene black (Denka Black manufactured by Denki Kagaku Kogyo) as a conductive agent were added, followed by stirring well to prepare a catalyst-polymer composition. (2) Application of catalyst-polymer composition and wet coagulation Water repellent treatment (impregnated with 40% by weight of PTFE and sintered)
Substrate (Carbon paper TGP-H manufactured by Toray)
-060), the catalyst-polymer composition prepared in the above (1) was applied. Immediately after the application, the substrate was impregnated with methanol and then dried to form an electrode catalyst layer comprising a catalyst-polymer composite on the electrode substrate by a wet coagulation method. (3) Evaluation of Catalyst-Polymer Composite The obtained catalyst layer had an adhesion amount of platinum of 0.6 mg / cm 2 , N
The afion adhesion amount was 0.2 mg / cm 2 , and the PVDF adhesion amount was 0.1 mg / cm 2 . When this catalyst layer was observed by SEM, the catalyst-polymer composite had a three-dimensional network microporous structure, the microporous diameter was 0.6 μm on average, and the porosity was 8
It was 0%. This electrode substrate with a catalyst layer was formed into an MEA in the same manner as in Example 1, and an IV measurement was performed in a fuel cell. At a cell temperature of 60 ° C. and a normal gas pressure, the limiting current was 2 A / cm 2 , showing excellent high-output characteristics. Comparative Example 3 (1) Coating and Drying of Catalyst-Polymer Composition The same catalyst-polymer composition as in Example 3 was used and applied to an electrode substrate in the same manner. This was immediately dried without performing wet coagulation to prepare a conventional electrode catalyst layer. (2) Evaluation of Catalyst-Polymer Composite The obtained conventional electrode catalyst layer had a platinum adhesion of 0.6.
mg / cm 2 , Nafion adhesion amount 0.2 mg / cm 2 , PV
The amount of DF attached was 0.1 mg / cm 2 . When this catalyst layer was observed by SEM, the catalyst-polymer composite did not have a three-dimensional network microporous structure, and no microporous diameter was observed. This electrode substrate with a catalyst layer was treated with ME in the same manner as in Example 2.
A was prepared and IV measurement was performed in the fuel cell. The limiting current was 0.6 A / cm 2 , and the high output characteristics were inferior to Example 3. <Example 4> (1) Preparation of catalyst-polymer composition A catalyst-supporting carbon (catalyst;
Pt, carbon; VulcanXC-72, manufactured by Cabot, platinum loading;
20% by weight) and stirred well to prepare a catalyst-polymer composition. (2) Application of catalyst-polymer composition and wet coagulation Water repellent treatment (impregnated with 40% by weight of PTFE and sintered)
Substrate (Carbon cloth manufactured by E-TEK)
Was coated with the catalyst-polymer composition prepared in the above (1). Immediately after the application, the substrate was impregnated with butyl acetate and then dried to form an electrode catalyst layer comprising a catalyst-polymer composite on the electrode substrate by a wet coagulation method. (3) Evaluation of Catalyst-Polymer Composite The obtained catalyst layer had a platinum adhesion amount of 1 mg / cm 2 , Nafio
The attached amount of n was 0.5 mg / cm 2 . This catalyst layer is
Upon EM observation, the catalyst-polymer composite had a three-dimensional network microporous structure, a microporous diameter of 0.5 μm on average, and a porosity of 80%. Using this electrode substrate with a catalyst layer, MEA was performed in the same manner as in Example 1, and the fuel cell performance was improved by IV.
It was performed by measurement. The cell temperature was 80 ° C. and the gas pressure was 0.
At 2 MPa, the limiting current was 3 A / cm 2 , showing excellent high-output characteristics. Comparative Example 4 (1) Coating and Drying of Catalyst-Polymer Composition The same catalyst-polymer composition as in Example 4 was used and applied to an electrode substrate in the same manner. This was immediately dried without performing wet coagulation to prepare a conventional electrode catalyst layer. (2) Evaluation of Catalyst-Polymer Composite The obtained conventional electrode catalyst layer had a platinum adhesion amount of 1 mg.
/ Cm 2 , and the adhesion amount of Nafion was 0.5 mg / cm 2 .
When this catalyst layer was observed by SEM, the catalyst-polymer composite did not have a three-dimensional network microporous structure, and no microporous diameter was observed. This electrode substrate with a catalyst layer was prepared by MEA in the same manner as in Example 1, and the IV measurement was performed in a fuel cell. The limiting current was 1.5 A / cm 2 , and the high output characteristics were inferior to Example 1. Example 5 (1) Preparation of Catalyst-Polymer Composition Solvent replacement was performed using a Nafion solution manufactured by Aldrich to obtain an N-methylpyrrolidone (NMP) solution. This Nafion-N
PVDF and catalyst-supporting carbon (catalyst; Pt,
Carbon: VulcanXC-72 manufactured by Cabot Co., platinum loading: 50% by weight), and acetylene black (Denka Black manufactured by Denki Kagaku Kogyo) as a conductive agent were added, and the mixture was stirred well to prepare a catalyst-polymer composition. (2) Coating and wet coagulation of catalyst-polymer composition The catalyst-polymer composition prepared in the above (1) was manufactured by DuPont.
Nafion 117 was applied. Immediately after the application, this was impregnated with methanol together with the proton exchange membrane, and dried to form an electrode catalyst layer comprising a catalyst-polymer composite on the proton exchange membrane by a wet coagulation method. (3) Evaluation of catalyst-polymer composite The obtained catalyst layer had a platinum adhesion amount of 0.8 mg / cm 2 , N
The afion adhesion amount was 0.2 mg / cm 2 , and the PVDF adhesion amount was 0.2 mg / cm 2 . When this catalyst layer was observed by SEM, the catalyst-polymer composite had a three-dimensional network microporous structure, the microporous diameter was 0.6 μm on average, and the porosity was 8
It was 0%. An electrode substrate (Toray carbon paper TGP-H-0 manufactured by Toray Co., Ltd.) which has been subjected to a water-repellent treatment (40% by weight impregnated with PTFE and sintered) beforehand.
60) to form an MEA,
V measurements were made. At a cell temperature of 60 ° C. and a normal gas pressure, the limiting current was 1.8 A / cm 2 , showing excellent high-output characteristics. Comparative Example 5 (1) Coating and Drying of Catalyst-Polymer Composition The same catalyst-polymer composition as in Example 5 was used and applied to a proton exchange membrane in the same manner. This was immediately dried without performing wet coagulation to prepare a conventional electrode catalyst layer. (2) Evaluation of Catalyst-Polymer Composite The obtained conventional electrode catalyst layer had a platinum adhesion of 0.8.
mg / cm 2 , Nafion adhesion amount 0.2 mg / cm 2 , PV
The amount of DF attached was 0.2 mg / cm 2 . When the catalyst layer was observed by SEM, the catalyst-polymer composite did not have a three-dimensional network microporous structure, and no microporous diameter was observed. This electrode substrate with a catalyst layer was treated with ME in the same manner as in Example 5.
A was prepared and IV measurement was performed in the fuel cell. The limiting current was 0.8 A / cm 2 , and the high output characteristics were inferior to Example 5. Example 6 (1) Preparation of Porous Conductive Sheet PAN-based carbon fiber cut to a length of 12 mm (diameter 7 μm)
m) is dispersed in water, paper-made on a wire mesh, and an emulsion composed of a mixture of PVA and vinyl acetate, which is a polymer substance binding the carbon short fibers, is attached and dried to obtain carbon fiber paper. . Volume resistivity of carbon fiber used: 20 μΩ · c
m, tensile elongation at break: 1.5%, σ / (E × D):
2.2 × 10 -3 . The binder polymer content is 22%,
The basis weight of the carbon fiber paper was 30 g / m 2 , and the thickness was 0.4 mm.

