JPH02248328A - Formation of ferrite film - Google Patents

Formation of ferrite film

Info

Publication number
JPH02248328A
JPH02248328A JP1069673A JP6967389A JPH02248328A JP H02248328 A JPH02248328 A JP H02248328A JP 1069673 A JP1069673 A JP 1069673A JP 6967389 A JP6967389 A JP 6967389A JP H02248328 A JPH02248328 A JP H02248328A
Authority
JP
Japan
Prior art keywords
ferrite film
substrate
ferrite
solution
solution containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1069673A
Other languages
Japanese (ja)
Inventor
Akihiko Ibata
昭彦 井端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1069673A priority Critical patent/JPH02248328A/en
Publication of JPH02248328A publication Critical patent/JPH02248328A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites

Abstract

PURPOSE:To form a ferrite film exhibiting an excellent magnetic characteristic as soft ferrite by bringing a substrate into contact with a soln. obtained by dissolving a specified metallic salt in a soln. contg. ferrous ion. CONSTITUTION:A soln. of ferrous ion and one or >=2 kinds selected from the salts of V, In, Co, Cu, Mg, Li, Cr, Al Sn, Pb, Ti, Y, Ca, K, Cd, Sm, Sr, Cs, Ce, Nd, Pd. Mo and Ba and a soln. contg. an oxidizing agent such as sodium nitrite are dripped or injected onto a plastics such as polyimide film, a laminated sheet with an epoxy resin on the base material of a metal such as copper and nickel and glass cloth, a substrate of ceramics, etc., to deposit a ferrite film in a nonoxidizing atmosphere. Furthermore, the average roughness (Ra) of the substrate surface on the center line is controlled to 0.01mum, the deposition rate is increased, and the soft magnetic characteristic is further improved when the ferrite film-coated substrate is heat-treated at >=150 deg.C.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁気記録媒体、光磁気記録媒体、磁気ヘッド
、磁気光学素子、マイクロ波素子、磁歪素子、磁気音響
素子などに広く応用されているスピネル型フェライト膜
の作製におけるフェライト膜の形成方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to spinel, which is widely applied to magnetic recording media, magneto-optical recording media, magnetic heads, magneto-optical elements, microwave elements, magnetostrictive elements, magnetoacoustic elements, etc. The present invention relates to a method for forming a ferrite film in the production of a type ferrite film.

従来の技術 フェライトめっきとは、例えば、特開昭59−1119
29号公報に示されているように、固体表含む水溶液を
接触させて、固体表面にFeOH“またはこれと他の水
酸化金属イオンを吸着させ、次いで、吸着したFeOH
+を酸化させることによりFeOH2+を得、これが水
溶液中の水酸化金属イオンとの間でフェライト結晶化反
応を起こし、これによって固体表面にフェライト膜を形
成することをいう。
Conventional technology ferrite plating is, for example, disclosed in Japanese Patent Application Laid-Open No. 59-1119.
As shown in Publication No. 29, FeOH" or other hydroxide metal ions are adsorbed onto the solid surface by contacting the solid surface with an aqueous solution, and then the adsorbed FeOH
FeOH2+ is obtained by oxidizing +, which causes a ferrite crystallization reaction with metal hydroxide ions in an aqueous solution, thereby forming a ferrite film on the solid surface.

従来、この技術を基に膜の均質化9反応速度の向上等を
図ったもの(特開昭60−140713号公報)、固体
表面に界面活性を付与して種々の固体にフェライト膜を
形成しようとするもの(特開昭61−30674号公報
)、あるいはフェライト膜の形成速度の向上に関するも
の(特開昭61−179877号公報ないし特開昭61
222924号公報)がある。
Conventionally, attempts have been made to improve the film homogenization 9 reaction rate based on this technology (Japanese Unexamined Patent Publication No. 140713/1983), and to form ferrite films on various solids by imparting surface activity to the solid surface. (Japanese Unexamined Patent Publication No. 61-30674), or those related to improving the formation rate of ferrite film (Japanese Unexamined Patent Publications No. 61-179877 to 61 No. 61)
222924).

フェライトめっきは、膜を形成しようとする固体が前述
した水溶液に対して耐性があれば何でもよい。さらに、
水溶液を介した反応であるため、温度が比較的低温(水
溶液の沸点以下)でスピネル型フェライト膜を作製でき
るという特徴がある。そのため、他のフェライト膜作製
技術に比べて、固体の限定範囲が小さい。
Any ferrite plating may be used as long as the solid on which the film is to be formed is resistant to the above-mentioned aqueous solution. moreover,
Since the reaction is carried out through an aqueous solution, it is characterized in that a spinel-type ferrite film can be produced at a relatively low temperature (below the boiling point of the aqueous solution). Therefore, compared to other ferrite film manufacturing techniques, the limited range of solids is small.

発明が解決しようとする課題 しかし、前述したように、これまで膜の均質性、あるい
は膜の生成速度等に種々の改善が提案されているが、得
られる膜の磁気特性については前述した全ての方式とし
ても不十分であった。つまり、スピネル型フェライトと
しての十分な磁気特性、特にソフト材料としての特性が
得られていない。そのため、各種電子部品等への応用あ
るいは適用等に関して大きな課題があった。
Problems to be Solved by the Invention However, as mentioned above, although various improvements have been proposed in the homogeneity of the film or the production speed of the film, the magnetic properties of the resulting film cannot be improved by all of the above-mentioned methods. The method was also insufficient. In other words, sufficient magnetic properties as a spinel type ferrite, especially properties as a soft material, are not obtained. Therefore, there has been a major problem regarding its application to various electronic components and the like.

フェライト膜の保磁力については、例えば、金属表面技
術VOL、38. N119. 1987  P、11
.:示されているように約100 0e以上であり、マ
グネタイトもMnおよびZnを含んだ(MnZn系)フ
ェライトもほぼ同様の大きさである。
Regarding the coercive force of ferrite films, see, for example, Metal Surface Technology VOL, 38. N119. 1987 P, 11
.. : As shown, it is approximately 1000e or more, and magnetite and ferrite containing Mn and Zn (MnZn type) are approximately the same size.

本発明は以上のような従来の欠点を除去し、磁気特性の
優れたフェライト膜の形成方法を提供することを目的と
するものである。
An object of the present invention is to eliminate the above-mentioned conventional drawbacks and provide a method for forming a ferrite film with excellent magnetic properties.

