JP2009302344A - 露光装置及びデバイス製造方法 - Google Patents

露光装置及びデバイス製造方法 Download PDF

Info

Publication number
JP2009302344A
JP2009302344A JP2008155882A JP2008155882A JP2009302344A JP 2009302344 A JP2009302344 A JP 2009302344A JP 2008155882 A JP2008155882 A JP 2008155882A JP 2008155882 A JP2008155882 A JP 2008155882A JP 2009302344 A JP2009302344 A JP 2009302344A
Authority
JP
Japan
Prior art keywords
exposure
scanning
measurement
exposure apparatus
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008155882A
Other languages
English (en)
Inventor
Teruya Sato
光弥 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008155882A priority Critical patent/JP2009302344A/ja
Priority to US12/481,125 priority patent/US20090310108A1/en
Publication of JP2009302344A publication Critical patent/JP2009302344A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/32Projection printing apparatus, e.g. enlarger, copying camera
    • G03B27/42Projection printing apparatus, e.g. enlarger, copying camera for automatic sequential copying of the same original
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】走査距離を短くしてスループットを向上する走査露光装置を提供する。
【解決手段】基板上の露光領域に対して第1方向に隔たった計測点と第1方向と反対方向の第2方向に隔たった計測点とを有し、投影光学系の光軸方向における基板の表面の位置を計測する計測手段と制御手段を含み、制御手段は少なくとも1行分のショット領域を含むグループの表面の部分の位置を計測し、その結果に従って前記部分を像面に合せ込みながら、走査する列が切り替わる度に走査方向を第1方向から第2方向に又はその逆に切り替えて走査露光し、第1グループが走査露光されているときに第1グループに隣接する第2グループに属するショット領域の少なくとも一部の領域における表面の位置を計測し、当該計測結果を使用して第2グループを走査露光するように、レチクルステージ、基板ステージ及び計測手段を制御する。
【選択図】図1

