JP5286588B2 - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
JP5286588B2
JP5286588B2 JP2008094838A JP2008094838A JP5286588B2 JP 5286588 B2 JP5286588 B2 JP 5286588B2 JP 2008094838 A JP2008094838 A JP 2008094838A JP 2008094838 A JP2008094838 A JP 2008094838A JP 5286588 B2 JP5286588 B2 JP 5286588B2
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
inner peripheral
outer peripheral
circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008094838A
Other languages
Japanese (ja)
Other versions
JP2009254006A (en
Inventor
次郎 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008094838A priority Critical patent/JP5286588B2/en
Publication of JP2009254006A publication Critical patent/JP2009254006A/en
Application granted granted Critical
Publication of JP5286588B2 publication Critical patent/JP5286588B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

本発明は、回転子に設けられる永久磁石の界磁特性を変更できるようにした電動機に関する。   The present invention relates to an electric motor capable of changing the field characteristics of a permanent magnet provided in a rotor.

例えば、従来の電動機として、回転軸の周囲に互いに同心に設けられた、内周側永久磁石を具備する内周側回転子と外周側永久磁石を具備する外周側回転子とを備え、内周側回転子と外周側回転子との間の位相を変更することにより、永久磁石による界磁特性を制御するようにしたものが提案されている(例えば、特許文献1参照。)。   For example, as a conventional electric motor, provided with an inner peripheral side rotor having an inner peripheral side permanent magnet and an outer peripheral side rotor having an outer peripheral side permanent magnet provided concentrically with each other around a rotation shaft, There has been proposed a technique in which the field characteristics of a permanent magnet are controlled by changing the phase between the side rotor and the outer rotor (see, for example, Patent Document 1).

この特許文献1に記載の電動機では、例えば、図7に示すように、固定子100の内側で、回転軸101に固定された内周側回転子102の内周側永久磁石103が径方向に着磁され、内周側回転子102に対して回転可能な外周側回転子104の外周側永久磁石105が円周方向に着磁されている。そして、遠心力の作用により径方向に沿って変位する部材を使用することで、或いは、各回転子102,104が慣性により回転速度を維持した状態で固定子巻線に回転磁界を発生させることで、各回転子102,104の位相を変更している。
特開2002−204541号公報
In the electric motor described in Patent Document 1, for example, as shown in FIG. 7, the inner peripheral side permanent magnet 103 of the inner peripheral side rotor 102 fixed to the rotary shaft 101 is radially arranged inside the stator 100. The outer peripheral permanent magnet 105 of the outer peripheral rotor 104 that is magnetized and rotatable relative to the inner peripheral rotor 102 is magnetized in the circumferential direction. Then, by using a member that is displaced along the radial direction by the action of centrifugal force, or generating a rotating magnetic field in the stator winding while the rotors 102 and 104 maintain the rotation speed due to inertia. Thus, the phases of the rotors 102 and 104 are changed.
JP 2002-204541 A

ところで、電動機では、低速域においては、界磁を強く制御することでトルクを大きく出せるようにし、また、高速域においては、界磁を弱く制御して、固定子巻線に発生する誘起電圧を小さくして、回転数をアップできることが望ましい。   By the way, in the electric motor, the torque can be increased by controlling the field strongly in the low speed region, and the induced voltage generated in the stator winding is controlled by weakly controlling the field in the high speed region. It is desirable that the number of rotations can be increased by reducing the speed.

特許文献1に記載の電動機では、高速域にて弱め界磁位相に設定することが記載されているが、内周回転子の永久磁石による発生磁束よりも外周側回転子の永久磁石による発生磁束の方が強い場合には、固定子に及ぼす磁束を弱め切れず、結果的に誘起電圧を十分に低減できないという課題があった。   In the electric motor described in Patent Document 1, it is described that the field weakening phase is set in a high speed region, but the magnetic flux generated by the permanent magnet of the outer rotor is more than the magnetic flux generated by the permanent magnet of the inner rotor. In the case where is stronger, there is a problem that the magnetic flux exerted on the stator cannot be weakened, and as a result, the induced voltage cannot be reduced sufficiently.

例えば、図7に示すように、径方向に着磁された内周側永久磁石103と、周方向に着磁された外周側永久磁石105との組み合わせによる電動機では、低速回転域でのトルク増大のために、回転子側の永久磁石から固定子100に及ぶ磁束を大きくしようとすると、外周側永久磁石105の径方向の長さ(磁束発生面の面積)を大きくする必要がある。その場合、外周側永久磁石105に対して内周側永久磁石103の周方向の長さが小さくなり、弱め界磁位相時に磁束が固定子100にまで大きく及ぶことになり、誘起電圧を十分に弱められなくなるという課題がある。   For example, as shown in FIG. 7, in an electric motor comprising a combination of an inner peripheral side permanent magnet 103 magnetized in the radial direction and an outer peripheral side permanent magnet 105 magnetized in the circumferential direction, torque increase in a low speed rotation region Therefore, in order to increase the magnetic flux from the rotor side permanent magnet to the stator 100, it is necessary to increase the radial length (area of the magnetic flux generation surface) of the outer peripheral side permanent magnet 105. In that case, the circumferential length of the inner peripheral side permanent magnet 103 is smaller than the outer peripheral side permanent magnet 105, and the magnetic flux reaches the stator 100 greatly during the field weakening phase. There is a problem of being unable to be weakened.

本発明は、上述した事情に鑑みてなされたものであり、その目的は、低速域において強め界磁位相に設定した場合に大きなトルクを出すことができると共に、高速域において弱め界磁位相に設定した場合に誘起電圧を十分に小さくすることができるようにした電動機を提供することにある。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to set a strong field phase in the low speed range and to set a weak field phase in the high speed range. It is an object of the present invention to provide an electric motor that can sufficiently reduce the induced voltage.