課題を解決するための手段 以上の課題を解決するために本発明は、第1鉄イオンを
含んだ溶液に、さらにバナジウム、インジウム、コバル
ト、銅、マグネシウム、リチウム、クロム、アルミニウ
ム、すず、鉛、チタン。
Means for Solving the Problems In order to solve the problems above, the present invention provides a solution containing ferrous ions, which further contains vanadium, indium, cobalt, copper, magnesium, lithium, chromium, aluminum, tin, lead, Titanium.

イツトリウム、カルシウム、カリウム、カドミウム、サ
マリウム、ストロンチウム、セシウム、セリウム、ネオ
ジウム、パラジウム、モリブデン。
Yttrium, calcium, potassium, cadmium, samarium, strontium, cesium, cerium, neodymium, palladium, molybdenum.

バリウムの1つないし2つ以上の元素を溶解し、この溶
液を基体に接触させ、基体表面にフェライト膜を堆積さ
せる方法としたものである。
This method involves dissolving one or more elements of barium, bringing this solution into contact with a substrate, and depositing a ferrite film on the surface of the substrate.

作用 前述した方法によって、つまり第1鉄イオン以外にさら
にバナジウム、インジウム、コバルト。
Action: By the method described above, that is, in addition to ferrous ions, vanadium, indium, and cobalt are added.

銅、マクネシウム、リチウム、クロム、アルミニウム、
すす、鉛、チタン,イットリウム,カルシウム、カリウ
ム、カドミウム8サマリウム、ストロンチウム、セシウ
ム、セリウム、ネオジウム。
Copper, magnesium, lithium, chromium, aluminum,
Soot, lead, titanium, yttrium, calcium, potassium, cadmium 8 samarium, strontium, cesium, cerium, neodymium.

パラジウム、モリブデン、バリウムの1つないし2つ以
上の元素を溶解した溶液を基体に接触させ、基体表面に
フェライト膜を形成することによって、第1鉄イオン以
外の前記元素を含まない溶液を用いる方法では得られて
いなかった磁気特性(ソフト特性)の優れたフェライト
膜を形成することができる。
A method using a solution that does not contain any of the above elements other than ferrous ions, by contacting a substrate with a solution in which one or more of the elements palladium, molybdenum, and barium are dissolved, and forming a ferrite film on the surface of the substrate. It is possible to form a ferrite film with excellent magnetic properties (soft properties) that could not be obtained previously.

実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.

本発明のフェライト膜の形成方法の基本的な部分は、公
知の方法と大部分同じである。
The basic parts of the method for forming a ferrite film of the present invention are mostly the same as known methods.

しかし、本発明では、第1鉄イオンを含んだ溶液に、さ
らにバナジウム、インジウム、コパル)、銅、マグネシ
ウム、リチウム、クロム、アルミニウム、すす、鉛、チ
タン,イットリウム,カルシウム、カリウム、カドミウ
ム、サマリウム。
However, in the present invention, in the solution containing ferrous ions, vanadium, indium, copal), copper, magnesium, lithium, chromium, aluminum, soot, lead, titanium, yttrium, calcium, potassium, cadmium, and samarium are added.

ストロンチウム、セシウム、セリウム、ネオジウム、パ
ラジウム、モリブデン、バリウムの1つないし2つ以上
の元素を溶解させ、この溶液を基体に供給するため、非
常に小さい保磁力のフェライト膜を得ることができる。
Since one or more elements of strontium, cesium, cerium, neodymium, palladium, molybdenum, and barium are dissolved and this solution is supplied to the substrate, a ferrite film with a very small coercive force can be obtained.

溶液中に第1鉄イオン以外の前記元素を同時に含めるこ
とが、得られるフェライト膜の磁気特性(ソフト特性化
)を優れたものにすることができる。これらの現象に対
する原因は明確ではない。
By simultaneously including the above elements other than ferrous ions in the solution, the magnetic properties (soft properties) of the resulting ferrite film can be made excellent. The causes for these phenomena are not clear.

結果的に、第1鉄イオン以外の前記元素を含めることが
、得られるフェライト膜の磁気特性のソフト化(低い保
磁力)に何らかの効果があるのではないかと思われる。
As a result, it seems that the inclusion of the above elements other than ferrous ions has some effect on softening the magnetic properties (lower coercive force) of the resulting ferrite film.

本発明のフェライト膜の形成方法のいくつかの例を図を
用いて説明する。
Some examples of the method of forming a ferrite film of the present invention will be explained with reference to the drawings.

例えば、−例の装置の概略図を第1図に示す。For example, a schematic diagram of an example apparatus is shown in FIG.

3はフェライト膜を形成しようとする基体である。4は
基体3を取り付けて、回転することができる回転台であ
る。1および2はめっき液を基体3に供給するためのノ
ズルである。適当なノズルを選択することによって、液
を滴下あるいは噴霧状等で供給することができる。めっ
き反応前の無駄な反応を極力おさえ、得られるフェライ
ト膜の特性のバラツキを小さくシ、コントロールしやす
くするためにめっきに必要な液はいくつかに分割して準
備する方がよい。この図では2分割した場合を示す。5
および6は、各めっき液を貯蔵するタンクである。また
、図に示すように基体3および回転台4等のフェライト
めっき反応を行う部分はケースによって仕切り、非酸化
性(例えば窒素)ガスをケース内に送ることによって、
非酸化性雰囲気にする。タンク5には第1鉄イオンとさ
らにバナジウム、インジウム、コバルト、銅、マグネシ
ウム、リチウム、クロム、アルミニウム。
3 is a substrate on which a ferrite film is to be formed. Reference numeral 4 denotes a rotating table to which the base 3 can be attached and rotated. 1 and 2 are nozzles for supplying the plating solution to the substrate 3. By selecting an appropriate nozzle, the liquid can be supplied dropwise or in the form of a spray. In order to suppress wasteful reactions before the plating reaction as much as possible, to minimize variations in the properties of the obtained ferrite film, and to make it easier to control, it is better to prepare the solution necessary for plating in several parts. This figure shows a case where it is divided into two parts. 5
and 6 are tanks for storing each plating solution. In addition, as shown in the figure, the parts that undergo the ferrite plating reaction, such as the base 3 and the turntable 4, are partitioned by a case, and non-oxidizing gas (for example, nitrogen) is sent into the case.
Create a non-oxidizing atmosphere. Tank 5 contains ferrous ions, as well as vanadium, indium, cobalt, copper, magnesium, lithium, chromium, and aluminum.

