JP2009267288A - Method of manufacturing ferrite film - Google Patents

Method of manufacturing ferrite film Download PDF

Info

Publication number
JP2009267288A
JP2009267288A JP2008118174A JP2008118174A JP2009267288A JP 2009267288 A JP2009267288 A JP 2009267288A JP 2008118174 A JP2008118174 A JP 2008118174A JP 2008118174 A JP2008118174 A JP 2008118174A JP 2009267288 A JP2009267288 A JP 2009267288A
Authority
JP
Japan
Prior art keywords
nozzle
solution
oxidation
reaction
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008118174A
Other languages
Japanese (ja)
Other versions
JP4993382B2 (en
Inventor
Koichi Kondo
幸一 近藤
Yukihiro Numata
幸浩 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2008118174A priority Critical patent/JP4993382B2/en
Publication of JP2009267288A publication Critical patent/JP2009267288A/en
Application granted granted Critical
Publication of JP4993382B2 publication Critical patent/JP4993382B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Iron (AREA)
  • Thin Magnetic Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing ferrite films capable of manufacturing films with uniform electromagnetic properties and raising the efficiency of using solution. <P>SOLUTION: A reaction liquid nozzle A3a and reaction liquid nozzle B3b that supply reaction liquid, and an oxidation nozzle A4a and oxidation nozzle B4b are arranged at an eaqual distance from a rotation axis without putting the rotation axis between the reaction nozzle and the corresponding oxidation nozzle. Preferably, the reaction nozzle that supplies reaction liquid and the oxidation nozzle that supplies oxidation liquid are arranged as a pair, and a plurality of pairs to counter each other are arranged. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、インダクタンス素子、インピーダンス素子、磁気ヘッド、マイクロ波素子、磁歪素子、及び高周波領域において不要電磁波の干渉によって生じる電磁障害を抑制するために用いられる電磁干渉抑制体などの高周波磁気デバイスに特に利用価値の高いスピネル型のフェライト膜の製造方法に関するものである。   The present invention particularly relates to high-frequency magnetic devices such as an inductance element, an impedance element, a magnetic head, a microwave element, a magnetostrictive element, and an electromagnetic interference suppressor used for suppressing electromagnetic interference caused by interference of unnecessary electromagnetic waves in a high-frequency region. The present invention relates to a method for producing a spinel type ferrite film having high utility value.

フェライト膜を形成するフェライトメッキとは、例えば特許文献1に開示されているように、固体表面に、金属イオンとして少なくとも第1鉄イオンを含む水溶液を接触させ、固体表面にFe2+またはこれと他の水酸化金属イオンを吸着させ、続いて吸着したFe2+を酸化させることによりFe3+を得、これが水溶液中の水酸化金属イオンとの間でフェライト結晶化反応を起こし、これによって固体表面にフェライト膜を形成することをいう。 For example, as disclosed in Patent Document 1, ferrite plating for forming a ferrite film is a method in which an aqueous solution containing at least ferrous ions as metal ions is brought into contact with a solid surface, and Fe 2+ or this and others are brought into contact with the solid surface. Of iron hydroxide, followed by oxidation of the adsorbed Fe 2+ to obtain Fe 3+ , which causes a ferrite crystallization reaction with the metal hydroxide ion in the aqueous solution, thereby causing ferrite on the solid surface. It means forming a film.

フェライト膜を形成するフェライトメッキでは、フェライト膜を形成しようとする基板としては、反応液と酸化液に対して耐性があれば何にでも適用可能である。更に、水溶液を介した反応であるため、温度が比較的低温(常温〜水溶液の沸点以下)でスピネル型フェライト膜を形成できるという特徴がある。そのため、他のフェライト膜の形成技術に比べて、上記基板の制限は少ない。   In the ferrite plating for forming the ferrite film, the substrate on which the ferrite film is to be formed can be applied to any substrate having resistance to the reaction solution and the oxidizing solution. Further, since the reaction is via an aqueous solution, the spinel ferrite film can be formed at a relatively low temperature (normal temperature to the boiling point of the aqueous solution). Therefore, there are few restrictions of the said board | substrate compared with the formation technology of another ferrite film.

従来、この技術を基にフェライト膜の均質化、反応速度の向上を図ったもの(特許文献2)、固体表面に界面活性を付与して種々の固体にフェライト膜を形成しようとするもの(特許文献3)、フェライト膜の形成速度の向上に関するもの(特許文献4、特許文献5、特許文献6、特許文献7)がある。   Conventionally, based on this technology, the ferrite film is homogenized and the reaction rate is improved (Patent Document 2), and the surface activity is imparted to the solid surface to form the ferrite film on various solids (patent) Document 3) and those related to improving the formation rate of ferrite films (Patent Document 4, Patent Document 5, Patent Document 6, and Patent Document 7).

図5は、従来例によるフェライト膜の製造方法のノズル配置を示す模式図で、図5(a)は側面図を、図5(b)は上面図を示す。反応液流入口6から供給される反応液と窒素ガス流入口5から供給される窒素ガスを混合して反応液を供給する反応液ノズル21と、酸化液流入口7から供給される酸化液と窒素ガス流入口5から供給される窒素ガスを混合して酸化液を供給する酸化液ノズル22は、フェライト膜を形成する基板1が設置された回転テーブル2の回転軸を挟み回転軸から等距離に配置されている。また、二つのノズルはテーブルの回転軸を通る同一の直線上に配置されている。なお、具体的な寸法の例を示すと、反応液を供給する反応液ノズル21と酸化液を供給する酸化液ノズル22は、回転軸からの距離は9cmであり、回転テーブル2の寸法は、直径40cmである。図5に、後述する比較測定時に使用した、回転軸からの距離3cmの比較測定ポイントA8a、回転軸からの距離8cmの比較測定ポイントB8b、回転軸からの距離13cmの比較測定ポイントC8cも示す。   5A and 5B are schematic views showing a nozzle arrangement of a conventional method for producing a ferrite film, in which FIG. 5A shows a side view and FIG. 5B shows a top view. A reaction liquid nozzle 21 for supplying a reaction liquid by mixing a reaction liquid supplied from the reaction liquid inlet 6 and a nitrogen gas supplied from the nitrogen gas inlet 5; an oxidizing liquid supplied from the oxidizing liquid inlet 7; An oxidizing solution nozzle 22 that mixes nitrogen gas supplied from the nitrogen gas inlet 5 and supplies an oxidizing solution sandwiches the rotating shaft 2 of the rotary table 2 on which the substrate 1 on which the ferrite film is formed is placed, and is equidistant from the rotating shaft. Is arranged. The two nozzles are arranged on the same straight line passing through the rotation axis of the table. As an example of specific dimensions, the reaction liquid nozzle 21 for supplying the reaction liquid and the oxidation liquid nozzle 22 for supplying the oxidation liquid have a distance of 9 cm from the rotating shaft, and the dimensions of the rotary table 2 are: The diameter is 40 cm. FIG. 5 also shows a comparative measurement point A8a at a distance of 3 cm from the rotational axis, a comparative measurement point B8b at a distance of 8 cm from the rotational axis, and a comparative measurement point C8c at a distance of 13 cm from the rotational axis, which were used in the comparative measurement described later.

