JP2009255050A - Removing agent and method using the same for removing heavy metal - Google Patents

Removing agent and method using the same for removing heavy metal Download PDF

Info

Publication number
JP2009255050A
JP2009255050A JP2009026625A JP2009026625A JP2009255050A JP 2009255050 A JP2009255050 A JP 2009255050A JP 2009026625 A JP2009026625 A JP 2009026625A JP 2009026625 A JP2009026625 A JP 2009026625A JP 2009255050 A JP2009255050 A JP 2009255050A
Authority
JP
Japan
Prior art keywords
iii
present
adsorption
concentration
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009026625A
Other languages
Japanese (ja)
Inventor
Yokubai Ko
峪梅 康
Katsutoshi Sakurai
克年 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Kochi University NUC
Original Assignee
Kyushu University NUC
Kochi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Kochi University NUC filed Critical Kyushu University NUC
Priority to JP2009026625A priority Critical patent/JP2009255050A/en
Publication of JP2009255050A publication Critical patent/JP2009255050A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new removing agent capable of easily and efficiently removing harmful heavy metals such as arsenic, cadmium, lead and chromium at a low cost and a method for removing heavy metals. <P>SOLUTION: The removing agent for removing heavy metals contains an amorphous Ti-Fe hydroxide containing amorphous Ti(IV) and amorphous Fe(III) or contains a precipitate obtained by neutralizing an aqueous solution of ferric nitrate and titanium tetrachloride with alkali metal hydroxide. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ヒ素(As)、カドミウム(Cd)、鉛(Pb)、クロム(Cr)などの重金属を除去するための除去剤およびその除去方法に関するものである。本発明の除去剤は、重金属に汚染された水(地表水、地下水、廃水など)や土壌などの汚染物質を処理するのに好適に用いられる。   The present invention relates to a removing agent for removing heavy metals such as arsenic (As), cadmium (Cd), lead (Pb), chromium (Cr), and a method for removing the same. The removing agent of the present invention is suitably used for treating pollutants such as water contaminated with heavy metals (surface water, groundwater, wastewater, etc.) and soil.

鉱山や工場などから排出される重金属は、土壌や地下水を汚染するほか、人体に取り込まれて重篤な障害をもたらすことが知られている。また、重金属は、温泉の混入や地質からの溶出などの自然現象によっても地下水などに容易に混入するため、特に、発展途上国では重金属による地下水汚染が深刻な問題となっている。このうち、ヒ素はその高い毒性から、環境省による水質汚濁防止法の排水基準(pH5.8〜8.6)では100μg/L以下に定められている。WHOでは更に厳しく、飲料水基準値10μg/L以下に定められている。カドミウムおよび鉛も、ヒ素と同様、WHOの飲料水基準値10μg/L以下に定められている。また、Crの飲料水基準値は50μg/L以下である。   It is known that heavy metals discharged from mines and factories contaminate soil and groundwater and are taken into the human body and cause serious damage. In addition, heavy metals are easily mixed into groundwater due to natural phenomena such as hot springs and leaching from the geology, and groundwater contamination by heavy metals is a serious problem especially in developing countries. Among these, arsenic is determined to be 100 μg / L or less in the drainage standard (pH 5.8 to 8.6) of the Water Pollution Control Law by the Ministry of the Environment because of its high toxicity. In WHO, it is stricter and is set to a drinking water reference value of 10 μg / L or less. Similarly to arsenic, cadmium and lead are also set to a WHO drinking water reference value of 10 μg / L or less. Moreover, the drinking water reference value of Cr is 50 μg / L or less.

重金属の除去方法としては、例えば、沈殿分離法(共沈法)、吸着法などが知られている。このうち沈殿分離法は、重金属によって汚染された水中に水酸化鉄を添加し、重金属を鉄と共に共沈させる方法である。しかし、沈殿分離法による重金属の除去効率は低い。   Known methods for removing heavy metals include, for example, precipitation separation (coprecipitation) and adsorption. Among these, the precipitation separation method is a method in which iron hydroxide is added to water contaminated with heavy metals, and the heavy metals are coprecipitated together with iron. However, the heavy metal removal efficiency by the precipitation separation method is low.