Description

本発明は、レチクルと基板とを走査しながら基板を露光する露光装置及びデバイス製造方法に関する。
従来の走査型の露光装置では、投影光学系の露光領域に対して走査方向とは反対側に隔たった計測点で基板の表面位置を計測するフォーカス計測器を有している。そして、フォーカス計測器によりウエハのショット領域の表面高さ位置を逐次計測する。この計測済みのショット領域の表面部分が、スキャン動作により露光領域に到達した時に、投影光学系の像面に合せ込まれるようにウエハの姿勢を逐次制御して、レチクル上のパターンをウエハ上に投影露光するようにしていた。
特開2004−247476号公報
従来の走査型の露光装置は、露光ショットの表面高さ位置を走査方向前方側のフォーカス計測器によって計測した後に、露光ショットの表面を投影光学系の像面位置にウエハのZ/Tilt駆動により合わせ込む必要があった。
このため、露光ショットを露光領域より手前前方側の計測点の位置より、一定速度のスキャン動作を行う必要があり、露光のための走査距離より長いスキャン動作を行う必要があった。このことは、露光装置のスループットを向上することの障害となっていた。
この問題に対応するため、一部の走査型の露光装置では、一平面上で自由に移動可能なウエハを保持する第1の微動ステージと、第2の微動ステージを2個設けたツインステージ構成をとっている。第1微動ステージと第2微動ステージとを計測位置と露光位置とにそれぞれ位置させて、計測位置では第1の微動ステージで、この上に搭載されたウエハに対してフォーカス計測とアライメント計測を実行する。露光位置では第2の微動ステージで、この上に搭載されたウエハに対して露光動作を実行する。計測位置及び露光位置における各微動ステージでの計測、露光がそれぞれ終了すると、計測済みの第1の微動ステージを露光位置に送り込んで、露光動作を行って、計測と露光を並行して行う。
このようなツインステージ構成の露光装置では、露光位置においてフォーカス計測の必要性が無いため、露光時の走査距離は、ほぼ露光のための走査距離だけで良いことになり、露光動作の高速化が可能となる。しかし、このような露光装置では、微動ステージ等が2つ必要となるため、ステージが大型になる。また、フォーカス計測及びアライメント動作と、露光動作とを並行して行うため、お互いの微動ステージの振動を抑制することが、なかなか困難であった。
本発明は、走査露光装置において走査距離を短くしてスループットを向上することを目的とする。
本発明は、レチクルステージによって保持されたレチクルと基板ステージによって保持された基板とを走査しながら、投影光学系を介して前記レチクルのパターンを前記基板に転写する露光装置であって、前記基板上の露光領域に対して第1方向に隔たった計測点と前記第1方向と反対方向の第2方向に隔たった計測点とを有し、前記投影光学系の光軸方向における前記基板の表面の位置を計測する計測手段と、制御手段と、を含み、前記基板には、前記第1方向に沿った列方向とそれに直交する行方向とに2次元的にショット領域が配列されており、前記制御手段は、少なくとも1行分のショット領域を含むグループを、前記表面の部分の位置を計測し、その結果に従って前記部分を像面に合せ込みながら、走査する列が切り替わる度に走査方向を前記第1方向から前記第2方向に又はその逆に切り替えて走査露光し、第1グループが走査露光されているときに前記第1グループに隣接する第2グループに属するショット領域の少なくとも一部の領域における前記表面の位置を計測し、当該計測結果を使用して前記第2グループを走査露光するように、前記レチクルステージ、前記基板ステージ及び前記計測手段を制御する、ことを特徴とする。
本発明によれば、走査露光装置において走査距離を短くしてスループットを向上することができる。
[露光装置の実施形態]
図8は、レチクルと基板とを走査しながらレチクルのパターンを基板に転写する本発明に係る露光装置の一例の部分概略図である。投影光学系1の光軸は図中AXで示され、またその像面は図中Z方向と垂直な関係にある。
レチクル2はレチクルステージ3上に保持され、レチクル2のパターンは投影光学系1で1/4に縮小投影されその像面に像を形成する。表面にレジストが塗布された基板(ウエハ)4には、先の露光工程で形成された同一のパターン構造を有する多数のショット領域が列方向とそれに直交する行方向とに2次元的に配列されている。
基板(ウエハ)を保持する基板ステージ(ウエハステージ)5は、ウエハ4を吸着して固定するチャック、XYステージ、レベリングステージ、回転ステージ等により構成されうる。XYステージは、X軸方向とY軸方向に各々水平移動可能である。レベリングステージは、投影光学系1の光軸(AX)方向であるZ軸方向への移動やX軸、Y軸の回りに回転可能である。回転ステージは、Z軸の回りに回転可能である。ウエハステージ5は、レチクルパターン像をウエハ上の被露光領域に合致させるための6軸補正系を構成しうる。
図8における10から19はウエハ4の表面位置及び傾きを検出するために設けた計測手段の各要素を示している。コリメータレンズ11は、光源10からの光束を断面の強度分布がほぼ均一の平行光束として射出している。プリズム形状のスリット部材12は、一対のプリズムを互いの斜面が相対する様に貼り合わせられており、この貼り合わせ面に複数の開口(例えば6つのピンホール)がクロム等の遮光膜を利用して設けられている。両テレセントリック系の光学系13は、スリット部材12の複数のピンホールを通過した独立の6つの光束を、ミラー14を介してウエハ4面上の6つの計測点に導光している。図8では2光束のみ図示しているが各光束は紙面垂直方向に各々3光束もっている。
