JP2009259690A - Electroluminescent element and its method for manufacturing - Google Patents

Electroluminescent element and its method for manufacturing Download PDF

Info

Publication number
JP2009259690A
JP2009259690A JP2008109055A JP2008109055A JP2009259690A JP 2009259690 A JP2009259690 A JP 2009259690A JP 2008109055 A JP2008109055 A JP 2008109055A JP 2008109055 A JP2008109055 A JP 2008109055A JP 2009259690 A JP2009259690 A JP 2009259690A
Authority
JP
Japan
Prior art keywords
substrate
layer
electroluminescent
filling layer
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008109055A
Other languages
Japanese (ja)
Inventor
Osamu Yoshitake
修 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008109055A priority Critical patent/JP2009259690A/en
Publication of JP2009259690A publication Critical patent/JP2009259690A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroluminescent element in which light-emission brightness deterioration by long-time storage is suppressed. <P>SOLUTION: The electroluminescent element is equipped with an electroluminescent layer formed on a substrate, an organic filling layer which covers the electroluminescent layer, and fills between the substrate and a sealing substrate opposing to the substrate, and an inorganic sealing part which covers a side face of the organic filling layer, and on a cross-sectional face perpendicular to the substrate, the inorganic sealing part has a convex arched face on the organic filling layer side. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は電界発光素子及びその製造方法に関するものであり、詳しくは発光層に電界を掛けて発光するタイプの薄型ディスプレイの封止方法に関するものである。   The present invention relates to an electroluminescent device and a method for manufacturing the same, and more particularly to a method for sealing a thin display of a type that emits light by applying an electric field to a light emitting layer.

電界発光素子は、陰極と陽極との間に流れる電流によって、両電極間にある発光体が発光する。一般的に、発光体に有機化合物を用いた場合には有機EL素子、無機化合物を用いた場合には無機EL素子と呼ばれている。電界発光素子は自発光性であるために視認性が高いと同時に、液晶表示素子に比べて薄型軽量化が可能であるため、特に有機EL素子はモバイル用途での応用展開が進められている。   In the electroluminescent element, a light emitter between the two electrodes emits light by a current flowing between the cathode and the anode. In general, when an organic compound is used as a light emitter, it is called an organic EL element, and when an inorganic compound is used, it is called an inorganic EL element. Since the electroluminescent element is self-luminous and has high visibility, it can be made thinner and lighter than a liquid crystal display element, and therefore, organic EL elements are being developed for mobile applications.

一方で、有機EL素子には、ごく微量の水分や酸素等により、有機発光性材料の変質、あるいは、発光層と電極間の剥離等を生じ、発光効率の低下、非発光領域(ダークスポット)の増大等の表示性能劣化が発生するという課題がある。   On the other hand, in organic EL elements, a very small amount of moisture, oxygen, or the like causes deterioration of the organic light-emitting material or peeling between the light-emitting layer and the electrode, resulting in a decrease in light emission efficiency, non-light-emitting region (dark spot) There is a problem that display performance degradation such as an increase in the amount of display occurs.

このような問題に対する対策として、有機電界発光層を有機充填層で被覆し、さらに基板と封止基板とを無機封止部(ガラスフリット)を用いて封止することで、外部からの水分の浸入を極力抑制し、より防湿性を高める方法が知られている(特許文献1参照)。
特開2007−200884号公報
As a countermeasure against such a problem, the organic electroluminescent layer is covered with an organic filling layer, and the substrate and the sealing substrate are sealed with an inorganic sealing portion (glass frit), so that moisture from the outside can be removed. A method is known that suppresses intrusion as much as possible and further improves moisture resistance (see Patent Document 1).
JP 2007-2000884 A

特許文献1の有機EL素子の構成例として、図3にその断面図を示す。基板200上には、第一電極層220と有機発光層230と第二電極層240とから成る有機電界発光層210、保護膜250、有機充填材290、溝270が設けられた封止基板260が配置されている。さらに、基板200と封止基板260がガラスフリット280で封止されている。   As a configuration example of the organic EL element of Patent Document 1, FIG. On the substrate 200, a sealing substrate 260 provided with an organic electroluminescent layer 210 including a first electrode layer 220, an organic light emitting layer 230, and a second electrode layer 240, a protective film 250, an organic filler 290, and a groove 270. Is arranged. Further, the substrate 200 and the sealing substrate 260 are sealed with a glass frit 280.

特許文献1では、封止基板260の外周領域に溝270を設け、有機充填材290がガラスフリット280に接触しない構成を採っている。こうすることで、基板200と封止基板260をガラスフリット280で封止する際に、レーザーの高熱により有機充填材290が膨張し、ガラスフリット280が剥離して接着力が低下するのを防いでいる。しかし、基板200には溝が形成されていないため、有機充填材290が基板200表面を伝ってガラスフリット280に接触する可能性がある。その場合、ガラスフリット280にレーザーを照射して基板200と封止基板260とを封止する際のレーザーの高熱や、有機EL素子の使用時に発生する熱などで有機充填材290が膨張する。そのため、有機充填材290の膨張によって発生する応力がガラスフリット280の損傷をもたらし、素子の劣化を引き起こす恐れがあった。   In Patent Document 1, a groove 270 is provided in the outer peripheral region of the sealing substrate 260 so that the organic filler 290 does not contact the glass frit 280. Thus, when the substrate 200 and the sealing substrate 260 are sealed with the glass frit 280, the organic filler 290 expands due to the high heat of the laser, and the glass frit 280 is peeled off to prevent the adhesive force from being lowered. It is out. However, since no groove is formed in the substrate 200, the organic filler 290 may contact the glass frit 280 along the surface of the substrate 200. In that case, the organic filler 290 expands due to the high heat of the laser when the glass frit 280 is irradiated with the laser to seal the substrate 200 and the sealing substrate 260, the heat generated when the organic EL element is used, or the like. Therefore, the stress generated by the expansion of the organic filler 290 may cause damage to the glass frit 280 and cause deterioration of the element.

これは有機EL素子に限らず、同様の封止方法を用いた無機EL素子においても問題となる。   This is not only an organic EL element but also a problem in an inorganic EL element using a similar sealing method.

本発明の目的は、水分の浸入を極力防ぐことにより、長期間保存による発光輝度劣化を抑えた電界発光素子及びその製造方法を提供することにある。   An object of the present invention is to provide an electroluminescent device and a method for manufacturing the same, in which the deterioration of light emission luminance due to long-term storage is suppressed by preventing moisture from entering as much as possible.