【0100】この炭素繊維紙からなる多孔質導電シート
の2.9MPa加圧時の厚みは0.066mm、2.9
MPa加圧時の密度は0.45g/cm3、2.9MP
a加圧後の重量減少は0.6%であった。
The thickness of the porous conductive sheet made of the carbon fiber paper under a pressure of 2.9 MPa is 0.066 mm, 2.9.
The density at the time of pressurizing MPa is 0.45 g / cm 3 , 2.9 MP
a The weight loss after pressing was 0.6%.

【0101】更に、この多孔質導電シートは、空気中で
200℃、30分の熱処理を受けた。熱処理後のシート
に、PTFEディスパージョン(ポリフロンPTFEデ
ィスパージョン、ダイキン工業株式会社製)が含浸せし
められた。含浸後、シートは、2枚の濾紙に挟まれ、軽
く加圧された。その後、シートから濾紙が外され、乾燥
された。乾燥後のシートは、12kgf/cm2(1.
2MPa)に加圧されながら370℃、10分の熱処理
を受け、多孔質導電シートが製造された。使用されたP
TFEディスパージョンの濃度は、15%である。 (2)触媒−ポリマ組成物の調製 Aldrich社製Nafion溶液に、触媒担持カーボン(触媒;
Pt、カーボン;Cabot社製VulcanXC-72、白金担持量;
50重量%)を加え、良く攪拌して触媒−ポリマ組成物
を調製した。 (3)触媒−ポリマ組成物の塗布および湿式凝固 前記(1)で作成した多孔質導電シート上に、前記
(2)で調製した触媒−ポリマ組成物を塗布した。塗布
直後に、これを基材ごと酢酸ブチルに含浸後に乾燥し
て、電極基材上に湿式凝固法による触媒−ポリマ複合体
から成る電極触媒層を作成した。 (4)触媒−ポリマ複合体の評価 得られた触媒層は、白金の付着量1mg/cm2、Nafio
nの付着量0.5mg/cm2であった。この触媒層をS
EM観察すると、触媒−ポリマ複合体が三次元網目微多
孔質構造を有しており、微多孔径は平均0.5μm、空
孔率は80%であった。この触媒層付き電極基材とプロ
トン交換膜としてDuPont社製Nafion112を用いてME
Aを作成した。このMEAの燃料電池性能を電流−電圧
(I−V)測定により行った。セル温度は60℃、ガス
圧力は常圧において、限界電流(燃料電池端電圧が0V
になる時点の電流値)は、2A/cm2であり優れた高
出力特性を示した。 <実施例7> (1)多孔質導電シートの作成 長さ12mmにカットされたPAN系炭素繊維の短繊維
と膨張黒鉛粉末(PFパウダー4、東洋炭素(株)製、
かさ密度0.039g/cm3、平均粒径300乃至5
00μm)が、重量比で1:1に混合され、ナトリウム
カルボキシメチルセルロース水溶液中に分散せしめられ
た。この分散液が用いられ、炭素繊維の短繊維に膨張黒
鉛粉末が付着したシートが、金網上に抄造された。水分
を除去する目的で、シートは、2枚の濾紙に挟まれ、軽
く加圧された。その後、濾紙が外され、シートは、乾燥
された。乾燥後、シートは、ロールプレスにより、線圧
490N/cm(50kg/cm)でプレスされ、多孔
質導電シートが製造された。
Further, this porous conductive sheet was subjected to a heat treatment in air at 200 ° C. for 30 minutes. The sheet after the heat treatment was impregnated with PTFE dispersion (Polyflon PTFE dispersion, manufactured by Daikin Industries, Ltd.). After impregnation, the sheet was sandwiched between two pieces of filter paper and lightly pressed. Thereafter, the filter paper was removed from the sheet and dried. The dried sheet is 12 kgf / cm 2 (1.
The film was subjected to a heat treatment at 370 ° C. for 10 minutes while being pressurized to 2 MPa) to produce a porous conductive sheet. P used
The concentration of the TFE dispersion is 15%. (2) Preparation of Catalyst-Polymer Composition A catalyst-supporting carbon (catalyst;
Pt, carbon; VulcanXC-72, manufactured by Cabot, platinum loading;
50% by weight) and stirred well to prepare a catalyst-polymer composition. (3) Application and wet coagulation of catalyst-polymer composition The catalyst-polymer composition prepared in (2) was applied on the porous conductive sheet prepared in (1). Immediately after the application, the substrate was impregnated with butyl acetate and then dried to form an electrode catalyst layer comprising a catalyst-polymer composite on the electrode substrate by a wet coagulation method. (4) Evaluation of Catalyst-Polymer Composite The obtained catalyst layer had a platinum adhesion amount of 1 mg / cm 2 , Nafio
The attached amount of n was 0.5 mg / cm 2 . This catalyst layer is
Upon EM observation, the catalyst-polymer composite had a three-dimensional network microporous structure, a microporous diameter of 0.5 μm on average, and a porosity of 80%. The electrode substrate with the catalyst layer and Nafion 112 manufactured by DuPont as a proton exchange membrane were used for ME.
A was created. The fuel cell performance of this MEA was measured by current-voltage (IV) measurement. At a cell temperature of 60 ° C. and a gas pressure of normal pressure, the critical current (fuel cell end voltage is 0 V
The current value at the time of) is 2 A / cm 2 , showing excellent high output characteristics. <Example 7> (1) Preparation of porous conductive sheet Short fibers of PAN-based carbon fiber cut to a length of 12 mm and expanded graphite powder (PF Powder 4, manufactured by Toyo Carbon Co., Ltd.
Bulk density 0.039 g / cm 3 , average particle size 300 to 5
00 μm) was mixed at a weight ratio of 1: 1 and dispersed in an aqueous solution of sodium carboxymethylcellulose. Using this dispersion, a sheet in which expanded graphite powder was adhered to short fibers of carbon fibers was formed on a wire mesh. The sheet was sandwiched between two pieces of filter paper and lightly pressed to remove moisture. Thereafter, the filter paper was removed and the sheet was dried. After drying, the sheet was pressed at a linear pressure of 490 N / cm (50 kg / cm) by a roll press to produce a porous conductive sheet.