前述した目的を達成するために、請求項3に係る発明は、その着磁方向が周方向に向くように周方向に所定の角度間隔で配置された複数の外周側永久磁石(例えば、実施形態における外周側永久磁石9A)を具備する外周側回転子(例えば、実施形態における外周側回転子5)と、該外周側回転子と同心に設けられるとともに、その着磁方向が径方向に向くように周方向に所定間隔で配置された複数の第1内周側永久磁石(例えば、実施形態における第1内周側永久磁石9B)と、隣接する前記第1内周側永久磁石間で、且つ、前記第1内周側永久磁石より径方向外側に位置し、その着磁方向が周方向に向くように周方向に前記外周側永久磁石と同じ前記所定の角度間隔で配置された複数の第2内周側永久磁石(例えば、実施形態における第2内周側永久磁石9C)と、を具備する内周側回転子(例えば、実施形態における内周側回転子6)と、
前記外周側回転子と前記内周側回転子の少なくとも一方を回動させることで、前記外周側回転子と前記内周側回転子との間の相対的な位相を変更可能な位相変更手段(例えば、後述する実施形態の位相変更手段12)と、を備えることを特徴とする。
In order to achieve the above-described object, the invention according to claim 3 is directed to a plurality of outer peripheral side permanent magnets (for example, embodiments) arranged at predetermined angular intervals in the circumferential direction so that the magnetization direction thereof is in the circumferential direction. The outer peripheral side rotor (for example, the outer peripheral side rotor 5 in the embodiment) having the outer peripheral side permanent magnet 9A) is provided concentrically with the outer peripheral side rotor, and the magnetization direction thereof is directed in the radial direction. Between a plurality of first inner peripheral side permanent magnets (for example, the first inner peripheral side permanent magnet 9B in the embodiment) arranged at predetermined intervals in the circumferential direction and the adjacent first inner peripheral side permanent magnets, and A plurality of first magnets positioned radially outward from the first inner peripheral permanent magnet and arranged at the same predetermined angular interval as the outer peripheral permanent magnet in the circumferential direction so that the magnetization direction thereof is in the circumferential direction. 2 inner peripheral side permanent magnet (for example, the first in the embodiment The inner peripheral permanent magnets 9C), an inner periphery side rotor having a (e.g., the inner periphery side rotor 6 in the embodiment),
Phase changing means capable of changing a relative phase between the outer circumferential rotor and the inner circumferential rotor by rotating at least one of the outer circumferential rotor and the inner circumferential rotor. For example, it is characterized by comprising phase change means 12) of an embodiment described later.

請求項2に係る発明は、請求項1に係る電動機において、前記第2内周側永久磁石の径方向長さは、前記外周側永久磁石の径方向長さよりも短いことを特徴とする。
請求項3に係る発明は、その着磁方向が周方向に向くように周方向に所定間隔で配置された複数の外周側永久磁石(例えば、実施形態における外周側永久磁石9A)を具備する外周側回転子(例えば、実施形態における外周側回転子5)と、該外周側回転子と同心に設けられるとともに、その着磁方向が径方向に向くように周方向に所定間隔で配置された複数の第1内周側永久磁石(例えば、実施形態における第1内周側永久磁石9B)と、隣接する前記第1内周側永久磁石間で、且つ、前記第1内周側永久磁石より径方向外側に位置し、その着磁方向が周方向に向くように周方向に所定間隔で配置された複数の第2内周側永久磁石(例えば、実施形態における第2内周側永久磁石9C)と、を具備する内周側回転子(例えば、実施形態における内周側回転子6)と、前記外周側回転子と前記内周側回転子の少なくとも一方を回動させることで、前記外周側回転子と前記内周側回転子との間の相対的な位相を変更可能な位相変更手段(例えば、後述する実施形態の位相変更手段12)と、を備え、前記外周側永久磁石の磁束発生面の面積をA、前記第1内周側永久磁石の磁束発生面の面積をB、前記第2内周側永久磁石の磁束発生面の面積をCとしたとき、2A=B+2Cの関係が成立するように前記各永久磁石の寸法が設定されることを特徴とする。
According to a second aspect of the present invention, in the electric motor according to the first aspect, the radial length of the second inner peripheral permanent magnet is shorter than the radial length of the outer peripheral permanent magnet.
The invention according to claim 3 is an outer periphery including a plurality of outer peripheral side permanent magnets (for example, the outer peripheral side permanent magnet 9A in the embodiment) arranged at predetermined intervals in the circumferential direction so that the magnetization direction thereof is in the circumferential direction. A plurality of side rotors (for example, the outer circumferential rotor 5 in the embodiment) and a plurality of rotors arranged concentrically with the outer circumferential rotor and arranged in the circumferential direction so that the magnetization direction thereof is in the radial direction. Between the first inner peripheral side permanent magnet (for example, the first inner peripheral side permanent magnet 9B in the embodiment) and the adjacent first inner peripheral side permanent magnet, and a diameter larger than that of the first inner peripheral side permanent magnet. A plurality of second inner peripheral side permanent magnets (for example, the second inner peripheral side permanent magnet 9C in the embodiment) which are located on the outer side in the direction and are arranged at predetermined intervals in the circumferential direction so that the magnetization direction thereof is oriented in the circumferential direction. And an inner rotor (for example, in the embodiment) The inner rotor 6) and the outer rotor and the inner rotor relative to each other by rotating at least one of the outer rotor and the inner rotor. Phase change means (for example, phase change means 12 of the embodiment described later) capable of changing the correct phase, the area of the magnetic flux generation surface of the outer peripheral permanent magnet is A, and the first inner peripheral permanent magnet When the area of the magnetic flux generation surface is B and the area of the magnetic flux generation surface of the second inner peripheral permanent magnet is C, the dimensions of the permanent magnets are set so that the relationship 2A = B + 2C is established. Features.

請求項1に記載の電動機によれば、低速域において強め界磁位相に設定した場合に大きなトルクを出すことができると共に、高速域において弱め界磁位相に設定した場合に誘起電圧を十分に小さくすることができ、モータ鉄損を十分に下げることができる。   According to the electric motor of the first aspect, a large torque can be output when the strong field phase is set in the low speed range, and the induced voltage is sufficiently small when the weak field phase is set in the high speed range. The motor iron loss can be sufficiently reduced.