本発明に係わる電界発光素子は、基板上に形成される電界発光層と、前記電界発光層を覆って前記基板と前記基板に対向する封止基板との間を充填する有機充填層と、前記有機充填層の側面を覆う無機封止部と、を備える電界発光素子であって、前記基板に垂直な断面において、前記無機封止部は前記有機充填層側に凸の弓形状面を有していることを特徴とする。   The electroluminescent device according to the present invention includes an electroluminescent layer formed on a substrate, an organic filling layer that covers the electroluminescent layer and fills a space between the substrate and the sealing substrate facing the substrate, And an inorganic sealing portion that covers a side surface of the organic filling layer, wherein the inorganic sealing portion has a convex arcuate surface on the organic filling layer side in a cross section perpendicular to the substrate. It is characterized by.

また、本発明に係わる電界発光素子の製造方法は、基板上に電界発光層を形成する工程と、前記電界発光層を覆って前記基板と前記基板に対向する封止基板との間に有機充填層を形成する工程と、前記有機充填層の側面を覆う無機封止部を形成する工程と、を含む電界発光素子の製造方法であって、前記有機充填層を形成する際に、前記有機充填層の側面が前記基板と前記封止基板とから成る基板対の基板端に対して凹形状に形成され、前記基板に垂直な断面において、前記無機封止部が前記有機充填層側に凸の弓形状面を有するように形成されることを特徴とする。   The method of manufacturing an electroluminescent element according to the present invention includes a step of forming an electroluminescent layer on a substrate and an organic filling between the substrate and the sealing substrate facing the substrate so as to cover the electroluminescent layer. A method of manufacturing an electroluminescent element comprising: a step of forming a layer; and a step of forming an inorganic sealing portion covering a side surface of the organic filling layer, wherein the organic filling layer is formed when the organic filling layer is formed. The side surface of the layer is formed in a concave shape with respect to the substrate end of the substrate pair composed of the substrate and the sealing substrate, and the inorganic sealing portion is convex to the organic filling layer side in a cross section perpendicular to the substrate. It is formed to have an arcuate surface.

本発明によれば、基板に垂直な断面において、無機封止部は有機充填層側に凸の弓形状面を有しているので、有機充填層の膨張に伴う無機封止部への応力を無機封止部全体に分散することができる。そのため、有機充填層と無機封止部が接触していても、無機封止部の損傷を抑制でき、長期間に渡って、電界発光素子の発光輝度劣化を防止することができる。   According to the present invention, since the inorganic sealing portion has a convex arcuate surface on the organic filling layer side in a cross section perpendicular to the substrate, the stress on the inorganic sealing portion accompanying the expansion of the organic filling layer is reduced. It can disperse | distribute to the whole inorganic sealing part. Therefore, even if the organic filling layer and the inorganic sealing portion are in contact with each other, damage to the inorganic sealing portion can be suppressed, and deterioration of the light emission luminance of the electroluminescent element can be prevented over a long period of time.

本発明に係わる電界発光素子及びその製造方法の実施形態を、図1、2に基づいて説明する。図1は、本実施形態の電界発光素子の一部を拡大して示した断面図であり、図2は、電界発光素子の端部を拡大した断面図である。   An embodiment of an electroluminescent device and a method for manufacturing the same according to the present invention will be described with reference to FIGS. FIG. 1 is an enlarged cross-sectional view showing a part of the electroluminescent element of this embodiment, and FIG. 2 is an enlarged cross-sectional view of an end portion of the electroluminescent element.

図1に示すように、本発明の電界発光素子は、基板1上に、第一電極層2、発光層3、第二電極層4、有機充填層6、封止基板7が配置され、さらに、有機充填層6の側面を外気から遮断するための無機封止部8が配置された構成を持っている。本発明の電界発光素子が有機EL素子の場合には、発光層3は有機化合物から成り、無機EL素子の場合には、発光層3は無機化合物から成る。また、本発明の電界発光素子が有機EL素子の場合には、必要により、発光層と電極との間に、キャリア輸送層、キャリア注入層等を設けても良い。また、本発明の電界発光素子が無機EL素子の場合には、発光層と電極との間に、絶縁層、誘電体層等を配置してもよい。   As shown in FIG. 1, the electroluminescent element of the present invention includes a first electrode layer 2, a light emitting layer 3, a second electrode layer 4, an organic filling layer 6, and a sealing substrate 7 disposed on a substrate 1. The inorganic sealing part 8 for shielding the side surface of the organic filling layer 6 from the outside air is arranged. When the electroluminescent element of the present invention is an organic EL element, the light emitting layer 3 is made of an organic compound. When the electroluminescent element is an inorganic EL element, the light emitting layer 3 is made of an inorganic compound. Moreover, when the electroluminescent element of this invention is an organic EL element, you may provide a carrier transport layer, a carrier injection layer, etc. between a light emitting layer and an electrode as needed. When the electroluminescent element of the present invention is an inorganic EL element, an insulating layer, a dielectric layer, or the like may be disposed between the light emitting layer and the electrode.

本発明の特徴は、基板1に垂直な断面において、無機封止部が有機充填層側に凸の弓形状面を有している点である。   A feature of the present invention is that the inorganic sealing portion has a convex arcuate surface on the organic filling layer side in a cross section perpendicular to the substrate 1.

そのため、基板1、電界発光層5(第一電極層2、発光層3、第二電極層4)、封止基板7の材質や製造方法は電界発光素子において当業者が一般に使用するものであれば特に限定されない。   Therefore, the materials and manufacturing methods of the substrate 1, the electroluminescent layer 5 (the first electrode layer 2, the light emitting layer 3, the second electrode layer 4), and the sealing substrate 7 are generally used by those skilled in the art in electroluminescent devices. If it does not specifically limit.

有機充填層6を形成する充填材は接着性を示す任意の有機物質であれば良いが、好ましくは紫外線硬化型または熱硬化型の物質、例えば、エポキシ系樹脂、アクリル系樹脂である。また、電界発光層5から放出される光が封止基板7を介して外部に放出される上面発光型の電界発光素子を具現するためには、充填材は透明でなけばならない。これに応じて、第二電極層4と封止基板7の材質も透明でなければならない。一方、電界発光層5から放出される光が基板1側から外部に放出される下面発光型の電界発光素子を実現する場合は、充填材は透明である必要はなく、第一電極層2と基板1の材質が透明であれば良い。また、基板1、電界発光層5、充填材、封止基板7の全てで透明な材質を用いた場合には、シースルー型の電界発光素子を実現することが可能となる。   The filler for forming the organic filling layer 6 may be any organic substance exhibiting adhesiveness, but is preferably an ultraviolet curable or thermosetting substance such as an epoxy resin or an acrylic resin. Further, in order to realize a top emission type electroluminescent device in which light emitted from the electroluminescent layer 5 is emitted to the outside through the sealing substrate 7, the filler must be transparent. Accordingly, the material of the second electrode layer 4 and the sealing substrate 7 must also be transparent. On the other hand, in the case of realizing a bottom emission type electroluminescent device in which light emitted from the electroluminescent layer 5 is emitted from the substrate 1 side to the outside, the filler does not need to be transparent, and the first electrode layer 2 and The material of the substrate 1 may be transparent. In addition, when transparent materials are used for all of the substrate 1, the electroluminescent layer 5, the filler, and the sealing substrate 7, a see-through type electroluminescent element can be realized.