スす、鉛、チタン,イットリウム,カルシウム。Soot, lead, titanium, yttrium, calcium.

カリウム、カドミウム、サマリウム、ストロンチウム、
セシウム、セリウム、ネオジウム、パラジウム、モリブ
デン、バリウムの1つないし2つ以上の元素を含む水溶
液(反応液)を入れて、タンク6には、例えば酸化剤と
して亜硝酸ナトリウムNaNO2を用い、さらに緩衝剤
として酢酸アンモニウムCH3COON H4をいれた
水溶液(酸化液)を入れ、ポンプ等で液を装置内にノズ
ル1および2を通して供給する。反応液にさらにNiイ
オンおよびZnイオンが含まれると得られるフェライト
膜はNiZn系フェライト膜であり、Mnイオンおよび
Znイオンが含まれると得られるフェライト膜はMnZ
n系フェライト膜である。基体3には、回転台4により
回転した状態で6液が供給される。回転台4は、ヒータ
ー等により50〜100℃に加熱する。このようにして
、基体3上でフェライト化反応を行わせて、基体3にフ
ェライト膜を形成する。
potassium, cadmium, samarium, strontium,
Tank 6 is filled with an aqueous solution (reaction solution) containing one or more elements of cesium, cerium, neodymium, palladium, molybdenum, and barium. For example, sodium nitrite NaNO2 is used as an oxidizing agent, and a buffer is added. An aqueous solution (oxidizing liquid) containing ammonium acetate CH3COON H4 is put therein, and the liquid is supplied into the apparatus through nozzles 1 and 2 using a pump or the like. The ferrite film obtained when the reaction solution further contains Ni ions and Zn ions is a NiZn-based ferrite film, and the ferrite film obtained when Mn ions and Zn ions are contained is a MnZ-based ferrite film.
It is an n-type ferrite film. The six liquids are supplied to the base 3 while being rotated by a rotary table 4. The rotating table 4 is heated to 50 to 100°C using a heater or the like. In this way, the ferrite reaction is carried out on the base 3 to form a ferrite film on the base 3.

第1図では、めっきに必要な液を2つに分けた場合を示
したが、3液に分ける方法でもよい。3液に分割する方
法としては、例えば1つ目の液は前述した反応液で、2
つ目の液は第1鉄イオンを酸化するための酸化剤だけを
溶解した液(酸化液)である。3つ目の液はフェライト
生成反応時のp Hの調整あるいは鉄以外の他の元素を
フェライト膜中に取り込みやすくするための緩衝剤ある
いは錯化剤として酢酸アンモニウムCH3COON H
<を溶解した液(調整液)である。この液は、必要に応
じて、アンモニア水NH40Hあるいは水酸化ナトリウ
ムNaOH等のアルカリをさらに溶解してpHを調整し
てもよい。これらのめっき液の基体3への供給方法とし
ては、調整液を連続的に供給した状態で、さらに反応液
と酸化液を交互に繰り返し供給する方法あるいは反応液
と調整液を供給した後、酸化液を供給することを繰り返
す方法などがある。必要なことは、反応液を基体3に供
給した後、次に酸化液を基体3に供給することを繰り返
すことである。
Although FIG. 1 shows the case where the liquid necessary for plating is divided into two, it may be divided into three liquids. As a method of dividing into three liquids, for example, the first liquid is the above-mentioned reaction liquid, and the second liquid is the reaction liquid described above.
The second liquid is a liquid (oxidizing liquid) in which only an oxidizing agent for oxidizing ferrous ions is dissolved. The third liquid contains ammonium acetate CH3COON H as a buffer or complexing agent to adjust the pH during the ferrite production reaction or to make it easier to incorporate other elements other than iron into the ferrite film.
This is a solution (adjusted solution) in which < is dissolved. The pH of this liquid may be adjusted by further dissolving an alkali such as aqueous ammonia NH40H or sodium hydroxide NaOH, if necessary. These plating solutions can be supplied to the substrate 3 by continuously supplying the adjustment solution and then alternately and repeatedly supplying the reaction solution and the oxidation solution, or after supplying the reaction solution and the adjustment solution, the oxidation solution is There are methods of repeatedly supplying liquid. What is required is to repeat supplying the reaction solution to the substrate 3 and then supplying the oxidizing solution to the substrate 3.

別の方法の一例の装置の概略図を第2図に示す。ノズル
1.基体31回転台4.タンク5および6は第1図のも
のと同様である。しかし、本方法では、第1図に示した
方法と異なり、2つに分けて準備しためっき液を混合部
7で混合し、混合しためっき液をノズル1を介して、基
体3に供給する。混合部7は、2つのノズルから液を滴
下させ、ロートで混合して1つの口から流出させる方式
やあるいは2本の管を1本にしてノズルから液を出す方
式など適当な方式を選択すればよい。適当なノズル形状
、構造を選択することによって、液を滴下あるいは噴霧
状等で基体3に供給することができる。
A schematic diagram of an apparatus for an example of another method is shown in FIG. Nozzle 1. Base body 31 rotating table 4. Tanks 5 and 6 are similar to those in FIG. However, in this method, unlike the method shown in FIG. 1, the plating solution prepared in two parts is mixed in the mixing section 7, and the mixed plating solution is supplied to the substrate 3 through the nozzle 1. For the mixing section 7, an appropriate method can be selected, such as a method in which the liquid is dripped from two nozzles, mixed in a funnel, and then flowed out from one mouth, or a method in which two pipes are combined into one and the liquid is discharged from the nozzle. Bye. By selecting an appropriate nozzle shape and structure, the liquid can be supplied to the substrate 3 in the form of drops or spray.