図6は、従来例によるノズルの噴霧エリアを示す模式図である。回転テーブル2上の基板1に対する、反応液ノズル21からの反応液ノズル噴霧エリア23と酸化液ノズル22からの酸化液ノズル噴霧エリア24を示す。   FIG. 6 is a schematic view showing a spray area of a nozzle according to a conventional example. The reaction liquid nozzle spray area 23 from the reaction liquid nozzle 21 and the oxidation liquid nozzle spray area 24 from the oxidation liquid nozzle 22 are shown for the substrate 1 on the turntable 2.

前記フェライトメッキ技術では、フェライト膜の基板1を回転テーブル2上に載せ、少なくとも第一鉄イオンを含む反応液と少なくとも酸化剤を含む酸化液とを基板1に供給する際に、前記反応液を供給するノズルと前記酸化液を供給するノズルが回転軸を挟んでほぼ等距離に配置されるのが一般的である。しかしながら、従来の技術においては、回転テーブル2内の回転軸からの距離によって得られる膜の組成が異なり、それに起因して回転軸からの距離によって電磁気特性が変わってしまう、という課題があった。さらには、このようにフェライト膜の基板1を回転テーブル2上に載せ、少なくとも第一鉄イオンを含む反応液と少なくとも酸化剤を含む酸化液とを基板1に供給し、反応液を供給する反応液ノズル21と酸化液を供給する酸化液ノズル22が回転軸を挟んでほぼ等距離に配置されるフェライト膜の製造方法では、フェライト膜の形成に寄与せずに廃液として除去される分が比較的多く、反応液溶液と酸化液溶液のフェライト膜の形成への利用効率が低かった。   In the ferrite plating technique, when the ferrite film substrate 1 is placed on the turntable 2 and the reaction solution containing at least ferrous ions and the oxidation solution containing at least an oxidizing agent are supplied to the substrate 1, the reaction solution is added to the substrate 1. In general, the nozzle for supplying and the nozzle for supplying the oxidizing solution are arranged at approximately the same distance across the rotating shaft. However, in the prior art, there is a problem that the composition of the film obtained varies depending on the distance from the rotation axis in the turntable 2, and the electromagnetic characteristics change depending on the distance from the rotation axis. Furthermore, the substrate 1 of the ferrite film is placed on the turntable 2 in this way, the reaction liquid containing at least ferrous ions and the oxidizing liquid containing at least an oxidizing agent are supplied to the substrate 1, and the reaction liquid is supplied. In the method of manufacturing a ferrite film in which the liquid nozzle 21 and the oxidizing liquid nozzle 22 for supplying the oxidizing liquid are arranged at approximately the same distance across the rotation axis, the amount removed as waste liquid without contributing to the formation of the ferrite film is compared. Therefore, the efficiency of using the reaction solution and the oxidizing solution for forming the ferrite film was low.

特開昭59−111929号公報JP 59-11129 A 特公平5−58252号公報Japanese Patent Publication No. 5-58252 特開昭61−30674号公報Japanese Patent Laid-Open No. 61-30684 特開昭61−179877号公報JP-A 61-179877 特開昭63−42378号公報JP-A-63-42378 特開平2−116631号公報JP-A-2-116663 特開2006−108557号公報JP 2006-108557 A

本発明の技術的課題は、フェライト膜の製造方法において、回転テーブル内で均一な電磁気特性を有する膜が得られ、反応液溶液と酸化液溶液のフェライト膜の形成への利用効率を高めたフェライト膜の製造方法を提供することにある。   A technical problem of the present invention is a ferrite film in which a film having uniform electromagnetic characteristics is obtained in a rotating table in a method for producing a ferrite film, and the use efficiency of a reaction solution solution and an oxidizing solution solution for forming a ferrite film is enhanced. It is in providing the manufacturing method of a film | membrane.

本発明は、課題を解決するため、本発明のノズルの配置について各種の技術的検討、試作検討等を行った。その種々検討の結果として、フェライトメッキ技術において、少なくとも第一鉄イオンを含む反応液と少なくとも酸化剤を含む酸化液とを前記基板に供給するフェライト膜の製造方法であって、前記反応液を供給するノズルと前記酸化液を供給するノズルが回転軸を挟まず回転軸から等距離に配置し、好ましくは反応液ノズルの後に短時間で酸化液ノズルが基板上に来るように、基板の回転方向に合わせて、前記反応液を供給するノズルと前記酸化液を供給するノズルを一対として当該ノズルを複数対配置することにより、前記回転テーブル内で均一な電磁気特性を有する膜が得られ、しかも反応液溶液と酸化液溶液のフェライト膜の形成への利用効率を高めることができるフェライト膜の製造方法の提供が可能になった。   In order to solve the problem, the present invention has been subjected to various technical examinations, trial manufacture examinations, and the like regarding the arrangement of the nozzles of the invention. As a result of the various studies, in the ferrite plating technique, a method for producing a ferrite film that supplies a reaction solution containing at least ferrous ions and an oxidation solution containing at least an oxidizing agent to the substrate, the reaction solution being supplied The rotation direction of the substrate is such that the nozzle for supplying the oxidizing solution and the nozzle for supplying the oxidizing solution are arranged at an equal distance from the rotating shaft without sandwiching the rotating shaft, and preferably the oxidizing solution nozzle comes on the substrate in a short time after the reaction solution nozzle. In accordance with the above, a plurality of nozzles for supplying the reaction liquid and the nozzle for supplying the oxidizing liquid are arranged as a pair, so that a film having uniform electromagnetic characteristics can be obtained in the rotary table, and the reaction can be performed. It has become possible to provide a method for producing a ferrite film that can increase the efficiency of use of a liquid solution and an oxidizing solution for forming a ferrite film.