【0102】更に、この多孔質導電シートは、空気中で
200℃、30分の熱処理を受けた。熱処理後のシート
に、PTFEディスパージョン(ポリフロンPTFEデ
ィスパージョン、ダイキン工業株式会社製)が含浸せし
められた。含浸後、シートは、2枚の濾紙に挟まれ、軽
く加圧された。その後、シートから濾紙が外され、乾燥
された。乾燥後のシートは、1.2MPa(12kgf
/cm2)に加圧されながら370℃、10分の熱処理
を受け、多孔質導電シートが製造された。使用されたP
TFEディスパージョンの濃度は、15%である。 (2)触媒−ポリマ組成物の調製 Aldrich社製Nafion溶液に、触媒担持カーボン(触媒;
Pt、カーボン;Cabot社製VulcanXC-72、白金担持量;
50重量%)を加え、良く攪拌して触媒−ポリマ組成物
を調製した。 (3)触媒−ポリマ組成物の塗布および湿式凝固 前記(1)で作成した多孔質導電シート上に、前記
(2)で調製した触媒−ポリマ組成物を塗布した。塗布
直後に、これを基材ごと酢酸ブチルに含浸後に乾燥し
て、電極基材上に湿式凝固法による触媒−ポリマ複合体
から成る電極触媒層を作成した。 (4)触媒−ポリマ複合体の評価 得られた触媒層は、白金の付着量1mg/cm2、Nafio
nの付着量0.5mg/cm2であった。この触媒層をS
EM観察すると、触媒−ポリマ複合体が三次元網目微多
孔質構造を有しており、微多孔径は平均0.5μm、空
孔率は80%であった。この触媒層付き電極基材とプロ
トン交換膜としてDuPont社製Nafion112を用いてME
Aを作成した。このMEAの燃料電池性能を電流−電圧
(I−V)測定により行った。セル温度は60℃、ガス
圧力は常圧において、限界電流(燃料電池端電圧が0V
になる時点の電流値)は、2A/cm2であり優れた高
出力特性を示した。 <比較例6> (1)触媒−ポリマ組成物の塗布および乾燥 実施例7と同じ触媒−ポリマ組成物を用い、同様に多孔
質導電シートに塗布した。これを湿式凝固を行うことな
く、直ちに乾燥して従来方式の電極触媒層を作成した。 (2)触媒−ポリマ複合体の評価 得られた従来方式の電極触媒層は、白金の付着量1mg
/cm2、Nafionの付着量0.5mg/cm2であった。
この触媒層をSEM観察すると、触媒−ポリマ複合体が
三次元網目微多孔質構造を有しておらず、微多孔径は観
察されなかった。この触媒層付き電極基材を実施例7と
同様にMEA作成し、燃料電池においてI−V測定を行
った。限界電流は、0.8A/cm2であり実施例7に
比べて高出力特性は不良であった。 <実施例8> (1)多孔質導電シートの作成 長さ12mmにカットされたPAN系炭素繊維の短繊維
と膨張黒鉛粉末(東洋炭素(株)製、かさ密度0.14
g/cm3、平均粒径100乃至200μm)が、重量
比で1:1に混合され、ナトリウムカルボキシメチルセ
ルロース水溶液中に分散せしめられた。この分散液が用
いられ、炭素繊維の短繊維に膨張黒鉛粉末が付着したシ
ートが、金網上に抄造された。水分を除去する目的で、
シートは、2枚の濾紙に挟まれ、軽く加圧された。その
後、濾紙が外され、シートは、乾燥された。乾燥後、シ
ートは、ロールプレスされ、多孔質導電シートが製造さ
れた。ロールプレスは、クリアランスが、220μm、
170μm、120μmに調整され、3回行われた。
Further, this porous conductive sheet was subjected to a heat treatment in air at 200 ° C. for 30 minutes. The sheet after the heat treatment was impregnated with PTFE dispersion (Polyflon PTFE dispersion, manufactured by Daikin Industries, Ltd.). After impregnation, the sheet was sandwiched between two pieces of filter paper and lightly pressed. Thereafter, the filter paper was removed from the sheet and dried. After drying, the sheet is 1.2 MPa (12 kgf
/ Cm 2 ) and subjected to a heat treatment at 370 ° C. for 10 minutes to produce a porous conductive sheet. P used
The concentration of the TFE dispersion is 15%. (2) Preparation of Catalyst-Polymer Composition A catalyst-supporting carbon (catalyst;
Pt, carbon; VulcanXC-72, manufactured by Cabot, platinum loading;
50% by weight) and stirred well to prepare a catalyst-polymer composition. (3) Application and wet coagulation of catalyst-polymer composition The catalyst-polymer composition prepared in (2) was applied on the porous conductive sheet prepared in (1). Immediately after the application, the substrate was impregnated with butyl acetate and then dried to form an electrode catalyst layer comprising a catalyst-polymer composite on the electrode substrate by a wet coagulation method. (4) Evaluation of Catalyst-Polymer Composite The obtained catalyst layer had a platinum adhesion amount of 1 mg / cm 2 , Nafio
The attached amount of n was 0.5 mg / cm 2 . This catalyst layer is
Upon EM observation, the catalyst-polymer composite had a three-dimensional network microporous structure, a microporous diameter of 0.5 μm on average, and a porosity of 80%. The electrode substrate with the catalyst layer and Nafion 112 manufactured by DuPont as a proton exchange membrane were used for ME.
A was created. The fuel cell performance of this MEA was measured by current-voltage (IV) measurement. At a cell temperature of 60 ° C. and a gas pressure of normal pressure, the critical current (fuel cell end voltage is 0 V
The current value at the time of) is 2 A / cm 2 , showing excellent high output characteristics. Comparative Example 6 (1) Coating and Drying of Catalyst-Polymer Composition The same catalyst-polymer composition as in Example 7 was used and similarly coated on a porous conductive sheet. This was immediately dried without performing wet coagulation to prepare a conventional electrode catalyst layer. (2) Evaluation of Catalyst-Polymer Composite The obtained conventional electrode catalyst layer had a platinum adhesion amount of 1 mg.
/ Cm 2 , and the adhesion amount of Nafion was 0.5 mg / cm 2 .
When this catalyst layer was observed by SEM, the catalyst-polymer composite did not have a three-dimensional network microporous structure, and no microporous diameter was observed. This electrode substrate with a catalyst layer was prepared by MEA in the same manner as in Example 7, and the IV measurement was performed in a fuel cell. The limiting current was 0.8 A / cm 2 , and the high output characteristics were poor compared to Example 7. <Example 8> (1) Preparation of porous conductive sheet Short fibers of PAN-based carbon fiber cut to a length of 12 mm and expanded graphite powder (manufactured by Toyo Carbon Co., Ltd., bulk density 0.14
g / cm 3 and an average particle size of 100 to 200 μm) were mixed at a weight ratio of 1: 1 and dispersed in an aqueous solution of sodium carboxymethylcellulose. Using this dispersion, a sheet in which expanded graphite powder was adhered to short fibers of carbon fibers was formed on a wire mesh. For the purpose of removing water,
The sheet was sandwiched between two filter papers and lightly pressed. Thereafter, the filter paper was removed and the sheet was dried. After drying, the sheet was roll-pressed to produce a porous conductive sheet. Roll press, the clearance is 220μm,
The adjustment was performed at 170 μm and 120 μm, and the measurement was performed three times.