さらに、別の方法の一例の装置の概略図を第3図に示す
。ノズル1.基体31回転台4.タンク5.6および混
合部7は第2図のものと同様である。予熱部8が本方法
の異なる部分である。つまり、本方法では、第2図に示
した方法と異なり、2つに分けた液を予熱部8で50℃
〜溶液の沸点以下に加熱した後、混合部7で混合し、混
合しためっき液をノズル1を介して、基体3に供給する
。液を予熱だけする方式として、混合部7を除き、例え
ば、予熱部8で各めっき液を予熱した後、2つのノズル
で別々にめっき液を基体3に供給してもよい。
Furthermore, a schematic diagram of an apparatus for an example of another method is shown in FIG. Nozzle 1. Base body 31 rotating table 4. Tank 5.6 and mixing section 7 are similar to those in FIG. The preheating section 8 is the different part of the method. In other words, in this method, unlike the method shown in FIG.
~ After heating to below the boiling point of the solution, they are mixed in the mixing section 7, and the mixed plating solution is supplied to the substrate 3 through the nozzle 1. As a method of only preheating the solution, the mixing section 7 may be omitted, and after each plating solution is preheated in the preheating section 8, for example, the plating solution may be separately supplied to the substrate 3 using two nozzles.

磁場中でフェライト膜を形成する一例の装置の概略図を
第4図に示す。ノズル1.基体399回転4.タンク5
.6および混合部7は第2図のものと同様である。しか
し、本方法では、第2図に示した方法と異なり、基体3
を磁場中の条件下にするために磁石9を基体3のそばに
セットする。
FIG. 4 shows a schematic diagram of an example of an apparatus for forming a ferrite film in a magnetic field. Nozzle 1. Base body 399 rotations4. tank 5
.. 6 and mixing section 7 are similar to those in FIG. However, in this method, unlike the method shown in FIG.
A magnet 9 is set near the substrate 3 in order to place the magnet 9 in a magnetic field.

これによって、フェライト膜の堆積を磁場中で行うこと
ができる。図の場合、磁界方向は基体3の面内の1方向
にほぼ平行である。フェライト膜の堆積を磁場中で行う
と磁場のないときに比べて、ソフト特性が向上する−0 前述した例は、酸化剤を用いる方法であるが、たとえば
酸化剤を用いずにケース内に窒素と酸素の混合ガスある
いは空気を供給して、酸素によって酸化させてもよい。
This allows the ferrite film to be deposited in a magnetic field. In the case of the figure, the direction of the magnetic field is approximately parallel to one direction within the plane of the base 3. If the ferrite film is deposited in a magnetic field, the soft characteristics will be improved compared to when there is no magnetic field. Oxygen may be oxidized by supplying a mixed gas of and oxygen or air.

別の方法の一例の装置の概略図を第5図に示す。基体3
.タンク5.6および混合部7はこれまでの方式と同様
である。めっき反応部10およびウォーターパス11が
本方法の異なる部分である。つまり、本方法では、これ
までに示した方法と異なり、回転台を使用せず、しかも
めっき反応部分などを基体から隔離した状態で行うこと
ができる。さらに、基体3の一部分にフェライト膜を堆
積させることができる。めっき反応部10にはフェライ
ト膜を形成しようとする基体3が組み込まれている。め
っき反応部10では、物理的に基体3の表面上をめっき
液が均一に流れるようにしている。混合部7およびめっ
き反応部10をウォーターパス11内にセットすること
によって、50〜100℃に加熱する。このようにして
、めっき反応部10にセットした基体3の表面にフェラ
イト膜を堆積させる。
A schematic diagram of an apparatus for an example of another method is shown in FIG. Base body 3
.. The tank 5.6 and the mixing section 7 are the same as in the previous system. The plating reaction section 10 and water path 11 are the different parts of the method. That is, unlike the methods described above, this method does not use a rotating table and can be carried out in a state where the plating reaction area and the like are isolated from the substrate. Furthermore, a ferrite film can be deposited on a portion of the base body 3. A substrate 3 on which a ferrite film is to be formed is incorporated into the plating reaction section 10. In the plating reaction section 10, the plating solution is physically made to flow uniformly over the surface of the substrate 3. By setting the mixing section 7 and the plating reaction section 10 in the water path 11, they are heated to 50 to 100°C. In this way, a ferrite film is deposited on the surface of the base 3 set in the plating reaction section 10.

さらに、別の方法の一例の概略図を第6図に示す。ノズ
ル1.タンク5.6および混合部7は、これまでと同様
である。回転台あるいはウォーターパスなどを用いずに
、その代わりに基体台12を用いる。図に示すように、
基体台12には基体3を傾斜させてセットしている。基
体3の表面上をめっき液が均一に流れるように基体3を
所定の角度に傾斜させ、内蔵したヒーターによって、5
0〜100℃に基体3を加熱することができる。このよ
うにして、基体台12にセットした基体3の表面にフェ
ライト膜を堆積させる。この方式では大気中、空気中で
行うこともできる。
Furthermore, a schematic diagram of an example of another method is shown in FIG. Nozzle 1. Tank 5.6 and mixing section 7 are the same as before. Instead of using a rotary table or a water path, a base table 12 is used instead. As shown in the figure,
The base 3 is set on the base pedestal 12 in an inclined manner. The base body 3 is tilted at a predetermined angle so that the plating solution flows uniformly over the surface of the base body 3, and the built-in heater
The substrate 3 can be heated to 0-100°C. In this way, a ferrite film is deposited on the surface of the base 3 set on the base pedestal 12. This method can also be performed in the atmosphere or air.

以上、示した例の反応液に第1鉄イオン以外にさらにバ
ナジウム、インジウム、コバルト、銅。
In addition to ferrous ions, vanadium, indium, cobalt, and copper were added to the reaction solution in the example shown above.

マグネシウム、リチウム、クロム、アルミニウム、すず
、鉛、チタン,イットリウム,カルシウム、カリウム、
カドミウム、サマリウム、ストロンチウム、セシウム、
セリウム、ネオジウム、パラジウム、モリブデン、バリ
ウムの1つないし2つ以上の元素を含ませることによっ
て、第1鉄イオン以外の前記元素を含まないでフェライ
ト膜を作製するよりフェライト膜の軟質磁気特性が向上
(保磁力が低下)する。
Magnesium, lithium, chromium, aluminum, tin, lead, titanium, yttrium, calcium, potassium,
Cadmium, samarium, strontium, cesium,
By including one or more of the elements cerium, neodymium, palladium, molybdenum, and barium, the soft magnetic properties of the ferrite film are improved compared to producing a ferrite film without containing any of the above elements other than ferrous ions. (coercive force decreases).