次にウエハ4からの反射光束を検出する側、即ち15から19の各構成について説明する。両テレセントリック系の受光光学系16は、ウエハ4面からの6つの反射光束を、ミラー15を介して受光している。受光光学系16内に設けたストッパー絞り17は、6つの各計測点に対して共通に設けられており、ウエハ4上に存在する回路パターンによって発生する高次の回折光(ノイズ光)をカットしている。
両テレセントリック系の受光光学系16を通過した光束は、その光軸が互いに平行となっており、補正光学系群18の6個の個別の補正レンズにより光電変換素子群19の検出面に、互いに同一の大きさのスポット光となる様に再結像させられる。
この受光する側(16から18)は、ウエハ4面上の各計測点と光電変換素子群19の検出面とが、互いに共役となるように倒れ補正を行っている。そのために、各計測点の局所的な傾きにより検出面でのピンホール像の位置が変化することはなく、各計測点の光軸方向AXでの高さ変化に応答して検出面上でピンホール像が変化するように構成されている。光電変換素子群19は、6個の1次元CCDラインセンサーにより構成しうる。
次にスリット・スキャン方式の露光システムについて説明する。図8に示すように、レチクル2は、レチクルステージ3に吸着によって固定された後、投影光学系1の光軸AXと垂直な面内で矢印3a(X軸方向)方向に一定速度で走査される。また、レチクル2は、矢印3aと直交する方向(Y軸方向:紙面に垂直な方向)には常に目標座標位置を維持して走査するように補正駆動される。
レチクルステージ3のX方向及びY方向の位置情報はレチクルステージ3に固定されたXYバーミラー20へ外部からレチクル干渉計(XY)21から複数のレーザービームが照射されることにより常時計測されうる。
照明光学系6は、エキシマレーザー等のパルス光を発生する光源を使用し、不図示のビーム整形光学系、オプティカルインテグレータ、コリメータ及びミラー等の部材で構成されうる。照明光学系6は、遠紫外領域のパルス光を効率的に透過或いは反射する材料で形成されうる。
ビーム整形光学系は、入射ビームの断面形状(寸法含む)を所望の形に整形するためのものであり、オプティカルインテグレータは光束の配光特性を均一にしてレチクル2を均一照度で照明するためのものである。照明光学系6内の不図示のマスキングブレードによりチップサイズに対応して矩形の照明領域が設定され、その照明領域で部分照明されたレチクル2上のパターンが投影光学系1を介してウエハ4上に投影される。
メイン制御部27は、レチクル2のスリット像をウエハ4の所定領域にXY面内の位置とZ/Tilt方向の位置を調整しながら、レチクル2とウエハ4を投影光学系1に対し同期させて走査させる。また、メイン制御部27は、投影光学系1を介してレチクル2上のパターンをウエハ上に投影させながら走査露光を行うように全系をコントロールしている。メイン制御部27と後述するレチクル位置制御系22、ウエハ位置制御系25とは、レチクルステージ、ウエハステージ及び計測手段を制御する制御手段を構成している。
レチクル2上のパターンのXY面内における位置あわせは、干渉計21,24の位置データとウエハ4の位置データとから制御データが算出され、レチクル位置制御系22及びウエハ位置制御系25が制御されることにより実現される。ウエハ4の位置データは、不図示のアライメント顕微鏡から得られる。
レチクルステージ3を矢印3aの方向に走査する場合、ウエハステージ5は、図8の矢印5aの方向に投影光学系1の縮小倍率分だけ補正されたスピードで走査される。レチクルステージ3の走査スピードは、照明光学系6内の不図示のマスキングブレードの走査方向の幅とウエハ4の表面に塗布されたレジストの感度とからスループットが有利となるように決定される。
レチクル上のパターンのZ軸方向における位置合わせは、ウエハ4の高さデータを検出する面位置検出系26の計測結果を基に、ウエハ位置制御系25を介してウエハステージ内のレベリングステージへ制御することで行われる。レチクル上のパターンのZ軸方向における位置決めは、すなわち像面に一致させえる位置決めである。走査方向に対してスリット近傍に配置されたウエハの高さ位置計測用のスポット光3点の高さデータからスキャン方向と垂直方向の傾き及び光軸AX方向の高さを計算して露光位置での最適像面位置への補正量を求め補正される。
以上の構成において、本発明の露光装置における基板表面位置の計測から露光に至るスキャン動作について、図1〜図7を用いて以下に説明を行う。
まず、本発明を説明する前に、従来のシングルステージ構成の露光装置、ツインステージ構成の露光装置におけるスキャン動作の概要を説明する。
(従来のシングルステージ構成の露光装置)
図3は、従来のシングルステージ構成の露光装置におけるスキャン動作を説明する上面図である。30はスリット状の露光領域を示す。31〜33は基板上の露光領域に対して前方側(第1方向側)に隔たって位置する、計測手段による基板表面位置の計測点を示す。34〜36は基板上の露光領域に対して後方側(第2方向側)に隔たって位置する、計測手段による基板表面位置の計測点を示す。41,42は走査方向の等速スキャン動作領域を示す。
C(n、m)は、n行、m列目のショット領域を示す。破線の四角形Pb2(n、m)は、ショット領域C(n、m)の等速スキャン開始位置を示し、破線の四角形Pe2(n、m)は、ショット領域C(n、m)の等速スキャン終了位置を示す。Lcは、ショット領域の走査方向の距離を示し、Lmは、露光領域中心から計測手段の各計測点までの距離を示す。