具体的にヒ素を例に挙げて説明する。環境水に含まれるヒ素は、80%以上が無機態ヒ素化合物であり、有機態ヒ素化合物より強い毒性を有している。無機態ヒ素はヒ酸[As(V)]と亜ヒ酸[As(III)]の二つの形態で存在し、亜ヒ酸As(III)はヒ酸As(V)に比べて毒性が数倍程度強く、可溶性も高い。地表水のような酸化条件下では、As(V)が優占化学種(HAsO、HAsO 、HAsO 2−)であるのに対し、地下水などでは酸化還元電位が低下して還元状態になるため、As(III)の形態(HAsO、HAsO 、HAsO 2−)として存在することが多い。As(III)は、中性域〜酸性域でHAsO分子として存在するため、水からの除去が困難であるといわれている。実際のところ、沈殿分離法におけるAs(III)の共沈効率はAs(V)に比べて低く、As(III)をAs(V)に酸化して除去する必要があり、沈殿分離法によるヒ素の除去効率は低い。 Specifically, arsenic will be described as an example. More than 80% of arsenic contained in environmental water is an inorganic arsenic compound, which has a stronger toxicity than an organic arsenic compound. Inorganic arsenic exists in two forms, arsenic [As (V)] and arsenous acid [As (III)], and arsenous acid As (III) is more toxic than arsenic acid As (V). About twice as strong and highly soluble. Under oxidizing conditions such as surface water, As (V) is the dominant chemical species (H 3 AsO 4 , H 2 AsO 4 , HAsO 4 2− ), but the oxidation-reduction potential decreases in groundwater. Therefore, it is often present in the form of As (III) (H 3 AsO 3 , H 2 AsO 3 , HAsO 3 2− ). As (III) is said to be difficult to remove from water because it exists as a H 3 AsO 3 molecule in the neutral to acidic range. Actually, the coprecipitation efficiency of As (III) in the precipitation separation method is lower than that of As (V), and it is necessary to oxidize and remove As (III) to As (V). The removal efficiency is low.

更に、沈殿分離法では、処理後に発生するスラッジの処分が問題となっている。そこで、吸着法による重金属除去が検討されているが、吸着剤として用いられる活性アルミナや活性炭などの重金属吸着能は低く、実用的でない。   Furthermore, in the precipitation separation method, disposal of sludge generated after the treatment is a problem. Therefore, removal of heavy metals by an adsorption method has been studied, but the ability to adsorb heavy metals such as activated alumina and activated carbon used as an adsorbent is low and is not practical.

上記事情に鑑み、本発明者は、新規な重金属吸着剤として、安価で簡便に製造可能な非晶質水酸化鉄(III)を開示している。具体的には、特許文献1にSe(セレン)の除去方法を開示し、特許文献2にヒ素、カドミウム、鉛などの重金属を除去する方法を開示している。   In view of the above circumstances, the present inventor has disclosed amorphous iron (III) hydroxide that can be produced inexpensively and easily as a novel heavy metal adsorbent. Specifically, Patent Document 1 discloses a method for removing Se (selenium), and Patent Document 2 discloses a method for removing heavy metals such as arsenic, cadmium, and lead.

特許第3830878号公報Japanese Patent No. 3830878 特開2006−218359号公報JP 2006-218359 A

本発明の目的は、有害な重金属を低コストで簡便に、且つ効率よく吸着し、除去することができる新規な除去剤およびその除去方法を提供することにある。好ましくは、特にAs(III)の吸着能に優れており、As(III)およびAs(V)の両方を同時に効率よく除去し得る新規な吸着剤およびその除去方法を提供することにある。   An object of the present invention is to provide a novel removal agent that can adsorb and remove harmful heavy metals easily and efficiently at low cost and a method for removing the same. Preferably, the present invention provides a novel adsorbent that is particularly excellent in the adsorption ability of As (III) and can efficiently remove both As (III) and As (V) simultaneously and a method for removing the same.

上記課題を解決することのできた本発明の除去剤は、重金属を除去するための除去剤であって、非晶質Ti−Fe水酸化物を含有するか;または、硝酸鉄(III)若しくは塩化鉄(III)とおよび塩化チタン(IV)との混合水溶液をアルカリ金属水酸化物で中和して得られる沈殿物を含有するところに要旨を有している。   The remover of the present invention that has been able to solve the above-mentioned problems is a remover for removing heavy metals and contains amorphous Ti-Fe hydroxide; or iron (III) nitrate or chloride The gist is that it contains a precipitate obtained by neutralizing a mixed aqueous solution of iron (III) and titanium (IV) chloride with an alkali metal hydroxide.

本発明の好ましい実施形態では、Ti:Feのモル比は、1:1〜1:5の範囲である。   In a preferred embodiment of the invention, the Ti: Fe molar ratio ranges from 1: 1 to 1: 5.

本発明の好ましい実施形態では、上記重金属は、ヒ素、カドミウム、鉛、およびクロムよりなる群から選択される少なくとも一種である。   In a preferred embodiment of the present invention, the heavy metal is at least one selected from the group consisting of arsenic, cadmium, lead, and chromium.

