JP2009256751A - Anodically oxidized porous alumina and production method therefor - Google Patents

Anodically oxidized porous alumina and production method therefor Download PDF

Info

Publication number
JP2009256751A
JP2009256751A JP2008109293A JP2008109293A JP2009256751A JP 2009256751 A JP2009256751 A JP 2009256751A JP 2008109293 A JP2008109293 A JP 2008109293A JP 2008109293 A JP2008109293 A JP 2008109293A JP 2009256751 A JP2009256751 A JP 2009256751A
Authority
JP
Japan
Prior art keywords
porous alumina
anodized porous
pores
anodization
anodized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008109293A
Other languages
Japanese (ja)
Other versions
JP5344850B2 (en
Inventor
Hideki Masuda
秀樹 益田
Takashi Yagishita
崇 柳下
Kazuyuki Nishio
和之 西尾
Tomohiro Ishii
智紘 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Original Assignee
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology filed Critical Kanagawa Academy of Science and Technology
Priority to JP2008109293A priority Critical patent/JP5344850B2/en
Publication of JP2009256751A publication Critical patent/JP2009256751A/en
Application granted granted Critical
Publication of JP5344850B2 publication Critical patent/JP5344850B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide anodically oxidized porous alumina which is expected to expand its utility over a wide variety of fields and has a predetermined number or more of pores in longitudinal and transverse directions ideally arrayed so that the pores form a triangular lattice shape with periodic intervals of about 200 nm, and to provide a production method therefor. <P>SOLUTION: The anodically oxidized porous alumina is formed only by an anodizing process, and has the pores arrayed with periodic intervals of 150 to 250 nm so as to form an ideally triangular lattice shape in a range of longitudinally 6 pores by transversely 6 pores or more. A production method therefor is also disclosed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、陽極酸化ポーラスアルミナおよびその製造方法に関し、とくに、細孔周期が150nm から250nm の範囲で細孔が高い規則性を持って配列した、高規則性多孔性材料として様々な機能性デバイスへの応用が可能な陽極酸化ポーラスアルミナおよびその製造方法に関する。   The present invention relates to anodized porous alumina and a method for producing the same, and in particular, various functional devices as highly ordered porous materials in which pores are arranged with high regularity in a pore cycle range of 150 nm to 250 nm. The present invention relates to an anodized porous alumina that can be applied to the present invention and a method for producing the same.

アルミニウムを酸性あるいはアルカリ性電解液中で陽極酸化することにより表面に形成される多孔性酸化皮膜は、膜面に対し垂直に配向した微小な細孔を有することから各種機能材料への応用が検討されている。陽極酸ポーラスアルミナの幾何構造は、アルミニウムの表面に形成されるセルと呼ばれる筒状構造の集合体からなり、各セルの中心に細孔が位置している。セルのサイズ、換言すれば、細孔の間隔は、陽極酸化のための化成電圧にほぼ比例し、2.5nm/Vの関係を有することが知られている。孔の直径は、化成浴の種類、濃度、浴温等に依存するが、通常、セルの大きさの1/3程度であることが知られている。   The porous oxide film formed on the surface by anodizing aluminum in acidic or alkaline electrolyte has minute pores oriented perpendicular to the film surface, so its application to various functional materials has been studied. ing. The geometric structure of anodized porous alumina is an aggregate of cylindrical structures called cells formed on the surface of aluminum, and a pore is located at the center of each cell. It is known that the cell size, in other words, the pore spacing is approximately proportional to the formation voltage for anodic oxidation and has a relationship of 2.5 nm / V. The diameter of the hole depends on the type, concentration, bath temperature, and the like of the chemical bath, but is generally known to be about 1/3 of the cell size.

陽極酸化ポーラスアルミナにおいて、セル配列、あるいは細孔配列の規則性は、作製条件に依存し、理想的には、細孔が欠陥や配列の乱れなく、三角格子状に配列した構造で示される。以下、本願においては、このように隣接する三角格子が実質的に等しい形状(たとえば、正三角形)を有する配列を、理想三角格子状の配列と言う。しかし、細孔が理想三角格子状に配列された陽極酸化ポーラスアルミナは、特定の場合を除いて得ることはできない。陽極酸化ポーラスアルミナにおける細孔配列の規則性は、作製する条件に大きく依存し、適切な条件下で陽極酸化を行った場合には、ある範囲の領域で細孔が縦、横数個あるいはそれ以上の個数の範囲で欠陥なく三角格子を形成できるが、これら理想細孔配列を形成する部分が各ドメインを形成してしまい、隣接するドメイン境界部では、配列が乱れた細孔配列の欠陥が集積する。   In the anodized porous alumina, the regularity of the cell arrangement or the pore arrangement depends on the production conditions, and ideally, it is shown as a structure in which the pores are arranged in a triangular lattice pattern without any defects or disorder of the arrangement. Hereinafter, in the present application, such an arrangement in which adjacent triangular lattices have substantially the same shape (for example, equilateral triangles) is referred to as an ideal triangular lattice-like arrangement. However, anodized porous alumina having pores arranged in an ideal triangular lattice cannot be obtained except in specific cases. The regularity of the pore arrangement in anodized porous alumina depends greatly on the conditions under which it is produced. When anodized under appropriate conditions, the pores are vertically, horizontally or several in a certain range. Triangular lattices can be formed without defects within the range of the above number, but the portions forming these ideal pore arrays form each domain, and at the adjacent domain boundary, there are defects in the pore arrays whose arrangement is disordered. Accumulate.

一方、陽極酸化に先がけて、地金の表面にテクスチャリング処理により窪み配列の形成を行うと、各窪みが陽極酸化の初期において細孔発生の開始点として機能することから、細孔が理想三角格子状に配列したポーラスアルミナを得ることができるようになる(例えば、非特許文献1)。このような手法を用いると、比較的簡便に高い規則性を有するポーラスアルミナを得ることができるが、作製可能なポーラスアルミナのサイズは、テクスチャリング処理に用いるモールドのサイズに制限されるため、大面積の試料作製が困難であるといった問題点がある。そのため、大面積のアルミニウム材の表面に継ぎ目なく細孔が規則的に配列したポーラスアルミナの形成を行うためには、最適化された条件下で陽極酸化を行う手法が適している。また、このような手法に基づけば、平板形状のアルミニウム材だけでなく、曲率を有する表面など、様々な表面形状を有するアルミニウム材に、高規則性ポーラスアルミナの形成を行うことができる。これまでに、高規則性ポーラスアルミナの形成が可能な条件がいくつか見出されているが(例えば、非特許文献2)、細孔周期が150nmから250nmの範囲での陽極酸化ポーラスアルミナでは、細孔が縦、横6×6個以上の範囲で三角格子状に欠陥なく配列した陽極酸化ポーラスアルミナの作成条件はいまだ明らかにされていない。
H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, Appl. Phys. Lett. 71, 2770 (1997) H. Masuda and K. Fukuda, Science 268, 1466 (1995)
On the other hand, prior to anodic oxidation, when the dent array is formed on the surface of the metal by texturing, each dent functions as a starting point for pore generation at the initial stage of anodic oxidation. It becomes possible to obtain porous alumina arranged in a lattice (for example, Non-Patent Document 1). When such a method is used, porous alumina having high regularity can be obtained relatively easily. However, the size of the porous alumina that can be produced is limited to the size of the mold used for texturing treatment. There is a problem that it is difficult to prepare a sample of an area. Therefore, in order to form porous alumina in which pores are regularly arranged seamlessly on the surface of a large-area aluminum material, a technique of performing anodization under optimized conditions is suitable. Further, based on such a method, highly regular porous alumina can be formed not only on a flat plate-shaped aluminum material but also on an aluminum material having various surface shapes such as a curved surface. Until now, several conditions that enable the formation of highly ordered porous alumina have been found (for example, Non-Patent Document 2). In anodized porous alumina having a pore period in the range of 150 nm to 250 nm, The preparation conditions of the anodized porous alumina in which the pores are arranged in a triangular lattice shape without defects in the range of 6 × 6 or more in the vertical and horizontal directions have not yet been clarified.
H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, Appl. Phys. Lett. 71, 2770 (1997) H. Masuda and K. Fukuda, Science 268, 1466 (1995)

そこで本発明は、幅広い分野への応用展開が期待される細孔周期が200nm程度であり、各細孔が三角格子状に縦、横6個×6個以上理想配列した陽極酸化ポーラスアルミナおよびその製造方法を提供することを目的とする。   Therefore, the present invention is expected to be applied to a wide range of fields and has a period of about 200 nm, and anodized porous alumina in which each pore is ideally arranged vertically and horizontally in a triangular lattice shape of 6 × 6 or more. An object is to provide a manufacturing method.

ここで、細孔が規則的に配列した陽極酸化ポーラスアルミナとは、細孔周期が150nmから250nmの範囲の中のいずれかの周期であり、縦、横6×6個以上にわたって細孔が欠陥をもたずに理想的な三角格子を形成した状態を示す。上述の如く、陽極酸化ポーラスアルミナにおいて、これら理想配列部分はドメイン構造を形成し、隣接ドメイン間には欠陥や配列の乱れが存在することから、試料全面にわたっての細孔理想配列を意味するものではないが、陽極酸化ポーラスアルミナの細孔配列構造に鑑みれば、理想配列部分の形成およびその領域のサイズ(細孔個数)は、陽極酸化ポーラスアルミナにおける規則性を定量的に評価する際の指標となりえるものであり、陽極酸化ポーラスアルミナのナノインプリント用モールドとしての利用など、様々な応用においても有益に寄与する。   Here, the anodized porous alumina in which the pores are regularly arranged is any one of pores in the range of 150 nm to 250 nm, and the pores are defective over 6 × 6 or more in the vertical and horizontal directions. It shows a state in which an ideal triangular lattice is formed without having. As described above, in anodized porous alumina, these ideal arrangement portions form a domain structure, and there are defects and disorder in the arrangement between adjacent domains. However, in view of the pore arrangement structure of anodized porous alumina, the formation of the ideal arrangement and the size of the region (number of pores) are indicators for quantitative evaluation of regularity in anodized porous alumina. It also contributes beneficially in various applications such as the use of anodized porous alumina as a mold for nanoimprinting.

上記目的を達成するために、本発明は、以下のような発見に基づき完成されたものである。すなわち、細孔周期が150nmから250nmの範囲の陽極酸化ポーラスアルミナにおいて、各種陽極酸化条件下で得られる陽極酸化ポーラスアルミナの細孔配列を詳細に検討した結果、電解液として用いるシュウ酸の濃度、温度、さらに、冷却条件等を適切に設定することにより、細孔が三角格子状に理想配列した陽極酸化ポーラスアルミナが得られることが明らかとなった。本発明では、このような適切な陽極酸化条件のもと陽極酸化を行うことにより、目標とする理想三角格子状に細孔が、あるサイズの領域以上に(ある個数以上に)配列された陽極酸化ポーラスアルミナが得られたものである。   In order to achieve the above object, the present invention has been completed based on the following findings. That is, in the anodized porous alumina having a pore period in the range of 150 nm to 250 nm, as a result of detailed examination of the pore arrangement of the anodized porous alumina obtained under various anodizing conditions, the concentration of oxalic acid used as the electrolyte solution, It has been clarified that anodized porous alumina in which the pores are ideally arranged in a triangular lattice shape can be obtained by appropriately setting the temperature, cooling conditions, and the like. In the present invention, by performing anodization under such an appropriate anodization condition, an anode in which pores are arranged in a target ideal triangular lattice shape more than a certain size region (more than a certain number) Oxidized porous alumina was obtained.

すなわち、前記課題を解決するために、本発明に係る陽極酸化ポーラスアルミナは、陽極酸化のみにより形成された細孔周期150nmから250nmの陽極酸化ポーラスアルミナであって、細孔が、縦、横6個×6個以上の範囲で理想三角格子状に配列されていることを特徴とするものからなる。細孔が、所定範囲内の周期で、縦、横6個×6個以上の範囲で理想三角格子状に配列されていることにより、各種分野において、より効率のよい利用が可能になる。ここで、「陽極酸化のみにより」とは、「前述のようなテクスチャリング処理を行うことなく、陽極酸化の条件を特定の条件に制御することのみにより」ということを意味する。   That is, in order to solve the above-mentioned problems, the anodized porous alumina according to the present invention is anodized porous alumina having a pore cycle of 150 nm to 250 nm formed only by anodization, and the pores are vertically and horizontally 6 It is characterized by being arranged in an ideal triangular lattice shape in a range of not less than 6 × 6 pieces. Since the pores are arranged in an ideal triangular lattice shape in a range of 6 × 6 in the vertical and horizontal directions with a period within a predetermined range, more efficient use is possible in various fields. Here, “by only anodizing” means “by controlling the anodizing condition to a specific condition without performing the texturing process as described above”.

好ましくは、細孔が、縦、横8個×8個以上の範囲で、より好ましくは、縦、横10個×10個以上の範囲で、さらに好ましくは、縦、横14個×14個以上の範囲で、理想三角格子状に配列されていることが望ましい。   Preferably, the pores are in the range of vertical and horizontal 8 × 8 or more, more preferably in the range of vertical and 10 × 10 or more, more preferably vertical, 14 × 14 or more. In this range, it is desirable to arrange them in an ideal triangular lattice shape.

このような陽極酸化ポーラスアルミナは、化成電圧70Vから130Vの範囲で地金アルミニウムを電解液中で陽極酸化することで作製することが可能である。   Such an anodized porous alumina can be produced by anodizing ingot aluminum in an electrolytic solution at a conversion voltage of 70V to 130V.

また、上記本発明に係る陽極酸化ポーラスアルミナは、1M以上の濃度のシュウ酸を主成分とする電解液を用いて、陽極酸化することが望ましく、陽極酸化時の浴温を25℃以上(特に、25℃から40℃)とすることが好ましい。   In addition, the anodized porous alumina according to the present invention is preferably anodized using an electrolyte mainly composed of oxalic acid having a concentration of 1 M or more, and the bath temperature during anodization is 25 ° C. or more (particularly 25 ° C. to 40 ° C.).

本発明において見出された陽極酸化条件では、陽極酸化の際に試料に過剰な反応熱が生じるために、試料全面にわたって均一に陽極酸化皮膜を形成することが容易でないが、陽極酸化の際の温度、電圧、電解液濃度を段階的に上昇させて目的の値にする手法を用いると、再現性よく陽極酸化を行うことが可能となる。具体的には、陽極酸化に際し、目的とする電解液温度より低い温度で陽極酸化を開始し、その後目的とする温度まで上昇させる方法を採ることができる。また、化成電圧を目的とする電圧より低く設定して陽極酸化を開始し、その後目的とする電圧まで上昇させる手法を用いることでより安定に陽極酸化を行うことができる。さらには、目的とする濃度よりも低い濃度の電解液を用いて陽極酸化を開始し、その後、目的とする濃度まで上昇させる方法も、再現性よく陽極酸化を行う上で効果がある。これらの方法は、適宜、2つあるいは3つ組み合わせて実行することもできる。   Under the anodic oxidation conditions found in the present invention, excessive reaction heat is generated in the sample during anodic oxidation, so it is not easy to form an anodic oxide film uniformly over the entire surface of the sample. Anodization can be performed with good reproducibility by using a technique in which the temperature, voltage, and electrolytic solution concentration are increased step by step to obtain target values. Specifically, when anodizing, a method of starting anodization at a temperature lower than the target electrolyte temperature and then raising it to the target temperature can be employed. Further, the anodization can be performed more stably by using a method in which the formation voltage is set lower than the target voltage and anodization is started and then increased to the target voltage. Furthermore, a method of starting anodization using an electrolyte solution having a concentration lower than the target concentration and then increasing the concentration to the target concentration is also effective in performing anodization with high reproducibility. These methods can be appropriately executed in combination of two or three.

また、陽極酸化に用いるアルミニウム材のエッジ部など、陽極酸化の際に電流が集中して流れ、過剰な反応熱が生じやすくなる部分が生じることもあるが、このような陽極酸化を行う部分以外の部分をあらかじめマスキングテープ等で被覆しておくと、安定な陽極酸化を行うことができる。アルミニウム材のマスキング処理については、五ホウ酸アンモニウム溶液や、四ホウ酸アンモニウム溶液など、中性電解液中であらかじめ陽極酸化を行うことで形成されるバリヤ型皮膜をマスキング層として用いることもできる。このような、陽極酸化処理により、マスキングを行う手法を用いれば、アルミニウム材の一部に密着性、熱伝導性に優れたマスクを容易に形成することができる。   In addition, there may be a portion where an electric current concentrates and flows excessively during anodization, such as an edge portion of an aluminum material used for anodization. If this part is previously covered with a masking tape or the like, stable anodic oxidation can be performed. For the masking treatment of the aluminum material, a barrier-type film formed by anodizing in advance in a neutral electrolyte such as an ammonium pentaborate solution or an ammonium tetraborate solution can also be used as the masking layer. If such a method of masking by anodic oxidation is used, a mask having excellent adhesion and thermal conductivity can be easily formed on a part of the aluminum material.

陽極酸化を行うアルミニウム材に電解液以外の冷媒を接触させることにより、陽極酸化の際に生じる過剰な反応熱を除去することが可能となり、それによって、大面積のアルミニウム材の陽極酸化も再現性よく行うことが可能となる。また、貫通した穴が形成されたアルミニウム材(例えば、パイプ形状のアルミニウム材等)に、冷媒を流通させながら陽極酸化を行えば、アルミニウム材の外周に細孔周期が150nmから250nmの規則的な陽極酸化ポーラスアルミナを継ぎ目なく形成することもできる。   By bringing a coolant other than the electrolyte into contact with the anodized aluminum material, it is possible to remove excess reaction heat generated during anodization, thereby reproducibility of large-area aluminum materials. It can be done well. Moreover, if anodization is performed while circulating a coolant on an aluminum material (for example, a pipe-shaped aluminum material) in which a through hole is formed, a regular pore period of 150 nm to 250 nm is formed on the outer periphery of the aluminum material. Anodized porous alumina can also be formed seamlessly.

また、陽極酸化により形成された酸化物層を一旦溶解除去したのち、同一の電圧条件か、または、アルミニウム地金表面に形成された窪み配列の周期を2.5で割った値の電圧条件で再度陽極酸化を行うことで、試料表面から細孔が規則配列した陽極酸化ポーラスアルミナを得ることができる。また、陽極酸化により形成された酸化物層を一旦溶解除去した後、陽極酸化と孔径拡大処理を施せば、テーパー形状の細孔が規則的に配列した、細孔周期150nmから250nmの陽極酸化ポーラスアルミナを得ることもできる。   In addition, once the oxide layer formed by anodic oxidation is dissolved and removed, the anode layer is again formed under the same voltage condition or the voltage condition obtained by dividing the period of the depression array formed on the aluminum metal surface by 2.5. By performing oxidation, it is possible to obtain anodized porous alumina in which pores are regularly arranged from the sample surface. In addition, once the oxide layer formed by anodization is dissolved and removed, anodization and pore size expansion treatment are performed, and then the pores with a taper period of 150 nm to 250 nm are regularly arranged. Alumina can also be obtained.

陽極酸化処理の後、地金アルミニウムを除去し、さらに少なくとも細孔の一部に対して底部を除去すれば、細孔が貫通したメンブレンを得ることができる。   After the anodic oxidation treatment, the bare metal aluminum is removed, and at least a bottom portion is removed from at least a part of the pores, whereby a membrane having pores penetrated can be obtained.

また、本発明により得られた陽極酸化ポーラスアルミナ、またはそれを鋳型として作製したネガ型をインプリント用モールドとして用いれば、表面に、周期150nmから250nmの凹凸パターンを有する有機系材料(例えば、ポリマー)、無機系材料の作製が可能である。   In addition, if an anodized porous alumina obtained by the present invention or a negative mold prepared using the same as a mold is used as an imprint mold, an organic material (for example, a polymer having a concavo-convex pattern with a period of 150 nm to 250 nm on the surface is used. ) And inorganic materials can be produced.

本発明に係る陽極酸化ポーラスアルミナおよびその製造方法によれば、周期150nmから250nmの細孔が、目標とする大きさ以上の領域にわたって理想三角格子状に配列されたポーラスアルミナを得ることができ、このような広い領域にわたって高規則性配列の細孔を有するポーラスアルミナは、ナノインプリントをはじめとする機能性材料として幅広い分野に適用することができる。   According to the anodized porous alumina and the manufacturing method thereof according to the present invention, it is possible to obtain porous alumina in which pores having a period of 150 nm to 250 nm are arranged in an ideal triangular lattice shape over a region having a target size or more. Such porous alumina having highly regular pores over a wide area can be applied to a wide range of fields as a functional material including nanoimprints.

以下、実施例に基づき、本発明の具体的な実施の形態について説明する。   Hereinafter, specific embodiments of the present invention will be described based on examples.

実施例1〔200nm 周期高規則性陽極酸化ポーラスアルミナの形成〕
純度99.99%のAl板を、過塩素酸/エタノール浴を用い電解研磨を施した後、0.05M五ホウ酸アンモニウム水溶液を用いて、室温条件下で化成電圧300Vにおいて陽極酸化を行い、エッジ部分にバリヤ型酸化皮膜からなるマスキング層を形成した。マスキング処理を施した試料を、1.5Mシュウ酸を電解液とし、浴温31℃、強攪拌条件下で、60Vの定電圧条件下、10分間陽極酸化し、化成電圧を70Vに上昇させて10分間、化成電圧を80Vに上昇させて5分間、化成電圧を90Vに上昇させて5分間、最後に化成電圧を100Vに上昇させて5分間陽極酸化を行なうことにより、図1に電子顕微鏡による観察結果(SEM像)を示すように、200nm 周期の細孔が縦、横16個×14個以上にわたって理想三角格子状に規則配列した陽極酸化ポーラスアルミナ1を得た。
Example 1 [Formation of 200 nm Periodic Highly Ordered Anodized Porous Alumina]
After subjecting an Al plate with a purity of 99.99% to electropolishing using a perchloric acid / ethanol bath, anodization was performed at a conversion voltage of 300 V under a room temperature condition using an 0.05M ammonium pentaborate aqueous solution, A masking layer made of a barrier oxide film was formed on the edge portion. The masked sample was anodized with 1.5M oxalic acid as the electrolyte, bath temperature of 31 ° C, strong stirring condition, constant voltage of 60V for 10 minutes, and the formation voltage was raised to 70V. 10 minutes, raise the formation voltage to 80V for 5 minutes, raise the formation voltage to 90V for 5 minutes, finally raise the formation voltage to 100V and perform anodization for 5 minutes. As shown in the observation result (SEM image), anodized porous alumina 1 was obtained in which pores with a period of 200 nm were regularly arranged in an ideal triangular lattice shape over a length of 16 × 14.

実施例2〔パイプ形状アルミニウム材表面への200nm周期高規則性ポーラスアルミナの形成〕
純度99.99%のAlからなるパイプ材(外径70mm、内径64mm、長さ90mm)を、電解研磨処理した後、0.05M五ホウ酸アンモニウム水溶液を用いて、室温条件下で化成電圧300Vにおいて陽極酸化を行い、パイプの上下に幅20mmの酸化皮膜からなるマスキング層を形成した。その後、パイプの内部に冷媒を流通させながら実施例1と同様の方法で陽極酸化を施し、パイプ外周に継ぎ目なく200nm 周期の細孔が縦、横16個×14個以上にわたって理想三角格子状に規則配列した陽極酸化ポーラスアルミナを得た。電子顕微鏡による観察結果としては、図1に示したものと同等の結果となった。
Example 2 [Formation of 200 nm Periodic Highly Ordered Porous Alumina on Pipe Shaped Aluminum Material Surface]
A pipe material (outer diameter 70 mm, inner diameter 64 mm, length 90 mm) made of Al with a purity of 99.99% was subjected to electrolytic polishing treatment, and then using 0.05M ammonium pentaborate aqueous solution at a conversion voltage of 300 V under room temperature conditions. Anodizing was performed to form a masking layer made of an oxide film with a width of 20 mm above and below the pipe. After that, anodization was performed in the same manner as in Example 1 while circulating the refrigerant inside the pipe, and the pores with a 200 nm period were seamlessly formed on the outer periphery of the pipe in the shape of an ideal triangular lattice extending vertically and horizontally by 16 x 14 or more. An ordered anodic porous alumina was obtained. As an observation result by an electron microscope, a result equivalent to that shown in FIG. 1 was obtained.

実施例3〔角型アルミニウム材表面への200nm周期高規則性ポーラスアルミナの形成〕
中心にφ15mmの貫通孔を有する純度99.99%のAlからなる角材(外形20mm×20mm、長さ90mm)を、電解研磨処理した後、0.05M五ホウ酸アンモニウム水溶液を用いて、室温条件下で化成電圧300Vにおいて陽極酸化を行い、角材の上下に幅20mmの酸化皮膜からなるマスキング層を形成した。その後、角材の内部に冷媒を流通させながら実施例1と同様の方法で陽極酸化を施し、角型アルミニウム材の表面に200nm 周期の細孔が縦、横16個×14個以上にわたって理想三角格子状に規則配列した陽極酸化ポーラスアルミナを得た。電子顕微鏡による観察結果としては、図1に示したものと同等の結果となった。
Example 3 [Formation of 200 nm Periodic Highly Ordered Porous Alumina on Square Aluminum Material Surface]
A square bar made of 99.99% pure Al (outer diameter 20 mm x 20 mm, length 90 mm) having a through hole of φ15 mm in the center is subjected to electrolytic polishing treatment, and then is subjected to room temperature conditions using 0.05M ammonium pentaborate aqueous solution. Then, anodization was performed at a formation voltage of 300 V to form masking layers made of oxide films with a width of 20 mm on the top and bottom of the square bars. After that, anodization was performed in the same manner as in Example 1 while circulating a coolant inside the square bar, and an ideal triangular lattice with 200 nm periodic pores on the surface of the square type aluminum material in a vertical direction of 16 × 14 or more. Anodized porous alumina regularly arranged in a shape was obtained. As an observation result by an electron microscope, a result equivalent to that shown in FIG. 1 was obtained.

本発明に係る陽極酸化ポーラスアルミナは、高規則性多孔性材料としてナノインプリント用モールドや様々な機能性デバイス用材料として適用することができる。   The anodized porous alumina according to the present invention can be applied as a nano-imprint mold and various functional device materials as a highly ordered porous material.

実施例1で得られた陽極酸化ポーラスアルミナを電子顕微鏡で観察した結果を示す図である。It is a figure which shows the result of having observed the anodic oxidation porous alumina obtained in Example 1 with the electron microscope.

符号の説明Explanation of symbols

1 陽極酸化ポーラスアルミナ 1 Anodized porous alumina

Claims (19)

陽極酸化のみにより形成された細孔周期150nmから250nmの陽極酸化ポーラスアルミナであって、細孔が、縦、横6個×6個以上の範囲で理想三角格子状に配列されていることを特徴とする陽極酸化ポーラスアルミナ。   Anodized porous alumina formed by anodization alone and having a pore period of 150 nm to 250 nm, characterized in that the pores are arranged in an ideal triangular lattice shape in the range of 6 x 6 in the vertical and horizontal directions. Anodized porous alumina. 細孔が、縦、横8個×8個以上の範囲で理想三角格子状に配列されている、請求項1に記載の陽極酸化ポーラスアルミナ。   2. The anodized porous alumina according to claim 1, wherein the pores are arranged in an ideal triangular lattice shape in a range of 8 × 8 in the vertical and horizontal directions. 細孔が、縦、横10個×10個以上の範囲で理想三角格子状に配列されている、請求項1または2に記載の陽極酸化ポーラスアルミナ。   The anodized porous alumina according to claim 1 or 2, wherein the pores are arranged in an ideal triangular lattice shape in a range of 10 vertical by 10 horizontal. 細孔が、縦、横14個×14個以上の範囲で理想三角格子状に配列されている、請求項1〜3のいずれかに記載の陽極酸化ポーラスアルミナ。   The anodized porous alumina according to any one of claims 1 to 3, wherein the pores are arranged in an ideal triangular lattice shape in a range of vertical and horizontal 14 x 14 or more. 請求項1〜4のいずれかに記載の陽極酸化ポーラスアルミナを、化成電圧70Vから130Vの範囲で地金アルミニウムを電解液中で陽極酸化することで作製することを特徴とする、陽極酸化ポーラスアルミナの製造方法。   An anodized porous alumina according to any one of claims 1 to 4, wherein the anodized porous alumina is produced by anodizing a bare metal aluminum in an electrolytic solution at a conversion voltage of 70V to 130V. Manufacturing method. 1M以上の濃度のシュウ酸を主成分とする電解液を用いる、請求項5に記載の陽極酸化ポーラスアルミナの製造方法。   The method for producing anodized porous alumina according to claim 5, wherein an electrolytic solution containing oxalic acid at a concentration of 1M or more as a main component is used. 陽極酸化時の浴温を25℃以上とする、請求項5または6に記載の陽極酸化ポーラスアルミナの製造方法。   The method for producing anodized porous alumina according to claim 5 or 6, wherein the bath temperature during anodization is 25 ° C or higher. 電解液温度を目的とする温度よりも低くして陽極酸化を開始し、その後目的とする温度まで上昇させることを特徴とする、請求項5〜7のいずれかに記載の陽極酸化ポーラスアルミナの製造方法。   The production of anodized porous alumina according to any one of claims 5 to 7, characterized in that the electrolyte temperature is set lower than a target temperature and anodization is started, and then the temperature is increased to a target temperature. Method. 化成電圧を目的とする電圧よりも低くして陽極酸化を開始し、その後目的とする電圧まで上昇させることを特徴とする、請求項5〜8のいずれかに記載の陽極酸化ポーラスアルミナの製造方法。   The method for producing anodized porous alumina according to any one of claims 5 to 8, wherein the anodization is started with the formation voltage lower than the target voltage and then increased to the target voltage. . 電解液濃度を目的とする濃度よりも低くして陽極酸化を開始し、その後目的とする濃度まで上昇させることを特徴とする、請求項5〜9のいずれかに記載の陽極酸化ポーラスアルミナの製造方法。   10. Anodized porous alumina production according to any one of claims 5 to 9, characterized in that an electrolytic solution concentration is made lower than a target concentration and anodization is started and then increased to a target concentration. Method. 請求項8、9、10に記載の方法を2つあるいは3つ組み合わせることを特徴とする、陽極酸化ポーラスアルミナの製造方法。   A method for producing anodized porous alumina, characterized in that two or three of the methods according to claim 8, 9, or 10 are combined. 陽極酸化を行う部分以外をマスキング処理したアルミニウム材を用いる、請求項5〜11のいずれかに記載の陽極酸化ポーラスアルミナの製造方法。   The manufacturing method of the anodized porous alumina in any one of Claims 5-11 using the aluminum material which masked except the part which anodizes. アルミニウム材の表面を中性電解液中であらかじめ陽極酸化することにより形成される、バリヤ型酸化皮膜層をマスキング層として利用することを特徴とする、請求項12に記載の陽極酸化ポーラスアルミナの製造方法。   13. The production of anodized porous alumina according to claim 12, wherein a barrier type oxide film layer formed by previously anodizing the surface of an aluminum material in a neutral electrolytic solution is used as a masking layer. Method. アルミニウム材に電解液以外の冷媒を接触させ、陽極酸化時に生じる過剰な反応熱を除去することを特徴とする、請求項5〜13のいずれかに記載の陽極酸化ポーラスアルミナの製造方法。   The method for producing anodized porous alumina according to any one of claims 5 to 13, wherein a refrigerant other than the electrolytic solution is brought into contact with the aluminum material to remove excessive reaction heat generated during anodization. 貫通した穴が形成されたアルミニウム材を使用し、穴に冷媒を流通させながら陽極酸化を行うことを特徴とする、請求項14に記載のポーラスアルミナの製造方法。   The method for producing porous alumina according to claim 14, wherein an anodizing is performed using an aluminum material in which a through hole is formed, and a coolant is circulated through the hole. 陽極酸化後、酸化物層を一旦除去し、再度、陽極酸化する、請求項5〜15のいずれかに記載の陽極酸化ポーラスアルミナの製造方法。   The method for producing anodized porous alumina according to any one of claims 5 to 15, wherein, after anodization, the oxide layer is once removed and anodized again. 酸化物層を一旦除去した後、陽極酸化と孔径拡大処理を繰り返すことでテーパー形状細孔を形成する、請求項16に記載の陽極酸化ポーラスアルミナの製造方法。   The method for producing anodized porous alumina according to claim 16, wherein after the oxide layer is removed, tapered pores are formed by repeating anodization and pore diameter enlargement processing. 陽極酸化後、地金アルミニウムを除去し、さらに少なくとも細孔の一部に対して底部を除去し、貫通孔を形成する、請求項5〜17のいずれかに記載の陽極酸化ポーラスアルミナの製造方法。   The method for producing anodized porous alumina according to any one of claims 5 to 17, wherein the anodized aluminum is removed after the anodization, and at least a bottom portion is removed from a part of the pores to form a through hole. . 請求項5〜18のいずれかに記載された方法で得られた陽極酸化ポーラスアルミナ、またはそれを鋳型として作製したネガ型をインプリント用モールドとして用い、ポリマーまたは無機材料の表面に規則的な凹凸パターンを形成することを特徴とする、規則表面を有するポリマーまたは無機材料の製造方法。   An anodized porous alumina obtained by the method according to any one of claims 5 to 18, or a negative mold produced using the anodized porous alumina as a mold for imprinting, and regular irregularities on the surface of the polymer or inorganic material A method for producing a polymer or inorganic material having an ordered surface, characterized by forming a pattern.
JP2008109293A 2008-04-18 2008-04-18 Anodized porous alumina and method for producing the same Active JP5344850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008109293A JP5344850B2 (en) 2008-04-18 2008-04-18 Anodized porous alumina and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008109293A JP5344850B2 (en) 2008-04-18 2008-04-18 Anodized porous alumina and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013168079A Division JP5612741B2 (en) 2013-08-13 2013-08-13 Method for producing anodized porous alumina

Publications (2)

Publication Number Publication Date
JP2009256751A true JP2009256751A (en) 2009-11-05
JP5344850B2 JP5344850B2 (en) 2013-11-20

Family

ID=41384528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008109293A Active JP5344850B2 (en) 2008-04-18 2008-04-18 Anodized porous alumina and method for producing the same

Country Status (1)

Country Link
JP (1) JP5344850B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560650A (en) * 2010-12-29 2012-07-11 中国科学院合肥物质科学研究院 Porous aluminum oxide photonic crystal and preparation method and applications thereof
CN101736381B (en) * 2009-12-28 2012-07-25 新疆众和股份有限公司 Electrolyte and method for preparing aluminum oxide template with big hole pitch
JP2012162769A (en) * 2011-02-07 2012-08-30 Kanagawa Acad Of Sci & Technol Method for manufacturing anodized porous alumina and anodized porous alumina manufactured by the method
JP2012167321A (en) * 2011-02-14 2012-09-06 Kanagawa Acad Of Sci & Technol Method for producing anodized porous alumina and anodized porous alumina produced by the same
JP2013057102A (en) * 2011-09-08 2013-03-28 Kanagawa Acad Of Sci & Technol Method for forming fine structure and mold for nanoimprint having fine structure, and method of producing porus alumina composite
JP2013112892A (en) * 2011-12-01 2013-06-10 Dnp Fine Chemicals Co Ltd Method and apparatus of manufacturing mold for manufacturing nanostructure, mold for manufacturing nanostructure and nanostructure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156695A (en) * 2003-11-21 2005-06-16 Kanagawa Acad Of Sci & Technol Anti-reflection coating and method for manufacturing the same, and stamper for preparing anti-reflection coating and method for manufacturing the same
JP2005272886A (en) * 2004-03-23 2005-10-06 Kanagawa Acad Of Sci & Technol Anodically oxidized porous alumina and manufacturing method therefor
JP2007231340A (en) * 2006-02-28 2007-09-13 Fujifilm Corp Method for producing nanostructure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156695A (en) * 2003-11-21 2005-06-16 Kanagawa Acad Of Sci & Technol Anti-reflection coating and method for manufacturing the same, and stamper for preparing anti-reflection coating and method for manufacturing the same
JP2005272886A (en) * 2004-03-23 2005-10-06 Kanagawa Acad Of Sci & Technol Anodically oxidized porous alumina and manufacturing method therefor
JP2007231340A (en) * 2006-02-28 2007-09-13 Fujifilm Corp Method for producing nanostructure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101736381B (en) * 2009-12-28 2012-07-25 新疆众和股份有限公司 Electrolyte and method for preparing aluminum oxide template with big hole pitch
CN102560650A (en) * 2010-12-29 2012-07-11 中国科学院合肥物质科学研究院 Porous aluminum oxide photonic crystal and preparation method and applications thereof
JP2012162769A (en) * 2011-02-07 2012-08-30 Kanagawa Acad Of Sci & Technol Method for manufacturing anodized porous alumina and anodized porous alumina manufactured by the method
JP2012167321A (en) * 2011-02-14 2012-09-06 Kanagawa Acad Of Sci & Technol Method for producing anodized porous alumina and anodized porous alumina produced by the same
JP2013057102A (en) * 2011-09-08 2013-03-28 Kanagawa Acad Of Sci & Technol Method for forming fine structure and mold for nanoimprint having fine structure, and method of producing porus alumina composite
JP2013112892A (en) * 2011-12-01 2013-06-10 Dnp Fine Chemicals Co Ltd Method and apparatus of manufacturing mold for manufacturing nanostructure, mold for manufacturing nanostructure and nanostructure

Also Published As

Publication number Publication date
JP5344850B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
Kashi et al. The effect of temperature and concentration on the self-organized pore formation in anodic alumina
Sulka et al. Anodising potential influence on well-ordered nanostructures formed by anodisation of aluminium in sulphuric acid
Lee et al. Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization
Akiya et al. Self-ordered porous alumina fabricated via phosphonic acid anodizing
Sulka et al. Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures
Lee The anodization of aluminum for nanotechnology applications
JP5344850B2 (en) Anodized porous alumina and method for producing the same
Zhang et al. Simulation of anodizing current-time curves and morphology evolution of TiO2 nanotubes anodized in electrolytes with different NH4F concentrations
KR101215536B1 (en) apparatus for high-field fabrication of anodic nanostructures
Ding et al. Fabrication of porous anodic alumina with ultrasmall nanopores
Voon et al. Effect of temperature of oxalic acid on the fabrication of porous anodic alumina from Al-Mn alloys
KR20120028674A (en) Method of fabricating anodic aluminium oxide
Qin et al. Preparation and analysis of anodic aluminum oxide films with continuously tunable interpore distances
Chung et al. Effect of oxalic acid concentration on the formation of anodic aluminum oxide using pulse anodization at room temperature
Brudzisz et al. Effect of processing parameters on pore opening and mechanism of voltage pulse detachment of nanoporous anodic alumina
Chahrour et al. Effects of the voltage and time of anodization on modulation of the pore dimensions of AAO films for nanomaterials synthesis
JP4608331B2 (en) Anodized porous alumina and method for producing the same
JP2012162769A (en) Method for manufacturing anodized porous alumina and anodized porous alumina manufactured by the method
JP6760640B2 (en) Manufacturing method of anodic oxide porous alumina
JP5612741B2 (en) Method for producing anodized porous alumina
JP2004285404A (en) Anodically oxidized porous alumina and manufacturing method therefor
Zaraska et al. Synthesis of nanoporous anodic alumina by anodic oxidation of low purity aluminum substrates
Li et al. Structural evolution of self-ordered alumina tapered nanopores with 100 nm interpore distance
Zhu et al. Growth of alumina oxide nanowires in an aluminum anodization process
Bocchetta et al. Preparation of large area anodic alumina membranes and their application to thin film fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130813

R150 Certificate of patent or registration of utility model

Ref document number: 5344850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250