図3から明らかなように、ショット領域C(n、m)を露光する場合、等速スキャン開始位置Pb2(n、m)から等速スキャン終了位置Pe2(n、m)までの等速走査露光領域41をスキャン動作する必要がある。何故なら、このショット領域C(n、m)の露光終了後に、ショット領域C(n、m+1)の露光のために、計測点34〜36及び走査露光領域41を等速スキャン開始位置Pb2(n、m+1)に位置させる必要があるからである。このため、実際のY方向の等速走査距離はLc+2Lmとなっている。
(ツインステージ構成の露光装置)
図4は、露光の前に基板表面位置の計測を別位置で行うツインステージ構成の露光装置におけるスキャン動作の説明図である。露光位置では基板表面位置の計測を行わないため、露光領域の周辺には計測手段は配置されていない。しかし、図3との比較を容易とするため、計測手段による基板表面位置の計測点を破線で示してある。
図4において、破線の四角形Pb3(n、m)は、ショット領域C(n、m)の等速スキャン開始位置を示し、破線の四角形Pe3(n、m)は、ショット領域C(n、m)の等速スキャン終了位置を示す。また、Leは、露光領域の走査方向の幅を示し、Lsyは、レチクルとウエハの同期動作のために必要な走査方向の距離を示す。
この方式の露光装置では、露光領域30の周辺に計測手段は無く、事前に別位置で基板表面位置の計測が完了している。そのため、露光のための等速スキャン開始位置はショット領域の直前であれば良い。
実際のY方向の等速走査距離は、理想的にはLc+Leとなり、従来の露光装置に対して、等速走査距離は短い。
実際には、レチクルとウエハとが等速スキャン動作に入ると、お互いの相対位置を合わせ込む為に位置の同期を取る制御に入る。この位置の同期を取るために、一定の等速走査距離Lsyが必要であり、実際のY方向の等速走査距離はLc+Le+2Lsyとなっている。このため、従来のシングルステージ構成の露光装置との走査距離の差は、現時点では大きくない。
しかし、同期動作のために必要な走査距離の短縮化、又は、等速スキャン動作に入る前に位置の同期制御に入る検討も行われており、走査距離は、Lc+Leという理想的な走査距離に近づく可能性がある。
(実施例1)
図1、図2は、本発明の露光装置におけるスキャン動作の説明図であり、図1はn行目の露光時、図1−2はn+1行目の露光時の説明図である。
図中、30は、スリット状の露光領域を示す。31〜33は、露光領域の前方側に位置する計測手段による基板表面位置の計測点を示し、34〜36は、露光領域の後方側(奥側)に位置する計測手段による基板表面位置の計測点を示す。43,44は、走査方向の等速スキャン動作領域を示し、51,52,53は、ショット領域C(n+1、m)の基板表面位置の事前計測領域を示す。61,62,63は、ショット領域C(n+1、m+1)の基板表面位置の事前計測領域を示す。C(n、m)は、n行、m列目のショット領域を示す。破線の四角形Pb1(n、m)は、ショット領域C(n、m)の等速スキャン開始位置を示し、破線の四角形Pe1(n、m)は、ショット領域C(n、m)の等速スキャン終了位置を示す。
また、Lcは、ショット領域の走査方向の距離を示し、Lmは、露光領域中心から計測手段による基板表面位置の計測点までの距離を示す。Leは、露光領域の走査方向の幅を示し、Lsyは、レチクルとウエハの同期動作の為に必要な走査方向の距離を示す。
列方向に沿った図中下向きの方向を第1方向、第1方向と反対方向の図中上向きの方向を第2方向とすると、露光装置は、走査する列が切り替わる度に走査方向を第1方向から第2方向に又はその逆に切り替えて走査露光する。
本実施例の露光装置では、領域C(n、m)の走査露光時には、計測手段による前方側の計測点31〜33をショット領域 C(n、m)上を移動させながら、その表面位置を計測する。この計測済みの表面位置がスキャンによって露光領域30に位置した場合に、この表面位置が投影光学系1の像面に一致するように、図8に示すウエハステージ5をZ/Tilt駆動させる。
本実施例の露光装置は、上記動作に関して、従来の露光装置と同様であるが、ショット領域の後半部において、以下の特別の制御を行う。
前方側の計測点31〜33が、走査露光中のショット領域C(n、m)の領域を通過する。そのとき、本実施例では、ショット領域C(n、m)の走査露光動作と並行して、1行下のn+1行目のショット領域C(n+1、m)の上部の基板表面位置の計測を、前方側の計測点31〜33により続行する。
このことにより、ショット領域C(n、m)の走査露光中に、ショット領域C(n+1、m)の上部の基板表面位置の計測が完了することになる。この動作により、ショット領域C(n+1、m)の矢印51,52,53 で示す、事前計測領域の基板表面位置の計測が完了することになる。
露光装置は、上記動作に引き続き、ショット領域C(n、m+1)の露光動作に入る。この場合、等速スキャン開始位置Pb1(n、m+1)から等速スキャン終了位置Pe1(n、m+1)までを等速スキャン動作する必要がある。この場合、計測点34〜36をショット領域C(n、m+1)上を移動させながら、その表面位置を計測する。計測済みの表面位置がスキャン動作により露光領域30に位置した場合に、この表面位置が投影光学系1の像面に一致するように、ウエハステージ5をZ/Tilt駆動させる。
本実施例の露光装置は、上記動作に関して、従来の露光装置と同様であるが、露光ショットの前半部において、以下の特別の制御を行う。
走査方向の後方側の計測点34〜36が、ショット領域に達すると、走査露光動作と並行して、1行下のn+1行目のショット領域C(n+1、m+1)の上部の基板表面位置の計測を前方側の計測点31〜33により開始する。
このことにより、ショット領域C(n、m+1)の走査露光中に、ショット領域C(n+1、m+1)の上部の基板位置計測が完了することになる。この上記動作により、ショット領域C(n+1、m+1)の矢印61,62,63 で示す、事前計測領域の基板表面位置の計測が完了することになる。
