JP2009261054A - Motor - Google Patents

Motor Download PDF

Info

Publication number
JP2009261054A
JP2009261054A JP2008104362A JP2008104362A JP2009261054A JP 2009261054 A JP2009261054 A JP 2009261054A JP 2008104362 A JP2008104362 A JP 2008104362A JP 2008104362 A JP2008104362 A JP 2008104362A JP 2009261054 A JP2009261054 A JP 2009261054A
Authority
JP
Japan
Prior art keywords
electric motor
rotors
rotor
vane
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008104362A
Other languages
Japanese (ja)
Inventor
Tomokazu Naito
友和 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008104362A priority Critical patent/JP2009261054A/en
Publication of JP2009261054A publication Critical patent/JP2009261054A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor which improves the sealing properties for a working fluid, relating to a motor that has the phase between first and second rotors changed, by sealing its working fluid by making a sealing member abut against its opposite circumferential face. <P>SOLUTION: This motor 10 supplies working fluid to and discharges it from a lead angle side working chamber 54c and a delay angle side working chamber 54d, which are demarcated by a plurality of partition walls 54a that project diametrically, being fixed to one hand of outer and inner rotors 42a and 42b to be magnetized and vanes 52a that similarly project diametrically, being fixed to the other, and which are sealed by abutting sealing members 54e and 52b, arranged at the tips of the partition walls 54a and the vanes 52a against opposite peripheral faces 52c and inner wall faces 54b, and changes its phase, which shows the relative rotational angles of both, by rotating the first and second rotors relatively. This motor is equipped with energizing means (springs 54f and 52e), which energize the sealing members 54e and 52b outward in its diametrical direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は電動機に関し、より具体的には作動流体を給排して着磁された2個の回転子を相対回転させて位相を変更する電動機において、作動流体のシール性を向上させた電動機に関する。   The present invention relates to an electric motor, and more specifically, to an electric motor that improves the sealing performance of working fluid in an electric motor that changes the phase by relatively rotating two rotors magnetized by supplying and discharging the working fluid. .

着磁された第1、第2の回転子の一方に固定されて径方向に突出する複数個の仕切壁と、他方に固定されて同様に径方向に突出するベーンとで画成されると共に、仕切壁とベーンの先端に取着されたシール部材を対向する円周面に当接させてシールされる第1、第2の作動室に作動流体を給排して第1、第2の回転子を軸線を中心として相対回転させて位相を変更する位相変更機構を備えた電動機の例としては、下記の特許文献1記載の技術を挙げることができる。
特開2007−244040号公報
A plurality of partition walls fixed to one of the magnetized first and second rotors and projecting in the radial direction, and a vane fixed to the other and projecting in the radial direction are defined. The working fluid is supplied to and discharged from the first and second working chambers that are sealed by bringing the sealing member attached to the front end of the partition wall and the vane into contact with the opposing circumferential surfaces. As an example of an electric motor provided with a phase changing mechanism that changes the phase by rotating the rotor relative to the axis, the technique described in Patent Document 1 below can be cited.
JP 2007-244040 A

特許文献1記載の技術にあってはシール部材を対向する円周面に当接させて作動流体をシールすることで第1、第2の回転子の間の位相を変更しているが、作動流体のシールは十分であればあるほど望ましい。   In the technique described in Patent Document 1, the phase between the first and second rotors is changed by sealing the working fluid by bringing the seal member into contact with the opposing circumferential surface. The better the fluid seal, the better.

従って、この発明の目的は上記した課題を解消することにあり、シール部材を対向する円周面に当接させて作動流体をシールすることで第1、第2の回転子の間の位相を変更する電動機において作動流体のシール性を一層向上させるようにした電動機を提供することにある。   Accordingly, an object of the present invention is to eliminate the above-described problem, and the working fluid is sealed by bringing the seal member into contact with the opposing circumferential surface, thereby setting the phase between the first and second rotors. An object of the present invention is to provide an electric motor that further improves the sealing performance of the working fluid in the electric motor to be changed.

上記の目的を達成するために、請求項1にあっては、それぞれ着磁されると共に、同一の軸線を中心に回転する第1、第2の回転子と、前記第1、第2の回転子の一方に固定されて径方向に突出する複数個の仕切壁と、前記第1、第2の回転子の他方に固定されつつ前記複数個の内の隣接する2個の仕切壁の間で前記径方向に突出するベーンとで画成されると共に、前記仕切壁とベーンの先端に配置されたシール部材を対向する円周面に当接させてシールされる第1、第2の作動室と、前記第1、第2の作動室に作動流体を給排して前記第1、第2の回転子を前記軸線を中心として相対回転させて両者の相対回転角を示す位相を変更する位相変更機構とを備えた電動機において、前記シール部材を前記径方向の外方に向けて付勢する付勢手段を備える如く構成した。   In order to achieve the above object, according to claim 1, the first and second rotors which are respectively magnetized and rotate about the same axis, and the first and second rotations. Between a plurality of partition walls fixed to one of the cores and projecting in the radial direction, and two adjacent partition walls among the plurality of partition walls fixed to the other of the first and second rotors First and second working chambers defined by the radially projecting vanes and sealed by contacting the partition wall and a seal member disposed at the tip of the vane against the opposing circumferential surfaces And a phase in which working fluid is supplied to and discharged from the first and second working chambers, and the first and second rotors are rotated relative to each other about the axis to change the phase indicating the relative rotation angle between them. And a biasing means for biasing the seal member outward in the radial direction. It was as configuration provided.

請求項2に係る電動機にあっては、前記仕切壁とベーンの少なくともいずれかの幅が前記先端に向けて拡径される如く構成した。   The electric motor according to claim 2 is configured such that the width of at least one of the partition wall and the vane is increased toward the tip.