基体3の材質としては、特に限定はない。いくつか例を
あげると、ポリイミドフィルム、ポリエチレンテレフタ
レート(PET)などの各種プラスチック類、銅、ニッ
ケル、銀、金、タングステン、モリブデン、白金、パラ
ジウム、鉄、鉄合金などの金属類、各種の有機積層板、
つまり紙基材エポキシ、ガラス布基材エポキシ、ガラス
基材ポリエステル、ガラス布基材テフロン等の積層板な
ど、各種ガラス類、セラミックスなどがある。
The material of the base body 3 is not particularly limited. To name a few, various plastics such as polyimide film and polyethylene terephthalate (PET), metals such as copper, nickel, silver, gold, tungsten, molybdenum, platinum, palladium, iron, and iron alloys, and various organic laminated layers. board,
That is, there are various glasses, ceramics, etc., such as laminates such as paper-based epoxy, glass cloth-based epoxy, glass-based polyester, and glass cloth-based Teflon.

さらに、基体3の表面が、中心線平均あらさ(Ra)で
0.01μm以上であれば、膜の堆積速度の向上が図れ
る。これは、FeOH+の吸着や酸化反応あるいはフェ
ライト結晶化反応に対して、プラスに働き、水溶液中で
生成した微粒子が基体表面にとらえられたり、あるいは
集まり、さらには膜成長を促進、加担すると考えられる
。また、ある程度以上の表面粗さを有していることによ
って、実質的な基体3の表面積が増加して、吸着等の反
応に携わる面積の増加も影響を与えているとも考えられ
る。
Furthermore, if the surface of the substrate 3 has a center line average roughness (Ra) of 0.01 μm or more, the film deposition rate can be improved. This is thought to have a positive effect on FeOH+ adsorption, oxidation reaction, or ferrite crystallization reaction, allowing fine particles generated in the aqueous solution to be captured or gathered on the substrate surface, and further promoting or contributing to film growth. . It is also considered that by having a certain level of surface roughness, the substantial surface area of the base 3 increases, and the increase in the area involved in reactions such as adsorption also has an effect.

実験的に、特にフェライト膜形成に対して相性がよかっ
たものが、酸素、窒素あるいは硫黄のいずれか1つ以上
を含むものあるいは特に酸化物類である。
Experimentally, materials that are particularly compatible with ferrite film formation are those containing one or more of oxygen, nitrogen, or sulfur, or especially oxides.

この酸化物としては、アルミナ(A l =O:+) 
This oxide includes alumina (A l =O:+)
.

ムライト(3A l = Oz・2SiO2’)、  
ベリリア(Bed)、  ステアタイト(MgO−8i
 02) 。
Mullite (3A l = Oz・2SiO2'),
beryllia (Bed), steatite (MgO-8i
02).

フォルステライト(2MgO・SiO:+)、マグネシ
ア(MgO)、チタニア(T i O2) 、チタニア
士ジルコニア(ZrO2)、チタニア+マグネシア等の
各種セラミックス、Ai’20:+・5in2B203
.Ai’20:+・PbO−8iO2・B20:l。
Various ceramics such as forsterite (2MgO・SiO:+), magnesia (MgO), titania (T i O2), titanium zirconia (ZrO2), titania + magnesia, Ai'20:+・5in2B203
.. Ai'20:+.PbO-8iO2.B20:l.

Ai!zO:+・MgO・5in2・B20:1.AJ
203・CaO−MgO−3iO=  −B203 な
どのガラスセラミックス、Cub、NiOなどの金属酸
化物あるいはフェライト等の鉄を含んだ酸化物などがあ
る。
Ai! zO:+・MgO・5in2・B20:1. A.J.
Examples include glass ceramics such as 203.CaO-MgO-3iO=-B203, metal oxides such as Cub and NiO, and iron-containing oxides such as ferrite.

さらに、フェライト膜を堆積させた基体に150℃以上
で熱処理を施すことによって、軟質磁気特性のさらに改
善が図られる。
Furthermore, by subjecting the substrate on which the ferrite film is deposited to a heat treatment at 150° C. or higher, the soft magnetic properties can be further improved.

次に本発明の更に具体的な実施例について、説明する。Next, more specific embodiments of the present invention will be described.

(実施例1) イオン交換水(以下単に水とする。)21に塩化第1鉄
5g、塩化ニッケル4g、塩化亜鉛100■および元素
Xを表1および表2に示す量をそれぞれ溶解した水溶液
(反応液)を作製した。さらに別の溶液として、水21
に亜硝酸ナトリウム0.5gおよび酢酸アンモニウム1
0gを溶解した水溶液(酸化液)を作製した。
(Example 1) An aqueous solution in which 5 g of ferrous chloride, 4 g of nickel chloride, 100 μm of zinc chloride, and element reaction solution) was prepared. As another solution, water 21
0.5 g of sodium nitrite and 1 part of ammonium acetate
An aqueous solution (oxidizing solution) was prepared by dissolving 0 g.

これらの溶液を用いて、第1図に示すような装置でフェ
ライト膜を作製した。装置には窒素ガスを毎分1.51
で送り非酸化性雰囲気を得、回転台をヒータにより90
℃一定にした。回転台は毎分300回転の速度で回転さ
せた。各溶液は毎分40m1の流量で噴霧状にして供給
した。基体はアルミナ基板である。
Using these solutions, a ferrite film was produced using an apparatus as shown in FIG. The device is supplied with nitrogen gas at a rate of 1.51 per minute.
to obtain a non-oxidizing atmosphere, and heat the rotary table to 90°C using a heater.
The temperature was kept constant. The turntable was rotated at a speed of 300 revolutions per minute. Each solution was supplied in the form of a spray at a flow rate of 40 ml/min. The base is an alumina substrate.