一般に噴霧ノズルではノズル先端から液体が円状や楕円状に噴霧されるが、ノズルを噴霧される基板に直角に設置した場合、ノズル直下から離れるほど噴霧量が少なくなる。従来は、少なくとも第一鉄イオンを含む反応液と少なくとも酸化剤を含む酸化液とを前記基板に供給するフェライト膜の製造方法において、前記反応液を供給するノズルと前記酸化液を供給するノズルは、回転軸を挟んで回転軸から等距離に配置するのが一般的であったが、このような従来のフェライトメッキ法では、前記二種類の溶液の混合比が回転テーブル内の回転軸からの距離によって偏りがあった。そのため、前記回転テーブル内の回転軸からの距離によって得られる膜の組成が異なり、それに起因して回転軸からの距離によって電磁気特性が変わってしまう、という不具合があり、さらには、回転軸を挟んで回転軸から等距離に配置すると、基板に反応液が供給されてから次に酸化液が供給されるまでにある程度の時間を要するため、反応液が無駄に除去される量が多い、つまりフェライト膜の生成に寄与せずに廃液として除去される分が比較的多く、反応液溶液と酸化液溶液のフェライト膜の生成への利用効率溶液の利用効率が低かったと考えられる。   In general, in the spray nozzle, the liquid is sprayed in a circular or elliptical shape from the tip of the nozzle. However, when the nozzle is installed at a right angle to the substrate to be sprayed, the spray amount decreases as the distance from directly below the nozzle increases. Conventionally, in a method of manufacturing a ferrite film that supplies a reaction solution containing at least ferrous ions and an oxidation solution containing at least an oxidizing agent to the substrate, a nozzle that supplies the reaction solution and a nozzle that supplies the oxidation solution include: In general, the conventional ferrite plating method has a mixing ratio of the two types of solutions from the rotation axis in the rotary table. There was a bias depending on the distance. Therefore, the composition of the film obtained differs depending on the distance from the rotation axis in the rotary table, and there is a problem that the electromagnetic characteristics change depending on the distance from the rotation axis. If the reaction solution is arranged at an equal distance from the rotation axis, it takes a certain amount of time from the time when the reaction solution is supplied to the substrate until the next time the oxidation solution is supplied. It is considered that the amount of the reaction liquid solution and the oxidation liquid solution used to form the ferrite film was low, and the utilization efficiency of the solution was low.

それに対し、本発明では、反応液を供給する反応液ノズルと酸化液を供給する酸化液ノズルを、回転軸を挟まず回転軸から等距離に配置し、好ましくは反応液ノズルの後に短時間で酸化液ノズルが基板上に来るように、基板の回転方向に合わせて、反応液を供給する反応液ノズルと酸化液を供給する酸化液ノズルを一対として当該ノズルが複数対配置することによって、溶液の混合比が回転テーブル内の回転軸からの距離に比較的依存せず、かつ噴霧された溶液がフェライト膜の形成に寄与する割合が高くなる。さらには、前記複数対のノズルの各対の中心が前記テーブルの回転軸を通る同一の直線上には配置せず、かつ各対が前記テーブルの回転軸を中心とする同一の円上には配置していない方が、回転軸に近い領域から遠心力により除去されるフェライト膜の形成に寄与しない溶液による悪影響が少なくなると考えられる。   On the other hand, in the present invention, the reaction solution nozzle for supplying the reaction solution and the oxidation solution nozzle for supplying the oxidation solution are arranged equidistant from the rotation shaft without sandwiching the rotation shaft, and preferably after a short time after the reaction solution nozzle. By arranging a plurality of pairs of nozzles, the reaction solution nozzle for supplying the reaction solution and the oxidation solution nozzle for supplying the oxidation solution are arranged in accordance with the rotation direction of the substrate so that the oxidation solution nozzles are on the substrate. The mixing ratio is relatively independent of the distance from the rotating shaft in the rotary table, and the ratio of the sprayed solution contributing to the formation of the ferrite film is increased. Further, the center of each pair of the plurality of pairs of nozzles is not arranged on the same straight line passing through the rotation axis of the table, and each pair is on the same circle centered on the rotation axis of the table. If not, the adverse effect of the solution that does not contribute to the formation of the ferrite film that is removed by the centrifugal force from the region close to the rotation axis is considered to be reduced.

即ち、本発明によれば、前記フェライト薄膜を形成させる基板を回転台上に載せ、少なくとも第一鉄イオンを含む反応液と少なくとも酸化剤を含む酸化液とを前記基板に供給するフェライト膜の製造方法であって、前記反応液を供給するノズルと前記酸化液を供給するノズルが前記回転台の回転軸を挟まず回転軸から等距離に配置されることを特徴とするフェライト膜の製造方法が得られる。   That is, according to the present invention, a ferrite film is manufactured by placing a substrate on which the ferrite thin film is formed on a turntable and supplying the substrate with a reaction solution containing at least ferrous ions and an oxidizing solution containing at least an oxidizing agent. A method for producing a ferrite film, characterized in that the nozzle for supplying the reaction liquid and the nozzle for supplying the oxidizing liquid are arranged at an equal distance from the rotation axis without sandwiching the rotation axis of the turntable. can get.

また、本発明によれば、前記反応液を供給するノズルと前記酸化液を供給するノズルを一対として当該ノズルが複数対配置されることを特徴とするフェライト膜の製造方法が得られる。   In addition, according to the present invention, there can be obtained a method for producing a ferrite film, wherein a plurality of nozzles are arranged with a pair of the nozzle for supplying the reaction liquid and the nozzle for supplying the oxidizing liquid.

また、本発明によれば、前記複数対のノズルは各対の中心が前記テーブルの回転軸を通る同一の直線上に配置されることを特徴とするフェライト膜の製造方法が得られる。   Further, according to the present invention, there is obtained a method for manufacturing a ferrite film, wherein the plurality of pairs of nozzles are arranged on the same straight line with the center of each pair passing through the rotation axis of the table.

また、本発明によれば、前記複数対のノズルは各対の中心が前記テーブルの回転軸を通る同一の直線上には配置されず、かつ各対の中心が前記テーブルの回転軸を中心とする同一の円上には配置されないことを特徴とするフェライト膜の製造方法が得られる。   Also, according to the present invention, the plurality of pairs of nozzles are not arranged on the same straight line with the center of each pair passing through the rotation axis of the table, and the center of each pair is centered on the rotation axis of the table. Thus, there is obtained a method for manufacturing a ferrite film, which is not disposed on the same circle.