請求項1にあっては、着磁される第1、第2の回転子の一方に固定されて径方向に突出する複数個の仕切壁と、他方に固定されて2個の仕切壁の間で同様に径方向に突出するベーンとで画成されると共に、仕切壁とベーンの先端に配置されたシール部材を対向する円周面に当接させてシールされる第1、第2の作動室に作動流体を給排して第1、第2の回転子を相対回転させて両者の相対回転角を示す位相を変更する電動機において、シール部材を径方向の外方に向けて付勢する付勢手段を備える如く構成したので、作動流体のシール性を一層向上させることができる。   According to claim 1, a plurality of partition walls fixed to one of the magnetized first and second rotors and projecting in the radial direction and between the two partition walls fixed to the other In the same manner, the first and second operations are defined by the radially projecting vanes and sealed by bringing the partition wall and the sealing member disposed at the tip of the vane into contact with the opposing circumferential surfaces. In a motor in which working fluid is supplied to and discharged from a chamber and the first and second rotors are rotated relative to each other to change the phase indicating the relative rotation angle between them, the seal member is urged outward in the radial direction. Since the urging means is provided, the sealing performance of the working fluid can be further improved.

即ち、回転子には回転によって径方向に遠心力が生じ、その遠心力がシール部材と円周面との間を離間させるように作用するが、径方向の外方に向け、換言すれば遠心力の作用する方向に付勢させることで、遠心力の影響を低下させることができ、シール性を一層向上させることができる。また、径方向の外方に付勢することで、経年劣化によるシール性の低下も抑制することができる。   That is, a centrifugal force is generated in the rotor in the radial direction by the rotation, and the centrifugal force acts so as to separate the seal member and the circumferential surface from each other. By urging in the direction in which the force acts, the influence of centrifugal force can be reduced, and the sealing performance can be further improved. Further, by energizing outward in the radial direction, it is possible to suppress a decrease in sealing performance due to deterioration over time.

請求項2に係る電動機にあっては、仕切壁とベーンの少なくともいずれかの幅が先端に向けて拡径される如く構成したので、上記した効果に加え、対向する円周面に当接する仕切壁あるいはベーンの先端の底面積を増加させて円周面との当接面積を増加させることができ、シール性を一層向上させることができる。   In the electric motor according to claim 2, since the width of at least one of the partition wall and the vane is increased toward the tip, in addition to the above-described effect, the partition abutting against the opposing circumferential surface The area of contact with the circumferential surface can be increased by increasing the bottom area of the tip of the wall or vane, and the sealing performance can be further improved.

以下、添付図面に即してこの発明に係る電動機を実施するための最良の形態について説明する。   The best mode for carrying out the electric motor according to the present invention will be described below with reference to the accompanying drawings.

図1はこの発明の実施例に係る電動機をハイブリッド車両に組み込んだときの構成を全体的に示す概略図である。   FIG. 1 is a schematic diagram showing the overall configuration when an electric motor according to an embodiment of the present invention is incorporated in a hybrid vehicle.

図1において符号10は電動機(モータ)を示す。電動機10は具体的にはブラシレスあるいは交流同期電動機からなり、内燃機関(以下「エンジン」という)12に駆動軸14を介して連結される。エンジン12はガソリン噴射式火花点火式で4気筒を備える。電動機10とエンジン12の出力は変速機16に入力される。変速機16はそれらの出力を変速し、車輪(駆動輪)20に伝達する。このように、電動機10はハイブリッド車両(以下「車両」という)に搭載される。   In FIG. 1, the code | symbol 10 shows an electric motor (motor). Specifically, the electric motor 10 is a brushless or AC synchronous motor, and is connected to an internal combustion engine (hereinafter referred to as “engine”) 12 via a drive shaft 14. The engine 12 is a gasoline injection spark ignition type and has four cylinders. Outputs of the electric motor 10 and the engine 12 are input to the transmission 16. The transmission 16 shifts these outputs and transmits them to the wheels (drive wheels) 20. Thus, the electric motor 10 is mounted on a hybrid vehicle (hereinafter referred to as “vehicle”).

電動機10はエンジン12が回転するとき常に回転し、始動時には通電されてエンジン12をクランキングして始動させると共に、加速時などにも通電されてエンジン12の回転をアシスト(増速)する。電動機10は、通電されないときはエンジン12の回転に伴って空転すると共に、エンジン12への燃料供給が停止される減速時には駆動軸14の回転によって生じた運動エネルギを電気エネルギに変換して出力する回生機能を有する発電機(ジェネレータ)として機能する。   The electric motor 10 always rotates when the engine 12 rotates, and is energized at the time of starting to crank and start the engine 12, and is also energized at the time of acceleration or the like to assist the rotation of the engine 12 (acceleration). When the electric motor 10 is not energized, the motor 10 idles as the engine 12 rotates, and converts the kinetic energy generated by the rotation of the drive shaft 14 into electric energy and outputs it during deceleration when the fuel supply to the engine 12 is stopped. It functions as a generator with a regenerative function.

電動機10は、パワードライブユニット(PDU)22を介してバッテリ24に接続される。PDU22はインバータを備え、バッテリ24から供給(放電)される直流(電力)を交流に変換して電動機10に供給すると共に、電動機10の回生動作によって発電された交流を直流に変換してバッテリ24に供給する。このように、PDU22を介して電動機10の駆動・回生が制御される。   The electric motor 10 is connected to a battery 24 via a power drive unit (PDU) 22. The PDU 22 includes an inverter, converts direct current (electric power) supplied (discharged) from the battery 24 to alternating current and supplies the alternating current to the electric motor 10, and converts alternating current generated by the regenerative operation of the electric motor 10 into direct current and converts the direct current (electric power) into direct current. To supply. In this way, driving / regeneration of the electric motor 10 is controlled via the PDU 22.