(以  下  余  白) 表1 元素、添加量および磁気特性 表2 元素、添加量および磁気特性 鉄、塩化ニッケルおよび塩化亜鉛だけを溶解した液を用
いて、先に示した条件と同様に、フェライト膜をアルミ
ナ基板に形成した。[比較品]本発明の方法で得たフェ
ライト膜と比較のために作製したフェライト膜の磁気特
性を測定したところ、表1および表2の右の欄に示した
結果が得られ、本発明の方法で得たフェライト膜の方が
保磁力が非常に小さい値を示した。
(Margins below) Table 1 Elements, additive amounts, and magnetic properties Table 2 Elements, additive amounts, and magnetic properties Using a solution containing only iron, nickel chloride, and zinc chloride, ferrite was prepared under the same conditions as described above. A film was formed on an alumina substrate. [Comparative product] When the magnetic properties of the ferrite film obtained by the method of the present invention and the ferrite film prepared for comparison were measured, the results shown in the right column of Tables 1 and 2 were obtained, and the results showed that the ferrite film of the present invention was The ferrite film obtained by this method showed a much smaller coercive force.

(実施例2) 水21に塩化第1鉄5g、塩化ニッケル4g。(Example 2) 5 g of ferrous chloride and 4 g of nickel chloride in water 21.

塩化亜鉛90■および実施例1と同じNaAから魔Wま
での元素Xの内、NIIAとり、NaEとHおよびNl
1NとTの2元素を複合添加して、実施例1と同様にそ
れぞれ溶解した水溶液(反応液)を作製した。さらに別
の溶液として、水21に亜硝酸ナトリウム0.5gおよ
び酢酸アンモニウム10gを溶解し、さらにアンモニア
水でpH=8に調整した水溶液(酸化液)を作製した。
Zinc chloride 90■ and the same elements X from NaA to W as in Example 1, NIIA, NaE, H and Nl
Two elements, 1N and T, were added in combination to prepare an aqueous solution (reaction solution) in which they were dissolved in the same manner as in Example 1. As another solution, an aqueous solution (oxidizing solution) was prepared by dissolving 0.5 g of sodium nitrite and 10 g of ammonium acetate in water 21 and adjusting the pH to 8 with aqueous ammonia.

これらのめっき液を用いて、実施例1と同様にフェライ
トめっきを行った。用いた基体はアルミナ基板である。
Ferrite plating was performed in the same manner as in Example 1 using these plating solutions. The substrate used was an alumina substrate.

比較のために、前述した反応液として塩化第1鉄、塩化
ニッケルおよび塩化亜鉛だけを溶解した液を用いて、同
様にめっきを行った。
For comparison, plating was performed in the same manner using a solution in which only ferrous chloride, nickel chloride, and zinc chloride were dissolved as the reaction solution described above.

本発明の方法で得たフェライト膜と比較のために作製し
たフェライト膜の磁気特性を比較したところ、両者のH
cは実施例1の結果とほぼ同様であり、本発明の方法で
得たフェライト膜の方が、優れたソフト磁気特性を示し
た。
Comparing the magnetic properties of the ferrite film obtained by the method of the present invention and the ferrite film prepared for comparison, the H
c was almost the same as the result of Example 1, and the ferrite film obtained by the method of the present invention showed superior soft magnetic properties.

(実施例3) 水21に塩化第1鉄4g、塩化マンガン8g。(Example 3) 4 g of ferrous chloride and 8 g of manganese chloride in water 21.

塩化亜鉛60■および実施例1と同じNaAから魔Wま
での元素Xを実施例1と同様にそれぞれ溶解した水溶液
(反応液)を作製した。さらに別の溶液として、水21
に亜硝酸ナトリウム0.5gおよび酢酸アンモニウム1
0gを溶解し、さらにアンモニア水でpH=9に調整し
た水溶液(酸化液)を作製した。
Aqueous solutions (reaction liquids) were prepared in which 60 ml of zinc chloride and elements X from NaA to W were dissolved in the same manner as in Example 1. As another solution, water 21
0.5 g of sodium nitrite and 1 part of ammonium acetate
An aqueous solution (oxidizing solution) was prepared by dissolving 0 g of the oxidizing agent and adjusting the pH to 9 with aqueous ammonia.

これらのめっき液を用いて、第2図に示した装置で、フ
ェライトめっきを行った。用いた基体はアルミナ基板で
ある。
Using these plating solutions, ferrite plating was performed using the apparatus shown in FIG. The substrate used was an alumina substrate.

比較のために、前述した反応液として塩化第1鉄、塩化
マンガンおよび塩化亜鉛だけを溶解した液を用いて、同
様にめっきを行った。
For comparison, plating was performed in the same manner using a solution in which only ferrous chloride, manganese chloride, and zinc chloride were dissolved as the reaction solution described above.

本発明の方法で得たフェライト膜と比較のために作製し
たフェライト膜の磁気特性を比較したところ、両者のH
eは実施例1の結果とほぼ同様であり、本発明の方法で
得たフェライト膜の方が、優れたソフト磁気特性を示し
た。
Comparing the magnetic properties of the ferrite film obtained by the method of the present invention and the ferrite film prepared for comparison, the H
e was almost the same as the result of Example 1, and the ferrite film obtained by the method of the present invention showed superior soft magnetic properties.

(実施例4) 実施例1のNIIB、NおよびWと同一のめっき液を用
いて、第3図に示した装置で、フェライトめっきを行っ
た。用いた基体は主としてMgO・S io2.MgO
,Bed、Al2O3・S i02・B2O3ガラスセ
ラミックス基体1石英ガラス板。
(Example 4) Ferrite plating was performed using the same plating solution as NIIB, N, and W in Example 1 using the apparatus shown in FIG. The substrate used was mainly MgO.Sio2. MgO
, Bed, Al2O3/S i02/B2O3 glass ceramic substrate 1 quartz glass plate.

ポリイミドフィルム、ステンレス板、銅板、銅張りガラ
ス布基材エポキシの9種類である。
There are nine types: polyimide film, stainless steel plate, copper plate, and copper-clad glass cloth base epoxy.

比較のために、前述した反応液として填化第1鉄、塩化
ニッケルおよび塩化亜鉛だけを溶解した液を用いて、同
様に各9種類の基体についてめっきを行った。
For comparison, nine types of substrates were similarly plated using a solution in which only ferrous filler, nickel chloride, and zinc chloride were dissolved as the reaction solution.

本発明の方法で得たフェライト膜と比較のために作製し
たフェライト膜の磁気特性を比較したところ、両者のH
cは実施例1の結果とほぼ同様であり、本発明の方法で
得たフェライト膜の方が、優れたソフト磁気特性を示し
t二。
Comparing the magnetic properties of the ferrite film obtained by the method of the present invention and the ferrite film prepared for comparison, the H
c is almost the same as the result of Example 1, and the ferrite film obtained by the method of the present invention exhibits superior soft magnetic properties.