以上、説明を行った様に、本実施例の露光装置では、特定行のショット領域を走査露光中に、この1行下の行のショット領域の上部における基板表面位置の計測を完了することが可能である。
そのため、この1行下の行の走査露光時には、図2に示すように、等速スキャン動作をショット領域の直前から始めれば良いため、従来のシングルステージ構成の露光装置に比較して、等速走査距離を短縮可能となる。本実施例の場合、実際のY方向の等速走査距離はLc+Lm+Lsy+Le/2となる。
このため、本実施例の露光装置では、露光領域の周辺に基板表面位置の計測手段を配置している従来の露光装置の等速走査距離Lc+2Lmと比較して、以下の等速走査距離の短縮化が可能となる。
(Lc+2Lm)−(Lc+Lm+Lsy+Le/2)=Lm−(Lsy+Le/2)
図2では、ショット領域C(n+1、m+1)において、奥側から手前側に露光スキャン動作を行う場合を示している。この場合、図1の矢印61,62,63 で示す事前計測領域の計測値が使われる。
ウエハ内のショット領域のレイアウトによっては、ショット領域C(n+1、m)が奥側から手前側に露光スキャン動作を行う場合もありえる。その場合には、矢印51,52,53で示す事前計測領域の計測値が、露光開始時の基板表面位置の計測値として用いられる。
本実施例では、1行分のショット領域の走査露光時に、隣接する行のショット領域の一部の領域における表面位置を計測する。しかし、1行分に限らず、少なくとも1行分のショット領域を含むグループ毎に走査露光を行っても良い。第1グループが走査露光されているときに、第1グループに隣接する走査露光前の第2グループに属するショット領域の少なくとも一部の領域の表面位置が事前計測されうる。
本実施例では、表面位置の計測点の列方向における位置が走査露光のなされるショット領域によって変動せず、計測点がショット領域内の同一位置となるように、計測手段の計測開始タイミングを制御している。計測点の列方向における位置が走査露光のなされるショット領域内において変動すると、ショット領域内に形成されている回路パターンの影響によって、計測値の騙され量が変動する。この騙され量を予め算出して補正を行うようにしているため、全てのショット領域に関して計測点を揃える必要があるのである。
この様子を、図5〜図7を用いて以下に説明する。図5は、図1に示す実施例1におけるスキャン動作の説明図(n行目)のショット領域C(n+1、m+1)の部分を抜き出した事前計測の説明図である。図6は、図2の実施例1におけるスキャン動作の説明図(n+1行目)のショット領域C(n+1、m+1)を抜き出した露光直前の、直前計測の説明図である。図7は、実施例1における計測点の説明図である。61,62,63は、ショット領域C(n+1、m+1)の表面位置の事前計測領域を示し、71,72,73は、ショット領域C(n+1、m+1)の露光直前に行う、表面位置の直前計測領域を示す。
また、61-1、61-2、61-3、61-4は、事前計測領域61の離散的な計測点を示し、71-1、71-2、71-3は直前計測領域71の離散的な計測点を示す。また、Pm0は、ショット領域C(n+1、m+1)の最初の離散的計測点の位置を示し、Pm1〜6は、離散的計測点間の走査方向の距離である。
実際には、事前計測領域62,63、及び、直前計測領域72,73にも、計測点61-1〜4、及び、計測点71-1〜3と同様な計測点が存在する。ここでは、計測点61-1〜4及び計測点71-1〜3と同様なため、説明を省略している。
ショット領域C(n+1、m+1)に関する実際の表面位置計測は、図1に示した様に、ショット領域C(n、m+1)の露光開始時に、事前計測領域61上の離散的計測点61-1〜4に関して実行される。
また、ショット領域C(n+1、m+1)で、事前計測領域61がカバーしていない領域の離散的計測点71-1〜3に関しては、従来の露光装置と同様に、露光の直前に表面位置の計測を行うようにしている。
これらの離散的計測点は、図7に示すように、特定の距離で、全てのショット領域について、ショット領域内の行方向における位置が同じ位置となるように、表面位置計測のタイミングを制御している。
このことにより、本実施例の露光装置では、前述のパターン騙され量の補正値をショット領域毎に保持する必要が無いようにしている。
(実施例2)
実施例1の露光装置は、従来のシングルステージ構成の露光装置に比較して、等速走査距離の短縮化が可能となっているが、まだ、改善の余地がある。まず、実施例1の説明図である図1においてその説明を行う。
ショット領域C(n、m+1)の走査露光時、計測点34〜36が、どのショット領域においても同一のパターンを計測対象とするために、ショット領域C(n、m+1)上を等速直線移動させるようにしている。
そのため、等速スキャン開始位置Pb1(n、m+1)をショット領域のかなり手前(Lm)に設定する必要があった。
本実施例2では、この無駄な走査距離の短縮を提案するものであり、その様子を図9〜図10で説明する。図9〜図10は実施例2の、露光装置のスキャン動作の説明図である。
45,46は、等速スキャン動作領域を示し、C(n、m)はn行目、m列のショット領域を示す。Pb6(n、m)は、ショット領域C(n、m)の等速スキャン開始位置を示し、Pe6(n、m)は、ショット領域C(n、m)の等速スキャン終了位置を示す。Lcは、ショット領域の走査方向の距離を示し、Lmは、露光領域中心から各計測点までの距離を示す。Leは、露光領域の走査方向の幅を示し、Lsyは、レチクルとウエハの同期動作の為に必要な走査方向の距離を示す。81,82,83は、ショット領域C(n、m+1)の最初の計測点を示し、91,92,93は、ショット領域C(n+1、m)の最初の計測点を示す。