さらに、エンジン12の動作を制御するエンジン制御ユニット(ENGECU)26、電動機10の動作を制御するモータ制御ユニット(MOTECU)30、およびバッテリ24の充電状態SOC(State Of Charge)を算出して充放電の管理などを行うバッテリ制御ユニット(BATECU)32、ならびに変速機16の動作を制御する変速制御ユニット(T/MECU)34が設けられる。上記したENGECU26などのECU(電子制御ユニット)は全てマイクロコンピュータからなり、通信バス36を介して相互に通信自在に接続される。   Further, an engine control unit (ENGECU) 26 that controls the operation of the engine 12, a motor control unit (MOTECU) 30 that controls the operation of the electric motor 10, and a state of charge (SOC) of the battery 24 are calculated and charged / discharged. A battery control unit (BATECU) 32 that manages the above and a transmission control unit (T / MECU) 34 that controls the operation of the transmission 16 are provided. All the ECUs (electronic control units) such as the above-described ENGECU 26 are composed of a microcomputer, and are connected to each other via a communication bus 36 so as to be able to communicate with each other.

次いで、電動機10について詳細に説明する。   Next, the electric motor 10 will be described in detail.

図2は図1に示す電動機10の要部断面図、図3は図2に示す電動機の位相変更機構を示す分解斜視図、図4は図2に示す回転子の磁石片の磁極の向きを示す模式図、図5は図2に示す電動機10の回転子の側面図である。   2 is a cross-sectional view of the main part of the electric motor 10 shown in FIG. 1, FIG. 3 is an exploded perspective view showing the phase changing mechanism of the electric motor shown in FIG. 2, and FIG. 4 shows the orientation of the magnetic poles of the magnet pieces of the rotor shown in FIG. FIG. 5 is a side view of the rotor of the electric motor 10 shown in FIG.

図示の如く、電動機10は、円環状の固定子(ステータ)40と、その内側に収容される、同様に円環状の回転子42と、回転軸(回転軸線)44を備える。固定子40は鉄系材料から製作される薄板が積層(あるいは鉄系材料を鋳造)されてなると共に、3相(U,V,W相)の固定子巻線40aが配置されてなる。   As shown in the figure, the electric motor 10 includes an annular stator (stator) 40, a similarly annular rotor 42 housed therein, and a rotation shaft (rotation axis) 44. The stator 40 is formed by laminating thin plates manufactured from iron-based materials (or casting iron-based materials), and is arranged with three-phase (U, V, W-phase) stator windings 40a.

回転子42は、外周側(第1)の回転子42aと、回転軸(回転軸線)44を中心として相対回転あるいは相対変位自在な内周側(第2)の回転子42bからなる。回転子42a,42bは例えば焼結金属から製作される鉄心からなると共に、円周側にはそれぞれ複数組、より正確には16組の磁石片(永久磁石)46が相互に僅かな間隔をおいて配置される。   The rotor 42 includes an outer peripheral (first) rotor 42 a and an inner peripheral (second) rotor 42 b that is relatively rotatable or relatively displaceable about a rotating shaft (rotating axis) 44. The rotors 42a and 42b are made of, for example, iron cores made of sintered metal, and a plurality of sets, more precisely 16 sets of magnet pieces (permanent magnets) 46 are spaced slightly from each other on the circumferential side. Arranged.

図2と図3に示す如く、回転子42には位相変更機構50が設けられる。位相変更機構50は、回転軸44にスプライン(図示せず)を介して固定されるベーンロータ52と、内周側の回転子42bの内周面に嵌合されて固定される環状ハウジング54と、ベーンロータ52を外周側の回転子42aにピン56aで固定する、一対のドライブプレート56と、それらに油圧を供給する油圧機構(図示せず)からなる。   As shown in FIGS. 2 and 3, the rotor 42 is provided with a phase changing mechanism 50. The phase changing mechanism 50 includes a vane rotor 52 that is fixed to the rotating shaft 44 via a spline (not shown), an annular housing 54 that is fitted and fixed to the inner peripheral surface of the rotor 42b on the inner peripheral side, The vane rotor 52 includes a pair of drive plates 56 that fix the vane rotor 52 to the rotor 42a on the outer peripheral side with pins 56a, and a hydraulic mechanism (not shown) that supplies hydraulic pressure thereto.

ベーンロータ52には中央のボス部から径方向に等間隔をおいて突出する複数個(6個)のベーン52aが形成されると共に、環状ハウジング54の内部には中心側に等間隔をおいて同様に径方向に突出する複数個(6個)の仕切壁54aが形成される。   The vane rotor 52 is formed with a plurality of (six) vanes 52a protruding from the central boss portion at equal intervals in the radial direction, and the annular housing 54 has the same intervals at the center side. A plurality of (six) partition walls 54a projecting in the radial direction are formed.

ベーン52aの先端にはシール部材52bが配置され、対向する環状ハウジング54の内壁面(円周面)54bに当接して液密にシールすると共に、仕切壁54aの先端の対向するベーンロータ52のボス部の外周面(円周面)52cにも後述するようにシール部材が配置される。   A seal member 52b is disposed at the tip of the vane 52a, and is in contact with the inner wall surface (circumferential surface) 54b of the opposed annular housing 54 to be liquid-tightly sealed, and the boss of the opposite vane rotor 52 at the tip of the partition wall 54a. As will be described later, a seal member is also disposed on the outer peripheral surface (circumferential surface) 52c of the portion.