請求項2に記載の電動機によれば、弱め界磁位相に設定した場合に誘起電圧をより確実に十分小さくすることができ、モータ鉄損を十分に下げることができる。
また、請求項3に記載の電動機によれば、低速域において強め界磁位相に設定した場合に大きなトルクを出すことができると共に、高速域において弱め界磁位相に設定した場合に誘起電圧を十分に小さくすることができ、モータ鉄損を十分に下げることができる。さらに、弱め界磁位相に設定した場合に誘起電圧をより確実に十分小さくすることができ、モータ鉄損を十分に下げることができる。
According to the electric motor of the second aspect, when the field weakening phase is set, the induced voltage can be made sufficiently smaller and the motor iron loss can be lowered sufficiently.
According to the third aspect of the present invention, a large torque can be generated when the strong field phase is set in the low speed range, and the induced voltage is sufficiently increased when the weak field phase is set in the high speed range. The motor iron loss can be sufficiently reduced. Furthermore, when the field weakening phase is set, the induced voltage can be made sufficiently smaller and the motor iron loss can be sufficiently reduced.

以下、本発明の一実施形態に係る電動機について図面に基づいて詳細に説明する。本実施形態の電動機1は、図1および図2に示すように、円環状の固定子2の内周側に回転子ユニット3が配置されたインナロータ型のブラシレスDCモータであり、例えば、ハイブリッド車両や電動車両等の走行駆動源として用いられる。固定子2は複数相の固定子巻線2aを有し、回転子ユニット3は軸芯部に回転軸4を有している。この電動機1を車両の走行駆動源として用いる場合、電動機1の回転力はトランスミッション(図示せず)を介して車輪の駆動軸(図示せず)に伝達される。この場合、電動機1を車両の減速時に発電機として機能させれば、発電電力を回生エネルギーとして蓄電器に回収することができる。また、ハイブリッド車両においては、電動機1の回転軸4をさらに内燃機関のクランクシャフト(図示せず)に連結することにより、内燃機関による発電にも利用することができる。   Hereinafter, an electric motor according to an embodiment of the present invention will be described in detail with reference to the drawings. As shown in FIGS. 1 and 2, the electric motor 1 of the present embodiment is an inner rotor type brushless DC motor in which a rotor unit 3 is arranged on the inner peripheral side of an annular stator 2, for example, a hybrid vehicle And used as a driving source for electric vehicles and the like. The stator 2 has a multi-phase stator winding 2a, and the rotor unit 3 has a rotating shaft 4 at the shaft core. When this electric motor 1 is used as a vehicle driving source, the rotational force of the electric motor 1 is transmitted to a wheel drive shaft (not shown) via a transmission (not shown). In this case, if the electric motor 1 is caused to function as a generator when the vehicle is decelerated, the generated power can be recovered as regenerative energy in the battery. Further, in the hybrid vehicle, the rotating shaft 4 of the electric motor 1 can be further connected to a crankshaft (not shown) of the internal combustion engine so that it can be used for power generation by the internal combustion engine.

回転子ユニット3は、円環状の外周側回転子5と、この外周側回転子5の内側に同心に配置される円環状の内周側回転子6とを備え、外周側回転子5と内周側回転子6が設定角度の範囲で相対回動可能とされている。   The rotor unit 3 includes an annular outer circumferential rotor 5 and an annular inner circumferential rotor 6 disposed concentrically inside the outer circumferential rotor 5. The circumferential rotor 6 is rotatable relative to a set angle range.

外周側回転子5と内周側回転子6では、回転子本体である円環状のロータ鉄心7、8が、例えば、複数の電磁鋼板を回転軸4に沿う方向に積層してなる積層鋼板によって形成されており、各ロータ鉄心7、8に軸方向に延出する複数の磁石装着スロット7a、8a、8bが円周方向に沿って設けられている。   In the outer peripheral side rotor 5 and the inner peripheral side rotor 6, the annular rotor cores 7 and 8 which are rotor main bodies are made of, for example, a laminated steel plate in which a plurality of electromagnetic steel plates are laminated in a direction along the rotation axis 4. A plurality of magnet mounting slots 7a, 8a, 8b that are formed and extend in the axial direction are provided in the respective rotor cores 7, 8 along the circumferential direction.

各磁石装着スロット7a、8a、8bには、厚み方向に磁化された平板状の外周側永久磁石9Aと第1、第2の内周側永久磁石9B、9Cがそれぞれ装着されている。この場合、図3(a)、(b)に示すように、複数の外周側永久磁石9Aは、着磁方向(厚み方向)が周方向に向くように周方向に所定間隔(本実施形態では、22.5°)で配置されている。   Each magnet mounting slot 7a, 8a, 8b is mounted with a flat plate-like outer peripheral permanent magnet 9A and first and second inner peripheral permanent magnets 9B, 9C magnetized in the thickness direction. In this case, as shown in FIGS. 3A and 3B, the plurality of outer peripheral side permanent magnets 9A have a predetermined interval in the circumferential direction (in this embodiment, the magnetization direction (thickness direction) faces the circumferential direction). 22.5 °).

また、第1内周側永久磁石9Bは、着磁方向(厚み方向)が径方向に向くように周方向に所定間隔(本実施形態では、22.5°)で配置され、第2内周側永久磁石9Cは、隣接する第1内周側永久磁石9B間で、且つ、第1内周側永久磁石9Bより径方向外側に位置させて、着磁方向(厚み方向)が周方向に向くように周方向に所定間隔(本実施形態では、22.5°)で配置されている。従って、内周側回転子6では、隣接する第1内周側永久磁石9Bと第2内周側永久磁石9Cとが側面視コの字状にそれぞれ配置されている。   The first inner peripheral permanent magnet 9B is arranged at a predetermined interval (22.5 ° in the present embodiment) in the circumferential direction so that the magnetization direction (thickness direction) is directed in the radial direction, and the second inner peripheral magnet 9B The side permanent magnet 9C is positioned between the adjacent first inner peripheral permanent magnets 9B and radially outside the first inner peripheral permanent magnet 9B, and the magnetization direction (thickness direction) faces the circumferential direction. Thus, it arrange | positions by the predetermined space | interval (22.5 degrees in this embodiment) in the circumferential direction. Therefore, in the inner circumferential rotor 6, the adjacent first inner circumferential permanent magnet 9B and second inner circumferential permanent magnet 9C are arranged in a U-shape as viewed from the side.

また、外周側永久磁石9Aと第1及び第2の内周側永久磁石9B,9Cは同数(本実施形態では、8極対)設けられており、外周側回転子5上において周方向に隣接する外周側永久磁石9Aの磁極の向きは逆に設定され、内周側回転子6上において周方向に隣接する第1内周側永久磁石9Bと第2内周側永久磁石9Cの磁極の向きも、それぞれ逆に設定されている。また、第1内周側永久磁石9Bは、その外周側の磁極が、隣接する第2内周側永久磁石9Cの互いに対向する磁極と同極となるように設定されている。   Further, the outer peripheral side permanent magnet 9 </ b> A and the first and second inner peripheral side permanent magnets 9 </ b> B and 9 </ b> C are provided in the same number (in this embodiment, 8 pole pairs), and are adjacent on the outer peripheral side rotor 5 in the circumferential direction. The direction of the magnetic poles of the outer peripheral side permanent magnet 9A is reversed, and the direction of the magnetic poles of the first inner peripheral side permanent magnet 9B and the second inner peripheral side permanent magnet 9C adjacent in the circumferential direction on the inner peripheral side rotor 6 is set. Are also set in reverse. Further, the first inner peripheral side permanent magnet 9B is set so that the magnetic pole on the outer peripheral side thereof has the same polarity as the opposing magnetic poles of the adjacent second inner peripheral side permanent magnet 9C.

各永久磁石9A、9B、9Cは、着磁方向の寸法(厚さ)を同一に設定されている。また、外周側永久磁石9Aの径方向長さをa、第1内周側永久磁石9Bの周方向長さをb、第2内周側永久磁石9Cの径方向長さをcとするとき、「2a=b+2c」の関係が成立するように各永久磁石9A、9B、9Cの長さa、b、cが設定されている。このため、外周側永久磁石9A、第1内周側永久磁石9B、及び第2内周側永久磁石9Cの軸方向における長さが略同一であることから、外周側永久磁石9Aの磁束発生面の面積をA、第1内周側永久磁石9Bの磁束発生面の面積をB、第2内周側永久磁石9Cの磁束発生面の面積をCとするとき、「2A=B+2C」の関係が成立するように各永久磁石9A、9B、9Cの寸法が設定されている。   The permanent magnets 9A, 9B, and 9C have the same dimension (thickness) in the magnetization direction. When the radial length of the outer peripheral permanent magnet 9A is a, the circumferential length of the first inner peripheral permanent magnet 9B is b, and the radial length of the second inner peripheral permanent magnet 9C is c, The lengths a, b, c of the permanent magnets 9A, 9B, 9C are set so that the relationship of “2a = b + 2c” is established. For this reason, since the length in the axial direction of the outer peripheral side permanent magnet 9A, the first inner peripheral side permanent magnet 9B, and the second inner peripheral side permanent magnet 9C is substantially the same, the magnetic flux generating surface of the outer peripheral side permanent magnet 9A Where A is the area of the magnetic flux generation surface of the first inner peripheral permanent magnet 9B, B is the area of the magnetic flux generation surface of the second inner peripheral permanent magnet 9C, and the relationship of “2A = B + 2C” is established. The dimensions of the permanent magnets 9A, 9B, 9C are set so as to be established.

そして、図3(a)に示すように、隣接する外周側永久磁石9Aの対向N極(またはS極)間に、第1内周側永久磁石9Bおよび第2内周側永久磁石9Cの同極つまりN極(またはS極)が対峙するように、外周側回転子5と内周側回転子6の相対回転角度を調整したときに、回転子ユニット3全体の界磁が最も強められる「強め界磁位相」の状態とすることができる。また、図3(b)に示すように、隣接する外周側永久磁石9Aの対向N極(またはS極)間に、第1内周側永久磁石9Bおよび第2内周側永久磁石9Cの異極つまりS極(またはN極)が対峙するように、外周側回転子5と内周側回転子6の相対回転角度を調整したときに、回転子ユニット3全体の界磁が最も弱められる「弱め界磁位相」の状態とすることができるようになっている。   Then, as shown in FIG. 3A, between the opposing N poles (or S poles) of the adjacent outer peripheral permanent magnets 9A, the first inner peripheral permanent magnet 9B and the second inner peripheral permanent magnet 9C are the same. When the relative rotation angle of the outer rotor 5 and the inner rotor 6 is adjusted so that the poles, that is, the N pole (or S pole) face each other, the field of the entire rotor unit 3 is strengthened most. It is possible to achieve a “strong field phase” state. Further, as shown in FIG. 3B, the difference between the first inner peripheral side permanent magnet 9B and the second inner peripheral side permanent magnet 9C is between the opposing N poles (or S poles) of the adjacent outer peripheral side permanent magnets 9A. When the relative rotation angle of the outer rotor 5 and the inner rotor 6 is adjusted so that the poles, that is, the S pole (or N pole) face each other, the field of the entire rotor unit 3 is weakened most. It is possible to achieve a “weak field phase” state.

また、回転子ユニット3は、外周側回転子5と内周側回転子6を相対回動させるための回動機構11を備えている。この回動機構11は、両回転子5、6の相対位相を任意に変更するための位相変更手段12を構成するものであり、非圧縮性の作動流体である作動液の圧力によって操作されるようになっている。位相変更手段12は、上記の回動機構11と、この回動機構11に対する作動液の給排を制御する液圧制御装置(図示せず)とを主要な要素として構成されている。   The rotor unit 3 includes a rotation mechanism 11 for relatively rotating the outer peripheral rotor 5 and the inner peripheral rotor 6. This rotating mechanism 11 constitutes a phase changing means 12 for arbitrarily changing the relative phase of both the rotors 5 and 6, and is operated by the pressure of the working fluid which is an incompressible working fluid. It is like that. The phase changing means 12 includes the above-described rotation mechanism 11 and a hydraulic pressure control device (not shown) that controls supply and discharge of hydraulic fluid to and from the rotation mechanism 11 as main elements.

回動機構11は、回転軸4の外周に一体回転可能にスプライン嵌合されるベーンロータ14と、ベーンロータ14の外周側に相対回動可能に配置される環状ハウジング15とを備え、この環状ハウジング15が内周側回転子6の内周面に一体に嵌合固定されると共に、ベーンロータ14が、環状ハウジング15と内周側回転子6の軸方向の両側の端面を跨ぐ円板状の一対のドライブプレート16A、16B(端板)を介して外周側回転子5に一体に結合されている。従って、ベーンロータ14は回転軸4と外周側回転子5とに一体化され、環状ハウジング15は内周側回転子6と一体化されている。なお、図中22は、ドライブプレート16A、16Bとベーンロータ14を結合するボルトであり、23は、ドライブプレート16A、16Bと外周側回転子5を結合するボルトである。   The rotating mechanism 11 includes a vane rotor 14 that is spline-fitted to the outer periphery of the rotating shaft 4 so as to be integrally rotatable, and an annular housing 15 that is disposed to be relatively rotatable on the outer peripheral side of the vane rotor 14. Are integrally fitted and fixed to the inner peripheral surface of the inner rotor 6, and the vane rotor 14 is a pair of disk-like members straddling the end faces of both sides of the annular housing 15 and the inner rotor 6 in the axial direction. It is integrally coupled to the outer peripheral rotor 5 via drive plates 16A and 16B (end plates). Therefore, the vane rotor 14 is integrated with the rotary shaft 4 and the outer peripheral rotor 5, and the annular housing 15 is integrated with the inner peripheral rotor 6. In the figure, reference numeral 22 denotes a bolt for connecting the drive plates 16A, 16B and the vane rotor 14, and reference numeral 23 denotes a bolt for connecting the drive plates 16A, 16B to the outer peripheral rotor 5.

ベーンロータ14は、回転軸4にスプライン嵌合される円筒状のボス部17の外周に、径方向外側に突出する複数のベーン18が円周方向等間隔に設けられたものである。一方、環状ハウジング15は、内周面に円周方向等間隔に複数の凹部19が設けられ、これら各凹部19にベーンロータ14の対応するベーン18が収容配置されている。各凹部19は、ベーン18の先端部の回転軌道にほぼ合致する円弧面を有する底壁20と、隣接する凹部19同士を画成する仕切壁21によって構成され、ベーンロータ14と環状ハウジング15の相対回動時に、ベーン18が一方の仕切壁21と他方の仕切壁21の間を移動する。なお、各ベーン18の先端部には、底壁20と軸方向に沿うように摺接するシール31aと、シール31aを底壁20に向けて押圧するスプリング31bからなるシール部材31が設けられており、ベーン18と底壁20との間を液密にシールする。また、各仕切壁21の先端部にも、ボス部17の外周面と軸方向に沿うように摺接するシール32aと、シール32aをボス部17の外周面に向けて押圧するスプリング32bからなるシール部材32が設けられており、仕切壁21とボス部17の外周面との間を液密にシールする。   In the vane rotor 14, a plurality of vanes 18 protruding radially outward are provided at equal intervals in the circumferential direction on the outer periphery of a cylindrical boss portion 17 that is spline-fitted to the rotary shaft 4. On the other hand, the annular housing 15 is provided with a plurality of concave portions 19 on the inner peripheral surface at equal intervals in the circumferential direction, and the corresponding vanes 18 of the vane rotor 14 are accommodated in these concave portions 19. Each recess 19 includes a bottom wall 20 having an arcuate surface that substantially matches the rotational trajectory of the tip of the vane 18, and a partition wall 21 that defines the adjacent recesses 19, and the relative relationship between the vane rotor 14 and the annular housing 15. At the time of rotation, the vane 18 moves between the one partition wall 21 and the other partition wall 21. The tip of each vane 18 is provided with a seal member 31 including a seal 31a that is slidably contacted with the bottom wall 20 along the axial direction, and a spring 31b that presses the seal 31a toward the bottom wall 20. The space between the vane 18 and the bottom wall 20 is liquid-tightly sealed. Further, a seal 32 a which is slidably contacted with the outer peripheral surface of the boss portion 17 along the axial direction at the distal end portion of each partition wall 21 and a spring 32 b which presses the seal 32 a toward the outer peripheral surface of the boss portion 17. The member 32 is provided and seals between the partition wall 21 and the outer peripheral surface of the boss portion 17 in a liquid-tight manner.

外周側回転子5とベーンロータ14を連結する両側のドライブプレート16A、16Bは、環状ハウジング15の両側面(軸方向の端面)に摺動自在に密接し、環状ハウジング15の各凹部19の側方をそれぞれ閉塞する。従って、環状ハウジング15の各凹部19は、ベーンロータ14のボス部17と両側のドライブプレート16A、16Bと共にそれぞれ独立した空間を形成し、この空間は、作動液が導入される導入空間となっている。各導入空間内は、ベーンロータ14の対応する各ベーン18によってそれぞれ2室に隔成され、一方の室が進角側作動室24とされ、他方の室が遅角側作動室25とされている。   The drive plates 16A and 16B on both sides connecting the outer rotor 5 and the vane rotor 14 are slidably in close contact with both side surfaces (axial end surfaces) of the annular housing 15, and the side of each recess 19 of the annular housing 15 Respectively. Accordingly, each concave portion 19 of the annular housing 15 forms an independent space together with the boss portion 17 of the vane rotor 14 and the drive plates 16A and 16B on both sides, and this space is an introduction space into which hydraulic fluid is introduced. . Each introduction space is divided into two chambers by corresponding vanes 18 of the vane rotor 14, one chamber being an advance side working chamber 24 and the other chamber being a retard side working chamber 25. .

進角側作動室24は、内部に導入された作動液の圧力によって内周側回転子6を外周側回転子5に対して進角方向に相対回動させ、遅角側作動室25は、内部に導入された作動液の圧力によって内周側回転子6を外周側回転子5に対して遅角方向に相対回動させる。この場合、「進角」とは、内周側回転子6を外周側回転子5に対して図2中の矢印Rで示す電動機1の主回転方向に進めることを言い、「遅角」とは、内周側回転子6を外周側回転子5に対して、電動機1の主回転方向Rと逆側に進めることを言うものとする。   The advance side working chamber 24 rotates the inner circumferential side rotor 6 relative to the outer circumferential side rotor 5 in the advance direction by the pressure of the working fluid introduced inside, and the retard side working chamber 25 is The inner rotor 6 is rotated relative to the outer rotor 5 in the retard direction by the pressure of the working fluid introduced therein. In this case, the “advance angle” means that the inner rotor 6 is advanced in the main rotation direction of the electric motor 1 indicated by the arrow R in FIG. 2 with respect to the outer rotor 5. Means that the inner rotor 6 is moved in the direction opposite to the main rotation direction R of the electric motor 1 with respect to the outer rotor 5.

また、各進角側作動室24と遅角側作動室25に対する作動液の給排は回転軸4を通して行われるようになっている。具体的に、進角側作動室24は、回転軸4に形成された通路孔26aと、通路孔26aと接続される外周面に形成された環状溝26bと、ベーンロータ14のボス部17に略径方向に形成された複数の導通孔26cとを介して液圧制御装置と接続される。また、遅角側作動室25は、回転軸4に形成された通路孔27aと、通路孔27aと接続される外周面に形成された環状溝27bと、ベーンロータ14のボス部17に略径方向に形成された複数の導通孔27cとを介して液圧制御装置と接続される。   Further, the supply and discharge of the hydraulic fluid to and from each of the advance side working chambers 24 and the retard side working chambers 25 is performed through the rotating shaft 4. Specifically, the advance side working chamber 24 is substantially formed in a passage hole 26 a formed in the rotating shaft 4, an annular groove 26 b formed in the outer peripheral surface connected to the passage hole 26 a, and the boss portion 17 of the vane rotor 14. The hydraulic pressure control device is connected through a plurality of conduction holes 26c formed in the radial direction. Further, the retard side working chamber 25 is formed in a substantially radial direction in the passage hole 27a formed in the rotating shaft 4, the annular groove 27b formed in the outer peripheral surface connected to the passage hole 27a, and the boss portion 17 of the vane rotor 14. The hydraulic pressure control device is connected through a plurality of conduction holes 27c formed in the.

以上の構成において、この電動機1の界磁特性を変更する場合、液圧制御装置による作動液の給排により、進角側作動室24と遅角側作動室25の一方に作動液を供給すると共に他方から作動液を排出する。そして、こうして作動液の給排が制御されると、ベーンロータ14と環状ハウジング15が相対的に回動し、それにともなって外周側回転子5と内周側回転子6の相対位相が操作される。   In the above configuration, when the field characteristics of the electric motor 1 are changed, the hydraulic fluid is supplied to one of the advance side working chamber 24 and the retard side working chamber 25 by supplying and discharging the hydraulic fluid by the hydraulic pressure control device. At the same time, the hydraulic fluid is discharged from the other side. When the supply and discharge of the hydraulic fluid is controlled in this way, the vane rotor 14 and the annular housing 15 are relatively rotated, and the relative phases of the outer peripheral rotor 5 and the inner peripheral rotor 6 are operated accordingly. .

外周側回転子5と内周側回転子6の相対位相が操作されると、図3(a)に示す強め界磁位相の状態と、図3(b)に示す弱め界磁位相の状態の間で、固定子2に及ぼす磁界の強さが変化する。磁界の強さが変化すると、それに伴って誘起電圧定数が変化し、その結果、電動機1の特性が変更される。即ち、強め界磁によって誘起電圧定数が大きくなると、電動機1として運転可能な許容回転速度は低下するものの、出力可能な最大トルクは増大し、逆に、弱め界磁によって誘起電圧定数が小さくなると、電動機1の出力可能な最大トルクは減少するものの、運転可能な許容回転速度は上昇する。   When the relative phase between the outer rotor 5 and the inner rotor 6 is manipulated, the strong field phase shown in FIG. 3A and the weak field phase shown in FIG. In between, the strength of the magnetic field exerted on the stator 2 changes. When the strength of the magnetic field changes, the induced voltage constant changes accordingly, and as a result, the characteristics of the electric motor 1 are changed. That is, when the induced voltage constant increases due to the strong field, the allowable rotational speed at which the motor 1 can be operated decreases, but the maximum torque that can be output increases. Conversely, when the induced voltage constant decreases due to the weak field, Although the maximum torque that can be output from the electric motor 1 decreases, the allowable rotational speed at which the motor 1 can operate increases.

特に本電動機1においては、外周側回転子5の外周側永久磁石9Aを着磁方向が周方向を向くように配置し、内周側回転子6の内周側永久磁石として、着磁方向が径方向を向く第1内周側永久磁石9Bと、その外周側の着磁方向が周方向を向く第2内周側エッジ9Cとを配置し、しかも、各永久磁石9A、9B、9Cの長さを上述のように設定している。このため、図3(a)に示すように、強め界磁位相に設定した場合に、強い界磁を固定子2に及ぼすことができ、図3(b)に示すように、弱め界磁位相に設定した場合に、界磁の影響を固定子2にほとんど及ぼさないようにすることができる。即ち、低速域において強め界磁位相に設定した場合には、大きなトルクを取り出すことができ、高速域において弱め界磁位相に設定した場合には、誘起電圧をほぼゼロにすることができ、モータ鉄損を十分に下げることができる。   In particular, in the present electric motor 1, the outer peripheral side permanent magnet 9 </ b> A of the outer peripheral side rotor 5 is arranged so that the magnetization direction faces the circumferential direction, and the magnetization direction is set as the inner peripheral side permanent magnet of the inner peripheral side rotor 6. A first inner peripheral side permanent magnet 9B facing the radial direction and a second inner peripheral side edge 9C whose outer peripheral side magnetization direction faces the circumferential direction are arranged, and the length of each permanent magnet 9A, 9B, 9C is arranged. Is set as described above. Therefore, when the strong field phase is set as shown in FIG. 3A, a strong field can be exerted on the stator 2, and as shown in FIG. When set to, the influence of the field can be hardly exerted on the stator 2. That is, when the strong field phase is set in the low speed range, a large torque can be taken out, and when the weak field phase is set in the high speed range, the induced voltage can be almost zero, Iron loss can be reduced sufficiently.

例えば、図4に示す比較例のように、外周側回転子5の外周側永久磁石9Aが円周方向に着磁された磁石で、内周側回転子6の内周側永久磁石が径方向に着磁された永久磁石9B(本実施形態の第1内周側永久磁石に相当)だけの組み合わせでは、低速回転域でのトルク増大のために、外周側永久磁石9Aの径方向の長さ(磁束発生面の面積)を単純に大きくする(本実施形態の外周側永久磁石と第2内周側永久磁石の径方向の長さの合計)と、それに対して内周側永久磁石9Bの周方向の長さが相対的に小さくなり、図示のように、弱め界磁位相時に磁束が固定子2にまで大きく及ぶことになり、誘起電圧を十分に弱められなくなってしまう。   For example, as in the comparative example shown in FIG. 4, the outer peripheral permanent magnet 9 </ b> A of the outer peripheral rotor 5 is magnetized in the circumferential direction, and the inner peripheral permanent magnet of the inner peripheral rotor 6 is radial. In the combination of only the permanent magnet 9B magnetized in the same manner (corresponding to the first inner peripheral side permanent magnet of this embodiment), the radial length of the outer peripheral side permanent magnet 9A is increased in order to increase the torque in the low speed rotation range. When the (area of the magnetic flux generation surface) is simply increased (the total length in the radial direction of the outer peripheral side permanent magnet and the second inner peripheral side permanent magnet of the present embodiment), the inner peripheral side permanent magnet 9B The length in the circumferential direction becomes relatively small, and as shown in the figure, the magnetic flux reaches the stator 2 greatly during the field weakening phase, and the induced voltage cannot be sufficiently weakened.

図5は、本実施形態と比較例を比べた場合の、内周側回転子6と外周側回転子5の相対角変化に対する誘起電圧の大きさの変化を示している。回転数は1000rpmである。このグラフから、弱め界磁位相にしたとき、本実施形態は比較例と比べて、十分に誘起電圧を下げられることが分かる。   FIG. 5 shows a change in the magnitude of the induced voltage with respect to a change in the relative angle between the inner circumferential rotor 6 and the outer circumferential rotor 5 when this embodiment is compared with a comparative example. The rotation speed is 1000 rpm. From this graph, it can be seen that when the field weakening phase is set, the induced voltage can be sufficiently lowered in this embodiment as compared with the comparative example.

従って、本実施形態の電動機1によれば、外周側回転子5が、その着磁方向が周方向に向くように周方向に所定間隔で配置された複数の外周側永久磁石9Aを具備し、内周側回転子6が、外周側回転子5と同心に設けられるとともに、その着磁方向が径方向に向くように周方向に所定間隔で配置された複数の第1内周側永久磁石9Bと、隣接する第1内周側永久磁石9B間で、且つ、第1内周側永久磁石9Bより径方向外側に位置し、その着磁方向が周方向に向くように周方向に所定間隔で配置された複数の第2内周側永久磁石9Cと、を具備するので、低速域において強め界磁位相に設定した場合に大きなトルクを出すことができると共に、高速域において弱め界磁位相に設定した場合に誘起電圧を十分に小さくすることができ、モータ鉄損を十分に下げることができる。   Therefore, according to the electric motor 1 of the present embodiment, the outer rotor 5 includes a plurality of outer permanent magnets 9A arranged at predetermined intervals in the circumferential direction so that the magnetization direction thereof is in the circumferential direction, The inner peripheral rotor 6 is provided concentrically with the outer peripheral rotor 5, and a plurality of first inner peripheral permanent magnets 9B arranged at predetermined intervals in the circumferential direction so that the magnetization direction thereof is directed in the radial direction. Between the adjacent first inner peripheral side permanent magnets 9B and radially outside of the first inner peripheral side permanent magnets 9B, and at a predetermined interval in the circumferential direction so that the magnetization direction is in the circumferential direction. Since a plurality of second inner peripheral side permanent magnets 9C are arranged, a large torque can be output when the strong field phase is set in the low speed range, and the weak field phase is set in the high speed range. The induced voltage can be reduced sufficiently if the motor iron It can be reduced sufficiently.

尚、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。   In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably.

例えば、図6に示す電動機1Aのように、第1内周側永久磁石9Bを、同一寸法の一対の永久磁石9B1,9B2を並べることで構成してもよい。
また、本実施形態では、位相変更手段12が内周側回転子6を回動させることで、外周側回転子5と内周側回転子6との間の相対的な位相を変更可能としているが、外周側回転子5を回動させることで、これら回転子5,6との間の相対的な位相を変更可能としてもよい。
For example, as in the electric motor 1A shown in FIG. 6, the first inner peripheral side permanent magnet 9B may be configured by arranging a pair of permanent magnets 9B1 and 9B2 having the same dimensions.
Further, in the present embodiment, the phase changing means 12 rotates the inner circumferential rotor 6 so that the relative phase between the outer circumferential rotor 5 and the inner circumferential rotor 6 can be changed. However, the relative phase between the rotors 5 and 6 may be changed by rotating the outer peripheral rotor 5.

本発明の一実施形態の電動機の断面図で、図2のI−I矢視断面図に相当する図である。It is sectional drawing of the electric motor of one Embodiment of this invention, and is a figure corresponded to the II sectional view taken on the line of FIG. 同電動機の軸線方向から見た断面図である。It is sectional drawing seen from the axial direction of the same electric motor. (a)は強め界磁位相のときの磁束の状態を示す図、(b)は弱め界磁位相のときの磁束の状態を示す図である。(A) is a figure which shows the state of the magnetic flux in the case of a strong field phase, (b) is a figure which shows the state of the magnetic flux in the case of a field weakening phase. 比較例における弱め界磁位相のときの磁束の状態を示す図である。It is a figure which shows the state of the magnetic flux in the case of a field weakening phase in a comparative example. 本実施形態と比較例の、内周側回転子と外周側回転子の相対角度変化に対する誘起電圧の大きさの変化を示すグラフである。It is a graph which shows the change of the magnitude | size of the induced voltage with respect to the relative angle change of an inner peripheral side rotor and an outer peripheral side rotor of this embodiment and a comparative example. 本発明の変形例に係る電動機の軸線方向から見た断面図である。It is sectional drawing seen from the axial direction of the electric motor which concerns on the modification of this invention. 従来の電動機を示す断面図である。It is sectional drawing which shows the conventional electric motor.

符号の説明Explanation of symbols

1 電動機
5 外周側回転子
6 内周側回転子
9A 外周側永久磁石
9B 第1内周側永久磁石
9C 第2内周側永久磁石
12 位相変更手段
DESCRIPTION OF SYMBOLS 1 Electric motor 5 Outer periphery side rotor 6 Inner periphery side rotor 9A Outer periphery side permanent magnet 9B 1st inner periphery side permanent magnet 9C 2nd inner periphery side permanent magnet 12 Phase change means

Claims (3)

その着磁方向が周方向に向くように周方向に所定の角度間隔で配置された複数の外周側永久磁石を具備する外周側回転子と、
該外周側回転子と同心に設けられるとともに、その着磁方向が径方向に向くように周方向に所定間隔で配置された複数の第1内周側永久磁石と、隣接する前記第1内周側永久磁石間で、且つ、前記第1内周側永久磁石より径方向外側に位置し、その着磁方向が周方向に向くように周方向に前記外周側永久磁石と同じ前記所定の角度間隔で配置された複数の第2内周側永久磁石と、を具備する内周側回転子と、
前記外周側回転子と前記内周側回転子の少なくとも一方を回動させることで、前記外周側回転子と前記内周側回転子との間の相対的な位相を変更可能な位相変更手段と、
を備えることを特徴とする電動機。
An outer peripheral rotor comprising a plurality of outer peripheral permanent magnets arranged at predetermined angular intervals in the circumferential direction so that the magnetization direction is oriented in the circumferential direction;
A plurality of first inner peripheral side permanent magnets that are provided concentrically with the outer peripheral rotor and are arranged at predetermined intervals in the circumferential direction so that the magnetization direction thereof is in the radial direction, and the adjacent first inner peripheral magnets The predetermined angular interval that is the same as that of the outer peripheral side permanent magnet in the circumferential direction so as to be located between the side permanent magnets and radially outward from the first inner peripheral side permanent magnet A plurality of second inner peripheral side permanent magnets arranged in the inner peripheral rotor,
Phase changing means capable of changing a relative phase between the outer circumferential rotor and the inner circumferential rotor by rotating at least one of the outer circumferential rotor and the inner circumferential rotor; ,
An electric motor comprising:
前記第2内周側永久磁石の径方向長さは、前記外周側永久磁石の径方向長さよりも短いことを特徴とする請求項1に記載の電動機。 The electric motor according to claim 1 , wherein a radial length of the second inner peripheral permanent magnet is shorter than a radial length of the outer peripheral permanent magnet . その着磁方向が周方向に向くように周方向に所定間隔で配置された複数の外周側永久磁石を具備する外周側回転子と、An outer peripheral rotor comprising a plurality of outer peripheral permanent magnets arranged at predetermined intervals in the circumferential direction so that the magnetization direction thereof is in the circumferential direction;
該外周側回転子と同心に設けられるとともに、その着磁方向が径方向に向くように周方向に所定間隔で配置された複数の第1内周側永久磁石と、隣接する前記第1内周側永久磁石間で、且つ、前記第1内周側永久磁石より径方向外側に位置し、その着磁方向が周方向に向くように周方向に所定間隔で配置された複数の第2内周側永久磁石と、を具備する内周側回転子と、  A plurality of first inner peripheral side permanent magnets that are provided concentrically with the outer peripheral rotor and are arranged at predetermined intervals in the circumferential direction so that the magnetization direction thereof is in the radial direction, and the adjacent first inner peripheral magnets A plurality of second inner peripheries disposed between the side permanent magnets and radially outward from the first inner peripheral side permanent magnet, and arranged at predetermined intervals in the circumferential direction so that the magnetization direction thereof faces the circumferential direction An inner peripheral rotor comprising a side permanent magnet;
前記外周側回転子と前記内周側回転子の少なくとも一方を回動させることで、前記外周側回転子と前記内周側回転子との間の相対的な位相を変更可能な位相変更手段と、  Phase changing means capable of changing a relative phase between the outer circumferential rotor and the inner circumferential rotor by rotating at least one of the outer circumferential rotor and the inner circumferential rotor; ,
を備え、  With
前記外周側永久磁石の磁束発生面の面積をA、前記第1内周側永久磁石の磁束発生面の面積をB、前記第2内周側永久磁石の磁束発生面の面積をCとしたとき、2A=B+2Cの関係が成立するように前記各永久磁石の寸法が設定されることを特徴とする電動機。  When the area of the magnetic flux generating surface of the outer peripheral permanent magnet is A, the area of the magnetic flux generating surface of the first inner peripheral permanent magnet is B, and the area of the magnetic flux generating surface of the second inner peripheral permanent magnet is C. The motor is characterized in that the dimensions of the permanent magnets are set so that the relationship 2A = B + 2C is established.
JP2008094838A 2008-04-01 2008-04-01 Electric motor Expired - Fee Related JP5286588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008094838A JP5286588B2 (en) 2008-04-01 2008-04-01 Electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008094838A JP5286588B2 (en) 2008-04-01 2008-04-01 Electric motor

Publications (2)

Publication Number Publication Date
JP2009254006A JP2009254006A (en) 2009-10-29
JP5286588B2 true JP5286588B2 (en) 2013-09-11

Family

ID=41314153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008094838A Expired - Fee Related JP5286588B2 (en) 2008-04-01 2008-04-01 Electric motor

Country Status (1)

Country Link
JP (1) JP5286588B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08275419A (en) * 1995-03-30 1996-10-18 Meidensha Corp Rotor of permanent magnet type rotary machine
JP4225001B2 (en) * 2002-08-09 2009-02-18 株式会社エクォス・リサーチ Electric motor

Also Published As

Publication number Publication date
JP2009254006A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
WO2007072622A1 (en) Electric motor
JP4762866B2 (en) Axial gap type motor
JP5037083B2 (en) Electric motor
JP2009254005A (en) Motor
JP2008289219A (en) Motor
JP4584206B2 (en) Electric motor
JP5286588B2 (en) Electric motor
JP4545702B2 (en) Electric motor
JP2008151214A (en) Vane type hydraulic equipment, motor, and valve timing control device for internal combustion engine
JP4932418B2 (en) Electric motor
JP4223526B2 (en) Electric motor
JP4213171B2 (en) Electric motor
JP2008067577A (en) Motor
JP4808529B2 (en) Electric motor
JP2008289213A (en) Motor
JP2007244063A (en) Motor
JP4499052B2 (en) Electric motor
JP5037076B2 (en) Electric motor
JP2009240013A (en) Electric motor
JP2009240012A (en) Electric motor
JP5085875B2 (en) Electric motor
JP4503543B2 (en) Electric motor
JP4494354B2 (en) Electric motor
JP4961289B2 (en) Electric motor
JP2009240057A (en) Electric motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121016

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121016

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121017

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130515

LAPS Cancellation because of no payment of annual fees