この実施例2の露光装置では、ショット領域C(n、m)の走査露光時には、実施例1の露光装置と同様な動作を行うが、ショット領域C(n、m+1)の露光動作に入る際の動作が異なる。
実施例1においては、ショット領域C(n、m+1)のLm手前の位置まで移動後、等速スキャン開始位置Pb1(n、m+1)から等速スキャン動作を開始した。しかし、実施例2においては、ショット領域C(n、m+1)の(Lsy+Le/2)手前の位置まで移動後、等速スキャン開始位置Pb6(n、m+1)から等速スキャン動作を開始する。
このため、実施例2におけるY方向の等速走査距離はLc+Le+2Lsy となり、2つの微動ステージを有するツインステージ構成の露光装置の走査距離と同等な等速走査距離で済むことになる。
この場合、図9に示すように、X方向の移動量が大きい場合には、ショット領域C(n、m+1)に対するY方向の等速スキャン動作が始まった時点で、X方向の移動が完了していない場合が発生する。すなわち、ショット領域C(n、m+1)の下部における最初の表面位置の計測点81,82,83は、従来の露光装置の表面位置の計測点より全体的に右側に寄った位置となる。
一方、図10にも示すように、同様なことが、ショット領域C(n+1、m)でも発生する。この場合、ショット領域C(n+1、m)の下部における最初の表面位置の計測点91,92,93は、従来の露光装置の表面位置の計測点より全体的に左側に寄った位置となる。
露光装置は、表面位置の計測点で計測するショット領域上の回路パターンによって計測値の騙されが発生するため、計測点毎に、この騙され量の補正データによる補正を行って、位置決め精度を向上するようにしている。そのため、表面位置の計測点は、ショット領域内の同一位置となるように制御を行っていた。
しかし、実施例2の露光装置では、図9、図10で示すように、走査方向によって列方向における計測点の位置が変動して、計測点が2種類発生し、計測点の位置に応じて変動する計測誤差が発生する場合があり得る。そこで、実施例2の露光装置では、走査方向により、上記の補正データを2組保持しておく。そして、走査方向により、補正データを選択して使用することにより、スループット向上と位置決め精度の確保を両立させるようにしている。
なお、この実施例2の場合、最初の表面位置の計測点が右側、もしくは、左側に寄るので、Z/Tiltの駆動量算出は、これにより発生する誤差分をキャンセルするようにしている。
また、本発明の実施例2は、実施例1との併用でも、独立でも、実施可能である。ショット領域のパターン状況、ショット領域のサイズ、露光時の走査スピード等により、実施例1と実施例2の併用、もしくは、実施例2のみと切替えるようにすることも勿論可能である。
本発明は半導体素子用の露光装置だけではなく、液晶用の露光装置等にも適用可能である。
次に、上述の露光装置を利用した半導体集積回路素子、液晶表示素子等のデバイス製造方法を例示的に説明する。
デバイスは、前述の露光装置を用いて基板を露光する露光工程と、露光工程で露光された基板を現像する現像工程と、現像工程で現像された基板を加工する他の周知の工程とを経ることによって製造される。他の周知の工程は、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング工程などである。
実施例1の露光装置のn行目におけるスキャン動作の説明図 実施例1の露光装置のn+1行目におけるスキャン動作の説明図 従来のシングルステージ構成の露光装置におけるスキャン動作の説明図 従来のツインステージ構成の露光装置におけるスキャン動作の説明図 実施例1の露光装置における事前計測の説明図 実施例1の露光装置における直前計測の説明図 実施例1の露光装置における計測点の説明図 本発明に係る露光装置の全体概要図 実施例2の露光装置のn行目におけるスキャン動作の説明図 実施例2の露光装置のn+1行目におけるスキャン動作の説明図
符号の説明
1:投影光学系
2:レチクル
3:レチクルステージ
4:表面にレジストが塗布されたウエハ
5:ウエハを載置するXYステージ
6:照明光学系
10:光源
11:コリメータレンズ
12:プリズム形状のスリット部材
13:両テレセントリック系の光学系
15:ミラー
16:両テレセントリック系の受光光学系
17:ストッパー絞り
18:補正光学系群
19:光電変換素子群
21:レチクル干渉計
22:レチクル位置制御系
24:ウエハステージ干渉計
25:ウエハ位置制御系
27:メイン制御部
30:スリット状の露光領域
31〜33:前方側の計測点
34〜36:後方側の計測点
41〜44:等速スキャン動作領域
45,46:等速スキャン動作領域
61〜63:事前計測領域、
71〜73:は直前計測領域
61−1〜4:事前計測領域61の離散的な計測点
71−1〜3:直前計測領域71の離散的な計測点
81〜83:ショット領域C(n、m+1)の最初の計測点
91〜93:ショット領域 C(n+1、m)の最初の計測点
AX:投影光学系の光軸
C(n、m):n行目m列のショット領域
Pb1〜3(n、m),Pb6(n、m):ショット領域C(n、m)の等速スキャン開始位置、
Pe1〜3(n、m),Pe6(n、m):ショット領域 C(n、m)の等速スキャン終了位置
Lc:ショット領域の走査方向の距離
Lm:露光領域中心から各計測点までの距離
Le:露光領域の走査方向の幅
Lsy:レチクルとウエハとの同期動作のために必要な走査方向の距離
Pm0:ショット領域 C(n+1、m+1)の最初の離散的計測点の位置
Pm1〜6:離散的計測点間の走査方向の距離