環状ハウジング54は、図2に示す如く、軸方向長さ(幅)が内周側の回転子42bよりも大きく形成され、2枚のドライブプレート56に穿設された環状の溝56b(図3で図示省略)に移動自在に収容され、よって環状ハウジング54と内周側の回転子42bは、外周側の回転子42aと回転軸44に回転自在に支持される。電動機10が回転軸44を中心として回転するとき、遠心力がベーン52aなどが突出する径方向に作用する。   As shown in FIG. 2, the annular housing 54 has an axial length (width) larger than that of the rotor 42b on the inner peripheral side, and an annular groove 56b (FIG. 3) formed in the two drive plates 56. The annular housing 54 and the inner peripheral rotor 42b are rotatably supported by the outer peripheral rotor 42a and the rotating shaft 44. When the electric motor 10 rotates about the rotating shaft 44, centrifugal force acts in the radial direction from which the vanes 52a and the like protrude.

2枚のドライブプレート56は環状ハウジング54の両側面に摺動自在に密接させられ、環状ハウジング54の仕切壁54aとベーンロータ52のボス部の外周面との間に密閉空間を複数個(6個)形成する。この密閉空間は環状ハウジング54の仕切壁54aによって二分され、進角側作動室(第1の作動室)54cと遅角側作動室(第2の作動室)54dを形成する。ここで、「進角」(ADV)とは内周側の回転子42bを外周側の回転子42aに対して矢印ADV(図5)で示す電動機10の回転方向と同一の方向に、「遅角」(RTD)とはその逆方向に相対回転させることを意味する。   The two drive plates 56 are slidably brought into close contact with both side surfaces of the annular housing 54, and a plurality of (6) sealed spaces are formed between the partition wall 54 a of the annular housing 54 and the outer peripheral surface of the boss portion of the vane rotor 52. )Form. This sealed space is divided into two by a partition wall 54a of the annular housing 54, and forms an advance side working chamber (first working chamber) 54c and a retard side working chamber (second working chamber) 54d. Here, the “advance angle” (ADV) means that the inner rotor 42b is moved in the same direction as the rotation direction of the electric motor 10 indicated by an arrow ADV (FIG. 5) with respect to the outer rotor 42a. “Angle” (RTD) means relative rotation in the opposite direction.

進角側作動室54c、遅角側作動室54dには流体の圧力、具体的には非圧縮性の流体、より具体的には変速機16のATF(あるいはエンジン12の潤滑油)などの作動油の圧力、即ち、油圧が供給される。作動油は回転軸44からベーンロータ52に形成される2本の油路62,64を介して進角側作動室54c、遅角側作動室54dに供給される。   In the advance side working chamber 54c and the retard side working chamber 54d, the operation of fluid pressure, specifically, incompressible fluid, more specifically, ATF of the transmission 16 (or lubricating oil of the engine 12), etc. Oil pressure, that is, oil pressure is supplied. The hydraulic oil is supplied from the rotary shaft 44 to the advance side working chamber 54c and the retard side working chamber 54d through two oil passages 62 and 64 formed in the vane rotor 52.

即ち、前記した油圧機構において、図示は省略するが、作動油はリザーバから電動モータで駆動されるポンプで汲み上げられ、電磁ソレノイド弁を介挿された油圧回路(図示せず)を通って回転軸44に圧送される。図2に示す如く、回転軸44に圧送された後、回転軸44からベーンロータ52に形成される2本の油路62,64を介して進角側作動室54cと遅角側作動室54dに供給される。   That is, in the hydraulic mechanism described above, although not shown, the hydraulic oil is pumped up from a reservoir by a pump driven by an electric motor, and passes through a hydraulic circuit (not shown) inserted through an electromagnetic solenoid valve. 44 is pumped. As shown in FIG. 2, after being pumped to the rotary shaft 44, it is moved from the rotary shaft 44 to the advance side working chamber 54c and the retard side working chamber 54d via two oil passages 62 and 64 formed in the vane rotor 52. Supplied.

油路62,64はほぼ平行しており、図2と図5に示す如く、回転軸44の軸方向に穿設された油路62a,64aと、それに連続して回転軸44の外周面に穿設された油路62b,64bと、それに連続してベーンロータ52のボス部に放射状に穿設された油路62c,64cからなる。油路62は進角側作動室54cに、油路64は遅角側作動室54dに接続される。   The oil passages 62 and 64 are substantially parallel to each other, and as shown in FIGS. 2 and 5, the oil passages 62 a and 64 a drilled in the axial direction of the rotation shaft 44 and the outer peripheral surface of the rotation shaft 44 continuously therewith. The oil passages 62b and 64b are formed, and the oil passages 62c and 64c are formed radially in the boss portion of the vane rotor 52. The oil passage 62 is connected to the advance side working chamber 54c, and the oil passage 64 is connected to the retard side working chamber 54d.

進角側作動室54cと遅角側作動室54dは油路62,64から油圧が給排されて伸縮し、よって外周側の回転子42aに固定されたベーン52aに対して仕切壁54aと一体にされた内周側の回転子42bが回転軸(回転軸線)44を中心として相対回転させられることで、外周側の回転子42aと内周側の回転子42bの間の相対回転角あるいは変位角を示す位相が0度から180度の間で変更され、それに応じて電動機10の誘起電圧が変更される。   The advance-side working chamber 54c and the retard-side working chamber 54d are expanded and contracted by supplying and discharging hydraulic pressure from the oil passages 62 and 64, so that the vane 52a fixed to the outer rotor 42a is integrated with the partition wall 54a. The relative rotation angle or displacement between the outer peripheral side rotor 42a and the inner peripheral side rotor 42b is achieved by rotating the inner peripheral side rotor 42b relative to the rotation axis (rotation axis) 44. The phase indicating the angle is changed between 0 degrees and 180 degrees, and the induced voltage of the electric motor 10 is changed accordingly.