【0103】更に、この多孔質導電シートは、空気中で
200℃、30分の熱処理を受け、FEPディスパージ
ョン(ネオフロンFEPディスパージョン、ダイキン工
業株式会社製)が含浸せしめられ、その後、シートは、
2枚の濾紙に挟まれ、軽く加圧された。次いで、シート
から濾紙が外され、シートは、乾燥された。乾燥後のシ
ートは、14.7kPa(0.15kgf/cm2)に
加圧されながら310℃、3時間の熱処理を受け、多孔
質導電シートが製造された。 (2)触媒−ポリマ組成物の調製 Aldrich社製Nafion溶液を用いて溶媒置換を行いN−メ
チルピロリドン(NMP)溶液とした。このNafion−N
MP溶液にPVDF、触媒担持カーボン(触媒;Pt、
カーボン;Cabot社製VulcanXC-72、白金担持量;50重
量%)を加え、良く攪拌して触媒−ポリマ組成物を調製
した。 (3)触媒−ポリマ組成物の塗布および湿式凝固 前記(1)の多孔質導電シート上に、前記(2)で調製
した触媒−ポリマ組成物を塗布した。塗布直後に、これ
を基材ごと水に含浸後に乾燥して、電極基材上に湿式凝
固法による触媒−ポリマ複合体から成る電極触媒層を作
成した。 (4)触媒−ポリマ複合体の評価 得られた触媒層は、白金の付着量1mg/cm2、Nafio
nの付着量0.25mg/cm2、PVDFの付着量0.
25mg/cm2であった。この触媒層をSEM観察す
ると、触媒−ポリマ複合体が三次元網目微多孔質構造を
有しており、微多孔径は平均0.7μm、空孔率は85
%であった。この触媒層付き電極基材を実施例7と同様
にMEA化し、燃料電池においてI−V測定を行った。
セル温度70℃、ガス圧力0.1MPaにおいて、限界
電流は、2.5A/cm2であり優れた高出力特性を示
した。 <比較例7> (1)触媒−ポリマ組成物の塗布および乾燥 実施例8と同じ触媒−ポリマ組成物を用い、同様に多孔
質導電シートに塗布した。これを湿式凝固を行うことな
く、直ちに乾燥して従来方式の電極触媒層を作成した。 (2)触媒−ポリマ複合体の評価 得られた従来方式の電極触媒層は、白金の付着量1mg
/cm2、Nafionの付着量0.25mg/cm2、PVD
Fの付着量0.25mg/cm2であった。この触媒層
をSEM観察すると、触媒−ポリマ複合体が三次元網目
微多孔質構造を有しておらず、微多孔径は観察されなか
った。この触媒層付き電極基材を実施例2と同様にME
A作成し、燃料電池においてI−V測定を行った。限界
電流は、1.2A/cm2であり実施例8に比べて高出
力特性は不良であった。 <実施例9> (1)多孔質導電シートの作成 実施例7(1)と同様に多孔質導電シートを作成した。 (2)触媒−ポリマ組成物の調製 Aldrich社製Nafion溶液を用いて溶媒置換を行いN−メ
チルピロリドン(NMP)溶液とした。このNafion−N
MP溶液にPVDF、触媒担持カーボン(触媒;Pt、
カーボン;Cabot社製VulcanXC-72、白金担持量;50重
量%)、導電剤としてアセチレンブラック(電気化学工
業製デンカブラック)を加え、良く攪拌して触媒−ポリ
マ組成物を調製した。 (3)触媒−ポリマ組成物の塗布および湿式凝固 前記(1)の多孔質導電シートに、前記(2)で調製し
た触媒−ポリマ組成物を塗布した。塗布直後に、これを
基材ごとメタノールに含浸後に乾燥して、電極基材上に
湿式凝固法による触媒−ポリマ複合体から成る電極触媒
層を作成した。 (4)触媒−ポリマ複合体の評価 得られた触媒層は、白金の付着量0.6mg/cm2、N
afionの付着量0.2mg/cm2、PVDFの付着量
0.1mg/cm2であった。この触媒層をSEM観察
すると、触媒−ポリマ複合体が三次元網目微多孔質構造
を有しており、微多孔径は平均0.6μm、空孔率は8
0%であった。この触媒層付き電極基材を実施例7と同
様にMEA化し、燃料電池においてI−V測定を行っ
た。セル温度60℃、ガス圧力常圧において、限界電流
は、2A/cm2であり優れた高出力特性を示した。 <実施例10> (1)実施例8(1)と同様に多孔質導電シートを作成
した。 (2)触媒−ポリマ組成物の調製 Aldrich社製Nafion溶液に、触媒担持カーボン(触媒;
Pt、カーボン;Cabot社製VulcanXC-72、白金担持量;
20重量%)を加え、良く攪拌して触媒−ポリマ組成物
を調製した。 (3)触媒−ポリマ組成物の塗布および湿式凝固 前記(1)の多孔質導電シートに、前記(2)で調製し
た触媒−ポリマ組成物を塗布した。塗布直後に、これを
基材ごと酢酸ブチルに含浸後に乾燥して、電極基材上に
湿式凝固法による触媒−ポリマ複合体から成る電極触媒
層を作成した。 (4)触媒−ポリマ複合体の評価 得られた触媒層は、白金の付着量1mg/cm2、Nafio
nの付着量0.5mg/cm2であった。この触媒層をS
EM観察すると、触媒−ポリマ複合体が三次元網目微多
孔質構造を有しており、微多孔径は平均0.5μm、空
孔率は80%であった。この触媒層付き電極基材を用い
て実施例7と同様にMEA化し、燃料電池性能をI−V
測定により行った。セル温度は80℃、ガス圧力は0.
2MPaにおいて、限界電流は、3A/cm2であり優
れた高出力特性を示した。
Further, the porous conductive sheet is subjected to a heat treatment in air at 200 ° C. for 30 minutes, and impregnated with FEP dispersion (neoflon FEP dispersion, manufactured by Daikin Industries, Ltd.).
It was sandwiched between two pieces of filter paper and lightly pressed. The filter paper was then removed from the sheet and the sheet was dried. The dried sheet was subjected to a heat treatment at 310 ° C. for 3 hours while being pressurized to 14.7 kPa (0.15 kgf / cm 2 ) to produce a porous conductive sheet. (2) Preparation of Catalyst-Polymer Composition Solvent replacement was performed using a Nadion solution manufactured by Aldrich to obtain an N-methylpyrrolidone (NMP) solution. This Nafion-N
PVDF and catalyst-supporting carbon (catalyst; Pt,
Carbon; Vulcan XC-72, manufactured by Cabot Co., platinum loading: 50% by weight) was added thereto, and the mixture was stirred well to prepare a catalyst-polymer composition. (3) Application of Catalyst-Polymer Composition and Wet Coagulation The catalyst-polymer composition prepared in (2) was applied on the porous conductive sheet of (1). Immediately after the application, this was impregnated with water together with the substrate, and dried to form an electrode catalyst layer comprising a catalyst-polymer composite by a wet coagulation method on the electrode substrate. (4) Evaluation of Catalyst-Polymer Composite The obtained catalyst layer had a platinum adhesion amount of 1 mg / cm 2 , Nafio
n of 0.25 mg / cm 2 , PVDF of 0.
It was 25 mg / cm 2 . When this catalyst layer was observed by SEM, the catalyst-polymer composite had a three-dimensional network microporous structure, a microporous diameter of 0.7 μm on average, and a porosity of 85%.
%Met. This electrode substrate with a catalyst layer was subjected to MEA in the same manner as in Example 7, and IV measurement was performed in a fuel cell.
At a cell temperature of 70 ° C. and a gas pressure of 0.1 MPa, the limiting current was 2.5 A / cm 2 , showing excellent high-output characteristics. Comparative Example 7 (1) Coating and Drying of Catalyst-Polymer Composition The same catalyst-polymer composition as in Example 8 was used and similarly coated on a porous conductive sheet. This was immediately dried without performing wet coagulation to prepare a conventional electrode catalyst layer. (2) Evaluation of Catalyst-Polymer Composite The obtained conventional electrode catalyst layer had a platinum adhesion amount of 1 mg.
/ Cm 2 , Nafion adhesion amount 0.25 mg / cm 2 , PVD
The amount of F attached was 0.25 mg / cm 2 . When this catalyst layer was observed by SEM, the catalyst-polymer composite did not have a three-dimensional network microporous structure, and no microporous diameter was observed. This electrode substrate with a catalyst layer was treated with ME in the same manner as in Example 2.
A was prepared and IV measurement was performed in the fuel cell. The limiting current was 1.2 A / cm 2 , and the high output characteristics were inferior to Example 8. <Example 9> (1) Preparation of porous conductive sheet A porous conductive sheet was prepared in the same manner as in Example 7 (1). (2) Preparation of Catalyst-Polymer Composition Solvent replacement was performed using a Nadion solution manufactured by Aldrich to obtain an N-methylpyrrolidone (NMP) solution. This Nafion-N
PVDF and catalyst-supporting carbon (catalyst; Pt,
Carbon: Vulcan XC-72 manufactured by Cabot, platinum loading: 50% by weight), and acetylene black (Denka Black manufactured by Denki Kagaku Kogyo) as a conductive agent were added, followed by stirring well to prepare a catalyst-polymer composition. (3) Application and wet coagulation of catalyst-polymer composition The catalyst-polymer composition prepared in (2) was applied to the porous conductive sheet of (1). Immediately after the application, the substrate was impregnated with methanol and then dried to form an electrode catalyst layer comprising a catalyst-polymer composite on the electrode substrate by a wet coagulation method. (4) Evaluation of Catalyst-Polymer Composite The obtained catalyst layer had an adhesion amount of platinum of 0.6 mg / cm 2 , N
The afion adhesion amount was 0.2 mg / cm 2 , and the PVDF adhesion amount was 0.1 mg / cm 2 . When this catalyst layer was observed by SEM, the catalyst-polymer composite had a three-dimensional network microporous structure, the microporous diameter was 0.6 μm on average, and the porosity was 8
It was 0%. This electrode substrate with a catalyst layer was subjected to MEA in the same manner as in Example 7, and IV measurement was performed in a fuel cell. At a cell temperature of 60 ° C. and a normal gas pressure, the limiting current was 2 A / cm 2 , showing excellent high-output characteristics. <Example 10> (1) A porous conductive sheet was prepared in the same manner as in Example 8 (1). (2) Preparation of Catalyst-Polymer Composition A catalyst-supporting carbon (catalyst;
Pt, carbon; VulcanXC-72, manufactured by Cabot, platinum loading;
20% by weight) and stirred well to prepare a catalyst-polymer composition. (3) Application and wet coagulation of catalyst-polymer composition The catalyst-polymer composition prepared in (2) was applied to the porous conductive sheet of (1). Immediately after the application, the substrate was impregnated with butyl acetate and then dried to form an electrode catalyst layer comprising a catalyst-polymer composite on the electrode substrate by a wet coagulation method. (4) Evaluation of Catalyst-Polymer Composite The obtained catalyst layer had a platinum adhesion amount of 1 mg / cm 2 , Nafio
The attached amount of n was 0.5 mg / cm 2 . This catalyst layer is
Upon EM observation, the catalyst-polymer composite had a three-dimensional network microporous structure, a microporous diameter of 0.5 μm on average, and a porosity of 80%. Using this electrode substrate with a catalyst layer, MEA was performed in the same manner as in Example 7, and the fuel cell performance was improved by IV.
It was performed by measurement. The cell temperature was 80 ° C. and the gas pressure was 0.
At 2 MPa, the limiting current was 3 A / cm 2 , showing excellent high-output characteristics.