(実施例5) 実施例3と同じ反応液および酸化液を各21作製し、こ
れらの溶液を用いて、第4図に示した装置を使って、ア
ルミナ基板に1時間のフェライトめっきを行った。
(Example 5) 21 each of the same reaction solution and oxidation solution as in Example 3 were prepared, and using these solutions, ferrite plating was performed on an alumina substrate for 1 hour using the apparatus shown in Fig. 4. .

比較のために、前述した反応液として墳化第1鉄、塩化
マンガンおよび塩化亜鉛だけを溶解した液を用いて、同
様にめっきを行った。
For comparison, plating was performed in the same manner using a solution in which only ferrous iron, manganese chloride, and zinc chloride were dissolved as the reaction solution described above.

本発明の方法で得たフェライト膜と比較のために作製し
たフェライト膜の磁気特性を比較したところ、両者のH
eは実施例3の結果とほぼ同様であり、本発明の方法で
得たフェライト膜の方が、優れたソフト磁気特性を示し
た。
Comparing the magnetic properties of the ferrite film obtained by the method of the present invention and the ferrite film prepared for comparison, the H
e was almost the same as the result of Example 3, and the ferrite film obtained by the method of the present invention showed superior soft magnetic properties.

(実施例6) 実施例3と同じ反応液および酸化液をそれぞれ2I!作
製し、第5図に示した装置を用いて、フェライトめっき
を行った。基体はアルミナ基板を用い、1時間のめっき
を行った。
(Example 6) The same reaction solution and oxidation solution as in Example 3 were used at 2I each! Ferrite plating was performed using the apparatus shown in FIG. An alumina substrate was used as the base, and plating was performed for 1 hour.

得られたフェライト膜は、実施例3で得られた膜と同様
の磁気特性を示した。
The obtained ferrite film exhibited magnetic properties similar to those of the film obtained in Example 3.

発明の効果 本発明によって、前述したように、めっき液に第1鉄イ
オン以外にさらにバナジウム、インジウム、コバルト、
銅、マグネシウム、リチウム、クロム、アルミニウム、
すす、鉛、チタン,イットリウム,カルシウム、カリウ
ム、カドミウム、サマリウム、ストロンチウム、センウ
ム、セリウム、ネオジウム、パラジウム、モリブデン、
ノ望すウムの1つないし2つ以上の元素を混入すること
によって、第1鉄イオン以外の前記元素を含まない液を
用いるより優れたソフトフェライトとしての磁気特性を
示すフェライト膜を作製することができる。これによっ
て、各種電子部品等への適用に十分な磁気特性を有する
フェライト膜を得ることができる。
Effects of the Invention According to the present invention, as described above, in addition to ferrous ions, vanadium, indium, cobalt,
copper, magnesium, lithium, chromium, aluminum,
Soot, lead, titanium, yttrium, calcium, potassium, cadmium, samarium, strontium, cenium, cerium, neodymium, palladium, molybdenum,
To produce a ferrite film exhibiting better magnetic properties as a soft ferrite than using a liquid containing no elements other than ferrous ions by mixing one or more of the desired elements. I can do it. This makes it possible to obtain a ferrite film having sufficient magnetic properties for application to various electronic components and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図、第4図、第5図および第6図
は本発明のフェライト膜の形成方法の実施例に用いた装
置の概略図である。 1.2・・・・・・ノズル、3・・・・・・基体、4・
・・・・・回転台、5.6・・・・・・タンク、7・・
・・・・混合部、8・・・・・・予熱部、9・・・・・
・磁石、10・・・・・・めっき反応部、11・・・・
・・ウォーターパス、12・・・・・・基体台。 代理人の氏名 弁理士 粟野重孝 ほか1名第1図 第 図 第 図 偽 図 第 図 つ1−ターバス
FIG. 1, FIG. 2, FIG. 3, FIG. 4, FIG. 5, and FIG. 6 are schematic diagrams of an apparatus used in an embodiment of the method for forming a ferrite film of the present invention. 1.2...Nozzle, 3...Base, 4.
... Rotating table, 5.6 ... Tank, 7...
...Mixing section, 8...Preheating section, 9...
・Magnet, 10...Plating reaction part, 11...
...Water path, 12...Base stand. Name of agent: Patent attorney Shigetaka Awano and one other person Figure 1 Figure Figure False Figure Figure 1 - Turbus

Claims (8)