図5に最進角位置にあるときの進角側作動室54cと遅角側作動室54dを示す。この実施例に係る電動機10にあっては、内周側の回転子42bが外周側の回転子42aに対して最遅角位置(位相0度)にあるとき、図4(a)に示すように、それらの磁石片46は同極同士が対向して強め界磁(界磁が増加)となる。他方、内周側の回転子42bが外周側の回転子42aに対して最進角位置(位相180度)にあるとき、図4(b)に示すように、それらの磁石片46は対極同士が対向して弱め界磁(界磁が減少)となる。   FIG. 5 shows the advance side working chamber 54c and the retard side working chamber 54d at the most advanced position. In the electric motor 10 according to this embodiment, when the inner circumferential rotor 42b is at the most retarded position (phase 0 degree) with respect to the outer circumferential rotor 42a, as shown in FIG. In addition, these magnet pieces 46 have the same poles facing each other to form a strong field (increase in the field). On the other hand, when the inner circumferential side rotor 42b is at the most advanced angle position (phase 180 degrees) with respect to the outer circumferential side rotor 42a, as shown in FIG. Face each other and become a field weakening (field reduction).

それにより電動機10の誘起電圧定数Keが変更され、電動機10の特性が変更される。即ち、強め界磁によって誘起電圧定数Keが増加すると、電動機10の運転可能な許容回転速度は低下するものの、出力可能な最大トルクは増大し、逆に弱め界磁によって誘起電圧定数Keが減少すると、出力可能な最大トルクは減少し、許容回転速度は上昇する。   Thereby, the induced voltage constant Ke of the electric motor 10 is changed, and the characteristics of the electric motor 10 are changed. That is, when the induced voltage constant Ke increases due to the strong field, the allowable rotational speed at which the motor 10 can operate decreases, but the maximum torque that can be output increases, and conversely, when the induced voltage constant Ke decreases due to the weak field. The maximum torque that can be output decreases, and the allowable rotational speed increases.

尚、この実施例に係る電動機10は、内周側の回転子42bが外周側の回転子42aに対して最遅角位置(位相0度)にあるとき、安定する。即ち、油圧が供給されないとき、回転子42は最遅角位置に向けて相対変位し、その位置で停止する。   The electric motor 10 according to this embodiment is stable when the inner rotor 42b is at the most retarded position (phase 0 degree) with respect to the outer rotor 42a. That is, when the hydraulic pressure is not supplied, the rotor 42 is relatively displaced toward the most retarded position and stops at that position.

図6は図5の部分拡大図である。   FIG. 6 is a partially enlarged view of FIG.

ここで、図6を参照してこの実施例に係る電動機10の特徴を説明すると、電動機10は、仕切壁54aの先端には配置されるシール部材とベーン52aの先端に配置されるシール部材52bをそれぞれ径方向の外方に向けて付勢する付勢手段を備える如く構成した。   Here, the characteristics of the electric motor 10 according to this embodiment will be described with reference to FIG. 6. The electric motor 10 includes a seal member disposed at the front end of the partition wall 54a and a seal member 52b disposed at the front end of the vane 52a. Are configured to include urging means for urging each of them in the radially outward direction.

先ずベーン52aについて説明すると、ベーン52aの先端に配置されたシール部材52bは、図示の如く、断面視T字状を呈し、ベーン52aの先端の矩形面と同形の矩形状部52b1と、それに連続して一体的に形成された基体部52b2とからなる。シール部材52bはゴムなどの弾性材からなると共に、ベーン52aの先端と内壁面54bとの間に介挿される。   First, the vane 52a will be described. The sealing member 52b disposed at the tip of the vane 52a has a T-shape in cross section as shown in the drawing, and is continuous with the rectangular portion 52b1 having the same shape as the rectangular surface at the tip of the vane 52a. And the base portion 52b2 formed integrally. The seal member 52b is made of an elastic material such as rubber, and is inserted between the tip of the vane 52a and the inner wall surface 54b.

シール部材52bの基体部52b2はベーン52aの内方、即ち、径方向の内方に穿設された凹部52dに収容される。凹部52dの内径は基体部52b2の外形とほぼ同一の寸法で、基体部52b2との間に間隙がないように形成される。   The base portion 52b2 of the seal member 52b is accommodated in a recess 52d formed inward of the vane 52a, that is, inward in the radial direction. The inner diameter of the recess 52d is substantially the same as the outer shape of the base portion 52b2, and is formed so that there is no gap between the base portion 52b2.

凹部52dの底部にはスプリング(リーフスプリング。付勢手段)52eが弾装され、基体部52b2を径方向の外方に付勢する。これにより、シール部材52bも径方向の外方、換言すれば遠心力の作用する方向に付勢され、隣接する進角側作動室54cと遅角側作動室54dの間を作動油が漏れないように液密にシールする。   A spring (leaf spring, biasing means) 52e is elastically mounted on the bottom of the recess 52d to bias the base portion 52b2 outward in the radial direction. As a result, the seal member 52b is also urged outward in the radial direction, in other words, in the direction in which the centrifugal force acts, and the hydraulic oil does not leak between the adjacent advance side working chamber 54c and retard side working chamber 54d. Seal liquid tightly.

次いで仕切壁54aについて説明すると、仕切壁54aの先端に対向するベーンロータ52のボス部の外周面52cには凹部52fが穿設され、そこにシール部材54eが収容(配置)される。   Next, the partition wall 54a will be described. A recess 52f is formed in the outer peripheral surface 52c of the boss portion of the vane rotor 52 facing the tip of the partition wall 54a, and the seal member 54e is accommodated (arranged) there.

シール部材54eも、図示の如く、断面視T字状を呈し、外周面52cとほぼ同形の矩形状部54e1と、それに連続して一体的に形成された基体部54e2とからなる。凹部52eの内径も基体部54e2の外形とほぼ同一の寸法で、基体部54e2との間に間隙がないように形成される。シール部材54eも、ゴムなどの弾性材からなると共に、仕切壁54aの先端と外周面52cとの間に介挿される。   As shown in the drawing, the seal member 54e also has a T-shape in sectional view, and includes a rectangular portion 54e1 that is substantially the same shape as the outer peripheral surface 52c, and a base portion 54e2 that is integrally formed continuously therewith. The inner diameter of the recess 52e is substantially the same as the outer shape of the base portion 54e2, and is formed so that there is no gap between the base portion 54e2. The seal member 54e is also made of an elastic material such as rubber, and is inserted between the tip of the partition wall 54a and the outer peripheral surface 52c.

凹部52fの底部にはスプリング(リーフスプリング。付勢手段)54fが弾装され、基体部54e2を径方向の外方に付勢する。仕切壁54aは外周面52cの全域にわたって移動(摺動)させられることから、矩形状部54e1は外周面52cと同程度の大きさにされ、仕切壁54aの先端が図で左に移動しても、仕切壁54aの先端と外周面52cとの間に常に矩形状部54e1が存在するように構成される。   A spring (leaf spring, biasing means) 54f is elastically mounted on the bottom of the recess 52f to bias the base portion 54e2 outward in the radial direction. Since the partition wall 54a is moved (slid) over the entire outer peripheral surface 52c, the rectangular portion 54e1 is made to be approximately the same size as the outer peripheral surface 52c, and the tip of the partition wall 54a is moved to the left in the drawing. Also, the rectangular portion 54e1 is always present between the front end of the partition wall 54a and the outer peripheral surface 52c.

これにより、シール部材54eも矩形状部54e1を介して径方向の外方、換言すれば遠心力の作用する方向に付勢され、隣接する進角側作動室54cと遅角側作動室54dの間を作動油が漏れないように液密にシールする。   As a result, the seal member 54e is also urged outward in the radial direction via the rectangular portion 54e1, in other words, in the direction in which the centrifugal force acts, so that the advance side working chamber 54c and the retard side working chamber 54d are adjacent to each other. Seal fluid tightly so that hydraulic fluid does not leak.

図7はこの実施例に係る電動機10の変形例を示す、図6と同様の図5の部分拡大図である。図6に示す構成では仕切壁54aの幅は先端に向け、即ち、回転軸44に向けて縮径される形状としたが、図7に示す構成においては仕切壁54aの幅は先端に向けて拡径される形状とした。同様に、ベーン52aも幅が先端に向けて拡径される形状とされる。   FIG. 7 is a partially enlarged view of FIG. 5 similar to FIG. 6, showing a modification of the electric motor 10 according to this embodiment. In the configuration shown in FIG. 6, the width of the partition wall 54a is directed toward the tip, that is, the diameter is reduced toward the rotating shaft 44. However, in the configuration shown in FIG. 7, the width of the partition wall 54a is directed toward the tip. The shape was expanded. Similarly, the vane 52a has a shape in which the width is increased toward the tip.

これにより、付勢手段による効果に加え、仕切壁54aあるいはベーン52aの先端側の底面積を増加させて対向する外周面52cあるいは内壁面54bとの接触面積を増加させることができ、よってシール性を一層向上させることができる。尚、仕切壁54aとベーン52aの幅を共に先端に向けて拡径したが、いずれか一方の幅を拡径しても良い。   Thereby, in addition to the effect of the urging means, the bottom area on the tip side of the partition wall 54a or the vane 52a can be increased to increase the contact area with the outer peripheral surface 52c or the inner wall surface 54b facing each other. Can be further improved. In addition, although the width of both the partition wall 54a and the vane 52a was expanded toward the tip, either of the widths may be expanded.

図8もこの実施例に係る電動機10の変形例を示す、図7と同様の部分拡大図である。図6に示す構成ではシール部材52b,54eの矩形状部52b1,54e1は平坦な厚みを備えるようにしたが、図示のように、コルゲート状としても良い。これにより、ベーン52aあるいは仕切壁54aが滑り難くなり、よって位相の急変を抑制することができ、出力トルクの急変を防止することができる。   FIG. 8 is a partially enlarged view similar to FIG. 7, showing a modification of the electric motor 10 according to this embodiment. In the configuration shown in FIG. 6, the rectangular portions 52b1 and 54e1 of the seal members 52b and 54e have a flat thickness, but may have a corrugated shape as shown. This makes it difficult for the vane 52a or the partition wall 54a to slip, so that a sudden change in phase can be suppressed and a sudden change in output torque can be prevented.

この実施例は上記の如く、それぞれ着磁されると共に、同一の軸線(回転軸線)44を中心に回転する第1、第2の回転子(外周側の回転子42a、内周側の回転子42b)と、前記第1、第2の回転子の一方、より具体的には第2の回転子(内周側の回転子42b)に固定されて径方向に突出する複数個の仕切壁54aと、前記第1、第2の回転子の他方に固定されつつ前記複数個の内の隣接する2個の仕切壁54aの間で前記径方向に突出するベーン52aとで画成されると共に、前記仕切壁54aとベーン52aの先端に配置されたシール部材54e,52bを対向する円周面(外周面52c、内壁面54b)に当接させてシールされる第1、第2の作動室(進角側作動室54c、遅角側作動室54d)と、前記第1、第2の作動室に作動流体(作動油)を給排して前記第1、第2の回転子を前記軸線を中心として相対回転させて両者の相対回転角を示す位相を変更する位相変更機構50とを備えた電動機10において、前記シール部材54e,52bを前記径方向の外方に向けて付勢する付勢手段(スプリング54f,52e)を備える如く構成したので、作動油のシール性を一層向上させることができる。   In this embodiment, as described above, the first and second rotors (the outer peripheral side rotor 42a, the inner peripheral side rotor, which are magnetized and rotate around the same axis (rotation axis) 44, respectively. 42b) and a plurality of partition walls 54a fixed to one of the first and second rotors, more specifically, the second rotor (inner peripheral side rotor 42b) and projecting in the radial direction. And a vane 52a protruding in the radial direction between the two adjacent partition walls 54a while being fixed to the other of the first and second rotors, First and second working chambers sealed by contacting the partition walls 54a and seal members 54e, 52b disposed at the tips of the vanes 52a with opposing circumferential surfaces (outer peripheral surface 52c, inner wall surface 54b). An advance side working chamber 54c, a retard side working chamber 54d) and the first and second working chambers. An electric motor including a phase changing mechanism 50 that supplies and discharges a working fluid (hydraulic oil) and relatively rotates the first and second rotors about the axis to change a phase indicating a relative rotation angle between them. 10, the sealing members 54e, 52b are configured to include urging means (springs 54f, 52e) that urge the sealing members 54e, 52b outward in the radial direction, so that the sealing performance of the hydraulic oil can be further improved. .

即ち、外周側の回転子42aと内周側の回転子42bには回転によって径方向に遠心力が生じ、その遠心力がシール部材54e,52bと円周面(外周面52c、内壁面54b)との間を離間させるように作用するが、径方向の外方に向け、換言すれば遠心力の作用する方向に付勢させることで、遠心力の影響を低下させることができ、シール性を向上させることができる。   That is, a centrifugal force is generated in the radial direction by the rotation of the outer rotor 42a and the inner rotor 42b, and the centrifugal force is generated between the seal members 54e and 52b and the circumferential surface (the outer peripheral surface 52c and the inner wall surface 54b). The effect of centrifugal force can be reduced by urging outward in the radial direction, in other words, by urging in the direction in which centrifugal force acts. Can be improved.

従って、図1で説明したようにハイブリッド車両に搭載される場合、発進時などに大きな負荷を受けるが、そのときも十分なシール性を与えることができる。また、径方向の外方に付勢することで、経年劣化によるシール性の低下も抑制することができる。   Accordingly, when mounted on a hybrid vehicle as described with reference to FIG. 1, a large load is applied at the time of starting, etc., but sufficient sealing performance can be provided at that time as well. Further, by energizing outward in the radial direction, it is possible to suppress a decrease in sealing performance due to deterioration over time.

さらに、前記仕切壁54aとベーン52aの少なくともいずれか、より具体的には双方の幅が前記先端に向けて拡径される如く構成したので、上記した効果に加え、対向する円周面(外周面52c、内壁面54b)に当接する仕切壁54aあるいはベーン52aの先端の底面積を増加させて円周面との当接面積を増加させることができ、シール性を一層向上させることができる。   Furthermore, since the width of at least one of the partition wall 54a and the vane 52a, more specifically, the width of both is expanded toward the tip, in addition to the above-described effects, the opposing circumferential surface (outer periphery) By increasing the bottom area of the tip of the partition wall 54a or vane 52a that contacts the surface 52c and the inner wall surface 54b), the contact area with the circumferential surface can be increased, and the sealing performance can be further improved.

尚、上記において電動機10がハイブリッド車に搭載された場合を例にとって説明したが、この発明はハイブリッド車に搭載された電動機に限られるものではなく、どのような電動機にも妥当する。また、この発明は、ハイブリッド車以外にも内燃機関を備えない電気自動車に搭載された電動機にも妥当する。   In the above description, the case where the electric motor 10 is mounted on the hybrid vehicle has been described as an example. However, the present invention is not limited to the electric motor mounted on the hybrid vehicle, and is applicable to any electric motor. The present invention is also applicable to an electric motor mounted on an electric vehicle not equipped with an internal combustion engine other than a hybrid vehicle.

また、第1、第2の回転子の少なくともいずれか、より具体的には第2の回転子42bを回転軸線(回転軸44)を中心として相対回転させて両者の相対回転角あるいは変位角を示す位相θを変更するように構成したが、第1、第2の回転子の双方を相対回転させて位相を変更するようにしても良い。   In addition, at least one of the first and second rotors, more specifically, the second rotor 42b is relatively rotated about the rotation axis (rotation axis 44), and the relative rotation angle or displacement angle of both is thereby increased. Although the phase θ shown is changed, the phase may be changed by relatively rotating both the first and second rotors.

この発明の実施例に係る電動機をハイブリッド車両に組み込んだときの構成を全体的に示す概略図である。It is the schematic which shows the structure when the electric motor which concerns on the Example of this invention is integrated in a hybrid vehicle. 図1に示す電動機の要部断面図である。It is principal part sectional drawing of the electric motor shown in FIG. 図2に示す電動機の位相変更機構を示す分解斜視図である。It is a disassembled perspective view which shows the phase change mechanism of the electric motor shown in FIG. 図2に示す回転子の磁石片の磁極の向きを示す模式図である。It is a schematic diagram which shows the direction of the magnetic pole of the magnet piece of the rotor shown in FIG. 図2に示す回転子の側面図である。FIG. 3 is a side view of the rotor shown in FIG. 2. 図5の部分拡大図である。It is the elements on larger scale of FIG. この実施例に係る電動機の変形例を示す、図6と同様の図5の部分拡大図である。It is the elements on larger scale of FIG. 5 similar to FIG. 6 which shows the modification of the electric motor which concerns on this Example. 同様に、この実施例に係る電動機の変形例を示す、図7と同様の部分拡大図である。Similarly, it is the elements on larger scale similar to FIG. 7 which shows the modification of the electric motor which concerns on this Example.

符号の説明Explanation of symbols

1 車両(ハイブリッド車両)、10 電動機(モータ)、12 エンジン(内燃機関)、14 駆動軸、16 変速機、20 車輪、30 モータ制御ユニット(MOTECU)、40 固定子、42 回転子、42a 外周側(第1)の回転子、42b 内周側(第2)の回転子、44 回転軸(回転軸線)、46 磁石片、50 位相変更機構、52 ベーンロータ、52a ベーン、52b シール部材、52c 外周面(円周面)、52d 凹部、52e スプリング(付勢手段)、52f 凹部、54 環状ハウジング、54a 仕切壁、54b 内壁面(円周面)、54c 進角側(第1の)作動室、54d 遅角側(第2の)作動室、54e シール部材、54f スプリング(付勢手段)、62,64 油路   DESCRIPTION OF SYMBOLS 1 Vehicle (hybrid vehicle), 10 Electric motor (motor), 12 Engine (internal combustion engine), 14 Drive shaft, 16 Transmission, 20 Wheel, 30 Motor control unit (MOTECU), 40 Stator, 42 Rotor, 42a Outer peripheral side (First) rotor, 42b Inner circumferential side (second) rotor, 44 Rotating shaft (Rotating axis), 46 Magnet piece, 50 Phase changing mechanism, 52 Vane rotor, 52a vane, 52b Seal member, 52c Outer peripheral surface (Circumferential surface), 52d recess, 52e spring (biasing means), 52f recess, 54 annular housing, 54a partition wall, 54b inner wall surface (circumferential surface), 54c advance angle side (first) working chamber, 54d Delay side (second) working chamber, 54e seal member, 54f spring (biasing means), 62, 64 oil passage

Claims (2)

それぞれ着磁されると共に、同一の軸線を中心に回転する第1、第2の回転子と、前記第1、第2の回転子の一方に固定されて径方向に突出する複数個の仕切壁と、前記第1、第2の回転子の他方に固定されつつ前記複数個の内の隣接する2個の仕切壁の間で前記径方向に突出するベーンとで画成されると共に、前記仕切壁とベーンの先端に配置されたシール部材を対向する円周面に当接させてシールされる第1、第2の作動室と、前記第1、第2の作動室に作動流体を給排して前記第1、第2の回転子を前記軸線を中心として相対回転させて両者の相対回転角を示す位相を変更する位相変更機構とを備えた電動機において、前記シール部材を前記径方向の外方に向けて付勢する付勢手段を備えたことを特徴とする電動機。   First and second rotors that are respectively magnetized and rotate about the same axis, and a plurality of partition walls that are fixed to one of the first and second rotors and project radially And a vane protruding in the radial direction between two adjacent partition walls of the plurality while being fixed to the other of the first and second rotors, and the partition The first and second working chambers are sealed by contacting the circumferential members facing each other with seal members disposed at the ends of the walls and the vanes, and the working fluid is supplied to and discharged from the first and second working chambers. And a phase changing mechanism that changes the phase indicating the relative rotation angle of the first and second rotors relative to each other about the axis, and the seal member is disposed in the radial direction. An electric motor comprising urging means for urging outward. 前記仕切壁とベーンの少なくともいずれかの幅が前記先端に向けて拡径されることを特徴とする請求項1記載の電動機。   The electric motor according to claim 1, wherein a width of at least one of the partition wall and the vane is increased toward the tip.
JP2008104362A 2008-04-14 2008-04-14 Motor Withdrawn JP2009261054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008104362A JP2009261054A (en) 2008-04-14 2008-04-14 Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008104362A JP2009261054A (en) 2008-04-14 2008-04-14 Motor

Publications (1)

Publication Number Publication Date
JP2009261054A true JP2009261054A (en) 2009-11-05

Family

ID=41387767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008104362A Withdrawn JP2009261054A (en) 2008-04-14 2008-04-14 Motor

Country Status (1)

Country Link
JP (1) JP2009261054A (en)

Similar Documents

Publication Publication Date Title
US20100231081A1 (en) Motor
JP5037083B2 (en) Electric motor
JP4584206B2 (en) Electric motor
JP2009268269A (en) Electric motor
JP2008289219A (en) Motor
JP2008151214A (en) Vane type hydraulic equipment, motor, and valve timing control device for internal combustion engine
JP2009261054A (en) Motor
JP2009254005A (en) Motor
JP4545702B2 (en) Electric motor
JP4409555B2 (en) Vehicle torque control device
JP4213171B2 (en) Electric motor
JP4223526B2 (en) Electric motor
JP4932418B2 (en) Electric motor
JP5286588B2 (en) Electric motor
JP5124204B2 (en) Electric motor control device
JP2008067577A (en) Motor
JP2009166652A (en) Controller for hybrid vehicle
JP5124203B2 (en) Electric motor control device
JP4499052B2 (en) Electric motor
JP2009159760A (en) Electric motor
JP4494354B2 (en) Electric motor
JP2009240014A (en) Electric motor
JP2009240013A (en) Electric motor
JP2009240012A (en) Electric motor
JP2008099366A (en) Motor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110705