本発明によれば、前記回転テーブル内では回転軸からの距離によるフェライト膜組成の不均一が緩和されるので、均一な電磁気特性を有する膜が得られ、しかも反応液溶液と酸化液溶液のフェライト膜の形成への利用効率を高めることができるフェライト膜の製造方法の提供が可能になった。 According to the present invention, the non-uniformity of the ferrite film composition due to the distance from the rotation axis is alleviated in the rotary table, so that a film having uniform electromagnetic characteristics can be obtained, and the ferrite of the reaction solution and the oxidation solution can be obtained. It has become possible to provide a method for producing a ferrite film capable of increasing the utilization efficiency for film formation.

(実施の形態1)
図1は、本発明の実施の形態1によるフェライト膜の製造方法のノズル配置を示す模式図で、図1(a)は側面図を、図1(b)は上面図を示す。反応液流入口6(側面図では見えず)から供給される反応液と窒素ガス流入口5から供給される窒素ガスを混合して反応液を供給する反応液ノズルA3a(側面図では見えず),反応液ノズルB3b(側面図では見えず)と、酸化液流入口7から供給される酸化液と窒素ガス流入口5から供給される窒素ガスを混合して酸化液を供給する酸化液ノズルA4a,酸化液ノズルB4bは、反応液ノズルA3aと酸化液ノズルA4aを一対として、また、反応液ノズルB3bと酸化液ノズルB4bを一対として、フェライト膜を形成する基板1が設置された回転テーブル2の回転軸を挟まず回転軸から等距離に配置されている。反応液ノズルの後に短時間で酸化液ノズルが基板上に来るように、基板1の回転方向に合わせて、反応液ノズルと酸化液ノズルを一対として当該ノズルが二対配置されている。
(Embodiment 1)
1A and 1B are schematic views showing a nozzle arrangement of a method for producing a ferrite film according to Embodiment 1 of the present invention, in which FIG. 1A shows a side view and FIG. 1B shows a top view. A reaction liquid nozzle A3a (not visible in the side view) for supplying the reaction liquid by mixing the reaction liquid supplied from the reaction liquid inlet 6 (not visible in the side view) and the nitrogen gas supplied from the nitrogen gas inlet 5 , The reaction solution nozzle B3b (not visible in the side view), the oxidation solution nozzle A4a that supplies the oxidation solution by mixing the oxidation solution supplied from the oxidation solution inlet 7 and the nitrogen gas supplied from the nitrogen gas inlet 5. The oxidizing solution nozzle B4b is a rotating table 2 on which a substrate 1 for forming a ferrite film is installed with a reaction solution nozzle A3a and an oxidation solution nozzle A4a as a pair, and a reaction solution nozzle B3b and an oxidation solution nozzle B4b as a pair. They are arranged equidistant from the rotation axis without sandwiching the rotation axis. Two pairs of the reaction solution nozzle and the oxidation solution nozzle are arranged in accordance with the rotation direction of the substrate 1 so that the oxidation solution nozzle comes on the substrate in a short time after the reaction solution nozzle.

図2は、本発明の実施の形態1によるノズルの噴霧エリアを示す模式図である。回転テーブル2上の基板1に対する、反応液ノズルA3aと反応液ノズルB3bからの反応液ノズルA噴霧エリア9aと反応液ノズルB噴霧エリア9bと、酸化液ノズルA4aと酸化液ノズルB4bからの酸化液ノズルA噴霧エリア10aと酸化液ノズルB噴霧エリア10bを示す。ここで、反応液ノズルA噴霧エリア9aと反応液ノズルB噴霧エリア9bは、酸化液ノズルA噴霧エリア10aと酸化液ノズルB噴霧エリア10bが、基板1上で直接混合されないように配置されている。   FIG. 2 is a schematic diagram showing a spray area of the nozzle according to the first embodiment of the present invention. Reaction liquid nozzle A 3a and reaction liquid nozzle B spray area 9b from reaction liquid nozzle A3a and reaction liquid nozzle B3b, oxidation liquid from oxidation liquid nozzle A4a and oxidation liquid nozzle B4b for substrate 1 on turntable 2 A nozzle A spray area 10a and an oxidizing solution nozzle B spray area 10b are shown. Here, the reaction liquid nozzle A spray area 9 a and the reaction liquid nozzle B spray area 9 b are arranged so that the oxidation liquid nozzle A spray area 10 a and the oxidation liquid nozzle B spray area 10 b are not directly mixed on the substrate 1. .

(実施の形態2)
図3は、本発明の実施の形態2によるフェライト膜の製造方法のノズル配置を示す模式図で、図3(a)は側面図を、図3(b)は上面図を示す。反応液流入口6から供給される反応液と窒素ガス流入口5から供給される窒素ガスを混合して反応液を供給する反応液ノズルA3a,反応液ノズルB3bと、酸化液流入口7から供給される酸化液と窒素ガス流入口5から供給される窒素ガスを混合して酸化液を供給する酸化液ノズルA4a,酸化液ノズルB4bは、反応液ノズルA3aと酸化液ノズルA4aを一対として、また、反応液ノズルB3bと酸化液ノズルB4bを一対として、フェライト膜を形成する基板1が設置された回転テーブル2の回転軸を挟まず回転軸から等距離に配置されている。反応液ノズルの後に短時間で酸化液ノズルが基板上に来るように、基板1の回転方向に合わせて、反応液ノズルと酸化液ノズルを一対として当該ノズルが二対配置されている。
(Embodiment 2)
3A and 3B are schematic views showing the nozzle arrangement of the method for producing a ferrite film according to the second embodiment of the present invention. FIG. 3A is a side view and FIG. 3B is a top view. The reaction liquid supplied from the reaction liquid inlet 6 and the nitrogen gas supplied from the nitrogen gas inlet 5 are mixed and supplied from the reaction liquid nozzle A3a, the reaction liquid nozzle B3b, and the oxidation liquid inlet 7 that supply the reaction liquid. The oxidizing solution nozzle A4a and the oxidizing solution nozzle B4b for mixing the oxidizing solution and the nitrogen gas supplied from the nitrogen gas inlet 5 to supply the oxidizing solution are a pair of the reaction solution nozzle A3a and the oxidizing solution nozzle A4a. The reaction solution nozzle B3b and the oxidation solution nozzle B4b are paired and are arranged at an equal distance from the rotation shaft without sandwiching the rotation shaft of the turntable 2 on which the substrate 1 on which the ferrite film is formed is placed. Two pairs of the reaction solution nozzle and the oxidation solution nozzle are arranged in accordance with the rotation direction of the substrate 1 so that the oxidation solution nozzle comes on the substrate in a short time after the reaction solution nozzle.