また、上記課題を解決することのできた本発明の除去方法は、重金属に汚染された汚染物質から重金属を除去する方法であって、上記の除去剤を汚染物質と接触させるところに要旨を有している。   Moreover, the removal method of the present invention that has solved the above-mentioned problems is a method for removing heavy metals from pollutants contaminated with heavy metals, and has a gist in that the above-mentioned removing agent is brought into contact with the pollutants. ing.

本発明の好ましい実施形態では、上記汚染物質は汚染水または汚染土壌である。   In a preferred embodiment of the present invention, the contaminant is contaminated water or contaminated soil.

本発明の好ましい実施形態では、上記汚染物質はヒ素またはクロムであり、pH3〜10下で上記の除去剤を汚染物質と接触させるものである。   In a preferred embodiment of the present invention, the contaminant is arsenic or chromium, and the remover is brought into contact with the contaminant at a pH of 3-10.

本発明の好ましい実施形態では、上記汚染物質は鉛であり、pH4〜6.5下で上記の除去剤を汚染物質と接触させるものである。   In a preferred embodiment of the present invention, the contaminant is lead, and the remover is brought into contact with the contaminant at a pH of 4 to 6.5.

本発明の好ましい実施形態では、上記汚染物質はカドミウムであり、pH4〜8下で上記の除去剤を汚染物質と接触させるものである。   In a preferred embodiment of the present invention, the contaminant is cadmium, and the remover is contacted with the contaminant under pH 4-8.

本発明の除去剤は、安価で簡便に製造することができる上に、重金属の種類にかかわらず、高い吸着除去能を有している。よって、本発明の除去剤は、As、Cd、Pb、Crなどに対する重金属除去剤として好適に用いられる。特に本発明の除去剤は、これまで除去が困難であったAs(III)に対する吸着能に極めて優れており、As(III)およびAs(V)の両方を同時に効率よく除去することができる。本発明の除去剤を用いれば、有害な重金属を低コストで簡便、安全で且つ効率的に除去することができる。従って、本発明は、重金属で汚染された汚染水や汚染土壌などの汚染物質を浄化できる技術として、産業上極めて有用である。   The removing agent of the present invention can be produced inexpensively and easily, and has a high adsorption removing ability regardless of the type of heavy metal. Therefore, the removing agent of the present invention is suitably used as a heavy metal removing agent for As, Cd, Pb, Cr and the like. In particular, the removing agent of the present invention is extremely excellent in the adsorption ability for As (III), which has been difficult to remove so far, and can efficiently remove both As (III) and As (V) simultaneously. By using the removing agent of the present invention, harmful heavy metals can be removed easily, safely and efficiently at low cost. Therefore, the present invention is extremely useful industrially as a technology that can purify pollutants such as polluted water and soil contaminated with heavy metals.

図1は、実施例1におけるX線回折の結果を示す図である。FIG. 1 is a diagram showing the results of X-ray diffraction in Example 1. 図2(a)は、実施例2における濾液中のTi濃度とpHとの関係を示すグラフであり、図2(b)は、実施例2における濾液中のFe濃度とpHとの関係を示すグラフである。FIG. 2A is a graph showing the relationship between Ti concentration and pH in the filtrate in Example 2, and FIG. 2B shows the relationship between Fe concentration in the filtrate and pH in Example 2. It is a graph. 図3(a)は、実施例3におけるNaCl中のFe濃度を示すグラフであり、図3(b)は、実施例3におけるNaCl中のTi濃度を示すグラフである。3A is a graph showing the Fe concentration in NaCl in Example 3, and FIG. 3B is a graph showing the Ti concentration in NaCl in Example 3. FIG. 図4は、実施例4におけるAs(III)およびAs(V)の残存量の結果を示すグラフである。FIG. 4 is a graph showing the results of residual amounts of As (III) and As (V) in Example 4. 図5(a)は、実施例6におけるpHとAs(III)吸着量との関係を示すグラフであり、図5(b)は、実施例6におけるpHとAs(V)吸着量との関係を示すグラフである。FIG. 5A is a graph showing the relationship between the pH and the As (III) adsorption amount in Example 6, and FIG. 5B is the relationship between the pH and the As (V) adsorption amount in Example 6. It is a graph which shows. 図6は、実施例8におけるCd濃度(初期濃度)とCd吸着量との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the Cd concentration (initial concentration) and the Cd adsorption amount in Example 8. 図7は、実施例9におけるPb濃度(初期濃度)とPb吸着量との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the Pb concentration (initial concentration) and the Pb adsorption amount in Example 9. 図8(a)は、実施例10におけるpHとCr(VI)吸着量との関係を示すグラフであり、図8(b)は、実施例10におけるpHとCr(III)吸着量との関係を示すグラフである。FIG. 8A is a graph showing the relationship between the pH and the Cr (VI) adsorption amount in Example 10, and FIG. 8B is the relationship between the pH and the Cr (III) adsorption amount in Example 10. It is a graph which shows.