【0104】[0104]

【発明の効果】請求項1〜9に係る本発明の電極触媒層
は、少なくとも触媒担持カーボン粒子と1種以上のポリ
マとを含む触媒−ポリマ複合体が、三次元網目微多孔質
構造を有していることを特徴とするので、ガス拡散性、
電子電導性、プロトン伝導性、水の排出が良好であると
いう優れた効果を有する。特に固体高分子型燃料電池電
極触媒層に用いた場合、ガス透過性が良好でありかつ電
子電導性が良好になるので、優れた燃料電池性能を発現
できる上に、触媒量の低減が期待でき安価な燃料電池を
提供することが可能となる。
According to the present invention, the catalyst-polymer composite containing at least catalyst-supporting carbon particles and one or more polymers has a three-dimensional network microporous structure. Gas diffusion,
It has excellent effects of good electron conductivity, proton conductivity, and good water discharge. In particular, when used in an electrode catalyst layer of a polymer electrolyte fuel cell, the gas permeability is good and the electron conductivity is good, so that excellent fuel cell performance can be exhibited and a reduction in the amount of catalyst can be expected. An inexpensive fuel cell can be provided.

【0105】請求項10〜12に係る本発明の電極触媒
層の製造方法は、触媒−ポリマ溶液組成物を湿式凝固法
により作成することにより空孔率が高くガス透過性と排
水性に優れた電極触媒層を製造することが可能となる。
In the method for producing an electrode catalyst layer according to the present invention according to the tenth to twelfth aspects, the catalyst-polymer solution composition is prepared by a wet coagulation method so that the porosity is high and the gas permeability and the drainage property are excellent. It becomes possible to manufacture an electrode catalyst layer.

【0106】請求項13〜26に係る本発明の電極およ
び膜−電極複合体(MEA)は、上記特性を有する電極
触媒層とガス透過性と排水性に優れる安価な電極基材を
用いているため、高出力特性に優れ安価であるという優
れた効果を有する。
The electrodes and the membrane-electrode composite (MEA) of the present invention according to claims 13 to 26 use an electrode catalyst layer having the above characteristics and an inexpensive electrode substrate excellent in gas permeability and drainage. Therefore, it has an excellent effect of being excellent in high output characteristics and inexpensive.

【0107】さらに、本発明の移動体は上記電極あるい
はMEAを適用したため、高性能で安価であるという優
れた効果を有する。
Further, since the moving body of the present invention employs the above-mentioned electrode or MEA, it has an excellent effect of high performance and low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られた電極触媒層のSEM写真を
転写した図。
FIG. 1 is a transcribed SEM photograph of an electrode catalyst layer obtained in Example 1.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/88 H01M 4/88 C T 4/96 4/96 B 8/10 8/10 // H01M 4/90 4/90 B Fターム(参考) 4G069 AA03 AA08 BA08A BA08B BA08C BC33A BC33B BC33C BC70A BC70B BC70C BC72A BC72B BC72C BC74A BC74B BC74C BC75A BC75B BC75C BE07A BE07B BE07C BE34A BE34B BE34C CC32 EA03X EA03Y EA07 EB01 EB11 EC16X EC17X FB23 4K011 AA12 AA23 AA31 5H018 AA06 AS01 BB00 BB01 BB03 BB05 BB08 BB16 DD06 DD08 EE03 EE06 EE08 EE11 EE19 HH00 HH01 HH03 HH04 HH05 HH06 5H026 AA06 BB01 BB02 BB03 BB04 CX03 CX05 EE02 EE06 EE11 EE19 HH01 HH03 HH04 HH05 HH06 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 4/88 H01M 4/88 CT 4/96 4/96 B 8/10 8/10 // H01M 4 / 90 4/90 B F-term (Reference) 4G069 AA03 AA08 BA08A BA08B BA08C BC33A BC33B BC33C BC70A BC70B BC70C BC72A BC72B BC72C BC74A BC74B BC74C BC75A BC75B BC75C BE07A BE07B BE07C BE34A BE3EA3A03 EBECA AA31 5H018 AA06 AS01 BB00 BB01 BB03 BB05 BB08 BB16 DD06 DD08 EE03 EE06 EE08 EE11 EE19 HH00 HH01 HH03 HH04 HH05 HH06 5H026 AA06 BB01 BB02 BB03 BB04 CX03 CX05 EE02 EE06 H03H01 EE02H06

Claims (31)