図4は、本発明の実施の形態2によるノズルの噴霧エリアを示す模式図である。回転テーブル2上の基板1に対する、反応液ノズルA3aと反応液ノズルB3bからの反応液ノズルA噴霧エリア9aと反応液ノズルB噴霧エリア9bと、酸化液ノズルA4aと酸化液ノズルB4bからの酸化液ノズルA噴霧エリア10aと酸化液ノズルB噴霧エリア10bを示す。ここで、反応液ノズルA噴霧エリア9aと反応液ノズルB噴霧エリア9bは、酸化液ノズルA噴霧エリア10aと酸化液ノズルB噴霧エリア10bが、基板1上で直接混合されないように配置されている。   FIG. 4 is a schematic diagram showing a spray area of a nozzle according to the second embodiment of the present invention. Reaction liquid nozzle A 3a and reaction liquid nozzle B spray area 9b from reaction liquid nozzle A3a and reaction liquid nozzle B3b, oxidation liquid from oxidation liquid nozzle A4a and oxidation liquid nozzle B4b for substrate 1 on turntable 2 A nozzle A spray area 10a and an oxidizing solution nozzle B spray area 10b are shown. Here, the reaction liquid nozzle A spray area 9 a and the reaction liquid nozzle B spray area 9 b are arranged so that the oxidation liquid nozzle A spray area 10 a and the oxidation liquid nozzle B spray area 10 b are not directly mixed on the substrate 1. .

また、上記で前記複数対のノズルが、各対の中心が前記テーブルの回転軸を通る同一の直線上に配置する実施の形態1と、直線上に配置しない実施の形態2について説明したが、この実施の形態1や2のように、反応液ノズルと酸化液ノズルを配置することにより、均一なフェライト膜が生成でき、反応に寄与しない溶液を減らすことが出来る。又、上記説明では、ノズルが固定されている場合の例を示したが、本発明においては、ノズルは例えば回転テーブルの円周方向に垂直な方向に往復運動するなど、動いても構わない。   In the above description, the plurality of pairs of nozzles are described in the first embodiment in which the centers of the pairs are arranged on the same straight line passing through the rotation axis of the table, and the second embodiment in which the nozzles are not arranged on the straight line. By disposing the reaction liquid nozzle and the oxidation liquid nozzle as in the first and second embodiments, a uniform ferrite film can be generated, and the solution that does not contribute to the reaction can be reduced. In the above description, an example in which the nozzle is fixed is shown, but in the present invention, the nozzle may move, for example, reciprocating in a direction perpendicular to the circumferential direction of the rotary table.

以下、本発明の実施例について、反応液と酸化液を表1に示す位置に設置したノズルにより、それぞれ表1に示す条件(位置、流量等)で供給しフェライト膜の形成を行った詳細について説明する。   Hereinafter, with respect to the examples of the present invention, the details of the formation of the ferrite film by supplying the reaction solution and the oxidizing solution under the conditions (position, flow rate, etc.) shown in Table 1 by the nozzles installed at the positions shown in Table 1 respectively. explain.

Figure 2009267288
Figure 2009267288

本発明の実施例では、成膜装置の回転板の上に基板として幅8cm×長さ30cm×厚さ25μm、のポリイミドシート基板を設置し、回転テーブルを150rpmで回転させながら脱酸素イオン交換水を供給しながら90℃まで加熱した。ついで、装置内に窒素ガスを導入し脱酸素雰囲気を形成した。反応液として脱酸素イオン交換水中にFeCl2・4H2O、NiCl2・6H2O、ZnC12をそれぞれ所望の量溶かし、酸化液として脱酸素イオン交換水中にNaNO2とCH3COONH4をそれぞれ所望の量溶かした。反応液と酸化液を表1に示す位置に設置したノズルにより、それぞれ表1に示す条件(位置、流量等)で供給しフェライト膜の形成を行った。その後、取り出した基板には黒色膜が形成されていた。また、黒色膜を粉末X線回析法(XRD)で確認した所、スピネル構造フェライトの回折ピークが観察された。膜の化学組成は誘導結合プラズマ発光分光法(ICPS)により評価した。膜厚はSEMにより、膜の透磁率はシールディドループコイル法を用いた透磁率計によりそれぞれ測定した。透磁率の虚部μ”がピークを示す周波数をfrと定義し、回転軸からの距離による特性ばらつきを評価する指標として用いた。評価結果について、3箇所の測定ポイント毎の測定値を、表2に示した。 In an embodiment of the present invention, a polyimide sheet substrate having a width of 8 cm, a length of 30 cm, and a thickness of 25 μm is installed on a rotating plate of a film forming apparatus, and deoxygenated ion-exchanged water is rotated while rotating the rotating table at 150 rpm. Was heated to 90 ° C. while feeding. Subsequently, nitrogen gas was introduced into the apparatus to form a deoxygenated atmosphere. Desired amounts of FeCl 2 .4H 2 O, NiCl 2 .6H 2 O, and ZnC 1 2 are dissolved in deoxygenated ion exchange water as a reaction solution, and NaNO 2 and CH 3 COONH 4 are each dissolved in deoxygenated ion exchange water as an oxidizing solution. The desired amount was dissolved. The reaction solution and the oxidizing solution were supplied by the nozzles installed at the positions shown in Table 1 under the conditions (position, flow rate, etc.) shown in Table 1 to form a ferrite film. Thereafter, a black film was formed on the removed substrate. Further, when the black film was confirmed by powder X-ray diffraction (XRD), a diffraction peak of spinel ferrite was observed. The chemical composition of the film was evaluated by inductively coupled plasma emission spectroscopy (ICPS). The film thickness was measured by SEM, and the magnetic permeability of the film was measured by a magnetic permeability meter using a shielded loop coil method. The frequency at which the imaginary part μ ″ of the magnetic permeability shows a peak is defined as fr and used as an index for evaluating the characteristic variation due to the distance from the rotation axis. It was shown in 2.