Claims (6)

  1. レチクルステージによって保持されたレチクルと基板ステージによって保持された基板とを走査しながら、投影光学系を介して前記レチクルのパターンを前記基板に転写する露光装置であって、
    前記基板上の露光領域に対して第1方向に隔たった計測点と前記第1方向と反対方向の第2方向に隔たった計測点とを有し、前記投影光学系の光軸方向における前記基板の表面の位置を計測する計測手段と、
    制御手段と、
    を含み、
    前記基板には、前記第1方向に沿った列方向とそれに直交する行方向とに2次元的にショット領域が配列されており、
    前記制御手段は、
    少なくとも1行分のショット領域を含むグループを、前記表面の部分の位置を計測し、その結果に従って前記部分を像面に合せ込みながら、走査する列が切り替わる度に走査方向を前記第1方向から前記第2方向に又はその逆に切り替えて走査露光し、
    第1グループが走査露光されているときに前記第1グループに隣接する第2グループに属するショット領域の少なくとも一部の領域における前記表面の位置を計測し、当該計測結果を使用して前記第2グループを走査露光するように、
    前記レチクルステージ、前記基板ステージ及び前記計測手段を制御する、
    ことを特徴とする露光装置。
  2. 前記制御手段は、前記第2グループに属するショット領域の少なくとも一部の領域における前記表面の位置を前記露光領域に対して走査方向と反対方向に隔たった計測点で計測するように前記計測手段を制御することを特徴とする請求項1に記載の露光装置。
  3. 前記制御手段は、前記第2グループに属するショット領域の少なくとも一部の領域における前記表面の位置を前記露光領域に対して走査方向と同じ方向に隔たった計測点で計測するように前記計測手段を制御することを特徴とする請求項1又は請求項2に記載の露光装置。
  4. 前記制御手段は、前記表面の位置の計測点の前記列方向における位置が走査露光のなされるショット領域によらず一定となるように前記計測手段を制御することを特徴とする請求項1乃至請求項3のいずれか1項に記載の露光装置。
  5. 前記制御手段は、前記表面の位置の計測点の前記列方向における位置が走査方向によって変動する場合、計測点の位置に応じて変動する計測誤差を予め算出して補正データとして走査方向ごとに保持し、走査方向に対応する前記補正データを用いて前記計測手段による計測結果を補正することを特徴とする請求項1乃至請求項3のいずれか1項に記載の露光装置。
  6. 請求項1乃至請求項5のいずれか1項に記載の露光装置を用いて基板を露光する工程と、
    前記工程で露光された基板を現像する工程と、
    を含むことを特徴とするデバイス製造方法。
JP2008155882A 2008-06-13 2008-06-13 露光装置及びデバイス製造方法 Withdrawn JP2009302344A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008155882A JP2009302344A (ja) 2008-06-13 2008-06-13 露光装置及びデバイス製造方法
US12/481,125 US20090310108A1 (en) 2008-06-13 2009-06-09 Exposure apparatus and method of manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008155882A JP2009302344A (ja) 2008-06-13 2008-06-13 露光装置及びデバイス製造方法