【特許請求の範囲】[Claims] (1)第1鉄イオンを含んだ溶液にさらにバナジウム,
インジウム,コバルト,銅,マグネシウム,リチウム,
クロム,アルミニウム,すず,鉛,チタン,イットリウ
ム,カルシウム,カリウム,カドミウム,サマリウム,
ストロンチウム,セシウム,セリウム,ネオジウム,パ
ラジウム,モリブデン,バリウムの1つないし2つ以上
の元素を溶解した溶液を基体に接触させ、基体表面にフ
ェライト膜を堆積させることを特徴とするフェライト膜
の形成方法。
(1) Vanadium is added to the solution containing ferrous ions,
Indium, cobalt, copper, magnesium, lithium,
Chromium, aluminum, tin, lead, titanium, yttrium, calcium, potassium, cadmium, samarium,
A method for forming a ferrite film, the method comprising depositing a ferrite film on the surface of a substrate by contacting a solution containing one or more of the following elements: strontium, cesium, cerium, neodymium, palladium, molybdenum, and barium. .
(2)第1鉄イオンを酸化するための酸化剤を含んだ溶
液を第1鉄イオンを含んだ溶液と同時に基体に接触させ
、非酸化性雰囲気でフェライト膜を堆積させ、基体表面
の表面あらさが中心線平均粗さ(Ra)で0.01μm
以上である請求項1記載のフェライト膜の形成方法。
(2) A solution containing an oxidizing agent for oxidizing ferrous ions is brought into contact with the substrate at the same time as the solution containing ferrous ions, and a ferrite film is deposited in a non-oxidizing atmosphere to improve the surface roughness of the substrate surface. The center line average roughness (Ra) is 0.01 μm
The method for forming a ferrite film according to claim 1, which is the above.
(3)第1鉄イオンを含んだ溶液と第1鉄イオンを酸化
するための酸化剤を含んだ溶液を基体に接触させる前に
混合した後、基体に接触させる請求項1記載のフェライ
ト膜の形成方法。
(3) The ferrite film according to claim 1, wherein the solution containing ferrous ions and the solution containing an oxidizing agent for oxidizing the ferrous ions are mixed before contacting the substrate and then contacted with the substrate. Formation method.
(4)フェライト膜の堆積を酸化性雰囲気で行い、基体
表面の表面あらさが中心線平均粗さ(Ra)で0.01
μm以上である請求項1記載のフェライト膜の形成方法
(4) The ferrite film is deposited in an oxidizing atmosphere, and the surface roughness of the substrate surface is 0.01 in center line average roughness (Ra).
The method for forming a ferrite film according to claim 1, wherein the ferrite film has a thickness of μm or more.
(5)溶液を50℃〜沸点以下に加熱した後、順次溶液
を基体に接触させる請求項1記載のフェライト膜の形成
方法。
(5) The method for forming a ferrite film according to claim 1, wherein the solution is heated to 50° C. to below the boiling point and then brought into contact with the substrate in sequence.
(6)フェライト膜の堆積を磁場中で行う請求項1記載
のフェライト膜の形成方法。
(6) The method for forming a ferrite film according to claim 1, wherein the ferrite film is deposited in a magnetic field.
(7)基体表面にフェライト膜を堆積させた後、フェラ
イト膜を堆積させた基体に150℃以上で熱処理を施す
請求項1記載のフェライト膜の形成方法。
(7) The method for forming a ferrite film according to claim 1, wherein after depositing the ferrite film on the surface of the substrate, the substrate on which the ferrite film is deposited is subjected to heat treatment at 150° C. or higher.
(8)第1鉄イオンを含んだ溶液を基体に接触させた後
、次に酸化剤を含んだ溶液を基体に接触させることを繰
り返す請求項1記載のフェライト膜の形成方法。
(8) The method for forming a ferrite film according to claim 1, wherein the step of repeatedly bringing a solution containing ferrous ions into contact with the substrate and then contacting the solution containing an oxidizing agent with the substrate is repeated.
JP1069673A 1989-03-22 1989-03-22 Formation of ferrite film Pending JPH02248328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1069673A JPH02248328A (en) 1989-03-22 1989-03-22 Formation of ferrite film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1069673A JPH02248328A (en) 1989-03-22 1989-03-22 Formation of ferrite film

Publications (1)

Publication Number Publication Date
JPH02248328A true JPH02248328A (en) 1990-10-04

Family

ID=13409604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1069673A Pending JPH02248328A (en) 1989-03-22 1989-03-22 Formation of ferrite film

Country Status (1)

Country Link
JP (1) JPH02248328A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6257392B1 (en) * 1995-02-16 2001-07-10 S. Neal Graham Vibratory bowl and associated parts orienting tooling with pivotal top confinement
EP1403886A2 (en) * 2002-09-13 2004-03-31 Nec Tokin Corporation Ferrite thin film, method of manufacturing the same and electromagnetic noise suppressor using the same
JP2009267288A (en) * 2008-04-30 2009-11-12 Nec Tokin Corp Method of manufacturing ferrite film
WO2010055597A1 (en) * 2008-11-12 2010-05-20 Necトーキン株式会社 Body with magnetic film attached and manufacturing method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6257392B1 (en) * 1995-02-16 2001-07-10 S. Neal Graham Vibratory bowl and associated parts orienting tooling with pivotal top confinement
EP1403886A2 (en) * 2002-09-13 2004-03-31 Nec Tokin Corporation Ferrite thin film, method of manufacturing the same and electromagnetic noise suppressor using the same
EP1403886A3 (en) * 2002-09-13 2004-06-09 Nec Tokin Corporation Ferrite thin film, method of manufacturing the same and electromagnetic noise suppressor using the same
US7438946B2 (en) 2002-09-13 2008-10-21 Nec Tokin Corporation Ferrite thin film, method of manufacturing the same and electromagnetic noise suppressor using the same
US7648774B2 (en) 2002-09-13 2010-01-19 Nec Tokin Corporation Ferrite thin film, method of manufacturing the same and electromagnetic noise suppressor using the same
JP2009267288A (en) * 2008-04-30 2009-11-12 Nec Tokin Corp Method of manufacturing ferrite film
WO2010055597A1 (en) * 2008-11-12 2010-05-20 Necトーキン株式会社 Body with magnetic film attached and manufacturing method therefor
CN102209997A (en) * 2008-11-12 2011-10-05 Nec东金株式会社 Body with magnetic film attached and manufacturing method therefor
US9991051B2 (en) 2008-11-12 2018-06-05 Tokin Corporation Body with magnetic film attached and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0111869B1 (en) Process for forming a ferrite film
EP0259975B1 (en) Method for forming ferrite film
US6183828B1 (en) Plating on nonmetallic disks
JPH02116631A (en) Formation of ferrite film
JPH02248328A (en) Formation of ferrite film
JP2629896B2 (en) Method of forming ferrite film
JP2841568B2 (en) Method of forming ferrite film
JPH02248329A (en) Formation of ferrite film
JP2668998B2 (en) Method of forming ferrite film
JP2792115B2 (en) Method of forming ferrite film and ferrite substrate
JPH02116627A (en) Formation of ferrite film
JP2595691B2 (en) Method of forming ferrite film
JPH02116628A (en) Formation of ferrite film
JPH0338006A (en) Anisotropic ferrite film and forming method thereof
EP0442022A2 (en) Method of forming ferrite coatings
JPH02116625A (en) Formation of ferrite film
JPH02116629A (en) Formation of ferrite film
JP2008108901A (en) Manufacturing device and manufacturing method of ferrite thin film
JPS61222924A (en) Method for forming ferrite film
JPH01246149A (en) Formation of ferrite film
JPS6196522A (en) Manufacture of magnetic recording body
JPS6181608A (en) Preparation of powder of hexagonal ferrite particle
JPS6218006A (en) Manufacture of hexagonal ferrite particle powder
JPH0456779B2 (en)
JPS60140713A (en) Manufacture of ferrite film