(実施例1)
図1、図2により、説明する。反応液ノズルと酸化液ノズルを一対とした、二対のノズルは、各対の中心が回転テーブル2の回転軸を通る同一の直線上に、回転軸からの距離4cm、8cmで配置している。なお、一対のノズルにおいて、反応液を供給するノズルと酸化液を供給するノズルの中心の間隔は3cmである。回転テーブル2の寸法は、直径40cmである。図1に、比較測定時に使用した、回転軸からの距離3cmの比較測定ポイントA8a、回転軸からの距離8cmの比較測定ポイントB8b、回転軸からの距離13cmの比較測定ポイントC8cも示す。図1、図2および表1に示すようなノズル配置、噴霧液量および噴霧ガス量で5時間成膜した。
Example 1
This will be described with reference to FIGS. Two pairs of nozzles in which the reaction solution nozzle and the oxidation solution nozzle are paired are arranged on the same straight line with the center of each pair passing through the rotation axis of the rotary table 2 at distances of 4 cm and 8 cm from the rotation axis. . In the pair of nozzles, the distance between the centers of the nozzle for supplying the reaction liquid and the nozzle for supplying the oxidizing liquid is 3 cm. The size of the turntable 2 is 40 cm in diameter. FIG. 1 also shows a comparative measurement point A8a at a distance of 3 cm from the rotational axis, a comparative measurement point B8b at a distance of 8 cm from the rotational axis, and a comparative measurement point C8c at a distance of 13 cm from the rotational axis, which were used in the comparative measurement. A film was formed for 5 hours with the nozzle arrangement, the spray liquid amount, and the spray gas amount as shown in FIGS.

(実施例2)
図3、図4により、説明する。反応液ノズルと酸化液ノズルを一対とした、二対のノズルは、各対の中心が回転テーブル2の回転軸を通る同一の直線上には配置せず回転軸を通る直線で45度の角度をもって、かつ各対が前記回転テーブル2の回転軸を中心とする同一の円上には配置せず、回転軸からの距離4cm、8cmで配置している。なお、一対のノズルにおいて、反応液を供給するノズルと酸化液を供給するノズルの中心の間隔は3cmである。回転テーブル2の寸法は、直径40cmである。図1に、比較測定時に使用した、回転軸からの距離3cmの比較測定ポイントA8a、回転軸からの距離8cmの比較測定ポイントB8b、回転軸からの距離13cmの比較測定ポイントC8cも示す。図3、図4および表1に示すようなノズル配置、噴霧液量および噴霧ガス量で5時間成膜した。
(Example 2)
This will be described with reference to FIGS. The two pairs of nozzles in which the reaction solution nozzle and the oxidation solution nozzle are paired are not arranged on the same straight line through which the center of each pair passes through the rotation axis of the rotary table 2 but at a 45 degree angle with a straight line passing through the rotation axis. And each pair is not arranged on the same circle centered on the rotation axis of the rotary table 2 but at a distance of 4 cm and 8 cm from the rotation axis. In the pair of nozzles, the distance between the centers of the nozzle for supplying the reaction liquid and the nozzle for supplying the oxidizing liquid is 3 cm. The size of the turntable 2 is 40 cm in diameter. FIG. 1 also shows a comparative measurement point A8a at a distance of 3 cm from the rotational axis, a comparative measurement point B8b at a distance of 8 cm from the rotational axis, and a comparative measurement point C8c at a distance of 13 cm from the rotational axis, which were used in the comparative measurement. A film was formed for 5 hours with the nozzle arrangement, the spray liquid amount and the spray gas amount as shown in FIGS.

本発明の比較例として、従来例で説明した図5、図6において、表1に示すようなノズル配置、噴霧液量および噴霧ガス量で5時間成膜した。ここで反応液を供給する反応液ノズル21と前記酸化液を供給する酸化液ノズル22は、回転軸を挟んで回転軸から9cmの等距離に配置している。   As a comparative example of the present invention, in FIGS. 5 and 6 described in the conventional example, a film was formed for 5 hours with the nozzle arrangement, the spray liquid amount, and the spray gas amount as shown in Table 1. Here, the reaction solution nozzle 21 for supplying the reaction solution and the oxidation solution nozzle 22 for supplying the oxidation solution are arranged at an equal distance of 9 cm from the rotation axis with the rotation axis in between.

Figure 2009267288
Figure 2009267288

表2に示すとおり、反応液を供給するノズルと酸化液を供給するノズルが、回転軸を挟まず回転軸から等距離に配置し、前記反応液を供給するノズルと前記酸化液を供給するノズルを一対として当該ノズルが二対配置されることにより、従来例よりも組成、fr、および膜厚の回転軸からの距離によるばらつきが小さく抑えられている。さらには、反応液を供給する反応液ノズルA3a,反応液ノズルB3bと、酸化液を供給する酸化液ノズルA4a,酸化液ノズルB4bが、回転軸を挟まず回転軸から等距離に配置し、前記反応液を供給するノズルと前記酸化液を供給するノズルを一対として当該ノズルが二対配置されることにより、溶液の供給量は同じでありながら各測定点の膜厚を合計した値が従来例よりも大きく、膜組成が同一で、溶液の使用効率が向上している。また、実施例1と実施例2を比較すると、前記二対のノズルは各対の中心が前記テーブルの回転軸を通る同一の直線上には配置せず、かつ各対が前記テーブルの回転軸を中心とする同一の円上には配置していない方が、各測定点の膜厚を合計した値がやや大きい。   As shown in Table 2, the nozzle for supplying the reaction liquid and the nozzle for supplying the oxidation liquid are arranged at an equal distance from the rotation axis without sandwiching the rotation axis, and the nozzle for supplying the reaction liquid and the nozzle for supplying the oxidation liquid As a pair, the nozzles are arranged in two pairs, so that variation due to the distance from the rotation axis of the composition, fr, and film thickness is suppressed to be smaller than in the conventional example. Furthermore, the reaction solution nozzle A3a and the reaction solution nozzle B3b for supplying the reaction solution, and the oxidation solution nozzle A4a and the oxidation solution nozzle B4b for supplying the oxidation solution are arranged at an equal distance from the rotation shaft without sandwiching the rotation shaft, By arranging two pairs of nozzles for supplying the reaction solution and the nozzle for supplying the oxidizing solution, the total amount of film thickness at each measurement point is the same as the conventional example, while the supply amount of the solution is the same. The film composition is the same and the use efficiency of the solution is improved. Further, when Example 1 and Example 2 are compared, the two pairs of nozzles are not arranged on the same straight line with the center of each pair passing through the rotation axis of the table, and each pair corresponds to the rotation axis of the table. The value obtained by summing the film thicknesses at the respective measurement points is slightly larger when they are not arranged on the same circle centered at.