【特許請求の範囲】 【特許請求の範囲】[Claims] [Claims] 【請求項1】 少なくとも、触媒担持カーボン粒子と1
種以上のポリマとを含む触媒−ポリマ複合体が、三次元
方向に網目状の微多孔質構造を有していることを特徴と
する電極触媒層。
1. At least one catalyst-supporting carbon particle and 1
An electrode catalyst layer, wherein the catalyst-polymer composite containing at least one kind of polymer has a network-like microporous structure in a three-dimensional direction.
【請求項2】 三次元網目微多孔質構造における微多孔
の内径が、0.05〜5μmであることを特徴とする請
求項1に記載の電極触媒層。
2. The electrode catalyst layer according to claim 1, wherein the inner diameter of the micropores in the three-dimensional network microporous structure is 0.05 to 5 μm.
【請求項3】 三次元網目微多孔質構造における空孔率
が、10〜95%であることを特徴とする請求項1また
は2に記載の電極触媒層。
3. The electrode catalyst layer according to claim 1, wherein the porosity of the three-dimensional network microporous structure is 10 to 95%.
【請求項4】 触媒−ポリマ複合体に含まれるポリマ
が、フッ素原子を含む1種以上のポリマであることを特
徴とする請求項1〜3のいずれかに記載の電極触媒層。
4. The electrode catalyst layer according to claim 1, wherein the polymer contained in the catalyst-polymer composite is at least one polymer containing a fluorine atom.
【請求項5】 触媒−ポリマ複合体に含まれるポリマ
が、プロトン交換基を有する1種以上のポリマであるこ
とを特徴とする請求項1〜4のいずれかに記載の電極触
媒層。
5. The electrode catalyst layer according to claim 1, wherein the polymer contained in the catalyst-polymer composite is at least one polymer having a proton exchange group.
【請求項6】 触媒−ポリマ複合体に含まれるポリマ
が、スルホン酸基を有するフルオロアルキルエーテル側
鎖と、フルオロアルキル主鎖とからなる1種以上のポリ
マであることを特徴とする請求項1〜5のいずれかに記
載の電極触媒層。
6. The polymer contained in the catalyst-polymer composite is at least one polymer comprising a fluoroalkyl ether side chain having a sulfonic acid group and a fluoroalkyl main chain. The electrode catalyst layer according to any one of claims 1 to 5.
【請求項7】 触媒−ポリマ複合体に含まれる触媒担持
カーボンが、白金、金、パラジウム、ルテニウム、イリ
ジウムのうちの少なくとも1種以上を含むことを特徴と
する請求項1〜6のいずれかに記載の電極触媒層。
7. The catalyst according to claim 1, wherein the catalyst-supporting carbon contained in the catalyst-polymer composite contains at least one of platinum, gold, palladium, ruthenium, and iridium. The electrode catalyst layer according to the above.
【請求項8】 触媒−ポリマ複合体に含まれる触媒担持
カーボンが、カーボンブラックを含むことを特徴とする
請求項1〜7のいずれかに記載の電極触媒層。
8. The electrode catalyst layer according to claim 1, wherein the catalyst-supporting carbon contained in the catalyst-polymer composite contains carbon black.
【請求項9】 触媒−ポリマ複合体に、触媒担持カーボ
ン以外の電子伝導体が含まれていることを特徴とする請
求項1〜8のいずれかに記載の電極触媒層。
9. The electrode catalyst layer according to claim 1, wherein the catalyst-polymer composite contains an electron conductor other than the catalyst-supporting carbon.
【請求項10】均一に分散された触媒粒子を含むポリマ
溶液からなる触媒−ポリマ溶液組成物を基材に塗布した
後に、この塗布層をポリマに対する凝固溶媒と接触させ
て、触媒−ポリマ溶液組成物の凝固と溶媒抽出とを同時
に行うことを特徴とする電極触媒層の製造方法。
10. A catalyst-polymer solution composition comprising a polymer solution containing uniformly dispersed catalyst particles is applied to a substrate, and the coated layer is brought into contact with a coagulating solvent for the polymer to form a catalyst-polymer solution composition. A method for producing an electrode catalyst layer, wherein coagulation of a substance and solvent extraction are simultaneously performed.
【請求項11】 触媒−ポリマ溶液組成物を電極基材に
塗布した後に、湿式凝固を行うことを特徴とする請求項
10に記載の電極触媒層の製造方法。
11. The method for producing an electrode catalyst layer according to claim 10, wherein the wet solidification is performed after applying the catalyst-polymer solution composition to the electrode substrate.
【請求項12】 触媒−ポリマ複合体を基材上に作成し
た後に複合体を基材から剥がして触媒層を作成すること
を特徴とする請求項10または11に記載の電極触媒層
の製造方法。
12. The method for producing an electrode catalyst layer according to claim 10, wherein the catalyst-polymer composite is formed on a substrate, and then the composite is peeled off from the substrate to form a catalyst layer. .
【請求項13】 少なくとも、触媒担持カーボン粒子と
1種以上のポリマとを含む触媒−ポリマ複合体が、三次
元方向に網目状の微多孔質構造を有していることを特徴
とする請求項1〜9のいずれかに記載の電極触媒層と電
極基材とからなる電極。
13. The catalyst-polymer composite comprising at least catalyst-supporting carbon particles and one or more polymers has a three-dimensionally network-like microporous structure. An electrode comprising the electrode catalyst layer according to any one of 1 to 9 and an electrode substrate.
【請求項14】電極基材が多孔質導電シートであること
を特徴とする請求項13に記載の電極。
14. The electrode according to claim 13, wherein the electrode substrate is a porous conductive sheet.
【請求項15】多孔質導電シートにおいて、目付が10
〜220g/m2の範囲内であることを特徴とする請求項
14に記載の電極。
15. A porous conductive sheet having a basis weight of 10
15. The electrode according to claim 14, which is in the range of ~ 220 g / m < 2 >.
【請求項16】多孔質導電シートの電気抵抗が、150
mΩ・cm2以下であることを特徴とする請求項14ま
たは15に記載の電極。
16. The electric resistance of the porous conductive sheet is 150
The electrode according to claim 14 or 15, wherein the electrode has a resistance of not more than mΩ · cm 2 .
【請求項17】電極基材を構成する多孔質導電シートに
おいて、実質的に二次元平面内において無作為な方向に
配向された炭素短繊維を高分子物質で結着してなる炭素
繊維紙を含み、炭素短繊維の長さが、少なくとも3mm
で、かつ、炭素繊維紙の厚みの少なくとも5倍であるこ
とを特徴とする請求項14〜16いずれかに記載の電
極。
17. A porous conductive sheet constituting an electrode substrate, comprising a carbon fiber paper obtained by binding short carbon fibers oriented in a random direction in a substantially two-dimensional plane with a polymer substance. Including, the length of the short carbon fiber is at least 3 mm
The electrode according to any one of claims 14 to 16, wherein the thickness is at least 5 times the thickness of the carbon fiber paper.
【請求項18】多孔質導電シートにおいて、炭素短繊維
の直径が20μm以下であることを特徴とする請求項1
7に記載の電極。
18. The porous conductive sheet according to claim 1, wherein the short carbon fibers have a diameter of 20 μm or less.
8. The electrode according to 7.
【請求項19】多孔質導電シートにおいて、炭素短繊維
の体積抵抗率が200μΩ・m以下であることを特徴と
する請求項17または18に記載の電極。
19. The electrode according to claim 17, wherein the short carbon fiber has a volume resistivity of 200 μΩ · m or less in the porous conductive sheet.
【請求項20】多孔質導電シートにおいて、ポリマの含
有率が2〜30重量%の範囲内であることを特徴とする
請求項14〜19のいずれかに記載の電極。
20. The electrode according to claim 14, wherein the content of the polymer in the porous conductive sheet is in the range of 2 to 30% by weight.
【請求項21】多孔質導電シートにおいて、炭素質微粒
子を含むことを特徴とする請求項14〜20のいずれか
に記載の電極。
21. The electrode according to claim 14, wherein the porous conductive sheet contains carbonaceous fine particles.
【請求項22】多孔質導電シートにおいて、柔軟性を有
する無機導電粒子がシート状に配列されてなることを特
徴とする請求項14〜21のいずれかに記載の電極。
22. The electrode according to claim 14, wherein the inorganic conductive particles having flexibility are arranged in a sheet shape in the porous conductive sheet.
【請求項23】多孔質導電シートにおいて、柔軟性を有
する無機導電粒子が無機導電繊維に付着されてシート状
に配列され、無機導電繊維と無機導電粒子との接触面に
おいて、無機導電粒子の表面が凹型をなしていることを
特徴とする請求項14〜22のいずれかに記載の電極。
23. In a porous conductive sheet, flexible inorganic conductive particles are adhered to inorganic conductive fibers and are arranged in a sheet form. 23. The electrode according to claim 14, wherein the electrode has a concave shape.
【請求項24】無機導電性微粒子が膨張黒鉛粒子である
ことを特徴とする請求項22または23に記載の電極。
24. The electrode according to claim 22, wherein the inorganic conductive fine particles are expanded graphite particles.
【請求項25】少なくとも、触媒担持カーボン粒子と1
種以上のポリマとを含む触媒−ポリマ複合体が、三次元
方向に網目状の微多孔質構造であることを特徴とする請
求項1〜9のいずれかに記載の電極触媒層、電極基材、
固体電解質膜からなる膜−電極複合体。
25. At least one catalyst-supporting carbon particle and 1
An electrode catalyst layer and an electrode substrate according to any one of claims 1 to 9, wherein the catalyst-polymer composite containing at least one kind of polymer has a microporous structure reticulated in a three-dimensional direction. ,
A membrane-electrode composite comprising a solid electrolyte membrane.
【請求項26】 固体電解質膜がプロトン交換膜である
ことを特徴とする請求項25に記載の膜−電極複合体。
26. The membrane-electrode composite according to claim 25, wherein the solid electrolyte membrane is a proton exchange membrane.
【請求項27】 請求項1〜9のいずれかに記載の電極
触媒層を用いた電気化学装置。
27. An electrochemical device using the electrode catalyst layer according to claim 1.
【請求項28】 請求項13〜24のいずれかに記載の
電極を用いた燃料電池。
28. A fuel cell using the electrode according to claim 13.
【請求項29】 請求項25または26のいずれかに記
載の膜−電極複合体を用いた固体高分子型燃料電池電解
質。
29. A polymer electrolyte fuel cell electrolyte using the membrane-electrode assembly according to claim 25.
【請求項30】 請求項28または29に記載の燃料電
池を電力供給源とする移動体。
30. A moving object using the fuel cell according to claim 28 or 29 as a power supply source.
【請求項31】 請求項28〜30のいずれかに記載の
燃料電池を電力供給源とする自動車。
31. An automobile using the fuel cell according to claim 28 as a power supply source.
JP11293515A 1999-04-09 1999-10-15 Electrode catalyst layer and manufacture thereof and fuel cell using electrode catalyst layer Pending JP2000353528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11293515A JP2000353528A (en) 1999-04-09 1999-10-15 Electrode catalyst layer and manufacture thereof and fuel cell using electrode catalyst layer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-102311 1999-04-09
JP10231199 1999-04-09
JP11293515A JP2000353528A (en) 1999-04-09 1999-10-15 Electrode catalyst layer and manufacture thereof and fuel cell using electrode catalyst layer