なお、有機充填層6は、外部からの衝撃を緩和して電界発光素子の損傷を低減させる役割を持つので、有機充填層6の膜厚yは大きく形成される方がよい。しかし一方で、薄型の電界発光素子を実現するためには、この膜厚yは小さく形成される必要がある。また、上面発光型の電界発光素子では、電界発光層5から放出される光が有機充填層6を通過する分だけ光の強度が弱くなるので、この膜厚yは小さく形成される方が望ましい。よって、電界発光層5の基板1に垂直な方向の厚みや有機充填層6の材料によるが、有機充填層6の膜厚yは、1〜100μmで形成されることが好ましい。さらに、有機充填層6の作製の容易性や作製コストの観点から、有機充填層6の膜厚yは10μm〜100μmで形成されることがより好ましい。   In addition, since the organic filling layer 6 has a role which reduces the damage of an electroluminescent element by reducing the impact from the outside, it is better to form the film thickness y of the organic filling layer 6 large. However, on the other hand, in order to realize a thin electroluminescent element, the film thickness y needs to be formed small. Further, in the top emission type electroluminescent element, the light intensity is weakened by the amount of light emitted from the electroluminescent layer 5 passing through the organic filling layer 6, so it is desirable that the film thickness y be formed small. . Therefore, depending on the thickness of the electroluminescent layer 5 in the direction perpendicular to the substrate 1 and the material of the organic filling layer 6, the thickness y of the organic filling layer 6 is preferably 1 to 100 μm. Furthermore, it is more preferable that the film thickness y of the organic filling layer 6 is 10 μm to 100 μm from the viewpoint of ease of production of the organic filling layer 6 and production cost.

有機充填層6を形成する有機充填材は、一例としてディスペンサー等の塗布装置で封止基板7上に塗布される。そして、封止基板7の有機充填材を塗布した側を基板1に対向するよう配置し、基板1と封止基板7に圧力を加えることによって基板1と封止基板7とを貼り合わせる。このとき、有機充填層6は基板1上に配置された電界発光層5を覆うように形成される。同時に、有機充填層6は圧力により基板1及び封止基板7から成る基板対から成る基板端方向に押し出される。しかし、有機充填材の塗布位置、塗布量、及び貼り合わせ時の圧力等を調整することにより、有機充填層6は基板対の基板端より内側に留めることができる。   The organic filler forming the organic filling layer 6 is applied onto the sealing substrate 7 by an application device such as a dispenser as an example. Then, the side of the sealing substrate 7 to which the organic filler is applied is disposed so as to face the substrate 1, and the substrate 1 and the sealing substrate 7 are bonded together by applying pressure to the substrate 1 and the sealing substrate 7. At this time, the organic filling layer 6 is formed so as to cover the electroluminescent layer 5 disposed on the substrate 1. At the same time, the organic filling layer 6 is pushed by the pressure toward the end of the substrate composed of the substrate pair composed of the substrate 1 and the sealing substrate 7. However, by adjusting the application position of the organic filler, the application amount, the pressure at the time of bonding, and the like, the organic filler layer 6 can be kept inside the substrate ends of the substrate pair.

なお、有機充填層6が接する基板1と封止基板7の表面は、あらかじめ紫外線照射やプラズマ照射などによって洗浄処理されていて、通常、表面のぬれ性が上がっているため、有機充填層6の側面は基板対の基板端に対して凹形状に形成される。   Note that the surfaces of the substrate 1 and the sealing substrate 7 that are in contact with the organic filling layer 6 are cleaned in advance by ultraviolet irradiation, plasma irradiation, or the like, and the wettability of the surface is usually increased. The side surface is formed in a concave shape with respect to the substrate end of the substrate pair.

次に、有機充填層6に熱または紫外線を照射することによって、有機充填層6の側面が基板対の基板端に対して凹形状のまま、有機充填層6を硬化する。   Next, the organic filling layer 6 is cured by irradiating the organic filling layer 6 with heat or ultraviolet rays while the side surface of the organic filling layer 6 remains concave with respect to the substrate ends of the pair of substrates.

無機封止部8は、接着性を示す任意の無機物質であれば良いが、好ましくはケイ素化合物である。さらに詳しくはガラスフリットや加水分解してポリシロキサンを形成する化合物であれば良い。   The inorganic sealing portion 8 may be any inorganic substance exhibiting adhesiveness, but is preferably a silicon compound. More specifically, it may be a compound that forms a polysiloxane by glass frit or hydrolysis.

無機封止部8としてガラスフリットを用いる場合、ガラスフリットに適当な液体物質を混合してフリットペーストを形成し、一例としてディスペンサー等の塗布装置を用いて塗布することができる。なお、ガラスフリットの材質及びフリットペーストを形成する際に用いる液体物質は、特許文献1に記載されているような当業者が一般に使用する材質であれば特に限定されない。また、市販されているフリットペーストを使用することも可能である。   When a glass frit is used as the inorganic sealing part 8, a suitable liquid substance is mixed with the glass frit to form a frit paste, and as an example, it can be applied using a coating device such as a dispenser. The material of the glass frit and the liquid substance used when forming the frit paste are not particularly limited as long as they are materials generally used by those skilled in the art as described in Patent Document 1. It is also possible to use a commercially available frit paste.

この場合、有機充填層6の側面を覆い、基板1と封止基板7に接するようにフリットペーストを切れ目なく塗布した後、塗布したフリットペーストに含まれる液体物質を除去する。そして、ガラスフリットにレーザーを照射して、ガラスフリットを溶融固化し、基板1及び封止基板7を接着する無機封止部8を形成する。こうして、図2で示すように、基板1に垂直な断面において、無機封止部8が有機充填層6側に凸の弓形状面を持つ電界発光素子が作製される。また、無機封止部8と基板1及び封止基板7の接着面積を大きくすると接着性が高まり、無機封止部8の損傷を抑制できるので好ましい。   In this case, after the frit paste is applied seamlessly so as to cover the side surface of the organic filling layer 6 and come into contact with the substrate 1 and the sealing substrate 7, the liquid substance contained in the applied frit paste is removed. Then, the glass frit is irradiated with a laser to melt and solidify the glass frit, thereby forming the inorganic sealing portion 8 for bonding the substrate 1 and the sealing substrate 7 together. In this way, as shown in FIG. 2, an electroluminescent element is produced in which the inorganic sealing portion 8 has a convex arcuate surface on the organic filling layer 6 side in a cross section perpendicular to the substrate 1. Further, it is preferable to increase the bonding area between the inorganic sealing portion 8 and the substrate 1 and the sealing substrate 7 because the adhesiveness is increased and damage to the inorganic sealing portion 8 can be suppressed.

また、加水分解して上記のポリシロキサンを形成する化合物で無機封止部8を形成する場合には、例えば、オルガノシルセスキオキサンオリゴマー(化1参照)やポリシラザン(化2参照)を用いることができる。   Moreover, when forming the inorganic sealing part 8 with the compound which hydrolyzes and forms said polysiloxane, an organosilsesquioxane oligomer (refer chemical formula 1) and a polysilazane (refer chemical formula 2) are used, for example. Can do.

Figure 2009259690
Figure 2009259690

(R、Rはアルキル基である。RとRは同じであっても違っていても良い。) (R 1 and R 2 are alkyl groups. R 1 and R 2 may be the same or different.)

Figure 2009259690
Figure 2009259690

(R、R、Rはそれぞれ独立に水素原子、アルキル基、シクロアルキル基、アリール基、またはこれらの基以外でケイ素に直結する基が炭素である基、アルキルシリル基、アルキルアミノ基、アルコキシ基、もしくは金属原子を表す。但し、R、R、Rのうち少なくとも1つは水素原子である。) (R 3 , R 4 , and R 5 are each independently a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a group in which the group directly connected to silicon other than these groups is carbon, an alkylsilyl group, or an alkylamino group. Represents an alkoxy group or a metal atom, provided that at least one of R 3 , R 4 and R 5 is a hydrogen atom.)

この場合、オルガノシルセスキオキサンオリゴマー及び/又はポリシラザンは任意の有機溶剤で溶解し、液状に調製した後にシリンジ等の任意の膜形成装置で有機充填層6の側面と基板1と封止基板7に接するように切れ目なく塗布する。その後、塗布した液を常温大気雰囲気下で乾燥させて無機封止部8を形成する。このようにして図2で示したような、基板1に垂直な断面において、無機封止部8が有機充填層6側に凸の弓形状面を持つ電界発光素子が作製される。また、無機封止部8と基板1及び封止基板7の接着面積を大きくすることが好ましい。   In this case, the organosilsesquioxane oligomer and / or polysilazane is dissolved in an arbitrary organic solvent and prepared in a liquid state, and then the side surface of the organic filling layer 6, the substrate 1, and the sealing substrate 7 with an arbitrary film forming apparatus such as a syringe. Apply without breaks so that it touches. Thereafter, the applied liquid is dried under a normal temperature air atmosphere to form the inorganic sealing portion 8. In this way, an electroluminescent element having an inorganic sealing portion 8 having a convex arcuate surface on the organic filling layer 6 side in a cross section perpendicular to the substrate 1 as shown in FIG. Moreover, it is preferable to increase the bonding area between the inorganic sealing portion 8 and the substrate 1 and the sealing substrate 7.

なお、有機充填層6の側面を覆い、基板1と封止基板7に接するように無機封止部8を形成するので、図2で示した基板1に垂直な断面において、無機封止部8の基板1に垂直な方向の膜厚は有機充填層6の膜厚yと等しくなる。   In addition, since the inorganic sealing part 8 is formed so as to cover the side surface of the organic filling layer 6 and be in contact with the substrate 1 and the sealing substrate 7, the inorganic sealing part 8 in the cross section perpendicular to the substrate 1 shown in FIG. The film thickness in the direction perpendicular to the substrate 1 is equal to the film thickness y of the organic filling layer 6.

また、基板1に垂直な断面の無機封止部8の弓形状面において、無機封止部8の基板1に対して平行な方向の膜厚dは、0.1〜20μmで形成されることが好ましい。膜厚dが20μmより大きい場合には、無機封止部8全体に有機充填層6の膨張に伴う応力を十分に分散させることができず、無機封止部8が損傷しやすくなる。また、膜厚dが0.1μmより小さい場合には、水分の浸入を十分に防ぐことができなくなってしまう。さらに、オルガノシルセスキオキサンオリゴマー及び/又はポリシラザンを無機封止部8として用いる場合には、膜厚dは0.1μm〜10μmに形成されることがより好ましい。また、無機封止部8としてガラスフリットを用いる場合には、膜厚dは5μm〜20μmに形成されることがより望ましい。   Moreover, in the arch-shaped surface of the inorganic sealing portion 8 having a cross section perpendicular to the substrate 1, the film thickness d in the direction parallel to the substrate 1 of the inorganic sealing portion 8 is formed to be 0.1 to 20 μm. Is preferred. When the film thickness d is larger than 20 μm, the stress due to the expansion of the organic filling layer 6 cannot be sufficiently dispersed throughout the inorganic sealing portion 8 and the inorganic sealing portion 8 is easily damaged. On the other hand, when the film thickness d is smaller than 0.1 μm, it is not possible to sufficiently prevent moisture from entering. Further, when an organosilsesquioxane oligomer and / or polysilazane is used as the inorganic sealing portion 8, it is more preferable that the film thickness d is formed to be 0.1 μm to 10 μm. When glass frit is used as the inorganic sealing portion 8, the film thickness d is more preferably 5 μm to 20 μm.

さらに、図2で示した本発明の電界発光素子の基板1に垂直な断面の無機封止部8の弓形状面において、無機封止部8の基板1と平行な方向の膜厚dは、無機封止部8の基板1に垂直な方向の膜厚yよりも薄いことが好ましい。なぜなら、その構成を採用すると、無機封止部8にかかる有機充填層6の膨張による応力を基板1に垂直な方向に分散しやすくなり、無機封止部8全体で、この応力を緩和することができるからである。   Furthermore, in the arcuate surface of the inorganic sealing portion 8 having a cross section perpendicular to the substrate 1 of the electroluminescent element of the present invention shown in FIG. 2, the film thickness d of the inorganic sealing portion 8 in the direction parallel to the substrate 1 is It is preferable that the thickness of the inorganic sealing portion 8 is smaller than the thickness y in the direction perpendicular to the substrate 1. This is because if the configuration is adopted, the stress due to the expansion of the organic filling layer 6 applied to the inorganic sealing portion 8 can be easily dispersed in the direction perpendicular to the substrate 1, and the stress can be alleviated in the entire inorganic sealing portion 8. Because you can.

以下、本発明に係わる電界発光素子の一例として、有機EL素子を挙げて、有機EL素子及びその製造方法の実施例を説明するが、本発明は無機EL素子においても適用できる。さらに本発明はこれらの実施例の材料等に限定されるものではない。   Hereinafter, although an organic EL element is mentioned as an example of the electroluminescent element concerning this invention, the Example of an organic EL element and its manufacturing method is described, This invention is applicable also to an inorganic EL element. Further, the present invention is not limited to the materials of these examples.

先ず、基板1上に電界発光層5を形成する詳細な方法について以下に述べる。   First, a detailed method for forming the electroluminescent layer 5 on the substrate 1 will be described below.

[第一電極層(陽極)形成]
基板1上に、CrターゲットをDCスパッタし、第一電極層2として100nmの厚さにCr膜を成膜した。Arガスを用いて、0.2Paの圧力、300Wの投入Pw条件で行った。
[First electrode layer (anode) formation]
A Cr target was DC sputtered on the substrate 1 to form a Cr film having a thickness of 100 nm as the first electrode layer 2. Using Ar gas, the pressure was 0.2 Pa, and the input Pw was 300 W.

[前処理]
次に、基板1をスパッタ装置から取り出してアセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、次いでIPAで煮沸洗浄後乾燥した。さらに、紫外線オゾン洗浄処理を行った。その後、有機EL蒸着装置へ移し、真空排気し、前処理室で基板1付近に設けたリング状電極に50WのRF電力を投入し、酸素プラズマ洗浄処理を行った。
[Preprocessing]
Next, the substrate 1 was taken out of the sputtering apparatus, ultrasonically washed with acetone and isopropyl alcohol (IPA) in sequence, then boiled and washed with IPA, and then dried. Further, ultraviolet ozone cleaning treatment was performed. Then, it moved to the organic electroluminescent vapor deposition apparatus, evacuated, 50-W RF electric power was supplied to the ring-shaped electrode provided in the substrate 1 vicinity in the pre-processing chamber, and the oxygen plasma cleaning process was performed.

[発光層形成]
基板1を前処理室より成膜室へ移動し、成膜室を1×10−4Paまで排気した後、正孔輸送性を有する芳香族ジアミン誘導体(αNPD)を成膜速度0.2〜0.3nm/secの条件で抵抗加熱蒸着法により成膜し、膜厚35nmの正孔輸送層を形成した。続いて、正孔輸送層の形成時と同様の成膜条件で、抵抗加熱蒸着法により、正孔輸送層の上にアルミキノリノール錯体(Alq)を成膜し、膜厚15nmの有機発光層を形成した。次に、抵抗加熱共蒸着法により有機発光層の上にAlqと炭酸セシウム(CsCO)を膜厚比9:1の割合で混合されるよう、各々の蒸着速度を調整して成膜し、膜厚35nmの電子注入層を形成した。
[Light emitting layer formation]
After the substrate 1 is moved from the pretreatment chamber to the film formation chamber and the film formation chamber is evacuated to 1 × 10 −4 Pa, an aromatic diamine derivative (αNPD) having a hole transporting property is formed at a film formation rate of 0.2 to A film was formed by resistance heating vapor deposition under the condition of 0.3 nm / sec to form a 35 nm-thick hole transport layer. Subsequently, an aluminum quinolinol complex (Alq 3 ) is formed on the hole transport layer by resistance heating vapor deposition under the same film formation conditions as those for forming the hole transport layer, and an organic light emitting layer having a film thickness of 15 nm is formed. Formed. Next, the deposition rate is adjusted so that Alq 3 and cesium carbonate (Cs 2 CO 3 ) are mixed on the organic light emitting layer at a film thickness ratio of 9: 1 by the resistance heating co-evaporation method. An electron injection layer having a thickness of 35 nm was formed.

[第二電極層(陰極)形成]
最後に、別の成膜室に基板1を移し、電子注入層の上にITOターゲットを用いてDCマグネトロンスパッタリング法により、膜厚が130nmになるように陰極を形成した。成膜条件としては、基板加熱なしの室温成膜で成膜圧力を1.0Pa、Ar,HO及びOガスを用いそれぞれの流量は500,1.5,5.0scccmとし、ターゲットに印加する投入パワーはITO:500Wで成膜を行った。
[Second electrode layer (cathode) formation]
Finally, the substrate 1 was moved to another film formation chamber, and a cathode was formed on the electron injection layer using an ITO target so as to have a film thickness of 130 nm by DC magnetron sputtering. As film formation conditions, film formation pressure is 1.0 Pa, film formation pressure is 1.0 Pa, Ar, H 2 O, and O 2 gases are used at respective flow rates of 500, 1.5, and 5.0 sccc cm. The applied power was ITO: 500 W for film formation.

以上のようにして、基板1上に、第一電極層(陽極)2、発光層(正孔輸送層、有機発光層、電子注入層)3、及び第二電極層(陰極)4を設け、電界発光層5を形成した。   As described above, the first electrode layer (anode) 2, the light emitting layer (hole transport layer, organic light emitting layer, electron injection layer) 3 and the second electrode layer (cathode) 4 are provided on the substrate 1, An electroluminescent layer 5 was formed.

次に、形成した電界発光層5に空気中の水分が浸入しないように、有機充填層6、封止基板7、無機封止部8を形成した。   Next, the organic filling layer 6, the sealing substrate 7, and the inorganic sealing part 8 were formed so that the water | moisture content in air might not permeate into the formed electroluminescent layer 5. FIG.

[封止工程1]
先ず、封止基板7を紫外線オゾン洗浄処理した。その後、封止基板7上に市販の熱硬化型エポキシ樹脂をディスペンサーで塗布した。このとき、樹脂粘度は3000mPa・sに調整したものを使用した。次に、封止基板7の樹脂を塗布した側を基板1に対向するよう配置し、基板1と封止基板7に圧力を加えることによって基板1と封止基板7とを貼り合わせ、電界発光層5を樹脂で覆った。なお、樹脂が基板1及び封止基板7から成る基板対の基板端より内側に留まるように、樹脂の塗布位置と塗布量、さらに貼り合わせの圧力を調整した。次に、100℃/30分間の加熱により樹脂を硬化させ、有機充填層6を形成した。このときの、有機充填層6の膜厚yは20μmであった。
[Sealing process 1]
First, the sealing substrate 7 was subjected to ultraviolet ozone cleaning treatment. Thereafter, a commercially available thermosetting epoxy resin was applied onto the sealing substrate 7 with a dispenser. At this time, the resin viscosity adjusted to 3000 mPa · s was used. Next, the side of the sealing substrate 7 to which the resin is applied is disposed so as to face the substrate 1, and the substrate 1 and the sealing substrate 7 are bonded together by applying pressure to the substrate 1 and the sealing substrate 7. Layer 5 was covered with resin. In addition, the application position and the application amount of the resin, and the bonding pressure were adjusted so that the resin remained inside the substrate end of the substrate pair including the substrate 1 and the sealing substrate 7. Next, the resin was cured by heating at 100 ° C./30 minutes to form the organic filling layer 6. At this time, the film thickness y of the organic filling layer 6 was 20 μm.

[封止工程2]
次に、調製したメチルシルセスキオキサンオリゴマー溶液を基板1及び封止基板7に接し、かつ、有機充填層6を覆うように切れ目なくシリンジで塗布した。メチルシルセスキオキサンオリゴマーとは、化1のR及びRがいずれもメチル基である化合物であり、市販されているものを使用した。メチルシルセスキオキサンオリゴマー溶液の調製は、乾燥剤で水分濃度を低下させたIPAに重量分率で70wt%のメチルシルセスキオキサンオリゴマーを添加して行った。メチルシルセスキオキサンオリゴマー溶液を塗布した後に、常温で12時間乾燥させ、メチルシルセスキオキサンオリゴマーから成る無機封止部8を形成した。
[Sealing process 2]
Next, the prepared methylsilsesquioxane oligomer solution was applied to the substrate 1 and the sealing substrate 7 with a syringe so as to cover the organic filling layer 6 without breaks. The methyl silsesquioxane oligomer is a compound in which R 1 and R 2 in Chemical Formula 1 are both methyl groups, and those that are commercially available were used. The methyl silsesquioxane oligomer solution was prepared by adding 70 wt% methyl silsesquioxane oligomer to IPA whose moisture concentration was lowered with a desiccant. After applying the methyl silsesquioxane oligomer solution, it was dried at room temperature for 12 hours to form an inorganic sealing portion 8 made of methyl silsesquioxane oligomer.

[素子評価]
60℃/90%RHの雰囲気条件で1000時間の連続耐久試験を行った。その結果、無機封止部8の損傷も無く、外部からの余分な水分の浸入が少ないため、輝度劣化等の発光特性の低下及びダークスポット等の発生が少ない、安定した電界発光素子とその製造方法を得ることができた。
[Element evaluation]
A continuous durability test for 1000 hours was performed under an atmospheric condition of 60 ° C./90% RH. As a result, there is no damage to the inorganic sealing portion 8, and there is little intrusion of excess moisture from the outside, so that stable electroluminescence device with less deterioration of light emission characteristics such as luminance deterioration and occurrence of dark spots and the like and its manufacture Could get the way.

その後、作製された電界発光素子の基板1に垂直な断面を光学顕微鏡で観察した。その結果、基板1に垂直な断面において、無機封止部8が有機充填層6側に凸の弓形状面を有していることが確認された(図2参照)。また、この断面内において、無機封止部8の基板1に平行な方向の膜厚dは10μm、基板1に垂直な方向の膜厚yは20μmであった。   Then, the cross section perpendicular | vertical to the board | substrate 1 of the produced electroluminescent element was observed with the optical microscope. As a result, it was confirmed that the inorganic sealing portion 8 had a convex arcuate surface on the organic filling layer 6 side in a cross section perpendicular to the substrate 1 (see FIG. 2). In this cross section, the film thickness d of the inorganic sealing portion 8 in the direction parallel to the substrate 1 was 10 μm, and the film thickness y in the direction perpendicular to the substrate 1 was 20 μm.

本実施例は実施例1に対して、無機封止部8にポリシラザン化合物を含む材料を使用した場合の実施例を詳細に示すものである。なお、電界発光層5までの作製方法は実施例1と同様であるので、それ以降の封止工程について詳細に述べる。   The present embodiment shows a detailed example of the case where a material containing a polysilazane compound is used for the inorganic sealing portion 8 with respect to the first embodiment. Since the manufacturing method up to the electroluminescent layer 5 is the same as that in Example 1, the subsequent sealing process will be described in detail.

[封止工程1]
先ず、封止基板7を紫外線オゾン洗浄処理した。その後、封止基板7上に市販の熱硬化型エポキシ樹脂をディスペンサーで塗布した。このとき、樹脂粘度は3000mPa・sに調整したものを使用した。次に、封止基板7の樹脂を塗布した側を基板1に対向するよう配置し、基板1と封止基板7に圧力を加えることによって基板1と封止基板7とを貼り合わせ、電界発光層5を樹脂で覆った。なお、樹脂が基板対の基板端より内側に留まるように、樹脂の塗布位置と塗布量、さらに貼り合わせの圧力を調整した。次に、100℃/30分間の加熱により樹脂を硬化させ、有機充填層6を形成した。このときの、有機充填層6の膜厚yは20μmであった。
[Sealing process 1]
First, the sealing substrate 7 was subjected to ultraviolet ozone cleaning treatment. Thereafter, a commercially available thermosetting epoxy resin was applied onto the sealing substrate 7 with a dispenser. At this time, the resin viscosity adjusted to 3000 mPa · s was used. Next, the side of the sealing substrate 7 to which the resin is applied is disposed so as to face the substrate 1, and the substrate 1 and the sealing substrate 7 are bonded together by applying pressure to the substrate 1 and the sealing substrate 7. Layer 5 was covered with resin. In addition, the application position and the application amount of the resin, and the bonding pressure were adjusted so that the resin stayed inside the substrate ends of the substrate pair. Next, the resin was cured by heating at 100 ° C./30 minutes to form the organic filling layer 6. At this time, the film thickness y of the organic filling layer 6 was 20 μm.

[封止工程2]
次に、調製したポリシラザン化合物溶液を基板1及び封止基板7に接し、かつ、有機充填層6を覆うように切れ目なくシリンジで塗布した。ポリシラザン化合物は、市販されているものを使用した。ポリシラザン化合物溶液の調製は、乾燥剤で水分濃度を低下させたIPAに重量分率で70wt%のポリシラザン化合物を添加して行った。ポリシラザン化合物を塗布した後に、常温で12時間乾燥させ、ポリシラザン化合物から成る無機封止部8を形成した。
[Sealing process 2]
Next, the prepared polysilazane compound solution was applied with a syringe so as to be in contact with the substrate 1 and the sealing substrate 7 and to cover the organic filling layer 6. A commercially available polysilazane compound was used. The polysilazane compound solution was prepared by adding a 70 wt% polysilazane compound to IPA whose moisture concentration was lowered with a desiccant. After applying the polysilazane compound, it was dried at room temperature for 12 hours to form the inorganic sealing portion 8 made of the polysilazane compound.

[素子評価]
60℃/90%RHの雰囲気条件で1000時間の連続耐久試験を行った。その結果、無機封止部8の損傷も無く、外部からの余分な水分の浸入が少ないため、輝度劣化等の発光特性の低下及びダークスポット等の発生が少ない、安定した電界発光素子とその製造方法を得ることができた。
[Element evaluation]
A continuous durability test for 1000 hours was performed under an atmospheric condition of 60 ° C./90% RH. As a result, there is no damage to the inorganic sealing portion 8, and there is little intrusion of excess moisture from the outside, so that stable electroluminescence device with less deterioration of light emission characteristics such as luminance deterioration and occurrence of dark spots and the like and its manufacture Could get the way.

その後、作製された電界発光素子の基板1に垂直な断面を光学顕微鏡で観察した。その結果、基板1に垂直な断面において、無機封止部8が有機充填層6側に凸の弓形状面を有していることが確認された(図2参照)。また、この断面内において、無機封止部8の基板1に平行な方向の膜厚dは10μm、基板1に垂直な方向の膜厚yは20μmであった。   Then, the cross section perpendicular | vertical to the board | substrate 1 of the produced electroluminescent element was observed with the optical microscope. As a result, it was confirmed that the inorganic sealing portion 8 had a convex arcuate surface on the organic filling layer 6 side in a cross section perpendicular to the substrate 1 (see FIG. 2). In this cross section, the film thickness d of the inorganic sealing portion 8 in the direction parallel to the substrate 1 was 10 μm, and the film thickness y in the direction perpendicular to the substrate 1 was 20 μm.

本実施例は実施例1に対して、無機封止部8にガラスフリットを使用した場合の実施例を詳細に示すものである。なお、電界発光層5までの作製方法は実施例1と同様であるので、それ以降の封止工程について詳細に述べる。   This example shows an example in the case where glass frit is used for the inorganic sealing part 8 in detail with respect to Example 1. FIG. Since the manufacturing method up to the electroluminescent layer 5 is the same as that in Example 1, the subsequent sealing process will be described in detail.

[封止工程1]
先ず、封止基板7を紫外線オゾン洗浄処理した。その後、封止基板7上に市販の熱硬化型エポキシ樹脂をディスペンサーで塗布した。このとき、樹脂粘度は6000mPa・sに調整したものを使用した。次に、封止基板7の樹脂を塗布した側を基板1に対向するよう配置し、基板1と封止基板7に圧力を加えることによって基板1と封止基板7とを貼り合わせ、電界発光層5を樹脂で覆った。なお、樹脂が基板対の基板端より内側に留まるように、樹脂の塗布位置と塗布量、さらに貼り合わせの圧力を考慮した。次に、100℃/30分間の加熱により樹脂を硬化させ、有機充填層6を形成した。このときの、有機充填層6の膜厚yは40μmであった。
[Sealing process 1]
First, the sealing substrate 7 was subjected to ultraviolet ozone cleaning treatment. Thereafter, a commercially available thermosetting epoxy resin was applied onto the sealing substrate 7 with a dispenser. At this time, the resin viscosity adjusted to 6000 mPa · s was used. Next, the side of the sealing substrate 7 to which the resin is applied is disposed so as to face the substrate 1, and the substrate 1 and the sealing substrate 7 are bonded together by applying pressure to the substrate 1 and the sealing substrate 7. Layer 5 was covered with resin. In addition, the application position and application amount of the resin, and the bonding pressure were taken into consideration so that the resin stayed inside the substrate ends of the substrate pair. Next, the resin was cured by heating at 100 ° C./30 minutes to form the organic filling layer 6. At this time, the film thickness y of the organic filling layer 6 was 40 μm.

[封止工程2]
次に、市販されているフリットペーストを基板1及び封止基板7に接し、かつ、有機充填層6を覆うように切れ目なくシリンジで塗布する。フリットペーストを塗布した後、フリットペーストに低強度のレーザーを照射して液体物質を除去し、更にレーザー照射強度を高めて溶融固化させ、ガラスフリットから成る無機封止部8を形成した。
[Sealing process 2]
Next, a commercially available frit paste is applied to the substrate 1 and the sealing substrate 7 with a syringe so as to cover the organic filling layer 6 without breaks. After applying the frit paste, the liquid material was removed by irradiating the frit paste with a low-intensity laser, and further, the laser irradiation intensity was increased to melt and solidify to form an inorganic sealing portion 8 made of glass frit.

[素子評価]
60℃/90%RHの雰囲気条件で1000時間の連続耐久試験を行った。その結果、無機封止部8の損傷も無く、外部からの余分な水分の浸入が少ないため、輝度劣化等の発光特性の低下及びダークスポット等の発生が少ない、安定した電界発光素子とその製造方法を得ることができた。
[Element evaluation]
A continuous durability test for 1000 hours was performed under an atmospheric condition of 60 ° C./90% RH. As a result, there is no damage to the inorganic sealing portion 8, and there is little intrusion of excess moisture from the outside, so that stable electroluminescence device with less deterioration of light emission characteristics such as luminance deterioration and occurrence of dark spots and the like and its manufacture Could get the way.

その後、作製された電界発光素子の基板1に垂直な断面を光学顕微鏡で観察した。その結果、基板1に垂直な断面において、無機封止部8が有機充填層6側に凸の弓形状面を有していることが確認された(図2参照)。また、この断面内において、無機封止部8の基板1に平行な方向の膜厚dは20μm、基板1に垂直な方向の膜厚yは40μmであった。   Then, the cross section perpendicular | vertical to the board | substrate 1 of the produced electroluminescent element was observed with the optical microscope. As a result, it was confirmed that the inorganic sealing portion 8 had a convex arcuate surface on the organic filling layer 6 side in a cross section perpendicular to the substrate 1 (see FIG. 2). In this cross section, the film thickness d of the inorganic sealing portion 8 in the direction parallel to the substrate 1 was 20 μm, and the film thickness y in the direction perpendicular to the substrate 1 was 40 μm.

また上記の3つの実施例では、基板1上に一つの電界発光層5を形成した場合を示したが、この電界発光層5は画素単位ごとに分割してもよく、基板1上に複数の電界発光層5が形成されてもよい。さらに、基板1上の電界発光層5を画素に分割し、画素ごとを区画する隔壁を形成し、基板1中に画素ごとに電源の切り替えを行うトランジスタや電源線等の配線を設けて、薄膜ディスプレイに応用する場合でも本発明の封止方法は適用できる。   In the above three embodiments, the case where one electroluminescent layer 5 is formed on the substrate 1 is shown. However, the electroluminescent layer 5 may be divided for each pixel unit, and a plurality of electroluminescent layers 5 may be formed on the substrate 1. An electroluminescent layer 5 may be formed. Further, the electroluminescent layer 5 on the substrate 1 is divided into pixels, a partition wall for dividing each pixel is formed, and wiring such as a transistor and a power supply line for switching the power source for each pixel is provided in the substrate 1 to form a thin film. Even when applied to a display, the sealing method of the present invention can be applied.

本発明に係わる電界発光素子の一部を拡大して示した断面図である。It is sectional drawing which expanded and showed a part of electroluminescent element concerning this invention. 本発明に係わる電界発光素子の端部を拡大して示した断面図である。It is sectional drawing which expanded and showed the edge part of the electroluminescent element concerning this invention. 従来の有機EL素子の一部を拡大して示した断面図である。It is sectional drawing which expanded and showed a part of conventional organic EL element.

符号の説明Explanation of symbols

1 基板
2 第一電極層
3 発光層
4 第二電極層
5 電界発光層
6 有機充填層
7 封止基板
8 無機封止層
DESCRIPTION OF SYMBOLS 1 Substrate 2 First electrode layer 3 Light emitting layer 4 Second electrode layer 5 Electroluminescent layer 6 Organic filling layer 7 Sealing substrate 8 Inorganic sealing layer

Claims (5)

基板上に形成される電界発光層と、
前記電界発光層を覆って前記基板と前記基板に対向する封止基板との間を充填する有機充填層と、
前記有機充填層の側面を覆う無機封止部と、を備える電界発光素子であって、
前記基板に垂直な断面において、前記無機封止部は前記有機充填層側に凸の弓形状面を有していることを特徴とする電界発光素子。
An electroluminescent layer formed on the substrate;
An organic filling layer covering the electroluminescent layer and filling a space between the substrate and a sealing substrate facing the substrate;
An electroluminescent element comprising an inorganic sealing portion covering a side surface of the organic filling layer,
In the cross section perpendicular to the substrate, the inorganic sealing portion has a convex arcuate surface on the organic filling layer side.
前記無機封止部の前記弓形状面において、前記無機封止部の前記基板に平行な方向の膜厚が、前記無機封止部の前記基板に垂直な方向の膜厚よりも薄いことを特徴とする請求項1の電界発光素子。   In the bow-shaped surface of the inorganic sealing portion, the thickness of the inorganic sealing portion in a direction parallel to the substrate is smaller than the thickness of the inorganic sealing portion in a direction perpendicular to the substrate. The electroluminescent device according to claim 1. 前記無機封止部がケイ素化合物から成ることを特徴とする請求項1又は2に記載の電界発光素子。   The electroluminescent device according to claim 1, wherein the inorganic sealing portion is made of a silicon compound. 前記ケイ素化合物がオルガノシルセスキオキサンオリゴマー及び/又はポリシラザンであることを特徴とする請求項3に記載の電界発光素子。   The electroluminescent device according to claim 3, wherein the silicon compound is an organosilsesquioxane oligomer and / or polysilazane. 基板上に電界発光層を形成する工程と、
前記電界発光層を覆って前記基板と前記基板に対向する封止基板との間に有機充填層を形成する工程と、
前記有機充填層の側面を覆う無機封止部を形成する工程と、を含む電界発光素子の製造方法であって、
前記有機充填層を形成する際に、前記有機充填層の側面が前記基板と前記封止基板とから成る基板対の基板端に対して凹形状に形成され、前記基板に垂直な断面において、前記無機封止部が前記有機充填層側に凸の弓形状面を有するように形成されることを特徴とする電界発光素子の製造方法。
Forming an electroluminescent layer on the substrate;
Forming an organic filling layer between the substrate and the sealing substrate facing the substrate, covering the electroluminescent layer;
Forming an inorganic sealing portion covering a side surface of the organic filling layer, and a method for manufacturing an electroluminescent element,
When forming the organic filling layer, a side surface of the organic filling layer is formed in a concave shape with respect to a substrate end of a substrate pair including the substrate and the sealing substrate, and in a cross section perpendicular to the substrate, The method of manufacturing an electroluminescent element, wherein the inorganic sealing portion is formed to have a convex arcuate surface on the organic filling layer side.
JP2008109055A 2008-04-18 2008-04-18 Electroluminescent element and its method for manufacturing Pending JP2009259690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008109055A JP2009259690A (en) 2008-04-18 2008-04-18 Electroluminescent element and its method for manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008109055A JP2009259690A (en) 2008-04-18 2008-04-18 Electroluminescent element and its method for manufacturing

Publications (1)

Publication Number Publication Date
JP2009259690A true JP2009259690A (en) 2009-11-05

Family

ID=41386849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008109055A Pending JP2009259690A (en) 2008-04-18 2008-04-18 Electroluminescent element and its method for manufacturing

Country Status (1)

Country Link
JP (1) JP2009259690A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222486A (en) * 2010-04-13 2011-11-04 Samsung Mobile Display Co Ltd Organic light-emitting display and manufacturing method thereof
JP2012164543A (en) * 2011-02-08 2012-08-30 Kaneka Corp Organic el device and method for manufacturing the same
JP2015171947A (en) * 2013-08-30 2015-10-01 株式会社半導体エネルギー研究所 Apparatus for supplying support and apparatus for manufacturing stack
CN109216586A (en) * 2018-09-17 2019-01-15 京东方科技集团股份有限公司 Package substrate, packaging method and pressing mold

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222486A (en) * 2010-04-13 2011-11-04 Samsung Mobile Display Co Ltd Organic light-emitting display and manufacturing method thereof
JP2012164543A (en) * 2011-02-08 2012-08-30 Kaneka Corp Organic el device and method for manufacturing the same
JP2015171947A (en) * 2013-08-30 2015-10-01 株式会社半導体エネルギー研究所 Apparatus for supplying support and apparatus for manufacturing stack
US10065808B2 (en) 2013-08-30 2018-09-04 Semiconductor Energy Laboratory Co., Ltd. Support supply apparatus and method for supplying support
CN109216586A (en) * 2018-09-17 2019-01-15 京东方科技集团股份有限公司 Package substrate, packaging method and pressing mold
WO2020057251A1 (en) * 2018-09-17 2020-03-26 京东方科技集团股份有限公司 Encapsulation substrate, electronic apparatus, encapsulation method and pressing mold

Similar Documents

Publication Publication Date Title
TWI557893B (en) Organic light emitting diode display and manufacturing method of the same
JP4499672B2 (en) Organic EL device and manufacturing method thereof
US20030066311A1 (en) Encapsulation of a display element and method of forming the same
JP5578789B2 (en) Electroluminescent device
TWI578588B (en) Organic light emitting diode device and method for manufacturing the same
JP4861206B2 (en) ORGANIC ELECTROLUMINESCENT LIGHT EMITTING DEVICE AND ORGANIC ELECTROLUMINESCENT LIGHTING DEVICE
JP2010027599A (en) Organic light-emitting display device and method of manufacturing the same
JP5579177B2 (en) Encapsulated optoelectronic device and method of manufacturing an encapsulated optoelectronic device
JP2009259690A (en) Electroluminescent element and its method for manufacturing
US7012368B2 (en) Organic electro luminescence device having multilayer cathode
WO2014073534A1 (en) Organic electroluminescent display device and production method for same
JP2010232099A (en) Double-sided light emission organic electroluminescent lighting system
KR100287863B1 (en) Organic electroluminescence device
JP3775048B2 (en) Organic light emitting device
JP2003100447A (en) Organic electroluminescence equipment
JP2006221906A (en) Organic el element and its manufacturing method
KR20070033228A (en) Organic electroluminescent device and manufacturing method thereof
JP2007265764A (en) Organic el element
JP5305959B2 (en) Manufacturing method of organic light emitting device
JP5318182B2 (en) Manufacturing method of organic EL element
JP5407819B2 (en) Organic electroluminescence display and manufacturing method thereof
WO2018193822A1 (en) Electronic device and method for producing same
JP2006164691A (en) Organic el element and method of manufacturing the same
JP5338446B2 (en) Organic electroluminescence device and sealing method thereof
KR101493410B1 (en) Method of manufacturing organic light emitting display apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630