以上説明したように、本発明によれば、フェライトメッキ技術において、少なくとも第一鉄イオンを含む反応液と少なくとも酸化剤を含む酸化液とを前記基板に供給するフェライト膜の製造方法であって、前記反応液を供給する反応液ノズルA3a,反応液ノズルB3bと、酸化液を供給する酸化液ノズルA4a,酸化液ノズルB4bが回転軸を挟まず回転軸から等距離に配置し、好ましくは前記反応液を供給するノズルと前記酸化液を供給するノズルを一対として当該ノズルが複数対配置することにより、前記回転テーブル内で均一な電磁気特性を有する膜が得られ、しかも溶液の利用効率を高めることができる。これによって低コストで高品質なフェライト膜を得ることができる。   As described above, according to the present invention, in the ferrite plating technique, a method for producing a ferrite film that supplies a reaction solution containing at least ferrous ions and an oxidation solution containing at least an oxidizing agent to the substrate, The reaction solution nozzle A3a and reaction solution nozzle B3b that supply the reaction solution, and the oxidation solution nozzle A4a and oxidation solution nozzle B4b that supply the oxidation solution are arranged at equal distances from the rotation axis without sandwiching the rotation axis, preferably the reaction By arranging a plurality of nozzles for supplying a solution and a nozzle for supplying the oxidizing solution as a pair, a film having uniform electromagnetic characteristics can be obtained in the rotary table, and the use efficiency of the solution can be improved. Can do. As a result, a high-quality ferrite film can be obtained at low cost.

また、本発明の実施例においては、前記一対のノズルにおいて、反応液を供給するノズルと酸化液を供給するノズルの中心の間隔が3cmの場合の例を示したが、その範囲は1cm以上10cm以下が望ましい。その理由は、前記一対のノズルにおいて、反応液を供給するノズルと酸化液を供給するノズルの中心の間隔が1cm以下だと噴霧された反応液と酸化液が基板に到達する前に混合してしまうためであり、反応液を供給するノズルと酸化液を供給するノズルの中心の間隔が10cm以上だと、基板に反応液が供給されてから次に酸化液が供給されるまでにある程度時間を要するため、反応液が無駄に除去される量が多い、つまり膜の生成に寄与せずに廃液として除去される分が比較的多く、溶液の利用効率が低くなってしまうためである。   In the embodiment of the present invention, an example in which the distance between the centers of the nozzle for supplying the reaction liquid and the nozzle for supplying the oxidizing liquid is 3 cm in the pair of nozzles is shown. The following is desirable. The reason is that, in the pair of nozzles, if the distance between the center of the nozzle for supplying the reaction liquid and the nozzle for supplying the oxidation liquid is 1 cm or less, the sprayed reaction liquid and the oxidation liquid are mixed before reaching the substrate. If the distance between the center of the nozzle that supplies the reaction liquid and the nozzle that supplies the oxidation liquid is 10 cm or more, it takes some time from the supply of the reaction liquid to the substrate to the next supply of the oxidation liquid. This is because the amount of the reaction solution that is removed unnecessarily is large, that is, the portion that is removed as waste solution without contributing to the formation of the film is relatively large, and the use efficiency of the solution is lowered.

以上、実施例を用いて、この発明の具体例について説明したが、この発明は、これらの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更であっても本発明に含まれる。すなわち、当事者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。   As mentioned above, although the specific example of this invention was demonstrated using the Example, this invention is not limited to these Examples, Even if it is a design change of the range which does not deviate from the summary of this invention, this invention include. That is, the present invention also includes various modifications and corrections that can naturally be made by those skilled in the art.

本発明のフェライト膜の製造方法を用いることにより、低コストで高品質なフェライト膜が得られ、インダクタンス素子、インピーダンス素子、磁気ヘッド、マイクロ波素子、磁歪素子、及び高周波領域において不要電磁波の干渉によって生じる電磁障害を抑制するために用いられる電磁干渉抑制体などの高周波磁気デバイスに広く適用することができる。   By using the method for producing a ferrite film of the present invention, a high-quality ferrite film can be obtained at low cost, and due to interference of unnecessary electromagnetic waves in an inductance element, impedance element, magnetic head, microwave element, magnetostrictive element, and high frequency region. The present invention can be widely applied to high-frequency magnetic devices such as an electromagnetic interference suppressor used for suppressing generated electromagnetic interference.

本発明の実施の形態1によるフェライト膜の製造方法のノズル配置を示す模式図。図1(a)は、側面図、図1(b)は、上面図。The schematic diagram which shows the nozzle arrangement | positioning of the manufacturing method of the ferrite film by Embodiment 1 of this invention. FIG. 1A is a side view, and FIG. 1B is a top view. 本発明の実施の形態1によるノズルの噴霧エリアを示す模式図。The schematic diagram which shows the spraying area of the nozzle by Embodiment 1 of this invention. 本発明の実施の形態2によるフェライト膜の製造方法のノズル配置を示す模式図。図3(a)は、側面図、図3(b)は、上面図。The schematic diagram which shows the nozzle arrangement | positioning of the manufacturing method of the ferrite film by Embodiment 2 of this invention. 3A is a side view, and FIG. 3B is a top view. 本発明の実施の形態2によるノズルの噴霧エリアを示す模式図。The schematic diagram which shows the spraying area of the nozzle by Embodiment 2 of this invention. 従来例によるフェライト膜の製造方法のノズル配置を示す模式図。図5(a)は、側面図、図5(b)は、上面図。The schematic diagram which shows the nozzle arrangement | positioning of the manufacturing method of the ferrite film by a prior art example. FIG. 5A is a side view, and FIG. 5B is a top view. 従来例によるノズルの噴霧エリアを示す模式図。The schematic diagram which shows the spraying area of the nozzle by a prior art example.