本発明は、非晶質水酸化鉄(III)を含有する重金属除去剤の改良技術に関するものである。本発明の重金属除去剤は、非晶質Ti−Fe水酸化物(Bimetal水酸化物)を含有している点で、非晶質水酸化鉄(III)のみを含有する、前述した特許文献1および2に記載の除去剤(Monometal水酸化物)と相違している。   The present invention relates to a technique for improving a heavy metal removing agent containing amorphous iron (III) hydroxide. The heavy metal removing agent of the present invention contains only amorphous iron (III) hydroxide in that it contains amorphous Ti-Fe hydroxide (Bimethal hydroxide). And the removal agent (Monometal hydroxide) described in 2 and 2.

以下では説明の便宜上、本発明のようにTiとFeの両方を含む除去剤を「非晶質Bimetal水酸化物」または「Bimetal水酸化物」などと呼び、これに対し、特許文献1および2のようにFeのみを含みTiを含まない重金属除去剤を「非晶質Monometal水酸化物」または「Monometal水酸化物」などと呼び、両者を区別する場合がある。   Hereinafter, for convenience of explanation, the removal agent containing both Ti and Fe as in the present invention is referred to as “amorphous Bimetal hydroxide” or “Bimeta hydroxide”. A heavy metal removing agent that contains only Fe and does not contain Ti is called “amorphous Monometal hydroxide” or “Monometal hydroxide”, and may be distinguished from each other.

また、本明細書において「重金属」とは、密度が約4.0g/cm以上のものを意味し、おおむね、長周期型周期表の11〜15族の金属元素を対象とする。具体的には、As、Se、Pb、Cr、Cd、Cu、Hg、Zn、Mn、Co、Ni、Mo、Ta、Sn、Bi、Inなどが挙げられる。 Further, in this specification, “heavy metal” means a material having a density of about 4.0 g / cm 3 or more, and generally covers metal elements belonging to groups 11 to 15 of the long-period periodic table. Specific examples include As, Se, Pb, Cr, Cd, Cu, Hg, Zn, Mn, Co, Ni, Mo, Ta, Sn, Bi, and In.

本発明の除去剤を用いれば、As、Cd、Pb、Crなどの重金属に対し、Feの非晶質Monometal水酸化物と同等またはそれ以上に優れた吸着除去作用が得られる。特に本発明の除去剤は、ヒ素の吸着除去作用に格段に優れており、このような顕著な効果は、Feの非晶質Monometal水酸化物ではなく、TiとFeの非晶質Bimetal水酸化物としたことによって初めて発揮されるものである。前述した特許文献2および後記する実施例でも確認したように、非晶質水酸化鉄(III)のみを含有するMonometalの除去剤は、As(V)の吸着能に優れている反面、As(III)の吸着能に若干劣る傾向がみられた。これに対し、本発明の除去剤を用いれば、特にAs(III)の吸着能が格段に高められることが確認された(後記する実施例を参照)。そのため、本発明の除去剤を用いれば、環境省によるヒ素の水質汚濁防止法の排水基準(pH5.8〜8.6で、100μg/L以下)を達成できるだけでなく、当該除去剤の添加量やpHなどを適切に制御することによって、WHOの飲料水基準(10μg/L以下)も充分達成できると考えられる。   If the removing agent of the present invention is used, an adsorption removing action equivalent to or better than that of an amorphous monometallic hydroxide of Fe can be obtained for heavy metals such as As, Cd, Pb, and Cr. In particular, the removing agent of the present invention is remarkably excellent in the arsenic adsorption removing action, and such a remarkable effect is not the amorphous Monometal hydroxide of Fe but the amorphous Bimetal hydroxide of Ti and Fe. It is demonstrated for the first time by making it a thing. As confirmed in the above-mentioned Patent Document 2 and the examples described later, the removal agent of Monometal containing only amorphous iron hydroxide (III) is excellent in the adsorption ability of As (V). A tendency to be slightly inferior to the adsorption ability of III) was observed. On the other hand, it was confirmed that the adsorption ability of As (III) was particularly improved by using the removing agent of the present invention (see Examples described later). Therefore, if the remover of the present invention is used, not only can the wastewater standard (pH 5.8 to 8.6, 100 μg / L or less) of the arsenic water pollution prevention method by the Ministry of the Environment be achieved, but also the amount of the remover added. It is considered that the WHO drinking water standard (10 μg / L or less) can be sufficiently achieved by appropriately controlling the pH and pH.