Publications (1)

Publication Number Publication Date
JP2009302344A true JP2009302344A (ja) 2009-12-24

Family

ID=41414452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008155882A Withdrawn JP2009302344A (ja) 2008-06-13 2008-06-13 露光装置及びデバイス製造方法

Country Status (2)

Country Link
US (1) US20090310108A1 (ja)
JP (1) JP2009302344A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113525A1 (ja) * 2009-04-03 2010-10-07 株式会社ニコン 露光装置、露光方法、及びデバイス製造方法
JP2015149316A (ja) * 2014-02-04 2015-08-20 キヤノン株式会社 露光装置、および物品の製造方法
JP2016218407A (ja) * 2015-05-26 2016-12-22 キヤノン株式会社 露光装置、露光方法、および物品の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112729181A (zh) * 2020-12-25 2021-04-30 上海广川科技有限公司 一种进行晶圆定位检测的装置及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100300618B1 (ko) * 1992-12-25 2001-11-22 오노 시게오 노광방법,노광장치,및그장치를사용하는디바이스제조방법
JP3002351B2 (ja) * 1993-02-25 2000-01-24 キヤノン株式会社 位置合わせ方法および装置
JPH07254559A (ja) * 1994-01-26 1995-10-03 Canon Inc 走査型露光装置及びそれを用いたデバイス製造方法
JPH07335524A (ja) * 1994-06-06 1995-12-22 Canon Inc 位置合わせ方法
JPH08293453A (ja) * 1995-04-25 1996-11-05 Canon Inc 走査型露光装置及び該装置を用いた露光方法
JP3862438B2 (ja) * 1998-12-28 2006-12-27 キヤノン株式会社 走査露光装置、走査露光方法およびデバイス製造方法
JP4652667B2 (ja) * 2003-02-13 2011-03-16 キヤノン株式会社 面位置計測方法及び走査型露光装置
JP4315420B2 (ja) * 2003-04-18 2009-08-19 キヤノン株式会社 露光装置及び露光方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113525A1 (ja) * 2009-04-03 2010-10-07 株式会社ニコン 露光装置、露光方法、及びデバイス製造方法
JP5429283B2 (ja) * 2009-04-03 2014-02-26 株式会社ニコン 露光装置、及びデバイス製造方法
JP2015149316A (ja) * 2014-02-04 2015-08-20 キヤノン株式会社 露光装置、および物品の製造方法
JP2016218407A (ja) * 2015-05-26 2016-12-22 キヤノン株式会社 露光装置、露光方法、および物品の製造方法

Also Published As

Publication number Publication date
US20090310108A1 (en) 2009-12-17

Similar Documents

Publication Publication Date Title
KR101444981B1 (ko) 노광 장치, 노광 방법 및 디바이스 제조 방법
JP4315455B2 (ja) 露光装置及びデバイス製造方法
JP2606285B2 (ja) 露光装置および位置合わせ方法
JP4373376B2 (ja) アライメント方法、リソグラフィ装置、デバイス製造方法並びにアライメントツール
US10678152B2 (en) Layout method, mark detection method, exposure method, measurement device, exposure apparatus, and device manufacturing method
JP2004072076A (ja) 露光装置及びステージ装置、並びにデバイス製造方法
JPH0945608A (ja) 面位置検出方法
JP7147738B2 (ja) 計測装置及び計測方法、並びに露光装置
JP3880155B2 (ja) 位置決め方法及び位置決め装置
JP2000081320A (ja) 面位置検出装置及びそれを用いたデバイスの製造方法
JP4760019B2 (ja) 露光装置及びデバイスの製造方法
JP5692076B2 (ja) 露光装置、露光方法及びデバイス製造方法
JP5137879B2 (ja) 露光装置及びデバイス製造方法
JP4172204B2 (ja) 露光方法及び露光装置、デバイス製造方法
JP2004071851A (ja) 半導体露光方法及び露光装置
JP2009302344A (ja) 露光装置及びデバイス製造方法
JP5692949B2 (ja) 露光装置
JP2010087310A (ja) 露光装置およびデバイス製造方法
JPH07326567A (ja) 等倍投影型露光装置
JPH0574684A (ja) 位置合わせ装置
JP4324848B2 (ja) 走査露光特性の評価方法及び露光装置
JP2010258085A (ja) 面位置検出方法
JPH10284393A (ja) 露光装置およびデバイス製造方法
JPH09246356A (ja) 表面位置設定方法
JP2012242811A (ja) マスク、露光装置、露光方法、及びデバイス製造方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110906