符号の説明Explanation of symbols

1 基板
2 回転テーブル
3a 反応液ノズルA
3b 反応液ノズルB
4a 酸化液ノズルA
4b 酸化液ノズルB
5 窒素ガス流入口
6 反応液流入口
7 酸化液流入口
8a 測定ポイントA
8b 測定ポイントB
8c 測定ポイントC
9a 反応液ノズルA噴霧エリア
9b 反応液ノズルB噴霧エリア
10a 酸化液ノズルA噴霧エリア
10b 酸化液ノズルB噴霧エリア
21 反応液ノズル
22 酸化液ノズル
23 反応液ノズル噴霧エリア
24 酸化液ノズル噴霧エリア
1 Substrate 2 Turntable 3a Reaction liquid nozzle A
3b Reaction liquid nozzle B
4a Oxidizing solution nozzle A
4b Oxidizing solution nozzle B
5 Nitrogen gas inlet 6 Reaction liquid inlet 7 Oxidizing liquid inlet 8a Measurement point A
8b Measurement point B
8c Measurement point C
9a Reaction liquid nozzle A spray area 9b Reaction liquid nozzle B spray area 10a Oxidation liquid nozzle A spray area 10b Oxidation liquid nozzle B spray area 21 Reaction liquid nozzle 22 Oxidation liquid nozzle 23 Reaction liquid nozzle spray area 24 Oxidation liquid nozzle spray area

Claims (4)

フェライト薄膜を形成させる基板を回転台上に載せ、少なくとも第一鉄イオンを含む反応液と少なくとも酸化剤を含む酸化液とを前記基板に供給するフェライト膜の製造方法であって、前記反応液を供給するノズルと前記酸化液を供給するノズルが前記回転台の回転軸を挟まず回転軸から等距離に配置されることを特徴とするフェライト膜の製造方法。   A method for producing a ferrite film, wherein a substrate on which a ferrite thin film is to be formed is placed on a turntable, and a reaction solution containing at least ferrous ions and an oxidation solution containing at least an oxidizing agent are supplied to the substrate. A method for producing a ferrite film, characterized in that the nozzle for supplying and the nozzle for supplying the oxidizing solution are arranged at an equal distance from the rotating shaft without sandwiching the rotating shaft of the rotating table. 前記反応液を供給するノズルと前記酸化液を供給するノズルを一対として当該ノズルが複数対配置されることを特徴とする請求項1記載のフェライト膜の製造方法。   2. The method for producing a ferrite film according to claim 1, wherein a plurality of nozzles are arranged with a pair of nozzles supplying the reaction solution and nozzles supplying the oxidizing solution. 前記複数対のノズルは各対の中心が前記テーブルの回転軸を通る同一の直線上に配置されることを特徴とする請求項2記載のフェライト膜の製造方法。   3. The method for manufacturing a ferrite film according to claim 2, wherein the plurality of pairs of nozzles are arranged on the same straight line with the center of each pair passing through the rotation axis of the table. 前記複数対のノズルは各対の中心が前記テーブルの回転軸を通る同一の直線上には配置されず、かつ各対の中心が前記テーブルの回転軸を中心とする同一の円上には配置されないことを特徴とする請求項2記載のフェライト膜の製造方法。   The plurality of pairs of nozzles are not arranged on the same straight line with the center of each pair passing through the rotation axis of the table, and the centers of each pair are arranged on the same circle centering on the rotation axis of the table The method for producing a ferrite film according to claim 2, wherein the method is not performed.
JP2008118174A 2008-04-30 2008-04-30 Ferrite film manufacturing method Expired - Fee Related JP4993382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008118174A JP4993382B2 (en) 2008-04-30 2008-04-30 Ferrite film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008118174A JP4993382B2 (en) 2008-04-30 2008-04-30 Ferrite film manufacturing method

Publications (2)

Publication Number Publication Date
JP2009267288A true JP2009267288A (en) 2009-11-12
JP4993382B2 JP4993382B2 (en) 2012-08-08

Family

ID=41392722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008118174A Expired - Fee Related JP4993382B2 (en) 2008-04-30 2008-04-30 Ferrite film manufacturing method

Country Status (1)

Country Link
JP (1) JP4993382B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248328A (en) * 1989-03-22 1990-10-04 Matsushita Electric Ind Co Ltd Formation of ferrite film
JPH0323226A (en) * 1989-06-21 1991-01-31 Matsushita Electric Ind Co Ltd Formation of ferrite film and ferrite substrate
JP2006351603A (en) * 2005-06-13 2006-12-28 Nec Tokin Corp Manufacturing device of ferrite film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248328A (en) * 1989-03-22 1990-10-04 Matsushita Electric Ind Co Ltd Formation of ferrite film
JPH0323226A (en) * 1989-06-21 1991-01-31 Matsushita Electric Ind Co Ltd Formation of ferrite film and ferrite substrate
JP2006351603A (en) * 2005-06-13 2006-12-28 Nec Tokin Corp Manufacturing device of ferrite film

Also Published As

Publication number Publication date
JP4993382B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
US7438946B2 (en) Ferrite thin film, method of manufacturing the same and electromagnetic noise suppressor using the same
JP2007277080A (en) Ferrite material, ferrite film and rfid tag using it
JP4993382B2 (en) Ferrite film manufacturing method
JP2006269675A (en) Material constant equivalent conversion type wave absorber using ferrite film manufacturing technology and method for manufacturing the same
JP4515336B2 (en) Ferrite film manufacturing equipment
JP4410838B1 (en) Ferrite adhesion body and manufacturing method thereof
KR20190023680A (en) Multi-layered ferrite film and manufacturing method thereof
JP4697928B2 (en) Ferrite thin film for electromagnetic interference suppressor
JP2005129766A (en) Print circuit board and method for manufacturing the same
JP4110286B2 (en) Method for evaluating soft magnetic properties of ferrite thin film, method for producing ferrite thin film
US10294119B2 (en) Zinc ferrite film and method for manufacturing zinc ferrite film
Yan et al. 3D printed flexible cathode based on Cu-EDTA that prepared by molecular precursor method and microwave processing for electrochemical machining
JP4521814B2 (en) Ferrite film manufacturing equipment
JP2007153662A (en) Metal nitride nanoparticles and method for producing the same
JP3926780B2 (en) Ferrite thin film manufacturing method
JP2005126776A (en) Ferrite film having columnar crystal and its production method
JP2005303132A (en) Ferrite film, its manufacturing method, and its manufacturing apparatus
JP2005191098A (en) Ferrite thin-film and its manufacturing method
JP4060789B2 (en) Ferrite film manufacturing equipment
JP2004107696A (en) Ferrite film and manufacturing method therefor
JP2004107107A (en) Ferrite film, its forming process and electromagnetic noise suppressor using the same
Mahajan Three Dimensional Digital Alloying with Reactive Metal Inks
JP4606724B2 (en) Thin film inductor and manufacturing method thereof
JP6473018B2 (en) Method for manufacturing substrate for printed wiring board, substrate for printed wiring board and printed wiring board
JP2005005641A (en) Electromagnetic interference inhibitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4993382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees