JP2006164691A - Organic el element and method of manufacturing the same - Google Patents

Organic el element and method of manufacturing the same Download PDF

Info

Publication number
JP2006164691A
JP2006164691A JP2004352969A JP2004352969A JP2006164691A JP 2006164691 A JP2006164691 A JP 2006164691A JP 2004352969 A JP2004352969 A JP 2004352969A JP 2004352969 A JP2004352969 A JP 2004352969A JP 2006164691 A JP2006164691 A JP 2006164691A
Authority
JP
Japan
Prior art keywords
organic
layer
sealing
outer peripheral
silicon compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004352969A
Other languages
Japanese (ja)
Inventor
Reiko Maeda
怜子 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004352969A priority Critical patent/JP2006164691A/en
Publication of JP2006164691A publication Critical patent/JP2006164691A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic EL element maintaining stable light emitting property for long time, hardly generating cracks on a silicon compound, not damaging visibility of organic EL. <P>SOLUTION: On the organic EL element composed of a pair of substrates of which at least one is transparent, a pair of electrodes interposed between the substrates, and an organic layer interposed between the pair of electrodes, a multi-layered sealing structure sealing the space between the substrate and a sealing base plate facing the substrate is arranged at outer peripheral part of the organic EL element. The multi-layered sealing structure has a buffer layer arranged at an outer peripheral layer of an organic sealing layer and the outer peripheral layer of the organic sealing layer and an elastic layer arranged on the silicon compound layer arranged at the outer peripheral part of the buffer layer and the silicon compound layer. The coefficient of linear expansion of the buffer layer is smaller than that of the organic sealing layer and larger than that of the silicon compound layer, and the coefficient of linear expansion of the elastic layer is smaller than that of the silicon compound layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発光を素子の陽極側で取り出すことができる有機EL素子及びその製造方法に関するものであり、詳しくは有機発光層に電界を掛けて発光するタイプの薄型ディスプレイの封止方法に関するものである。   The present invention relates to an organic EL device capable of extracting light emission on the anode side of the device and a method for manufacturing the same, and more particularly to a sealing method for a thin type display that emits light by applying an electric field to an organic light emitting layer. is there.

現在開発中の有機EL素子の構成は、下部のガラス基板上に有機発光層が2つの電極の間に挟まれたサンドイッチ構造であるが、前記有機発光層の光を外に取り出せるようにするために、電極の片方は透明のものが使われており、一般的には陽極にITO(Indium Tin Oxide)透明電極が使われている。更に、前記有機発光層の外周面は、多層封止構造により封止され、外部駆動回路により電圧を印加することにより発光する。   The structure of the organic EL element currently under development is a sandwich structure in which an organic light emitting layer is sandwiched between two electrodes on a lower glass substrate, so that the light from the organic light emitting layer can be extracted outside. In addition, one of the electrodes is transparent, and generally an ITO (Indium Tin Oxide) transparent electrode is used for the anode. Furthermore, the outer peripheral surface of the organic light emitting layer is sealed with a multilayer sealing structure, and emits light when a voltage is applied by an external drive circuit.

以上の原理により発光する有機EL素子は、視認性とフレキシブル性に優れ且つ発色性が多様であることから、車載用コンポや携帯電話等のディスプレイや表示素子に利用されている。   Organic EL elements that emit light based on the above principle are excellent in visibility and flexibility and have various color development properties, and are therefore used in displays and display elements such as in-vehicle components and mobile phones.

これらの特性を有するディスプレイではあるが、その一方で有機EL素子は一般的に水分に極めて弱いという問題が良く知られている。一例としては有機EL素子中に有機発光層を形成するガラス基板を封止する際の環境雰囲気中に含まれる水分や封止層欠陥部を透過してくる水分が進入することにより、ダークスポットと称する非発光領域が発生、発光が維持できなくなるといった寿命の課題が生じている。   Although it is a display having these characteristics, on the other hand, the problem that organic EL elements are generally very sensitive to moisture is well known. As an example, when the moisture contained in the environmental atmosphere at the time of sealing the glass substrate forming the organic light emitting layer in the organic EL element or the moisture passing through the defective portion of the sealing layer enters, the dark spot and A non-light-emitting region is generated, and there is a problem of lifetime such that light emission cannot be maintained.

この寿命に関する課題を解決するための方策として、従来、有機EL素子の外周部の封止部材としてのカチオン硬化タイプの紫外線硬化型接着剤を用い封止する方法が知られている(特許文献1参照:特許第3288242号参照)
また、有機EL素子の上面にポリシラザンを配置することで吸湿効果と防湿効果を得る方法が知られている(特許文献2〜4参照)。
As a measure for solving the problem relating to the lifetime, a method of sealing using a cationic curing type ultraviolet curing adhesive as a sealing member for the outer peripheral portion of an organic EL element has been known (Patent Document 1). (Ref: Japanese Patent No. 3288242)
Moreover, the method of obtaining a moisture absorption effect and a moisture-proof effect by arrange | positioning polysilazane on the upper surface of an organic EL element is known (refer patent documents 2-4).

特許第3288242号公報Japanese Patent No. 3288242 特開平11−054266号公報Japanese Patent Application Laid-Open No. 11-054266 特開2002−222691号公報JP 2002-222691 A 特開2003−059643号公報JP 2003-059643 A

上記特許文献1に示されるように、有機EL素子をカチオン硬化タイプの紫外線硬化型接着剤を用いて有機EL素子を封止しても、接着剤自体からの水分の侵入や封止界面からの侵入を完全には防ぐことはできず、ダークスポットが徐々に生じたり、これが拡大したりして素子が劣化、遂には使用不能になってしまうという課題があった。   As shown in Patent Document 1, even if the organic EL element is sealed with a cationic curing type ultraviolet curable adhesive, moisture intrusion from the adhesive itself or from the sealing interface Intrusion cannot be completely prevented, and dark spots are gradually generated or enlarged, which causes a problem that the device deteriorates and eventually becomes unusable.

又、特許文献2〜4に示されるように、ポリシラザンを配置することで吸湿効果と防湿効果を得る方法は既に知られているが、トップエミッション型の有機EL素子の場合、ポリシラザン等のケイ素化合物を厚膜で塗布すると、光透過性の面で劣る課題があった。又、ケイ素化合物は応力に弱く、硬化収縮や熱による応力によってクラックが発生し、防湿効果を失う課題があった。   In addition, as shown in Patent Documents 2 to 4, a method of obtaining a moisture absorption effect and a moisture prevention effect by arranging polysilazane is already known, but in the case of a top emission type organic EL element, a silicon compound such as polysilazane. When a thick film was applied, there was a problem inferior in light transmittance. In addition, silicon compounds are vulnerable to stress, and cracks are generated due to shrinkage due to curing and heat, resulting in a problem of losing the moisture-proof effect.

本発明は上記問題に鑑みてなされたものであり、水分の侵入を極力防ぐことにより、長期に亘って安定した発光特性を維持するとともに、ケイ素化合物のクラックの発生が起こりにくく、有機ELの視認性を損なわない有機EL素子及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems. By preventing moisture from entering as much as possible, while maintaining stable light emission characteristics over a long period of time, silicon compound cracks are unlikely to occur, and organic EL is visually recognized. It aims at providing the organic EL element which does not impair property, and its manufacturing method.

上記目的を達成するため、請求項1記載の発明は、少なくとも一方が透明である1対の基板と前記1対の基板に挟持された1対の電極と前記1対の電極の間に有機層が設けられている有機EL素子において、
前記有機EL素子の外周部には前記基板と前記基板に対向する封止用基板との間を封止する多層封止構造が配置されており、前記多層封止構造は有機封止層と前記有機封止層の外周層に設けられた緩衝層と前記緩衝層の外周部に設けられたケイ素化合物と前記ケイ素化合物の外周部に設けられた弾性層を有しており、前記緩衝層の線膨張係数が前記有機封止層の線膨張係数より小さく前記ケイ素化合物層の線膨張係数より大きく、且つ、前記弾性層の弾性率が前記ケイ素化合物の弾性率より小さいことを特徴とする。
In order to achieve the above object, the invention according to claim 1 is directed to a pair of substrates, at least one of which is transparent, a pair of electrodes sandwiched between the pair of substrates, and an organic layer between the pair of electrodes. In the organic EL element provided with
A multilayer sealing structure that seals between the substrate and a sealing substrate facing the substrate is disposed on an outer peripheral portion of the organic EL element, and the multilayer sealing structure includes the organic sealing layer and the organic sealing layer. A buffer layer provided on the outer peripheral layer of the organic sealing layer; a silicon compound provided on the outer peripheral portion of the buffer layer; and an elastic layer provided on the outer peripheral portion of the silicon compound. The expansion coefficient is smaller than the linear expansion coefficient of the organic sealing layer and larger than the linear expansion coefficient of the silicon compound layer, and the elastic modulus of the elastic layer is smaller than the elastic modulus of the silicon compound.

請求項2記載の発明は、請求項1記載の発明において、前記ケイ素化合物がオルガノシルセスキオキサンオリゴマー及び/又はポリシラザンであることを特徴とする。   The invention described in claim 2 is characterized in that, in the invention described in claim 1, the silicon compound is an organosilsesquioxane oligomer and / or polysilazane.

請求項3記載の発明は、請求項1又は2記載の発明において、前記有機封止層がカチオン硬化タイプの紫外線硬化型樹脂であることを特徴とする。   A third aspect of the invention is characterized in that, in the first or second aspect of the invention, the organic sealing layer is a cationic curing type ultraviolet curable resin.

請求項4記載の発明は、請求項1〜3の何れかに記載の発明において、前記緩衝層がカチオン硬化タイプの紫外線硬化型樹脂に無機粒子を加えた樹脂であることを特徴とする。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the buffer layer is a resin obtained by adding inorganic particles to a cationic curing type ultraviolet curing resin.

請求項5記載の発明は、請求項1〜4の何れかに記載の発明において、前記弾性層がシリコーン又はウレタンから選ばれる樹脂であることを特徴とする。   The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein the elastic layer is a resin selected from silicone and urethane.

請求項6記載の発明は、請求項1〜5の何れかに記載の発明において、前記ケイ素化合物層の膜厚が0.01mm〜0.1mmであることを特徴とする。   The invention according to claim 6 is the invention according to any one of claims 1 to 5, characterized in that a film thickness of the silicon compound layer is 0.01 mm to 0.1 mm.

請求項7記載の発明は、請求項1〜6の何れかに記載の発明において、トップエミッション構造であることを特徴とする。   The invention according to claim 7 is the invention according to any one of claims 1 to 6, characterized in that it has a top emission structure.

請求項8記載の発明は、少なくとも一方が透明である1対の基板と前記1対の基板に挟持された1対の電極と前記1対の電極の間に有機層が設けられている有機EL素子形成工程と前記有機EL素子を外周部で封止する封止工程とを有する有機EL素子の製造方法において、
前記封止工程は、前記有機EL素子形成工程の後の工程であり、且つ、前記有機EL素子の前記外周部に有機封止層を形成する工程と前記有機封止層の外周部に緩衝層を形成する工程と前記緩衝層の外周部にケイ素化合物層を形成する工程と前記ケイ素化合物層の外周部に弾性層を形成する工程によって多層封止構造を形成することを特徴とする。
The invention according to claim 8 is an organic EL device in which an organic layer is provided between a pair of substrates, at least one of which is transparent, a pair of electrodes sandwiched between the pair of substrates, and the pair of electrodes. In the manufacturing method of the organic EL element which has an element formation process and the sealing process which seals the organic EL element in the perimeter part,
The sealing step is a step after the organic EL element forming step, and a step of forming an organic sealing layer on the outer peripheral portion of the organic EL element and a buffer layer on the outer peripheral portion of the organic sealing layer The multilayer sealing structure is formed by a step of forming a silicon compound layer on the outer periphery of the buffer layer and a step of forming an elastic layer on the outer periphery of the silicon compound layer.

本発明によれば、有機封止層の外周部にオルガノシルセスキオキサンオリゴマー及び/又はポリシラザンのバリア層を設けることにより、下記に示す効果が得られる。   According to this invention, the effect shown below is acquired by providing the barrier layer of an organosilsesquioxane oligomer and / or polysilazane in the outer peripheral part of an organic sealing layer.

1.オルガノシルセスキオキサンオリゴマー及びポリシラザンは加水分解性ポリマーであるため、空気中の水と反応してポリマーの架橋が進み、時間と共にバリア層自体の耐透湿性が増加するために有機EL素子の寿命が長くなる。   1. Since organosilsesquioxane oligomers and polysilazanes are hydrolyzable polymers, the cross-linking of the polymer proceeds by reacting with water in the air, and the moisture resistance of the barrier layer itself increases with time. Becomes longer.

2.オルガノシルセスキオキサンオリゴマー及びポリシラザンは空気中の水と反応するので、吸湿効果が発現し、有機EL素子の寿命が長くなる。   2. Since the organosilsesquioxane oligomer and polysilazane react with water in the air, a hygroscopic effect is exhibited and the life of the organic EL element is prolonged.

3.バリア層と有機封止層の間に緩衝層を設けたために、クラックの発生を防ぐことができる。   3. Since the buffer layer is provided between the barrier layer and the organic sealing layer, generation of cracks can be prevented.

4.バリア層の外周部に弾性層を設けたために、バリア層に対して傷が付きにくい。   4). Since the elastic layer is provided on the outer peripheral portion of the barrier layer, the barrier layer is hardly damaged.

以下に本発明の実施の形態を添付図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明の実施形態の一例を示す有機EL素子の断面模式図である。   FIG. 1 is a schematic cross-sectional view of an organic EL element showing an example of an embodiment of the present invention.

図1において、1はガラス基板であり、該ガラス基板1に対向して符号2の透明ガラス基板が配されている。ガラス基板1と透明ガラス基板2の間には一対の電極と有機層から成る有機発光層3と、密着層4がある。又、有機発光層3の外周部には多層封止層5が配置されている。   In FIG. 1, reference numeral 1 denotes a glass substrate, and a transparent glass substrate 2 is disposed so as to face the glass substrate 1. Between the glass substrate 1 and the transparent glass substrate 2, there is an organic light emitting layer 3 composed of a pair of electrodes and an organic layer, and an adhesion layer 4. A multilayer sealing layer 5 is disposed on the outer periphery of the organic light emitting layer 3.

ガラス基板1上に蒸着装置やスピンコーター等の任意の成膜装置により透明電極と有機発光層と電極から成る有機EL素子3を形成した後、多層封止層5を形成する。透明ガラス基板2と密着層4を貼り合わせる。ガラス基板1と密着層4を貼り合わせた透明ガラス基板2をガラス基板1上に形成した多層封止層5を介して貼り合わせた後に、電極を外部回路に接続することにより本発明の有機EL素子が発光する。   An organic EL element 3 composed of a transparent electrode, an organic light emitting layer, and an electrode is formed on the glass substrate 1 by an arbitrary film forming apparatus such as a vapor deposition apparatus or a spin coater, and then a multilayer sealing layer 5 is formed. The transparent glass substrate 2 and the adhesion layer 4 are bonded together. After the transparent glass substrate 2 in which the glass substrate 1 and the adhesion layer 4 are bonded together is bonded through the multilayer sealing layer 5 formed on the glass substrate 1, the electrodes are connected to an external circuit to connect the organic EL of the present invention. The element emits light.

尚、本発明の本質は以降に説明する多層封止層5の構成にあるので、ガラス基板1、透明ガラス基板2、有機発光層3、充填層4の材質や製造方法は有機EL素子において当業者が一般に使用するものであれば特に制限されない。   Since the essence of the present invention is the structure of the multilayer sealing layer 5 described below, the materials and manufacturing methods of the glass substrate 1, the transparent glass substrate 2, the organic light emitting layer 3, and the filling layer 4 are the same in the organic EL element. There is no particular limitation as long as it is generally used by traders.

図2は図1の多層封止層5の構造を拡大して示す断面模式図である。ガラス基板1と透明ガラス基板2の間に符号6の有機封止層が配置されており、有機封止層6の外周側には緩衝層7が配置され、緩衝層7の外周側にはバリア層8が配置され、バリア層8の外周部には弾性層9が配置されている。   FIG. 2 is an enlarged schematic cross-sectional view showing the structure of the multilayer sealing layer 5 of FIG. An organic sealing layer 6 is disposed between the glass substrate 1 and the transparent glass substrate 2, a buffer layer 7 is disposed on the outer peripheral side of the organic sealing layer 6, and a barrier is disposed on the outer peripheral side of the buffer layer 7. The layer 8 is disposed, and the elastic layer 9 is disposed on the outer periphery of the barrier layer 8.

有機封止層6を形成する材料は接着性を示す任意の有機物質であれば良いが、好ましくはカチオン硬化タイプの紫外線硬化型樹脂、例えばエポキシ樹脂である。有機物質は一例としてディスペンサー等の塗布装置で塗布された後に、紫外線で硬化され、有機封止層6を形成する。続いて、緩衝層7は一例として有機物質と同様にディスペンサー等の塗布装置で塗布された後に、紫外線で硬化され、緩衝層7を形成する。   The material for forming the organic sealing layer 6 may be any organic substance exhibiting adhesiveness, but is preferably a cationic curing type ultraviolet curable resin, for example, an epoxy resin. As an example, the organic material is applied by a coating device such as a dispenser and then cured by ultraviolet rays to form the organic sealing layer 6. Subsequently, as an example, the buffer layer 7 is applied by a coating device such as a dispenser in the same manner as an organic substance, and then cured by ultraviolet rays to form the buffer layer 7.

有機封止層6はガラス基板の内側のみに配置されていても良く、その一部がはみ出て配置されていても良い。又、有機封止層6の厚みは0.1mm〜1.5mmの厚みであることが好ましい。   The organic sealing layer 6 may be disposed only inside the glass substrate, or a part of the organic sealing layer 6 may be disposed so as to protrude. Moreover, it is preferable that the thickness of the organic sealing layer 6 is 0.1 mm-1.5 mm.

緩衝層7の線膨張係数は、有機封止層6とバリア層8の線膨張係数の間であれば良い。緩衝層7の線膨張係数を変化させる一例を挙げると有機物質に添加する無機粒子量を変化させることで線膨張係数を変えることができる。又、緩衝層7の厚みは0.1mm〜1.5mmの厚みであることが好ましい。   The linear expansion coefficient of the buffer layer 7 may be between the linear expansion coefficients of the organic sealing layer 6 and the barrier layer 8. As an example of changing the linear expansion coefficient of the buffer layer 7, the linear expansion coefficient can be changed by changing the amount of inorganic particles added to the organic substance. Moreover, it is preferable that the thickness of the buffer layer 7 is 0.1 mm-1.5 mm.

バリア層8は、加水分解してポリシロキサンを形成する化合物であれば良いが、例えばオルガノシルセスキオキサンオリゴマー(化1参照)やポリシラザンが挙げられる。   The barrier layer 8 may be any compound that hydrolyzes to form polysiloxane, and examples thereof include organosilsesquioxane oligomers (see Chemical Formula 1) and polysilazanes.

Figure 2006164691
(R
、R は少なくとも炭素を1つ以上含むアルキル基である。R
とR は同じであっても違っていても良い。)
次に、バリア層7の形成についてオルガノシルセスキオキサンオリゴマー及び/又はポリシラザンを一例に以下の説明を行う。
Figure 2006164691
(R 1
, R 2 is an alkyl group containing at least one carbon. R 1
And R 2 may be the same or different. )
Next, the formation of the barrier layer 7 will be described below using an organosilsesquioxane oligomer and / or polysilazane as an example.

オルガノシルセスキオキサンオリゴマー及び/又はポリシラザンを任意の有機溶剤で溶解し、液状に調製した後にディスペンサーやスプレー、ディップ等の任意の膜形成装置で有機封止層6とガラス基板1と透明ガラス基板2に接するように切れ目なく塗布した後に、常温大気雰囲気下で乾燥することでバリア層8を形成する。このとき、形成されたバリア層8の膜厚は0.01mm〜0.1mmであることが好ましい。又、バリア層8の塗布は各々1回に限らず、複数回数重ね塗りされても良い。   An organosilsesquioxane oligomer and / or polysilazane is dissolved in an arbitrary organic solvent and prepared in a liquid state, and then the organic encapsulating layer 6, the glass substrate 1, and the transparent glass substrate are used in an arbitrary film forming apparatus such as a dispenser, spray, dip, etc. After barrierless application so as to contact 2, the barrier layer 8 is formed by drying in a room temperature air atmosphere. At this time, the thickness of the formed barrier layer 8 is preferably 0.01 mm to 0.1 mm. Further, the coating of the barrier layer 8 is not limited to once, but may be repeated a plurality of times.

弾性層9の材料には、バリア層8との界面に発生する応力が低い、即ち弾性率が低く硬化収縮の小さい、例えばシリコーンやウレタンが挙げられる。弾性層9は一例としてディスペンサー等の塗布装置で塗布された後に、紫外線で硬化して形成することができる。   Examples of the material of the elastic layer 9 include low stress generated at the interface with the barrier layer 8, that is, low elastic modulus and small curing shrinkage, such as silicone and urethane. The elastic layer 9 can be formed, for example, by being applied with an application device such as a dispenser and then being cured with ultraviolet rays.

本発明の有機EL素子の製造工程は有機EL発光層の作成工程及び多層封止構造の作成工程から成る。尚、本実施例1ではバリア層8にオルガノシルセスキオキサンオリゴマーが含まれる場合について図1及び図2を用いて詳細に説明する。   The manufacturing process of the organic EL device of the present invention includes a process for forming an organic EL light emitting layer and a process for generating a multilayer sealing structure. In Example 1, the case where the barrier layer 8 contains an organosilsesquioxane oligomer will be described in detail with reference to FIGS.

先ず、有機発光層3の詳細な作製方法について以下に述べる。   First, a detailed manufacturing method of the organic light emitting layer 3 will be described below.

[Cr電極形成]
ガラス基板1上に、CrターゲットをDCスパッタし陽極Aとして100nmの厚さにCr膜を成膜した。この際成膜マスクを用いて、3mmのストライプとした。Arガスを用いて、0.2Paの圧力、300Wの投入Pw条件で行った。
[Cr electrode formation]
On the glass substrate 1, a Cr film having a thickness of 100 nm was formed as an anode A by DC sputtering of a Cr target. At this time, a 3 mm stripe was formed using a film formation mask. Using Ar gas, the pressure was 0.2 Pa, and the input Pw was 300 W.

[大気開放]
次に、基板をスパッタ装置より取り出してアセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、次いでIPAで煮沸洗浄後乾燥した。更に、UV/オゾン洗浄した。
[Atmospheric release]
Next, the substrate was taken out from the sputtering apparatus, ultrasonically washed with acetone and isopropyl alcohol (IPA) in sequence, then boiled and washed with IPA, and then dried. Further, UV / ozone cleaning was performed.

[前処理]
有機EL蒸着装置へ移し真空排気し、前処理室で基板付近に設けたリング状電極に50WのRF電力を投入し酸素プラズマ洗浄処理を行った。酸素圧力は0.6Pa、処理時間は40秒であった。
[Preprocessing]
The sample was transferred to an organic EL vapor deposition apparatus and evacuated, and 50 W RF power was applied to a ring electrode provided near the substrate in the pretreatment chamber to perform an oxygen plasma cleaning process. The oxygen pressure was 0.6 Pa and the treatment time was 40 seconds.

[正孔輸送層形成]
基板を前処理室より成膜室へ移動し、成膜室を、1×10−4Paまで排気した後、正孔輸送性を有するαNPDを抵抗加熱蒸着法により成膜速度0. 2〜0. 3nm/secの条件で成膜、膜厚35nm正孔輸送層を形成した。尚、正孔輸送層、発光層及び電子注入層は、同一の蒸着マスクを用いることにより所定の部分に蒸着した。所定の部分とは基板上で、Crが露出している部分である(画素電極)。
[Hole transport layer formation]
The substrate was moved from the pretreatment chamber to the film formation chamber, and after the film formation chamber was evacuated to 1 × 10 −4 Pa, αNPD having hole transportability was formed at a film formation rate of 0.2 to 0 by resistance heating vapor deposition. A film was formed under the condition of 3 nm / sec, and a 35 nm-thick hole transport layer was formed. In addition, the hole transport layer, the light emitting layer, and the electron injection layer were vapor-deposited on predetermined portions by using the same vapor deposition mask. The predetermined portion is a portion where the Cr is exposed on the substrate (pixel electrode).

[発光層形成]
続いて正孔輸送層の上にアルキレート錯体であるAlq を抵抗加熱蒸着法により正孔輸送層と同様の成膜条件で膜厚15nm成膜、発光層を形成した。
[Light emitting layer formation]
Subsequently, Alq 3 as an alkylate complex was formed on the hole transport layer by a resistance heating vapor deposition method under the same film formation conditions as the hole transport layer to form a 15 nm-thick film and a light emitting layer.

[電子注入電極層形成]
次に、発光層の上に抵抗加熱共蒸着法によりAlq と炭酸セシウム(Cs CO )を膜厚比9:1の割合で混合されるよう、各々の蒸着速度を調整して成膜、膜厚35nm電子注入層を形成した。詳しくは、それぞれの蒸着ボートにセットした材料を抵抗加熱方式で蒸発させ、有機層は〜5A/S、共蒸着層もそれぞれのボート電流値を調整することで、併せて〜5A/Sの蒸着速度で膜形成を行った。
[Electron injection electrode layer formation]
Next, each deposition rate is adjusted to form a film so that Alq 3 and cesium carbonate (Cs 2 CO 3 ) are mixed on the light emitting layer by a resistance heating co-evaporation method at a film thickness ratio of 9: 1. An electron injection layer having a thickness of 35 nm was formed. Specifically, the material set in each vapor deposition boat is evaporated by resistance heating, and the organic layer is adjusted to ~ 5 A / S, and the co-evaporated layer is adjusted to the respective boat current value, so that the vapor deposition is ~ 5 A / S. Film formation was performed at a speed.

[陰極(透明導電膜)形成]
最後に別の成膜室に基板を移し、電子注入層の上にITOターゲットを用いてDCマグネトロンスパッタリング法により、膜厚が130nmになるようマスク成膜によりCr画素電極を覆って、Crストライプに交差するように、陰極を形成した。
[Cathode (transparent conductive film) formation]
Finally, the substrate is moved to another film formation chamber, and the Cr pixel electrode is covered by the mask film formation so that the film thickness becomes 130 nm by the DC magnetron sputtering method using the ITO target on the electron injection layer, and the Cr stripe is formed. A cathode was formed so as to intersect.

成膜中においては、成膜時間の経過につれてH Oガス供給量を減少させることにより陰極の膜厚方向にHの濃度勾配を形成した。Hの濃度勾配は、電子注入電極層界面近傍においてHを5×1021〜1×1022atom/ccとし、膜厚方向に向かって連続的に濃度を低下させ、陰極Kの膜厚中心付近(電子注入電極層界面より65nm)でHの含有量が1020 atom/cc台とした。尚、前述のようにITOターゲット裏面には強磁場タイプのマグネットが配置されており、低電圧スパッタリングが可能となっている。 During film formation, an H concentration gradient was formed in the thickness direction of the cathode by decreasing the H 2 O gas supply amount as the film formation time elapses. The concentration gradient of H is such that H is 5 × 10 21 to 1 × 10 22 atoms / cc in the vicinity of the interface of the electron injection electrode layer, the concentration is continuously decreased in the film thickness direction, and the vicinity of the film thickness center of the cathode K The H content was set to the order of 10 20 atoms / cc at (65 nm from the electron injection electrode layer interface). As described above, a strong magnetic field type magnet is disposed on the back surface of the ITO target, and low voltage sputtering is possible.

成膜条件としては、基板加熱なしの室温成膜で成膜圧力を1.0Pa、Ar、H O及びO ガスを用いそれぞれの流量は500,1.5,5.0scccmとし、ターゲットに印加する投入パワーはITO:500Wで成膜を行った。透過率は85%(at.450nm)、比抵抗値は8.0×−4 Ωcmであった。 As film formation conditions, film formation pressure is 1.0 Pa, film formation pressure is 1.0 Pa, Ar, H 2 O, and O 2 gases are used at respective flow rates of 500, 1.5, and 5.0 sccc cm. The applied power was ITO: 500 W for film formation. The transmittance was 85% (at 450 nm), and the specific resistance value was 8.0 × −4 Ωcm.

以上のようにして、ガラス基板1上に、陽極、正孔輸送層、発光層、電子注入電極層及び陰極を設け、有機発光層3を形成した。   As described above, the anode, the hole transport layer, the light emitting layer, the electron injection electrode layer, and the cathode were provided on the glass substrate 1 to form the organic light emitting layer 3.

次に、形成した有機EL発光層3に空気中の水が浸入しないように多層封止構造5を形成した。   Next, the multilayer sealing structure 5 was formed so that water in the air would not enter the formed organic EL light emitting layer 3.

[封止工程]
先ず、有機発光層3の外周部を有機物質6で封止し、接着力を発現させた。ここで用いる有機物質にはカチオン硬化タイプの紫外線硬化樹脂を用い、紫外線照射装置(EX250 HOYA−SHOTT製)により硬化させた。尚、その時の紫外線照射強度は100mW/cm2 で光量は3,000mJ/cm2 である。このときの、有機封止層6の膜厚は0.5mmであった。
[Sealing process]
First, the outer peripheral part of the organic light emitting layer 3 was sealed with the organic substance 6, and the adhesive force was expressed. A cationic curing type ultraviolet curable resin was used for the organic substance used here, and it was cured by an ultraviolet irradiation device (manufactured by EX250 HOYA-SHOTTT). In addition, the ultraviolet irradiation intensity at that time is 100 mW / cm 2 and the amount of light is 3,000 mJ / cm 2 . The film thickness of the organic sealing layer 6 at this time was 0.5 mm.

次に、有機物質6の外周部に緩衝層7を塗布し、前記紫外線照射装置で硬化させた。尚、その時の紫外線照射強度は100mW/cm2 で光量は3,000mJ/cm2 である。ここで用いる緩衝層材料は、有機物質に用いたカチオン硬化タイプの紫外線硬化樹脂に中心粒径が0.001mmのシリカフィラーを60wt%添加したものである。又、このときの緩衝層7の膜厚は0.5mmであった。 Next, the buffer layer 7 was apply | coated to the outer peripheral part of the organic substance 6, and it was hardened with the said ultraviolet irradiation device. In addition, the ultraviolet irradiation intensity at that time is 100 mW / cm 2 and the amount of light is 3,000 mJ / cm 2 . The buffer layer material used here is obtained by adding 60 wt% of a silica filler having a center particle diameter of 0.001 mm to the cationic curing type ultraviolet curing resin used for the organic substance. At this time, the thickness of the buffer layer 7 was 0.5 mm.

次に、調製したメチルシルセスキオキサンオリゴマー溶液をガラス基板1及び透明ガラス基板2に接し、且つ、緩衝層7を覆うように切れ目なくディスペンサーで塗布した。メチルシルセスキオキサンオリゴマーとは、化学式1のR1
及びR2 が何れもメチル基であるような化合物であり、市販されているものを使用した。オルガノシルセスキオキサンオリゴマー溶液の調製は、乾燥剤で水分濃度を低下させたIPAに重量分率で70wt%のメチルシルセスキオキサンオリゴマーを添加して行った。メチルシルセスキオキサンオリゴマーを塗布した後に、常温で12時間乾燥させ、メチルシルセスキオキサンオリゴマーからなるバリア層8を形成した。尚、メチルシルセスキオキサンオリゴマーの乾燥後のガラス基板1方向の厚みは0.01mmであった。
Next, the prepared methyl silsesquioxane oligomer solution was applied to the glass substrate 1 and the transparent glass substrate 2 with a dispenser so as to cover the buffer layer 7 without any breaks. Methyl silsesquioxane oligomer is R1 of Formula 1
And R2 are both methyl compounds and are commercially available. The organosilsesquioxane oligomer solution was prepared by adding 70 wt% methylsilsesquioxane oligomer to IPA whose moisture concentration was lowered with a desiccant. After applying the methyl silsesquioxane oligomer, it was dried at room temperature for 12 hours to form a barrier layer 8 made of methyl silsesquioxane oligomer. In addition, the thickness of the glass substrate 1 direction after drying of a methyl silsesquioxane oligomer was 0.01 mm.

次に、バリア層8の外周部にディスペンサーでシリコーン樹脂を切れ目なくディスペンサーで塗布した。シリコーン樹脂は、前記紫外線照射装置で硬化させた。尚、その時の紫外線照射強度は100mW/cm2 で光量は3,000mJ/cm2 である。 Next, a silicone resin was applied to the outer peripheral portion of the barrier layer 8 with a dispenser with a dispenser. The silicone resin was cured with the ultraviolet irradiation device. In addition, the ultraviolet irradiation intensity at that time is 100 mW / cm 2 and the amount of light is 3,000 mJ / cm 2 .

[素子評価]
長期信頼性においても、60℃/90%RHの雰囲気条件で1000時間の連続耐久試験を行ったが、バリア層にオルガノシルセスキオキサンオリゴマーを用いたことで、外部からの余分な水分の浸入少なく、輝度劣化等の発光特性の低下及びダークスポット等の発生が少ない、安定した有機EL素子とその製造方法を得ることができ。
[Element evaluation]
In terms of long-term reliability, a continuous durability test of 1000 hours was performed under an atmospheric condition of 60 ° C./90% RH. However, by using an organosilsesquioxane oligomer for the barrier layer, excess moisture entered from the outside. It is possible to obtain a stable organic EL element and a method for manufacturing the same, which are low in light emission characteristics such as luminance deterioration and less in the occurrence of dark spots.

実施例2は実施例1に対して、バリア層8にポリシラザン化合物を含む材料を使用した場合の実施例を詳細に示すものである。尚、有機発光層の作成方法は実施例1と同様であるので、無機封止層7の形成方法について詳細に述べる。   Example 2 is a detailed example of Example 1 in which a material containing a polysilazane compound is used for the barrier layer 8. In addition, since the preparation method of an organic light emitting layer is the same as that of Example 1, the formation method of the inorganic sealing layer 7 is described in detail.

[封止工程]
先ず、有機発光層3の外周部を有機物質6で封止し、接着力を発現させた。ここで用いる有機物質にはカチオン硬化タイプの紫外線硬化樹脂を用い、紫外線照射装置(EX250 HOYA−SHOTT製)により硬化させた。尚、その時の紫外線照射強度は100mW/cm2 で光量は3,000mJ/cm2 である。
[Sealing process]
First, the outer peripheral part of the organic light emitting layer 3 was sealed with the organic substance 6, and the adhesive force was expressed. A cationic curing type ultraviolet curable resin was used for the organic substance used here, and it was cured by an ultraviolet irradiation device (manufactured by EX250 HOYA-SHOTTT). In addition, the ultraviolet irradiation intensity at that time is 100 mW / cm 2 and the amount of light is 3,000 mJ / cm 2 .

次に、有機物質6の外周部に緩衝層7を塗布し、前記紫外線照射装置で硬化させた。尚、その時の紫外線照射強度は100mW/cm2 で光量は3,000mJ/cm2 である。ここで用いる緩衝層材料は有機物質に用いたカチオン硬化タイプの紫外線硬化樹脂に中心粒径が0.001mmのシリカフィラーを60wt%添加したものである。 Next, the buffer layer 7 was apply | coated to the outer peripheral part of the organic substance 6, and it was hardened with the said ultraviolet irradiation device. In addition, the ultraviolet irradiation intensity at that time is 100 mW / cm 2 and the amount of light is 3,000 mJ / cm 2 . The buffer layer material used here is obtained by adding 60 wt% of a silica filler having a center particle diameter of 0.001 mm to the cationic curing type ultraviolet curing resin used for the organic substance.

次に、調製したポリシラザン化合物溶液をガラス基板1及び透明ガラス基板2に接し、且つ、緩衝層7を覆うように切れ目なくディスペンサーで塗布した。ポリシラザン化合物は、市販されているものを使用した。ポリシラザン化合物溶液の調製は、乾燥剤で水分濃度を低下させたIPAに重量分率で70wt%のポリシラザン化合物を添加して行った。ポリシラザン化合物を塗布した後に、常温で12時間乾燥させ、ポリシラザン化合物からなるバリア層8を形成した。尚、ポリシラザン化合物の乾燥後のガラス基板1方向の厚みは0.01mmであった。   Next, the prepared polysilazane compound solution was applied with a dispenser so as to contact the glass substrate 1 and the transparent glass substrate 2 and cover the buffer layer 7 without any breaks. A commercially available polysilazane compound was used. The polysilazane compound solution was prepared by adding a 70 wt% polysilazane compound to IPA whose moisture concentration was lowered with a desiccant. After applying the polysilazane compound, it was dried at room temperature for 12 hours to form a barrier layer 8 made of the polysilazane compound. In addition, the thickness of the glass substrate 1 direction after drying of a polysilazane compound was 0.01 mm.

次に、バリア層8の外周部にディスペンサーでシリコーン樹脂を切れ目なくディスペンサーで塗布した。シリコーン樹脂は、前記紫外線照射装置で硬化させた。尚、その時の紫外線照射強度は100mW/cm2 で光量は3,000mJ/cm2 である。 Next, a silicone resin was applied to the outer peripheral portion of the barrier layer 8 with a dispenser with a dispenser. The silicone resin was cured with the ultraviolet irradiation device. In addition, the ultraviolet irradiation intensity at that time is 100 mW / cm 2 and the amount of light is 3,000 mJ / cm 2 .

[素子評価]
長期信頼性においても、60℃/90%RHの雰囲気条件で1000時間の連続耐久試験を行ったが、バリア層にポリシラザンを用いたことで、外部からの余分な水分の浸入少なく、輝度劣化等の発光特性の低下及びダークスポット等の発生が少ない、安定した有機EL素子とその製造方法を得ることができた。
(比較例1)
比較例1は実施例1に対して、有機ELの多層封止層にバリア層を配置しなかった場合について示す。
[Element evaluation]
In terms of long-term reliability, a continuous durability test was conducted for 1000 hours under an atmospheric condition of 60 ° C./90% RH, but polysilazane was used for the barrier layer, so that excessive moisture entry from the outside was reduced, luminance degradation, etc. Thus, a stable organic EL device and a method for producing the same, in which the emission characteristics of the light emitting layer and the occurrence of dark spots and the like are small, can be obtained.
(Comparative Example 1)
Comparative Example 1 shows a case where no barrier layer is disposed in the organic EL multilayer sealing layer, as compared to Example 1.

ここで用いる有機物質としては、カチオン硬化タイプの紫外線硬化型のエポキシ樹脂を用いた。有機物質をガラス基板1に塗布後、ガラス基板1と透明ガラス基板2とを有機物質を介して封着し、紫外線照射装置(EX250 HOYA−SHOTT製)により硬化させた。尚、その時の紫外線照射強度は100mW/cm2 で光量は3,000mJ/cm2 である。 As the organic material used here, a cationic curing type ultraviolet curing epoxy resin was used. After the organic material was applied to the glass substrate 1, the glass substrate 1 and the transparent glass substrate 2 were sealed through the organic material and cured by an ultraviolet irradiation device (manufactured by EX250 HOYA-SHOTTT). In addition, the ultraviolet irradiation intensity at that time is 100 mW / cm 2 and the amount of light is 3,000 mJ / cm 2 .

以上述べた封着工程は、水分濃度を10ppm以下に制御して封着した。   In the sealing step described above, sealing was performed by controlling the water concentration to 10 ppm or less.

[素子評価]
組み立てた有機EL素子について、60℃/90%RHの雰囲気条件で1000時間の連続耐久試験を行ったが、オルガノシルセスキオキサンオリゴマー及び/又はポリシラザンのバリア層を設けた場合に比べて余分な水分が封止材及び封止界面から浸入し、輝度劣化が進み、安定性に乏しい有機EL素子となった。
[Element evaluation]
The assembled organic EL device was subjected to a continuous durability test for 1000 hours under an atmospheric condition of 60 ° C./90% RH. Moisture permeated from the sealing material and the sealing interface, and the luminance deteriorated, resulting in an organic EL element having poor stability.

有機EL素子の断面模式図である。It is a cross-sectional schematic diagram of an organic EL element. 多層封止構造の断面模式図である。It is a cross-sectional schematic diagram of a multilayer sealing structure.

符号の説明Explanation of symbols

1 ガラス基板
2 透明ガラス基板
3 有機発光層
4 密着層
5 多層封止層
6 有機封止層
7 緩衝層
8 バリア層
9 弾性層
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Transparent glass substrate 3 Organic light emitting layer 4 Adhesion layer 5 Multilayer sealing layer 6 Organic sealing layer 7 Buffer layer 8 Barrier layer 9 Elastic layer

Claims (8)

少なくとも一方が透明である1対の基板と前記1対の基板に挟持された1対の電極と前記1対の電極の間に有機層が設けられている有機EL素子において、
前記有機EL素子の外周部には前記基板と前記基板に対向する封止用基板との間を封止する多層封止構造が配置されており、前記多層封止構造は有機封止層と前記有機封止層の外周層に設けられた緩衝層と前記緩衝層の外周部に設けられたケイ素化合物と前記ケイ素化合物の外周部に設けられた弾性層を有しており、前記緩衝層の線膨張係数が前記有機封止層の線膨張係数より小さく前記ケイ素化合物層の線膨張係数より大きく、且つ、前記弾性層の弾性率が前記ケイ素化合物の弾性率より小さいことを特徴とする有機EL素子。
In the organic EL element in which an organic layer is provided between the pair of electrodes sandwiched between the pair of substrates at least one of which is transparent and the pair of substrates, and the pair of electrodes,
A multilayer sealing structure that seals between the substrate and a sealing substrate facing the substrate is disposed on an outer peripheral portion of the organic EL element, and the multilayer sealing structure includes the organic sealing layer and the organic sealing layer. A buffer layer provided on the outer peripheral layer of the organic sealing layer; a silicon compound provided on the outer peripheral portion of the buffer layer; and an elastic layer provided on the outer peripheral portion of the silicon compound. An organic EL element having an expansion coefficient smaller than a linear expansion coefficient of the organic sealing layer and larger than a linear expansion coefficient of the silicon compound layer, and an elastic modulus of the elastic layer being smaller than an elastic modulus of the silicon compound .
前記ケイ素化合物がオルガノシルセスキオキサンオリゴマー及び/又はポリシラザンであることを特徴とする請求項1記載の有機EL素子。   2. The organic EL device according to claim 1, wherein the silicon compound is an organosilsesquioxane oligomer and / or polysilazane. 前記有機封止層がカチオン硬化タイプの紫外線硬化型樹脂であることを特徴とする請求項1又は2記載の有機EL素子。   3. The organic EL element according to claim 1, wherein the organic sealing layer is a cationic curing type ultraviolet curable resin. 前記緩衝層がカチオン硬化タイプの紫外線硬化型樹脂に無機粒子を加えた樹脂であることを特徴とする請求項1〜3の何れかに記載の有機EL素子。   The organic EL element according to claim 1, wherein the buffer layer is a resin obtained by adding inorganic particles to a cationic curing type ultraviolet curable resin. 前記弾性層がシリコーン又はウレタンから選ばれる樹脂であることを特徴とする請求項1〜4の何れかに記載の有機EL素子。   The organic EL device according to claim 1, wherein the elastic layer is a resin selected from silicone and urethane. 前記ケイ素化合物層の膜厚が0.01mm〜0.1mmであることを特徴とする請求項1〜5の何れかに記載の有機EL素子。   6. The organic EL element according to claim 1, wherein the silicon compound layer has a thickness of 0.01 mm to 0.1 mm. トップエミッション構造であることを特徴とする請求項1〜6の何れかに記載の有機EL素子。   The organic EL device according to claim 1, wherein the organic EL device has a top emission structure. 少なくとも一方が透明である1対の基板と前記1対の基板に挟持された1対の電極と前記1対の電極の間に有機層が設けられている有機EL素子形成工程と前記有機EL素子を外周部で封止する封止工程とを有する有機EL素子の製造方法において、
前記封止工程は、前記有機EL素子形成工程の後の工程であり、且つ、前記有機EL素子の前記外周部に有機封止層を形成する工程と前記有機封止層の外周部に緩衝層を形成する工程と前記緩衝層の外周部にケイ素化合物層を形成する工程と前記ケイ素化合物層の外周部に弾性層を形成する工程によって多層封止構造を形成することを特徴とする有機EL素子の製造方法。
An organic EL element forming step in which an organic layer is provided between a pair of substrates, at least one of which is transparent, a pair of electrodes sandwiched between the pair of substrates, and the pair of electrodes, and the organic EL element In the manufacturing method of the organic EL element having a sealing step of sealing the outer periphery with
The sealing step is a step after the organic EL element forming step, and a step of forming an organic sealing layer on the outer peripheral portion of the organic EL element and a buffer layer on the outer peripheral portion of the organic sealing layer An organic EL device comprising: a step of forming a silicon compound layer on the outer peripheral portion of the buffer layer; and a step of forming an elastic layer on the outer peripheral portion of the silicon compound layer. Manufacturing method.
JP2004352969A 2004-12-06 2004-12-06 Organic el element and method of manufacturing the same Withdrawn JP2006164691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004352969A JP2006164691A (en) 2004-12-06 2004-12-06 Organic el element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004352969A JP2006164691A (en) 2004-12-06 2004-12-06 Organic el element and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2006164691A true JP2006164691A (en) 2006-06-22

Family

ID=36666464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004352969A Withdrawn JP2006164691A (en) 2004-12-06 2004-12-06 Organic el element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2006164691A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181459A (en) * 2009-02-03 2010-08-19 Citizen Holdings Co Ltd Liquid crystal panel
JP2012164543A (en) * 2011-02-08 2012-08-30 Kaneka Corp Organic el device and method for manufacturing the same
JP2014191011A (en) * 2013-03-26 2014-10-06 Seiko Epson Corp Electro-optic device, method for manufacturing electro-optic device, and electronic equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181459A (en) * 2009-02-03 2010-08-19 Citizen Holdings Co Ltd Liquid crystal panel
JP2012164543A (en) * 2011-02-08 2012-08-30 Kaneka Corp Organic el device and method for manufacturing the same
JP2014191011A (en) * 2013-03-26 2014-10-06 Seiko Epson Corp Electro-optic device, method for manufacturing electro-optic device, and electronic equipment
US9759951B2 (en) 2013-03-26 2017-09-12 Seiko Epson Corporation Electro-optical device and electronic apparatus

Similar Documents

Publication Publication Date Title
JP5578789B2 (en) Electroluminescent device
US7255937B2 (en) Encapsulated organic electroluminescent display
US20050156517A1 (en) Display device
JP4842470B2 (en) Organic electroluminescent device
KR20010092414A (en) Organic el element and method of manufacturing the same
KR100855763B1 (en) Organic el device array and display device and image pickup apparatus
US20010013756A1 (en) Hermetic encapsulation package and method of fabrication thereof
JP2003142255A (en) Photoelectric device and manufacturing method of the same, and electronic device
KR20010067388A (en) Organic electroluminescent element
JPWO2005122644A1 (en) Organic semiconductor device
JP2005190683A (en) Organic el element and its manufacturing method
US6628071B1 (en) Package for organic electroluminescent device
KR20170003997A (en) Organic electroluminescent element
JP4165227B2 (en) Organic EL display device
JP2001237064A (en) Organic el element
WO2014073534A1 (en) Organic electroluminescent display device and production method for same
JPH09132774A (en) Organic thin-film luminescent element
JP2006114399A (en) Organic el element
JP2006221906A (en) Organic el element and its manufacturing method
KR102013730B1 (en) Encapsulation Methods for LED Lighting Applications
JP2004237655A (en) Alternately laminated moistureproof film, its manufacturing method and alternately laminated moistureproof film with transparent electrode plate
JP2006164691A (en) Organic el element and method of manufacturing the same
JP2003109750A (en) Organic electroluminescent element
JP2009259690A (en) Electroluminescent element and its method for manufacturing
JP2005322432A (en) Organic el element and its manufacturing method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304