Publications (1)

Publication Number Publication Date
JP2000353528A true JP2000353528A (en) 2000-12-19

Family

ID=26443027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11293515A Pending JP2000353528A (en) 1999-04-09 1999-10-15 Electrode catalyst layer and manufacture thereof and fuel cell using electrode catalyst layer

Country Status (1)

Country Link
JP (1) JP2000353528A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004054021A3 (en) * 2002-12-10 2005-02-03 3M Innovative Properties Co Catalyst ink
US7094492B2 (en) * 2001-10-11 2006-08-22 Honda Giken Kogyo Kabushiki Kaisha Electrode for polymer electrolyte fuel cell
JP2006313710A (en) * 2005-05-09 2006-11-16 Ricoh Co Ltd Fuel cell and its manufacturing method, power supply and electronic equipment
JP2007103070A (en) * 2005-09-30 2007-04-19 Hitachi Chem Co Ltd Ion conductive binder
JP2007294401A (en) * 2006-03-31 2007-11-08 Mitsubishi Heavy Ind Ltd Solid polymer electrolyte membrane electrode assembly and its manufacturing method
JP2007317381A (en) * 2006-05-23 2007-12-06 Gs Yuasa Corporation:Kk Membrane/electrode assembly for direct methanol-type fuel cell, and direct methanol-type fuel cell using the same
JP2008192337A (en) * 2007-02-01 2008-08-21 Mitsubishi Heavy Ind Ltd Solid polymer electrolyte membrane-electrode assembly and its manufacturing method
US7569302B2 (en) 2002-11-05 2009-08-04 Panasonic Corporation Fuel cell for generating electric power
JP2010003564A (en) * 2008-06-20 2010-01-07 Mitsubishi Rayon Co Ltd Method of manufacturing electrode substrate for solid polymer fuel cell
JP2011206730A (en) * 2010-03-30 2011-10-20 Ishii Shoji Kk Water cleaning material
JP2012017525A (en) * 2010-06-17 2012-01-26 Bayer Materialscience Ag Gas diffusion electrode and method for production thereof
US8357475B2 (en) 2004-12-09 2013-01-22 Nanosys, Inc. Nanowire-based membrane electrode assemblies for fuel cells
CN102918690A (en) * 2010-06-29 2013-02-06 伟途股份有限公司 Gas diffusion electrode, method of producing same, membrane electrode assembly comprising same and method of producing membrane electrode assembly comprising same
JP2013226537A (en) * 2012-03-26 2013-11-07 Toshiba Corp Noble metal catalyst layer, membrane electrode assembly, electrochemical cell and method for producing noble metal catalyst layer
WO2015124250A1 (en) * 2014-02-20 2015-08-27 Merck Patent Gmbh Stable catalyst ink formulations, methods of using such inks in fiber formation, and articles comprising such fibers
JP2016091996A (en) * 2014-11-04 2016-05-23 三菱レイヨン株式会社 Porous electrode base material and membrane-electrode assembly using the same and solid polymer fuel cell using the same
USRE46921E1 (en) 2004-12-09 2018-06-26 Oned Material Llc Nanostructured catalyst supports
WO2019107241A1 (en) * 2017-11-29 2019-06-06 東レ株式会社 Micro-porous layer and manufacturing method therefor, gas diffusion electrode substrate, and fuel battery
US10490817B2 (en) 2009-05-19 2019-11-26 Oned Material Llc Nanostructured materials for battery applications

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7094492B2 (en) * 2001-10-11 2006-08-22 Honda Giken Kogyo Kabushiki Kaisha Electrode for polymer electrolyte fuel cell
US7569302B2 (en) 2002-11-05 2009-08-04 Panasonic Corporation Fuel cell for generating electric power
US7855160B2 (en) 2002-12-10 2010-12-21 3M Innovative Properties Company Catalyst ink
JP2006509859A (en) * 2002-12-10 2006-03-23 スリーエム イノベイティブ プロパティズ カンパニー Catalyst ink
WO2004054021A3 (en) * 2002-12-10 2005-02-03 3M Innovative Properties Co Catalyst ink
CN100380723C (en) * 2002-12-10 2008-04-09 3M创新有限公司 Catalyst ink
JP4690047B2 (en) * 2002-12-10 2011-06-01 スリーエム イノベイティブ プロパティズ カンパニー Catalyst ink
USRE46921E1 (en) 2004-12-09 2018-06-26 Oned Material Llc Nanostructured catalyst supports
US8357475B2 (en) 2004-12-09 2013-01-22 Nanosys, Inc. Nanowire-based membrane electrode assemblies for fuel cells
JP2006313710A (en) * 2005-05-09 2006-11-16 Ricoh Co Ltd Fuel cell and its manufacturing method, power supply and electronic equipment
JP2007103070A (en) * 2005-09-30 2007-04-19 Hitachi Chem Co Ltd Ion conductive binder
JP2007294401A (en) * 2006-03-31 2007-11-08 Mitsubishi Heavy Ind Ltd Solid polymer electrolyte membrane electrode assembly and its manufacturing method
JP2007317381A (en) * 2006-05-23 2007-12-06 Gs Yuasa Corporation:Kk Membrane/electrode assembly for direct methanol-type fuel cell, and direct methanol-type fuel cell using the same
JP2008192337A (en) * 2007-02-01 2008-08-21 Mitsubishi Heavy Ind Ltd Solid polymer electrolyte membrane-electrode assembly and its manufacturing method
JP2010003564A (en) * 2008-06-20 2010-01-07 Mitsubishi Rayon Co Ltd Method of manufacturing electrode substrate for solid polymer fuel cell
US11600821B2 (en) 2009-05-19 2023-03-07 Oned Material, Inc. Nanostructured materials for battery applications
US11233240B2 (en) 2009-05-19 2022-01-25 Oned Material, Inc. Nanostructured materials for battery applications
US10490817B2 (en) 2009-05-19 2019-11-26 Oned Material Llc Nanostructured materials for battery applications
JP2011206730A (en) * 2010-03-30 2011-10-20 Ishii Shoji Kk Water cleaning material
JP2012017525A (en) * 2010-06-17 2012-01-26 Bayer Materialscience Ag Gas diffusion electrode and method for production thereof
CN102918690A (en) * 2010-06-29 2013-02-06 伟途股份有限公司 Gas diffusion electrode, method of producing same, membrane electrode assembly comprising same and method of producing membrane electrode assembly comprising same
JP2013226537A (en) * 2012-03-26 2013-11-07 Toshiba Corp Noble metal catalyst layer, membrane electrode assembly, electrochemical cell and method for producing noble metal catalyst layer
US11261542B2 (en) 2014-02-20 2022-03-01 Merck Patent Gmbh Stable catalyst ink formulations, methods of using such inks in fiber formation, and articles comprising such fibers
JP2017512226A (en) * 2014-02-20 2017-05-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Stable catalyst ink formulations, methods of using such inks in fiber formation, and articles containing such fibers
KR20160125433A (en) * 2014-02-20 2016-10-31 메르크 파텐트 게엠베하 Stable catalyst ink formulations, methods of using such inks in fiber formation, and articles comprising such fibers
US20170069915A1 (en) * 2014-02-20 2017-03-09 Merck Patent Gmbh Stable Catalyst Ink Formulations, Methods of Using Such Inks in Fiber Formation, and Articles Comprising Such Fibers
JP2020063549A (en) * 2014-02-20 2020-04-23 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Stable catalyst ink formulations, methods of using such inks in fiber formation, and articles comprising such fibers
KR102293415B1 (en) 2014-02-20 2021-08-24 메르크 파텐트 게엠베하 Stable catalyst ink formulations, methods of using such inks in fiber formation, and articles comprising such fibers
WO2015124250A1 (en) * 2014-02-20 2015-08-27 Merck Patent Gmbh Stable catalyst ink formulations, methods of using such inks in fiber formation, and articles comprising such fibers
JP2016091996A (en) * 2014-11-04 2016-05-23 三菱レイヨン株式会社 Porous electrode base material and membrane-electrode assembly using the same and solid polymer fuel cell using the same
WO2019107241A1 (en) * 2017-11-29 2019-06-06 東レ株式会社 Micro-porous layer and manufacturing method therefor, gas diffusion electrode substrate, and fuel battery
JPWO2019107241A1 (en) * 2017-11-29 2020-10-01 東レ株式会社 Microporous layer and its manufacturing method, gas diffusion electrode base material, fuel cell
US11621426B2 (en) 2017-11-29 2023-04-04 Toray Industries, Inc. Micro-porous layer and manufacturing method therefor, gas diffusion electrode substrate, and fuel battery
JP7263774B2 (en) 2017-11-29 2023-04-25 東レ株式会社 MICROPOROUS LAYER AND MANUFACTURING METHOD THEREOF, GAS DIFFUSION ELECTRODE BASE MATERIAL, FUEL CELL

Similar Documents

Publication Publication Date Title
JP5140898B2 (en) Method for producing membrane-electrode assembly
JP2000299113A (en) Conductive sheet and electrode base material for fuel cell using it
JP2000353528A (en) Electrode catalyst layer and manufacture thereof and fuel cell using electrode catalyst layer
WO2002059996A1 (en) Polymer electrolyte film and method for preparation of the same, and solid polymer type fuel cell using the same
JP2001283865A (en) Electrode catalyst layer, film-electrode complex and their manufacturing method and battery using same
JP4819981B2 (en) Gas diffusion layer for fuel cells
JP6527936B2 (en) Membrane electrode assembly
JP2001216973A (en) Electrode and its production as well as fuel cell using the same
EP1624514B1 (en) Membrane electrode complex and solid polymer type fuel cell using it
JP2001283878A (en) Conductive sheet and fuel cell electrode equipped with the sheet
JP6053251B2 (en) Solid polymer fuel cell gas diffusion layer
JP6717748B2 (en) Gas diffusion base material
JP5915283B2 (en) Gas diffusion layer and fuel cell using the same
WO2007136135A1 (en) Fuel cell electrode and method for producing fuel cell electrode, membrane-electrode assembly and method for producing membrane-electrode assembly, and solid polymer fuel cell
JP2003123792A (en) Polymer electrolyte film, its manufacturing method, and solid polymer fuel cell using the same
JP4734688B2 (en) ELECTRODE AND MANUFACTURING METHOD THEREOF, MEMBRANE-ELECTRODE COMPOSITION AND MANUFACTURING METHOD THEREOF, AND ELECTROCHEMICAL DEVICE, WATER ELECTROLYTIC DEVICE, FUEL CELL, MOBILE BODY USING THE SAME, AND AUTOMOBILE
JP2006339018A (en) Gas diffusion layer for fuel cell and its manufacturing method
JP2010153222A (en) Flexible type gas diffusion electrode substrate and membrane-electrode assembly
JP2003036860A (en) Electrode backing and its manufacturing method and fuel cell using the same
CN110024193B (en) Gas diffusion electrode and method for producing same
JP2004296435A (en) Electrode catalyst layer, its manufacturing method, and solid polymer type fuel cell using the same
KR20210092199A (en) Gas diffusion electrode, manufacturing method of gas diffusion electrode, membrane electrode assembly, fuel cell
JP2009140657A (en) Electrode catalyst for fuel cell
KR100761525B1 (en) Integrated type gas diffusion layer, electrode comprising the same, membrane electrode assembly comprising the same, and fuel cell comprising the same
EP2769429A1 (en) Gas diffusion substrate