しかも、後記する実施例の欄で詳述するように、本発明の除去剤は、pHの変化(約3〜11)に対して安定で、電解質(NaCl)への溶解率も低いなど化学的・物理的な安定性に極めて優れている。従って、本発明の除去剤は、特に、重金属に汚染された汚染水などへの吸着処理に好適に用いられることも分かった。   Moreover, as will be described in detail in the Examples section that follows, the removal agent of the present invention is stable against changes in pH (about 3 to 11) and has a low solubility in the electrolyte (NaCl).・ Excellent physical stability. Therefore, it was also found that the removal agent of the present invention is particularly suitable for adsorption treatment on contaminated water contaminated with heavy metals.

本発明に用いられる非晶質Ti−Fe水酸化物の組成は詳細には不明であるが、例えば、TiとFeが同一化合物の中に共存する非晶質Ti−Fe水酸化物;非晶質チタン水酸化物と非晶質鉄水酸化物の混合物;または、これらの混合物などが考えられる。   The composition of the amorphous Ti-Fe hydroxide used in the present invention is unknown in detail. For example, amorphous Ti-Fe hydroxide in which Ti and Fe coexist in the same compound; amorphous A mixture of porous titanium hydroxide and amorphous iron hydroxide; or a mixture thereof may be considered.

本発明において、「非晶質Ti−Fe水酸化物を含む」とは、少なくとも非晶質Ti−Fe Bimetal水酸化物を含有することを意味する。従って、非晶質チタン(IV)水酸化物および非晶質水酸化鉄(III)のみからなり、当該2種類の成分で構成される除去剤は勿論のこと、他の吸着剤等を更に併用した除去剤も、本発明の除去剤に含まれる。また、本発明では、TiとFeの比率が異なる2種以上の非晶質Ti−Fe水酸化物を含む除去剤を用いても良い。また、上記の除去剤は、本発明の作用を損なわない範囲において、通常用いられる担体に担持されていてもよく、このようなものも本発明の範囲内に包含される。   In the present invention, “including amorphous Ti—Fe hydroxide” means containing at least amorphous Ti—Fe Bimetal hydroxide. Therefore, it consists only of amorphous titanium (IV) hydroxide and amorphous iron (III) hydroxide, and it is used in combination with other adsorbents as well as remover composed of the two components. The removed agent is also included in the remover of the present invention. Moreover, in this invention, you may use the removal agent containing 2 or more types of amorphous Ti-Fe hydroxide from which the ratio of Ti and Fe differs. Further, the above-described removing agent may be supported on a commonly used carrier within a range not impairing the action of the present invention, and such a thing is also included within the scope of the present invention.

このうち、非晶質水酸化鉄(III)の詳細は、前述した特許文献1および特許文献2に記載したとおりである。すなわち、非晶質水酸化鉄(III)は、“amorphous iron(hydr)oxide", “amorphous ferric (III) iron(hydr)oxide", “amorphous ferric hydroxide oxide"等と呼ばれている非晶質の鉄(III)化合物であり、Fe23・nH2Oの組成を有する含鉄水酸化物の一種である。より具体的には、水酸化鉄(III)(Fe(OH)3),オキシ水酸化鉄(III)(FeO(OH))および水素化酸化鉄(III)(FeHO2)が混在した無定形のものである。この非晶質水酸化鉄(III)は天然にも存在する化合物であり、アルミニウムや有害な重金属を含んでいないので、安全に使用することができる。 Among these, details of amorphous iron hydroxide (III) are as described in Patent Document 1 and Patent Document 2 described above. That is, amorphous iron hydroxide (III) is an amorphous material called “amorphous iron (hydr) oxide”, “amorphous ferric (III) iron (hydr) oxide”, “amorphous ferric hydroxide oxide”, etc. It is a kind of iron-containing hydroxide having a composition of Fe 2 O 3 .nH 2 O. More specifically, an amorphous form in which iron hydroxide (III) (Fe (OH) 3 ), iron oxyhydroxide (III) (FeO (OH)) and hydrogenated iron oxide (III) (FeHO 2 ) are mixed. belongs to. This amorphous iron (III) hydroxide is a naturally occurring compound and does not contain aluminum or harmful heavy metals, so it can be used safely.

非晶質水酸化鉄(III)は、ヒ素などの重金属との親和性に優れているが、その主な理由は、その広い比表面積にある。表1に示すように、非晶質水酸化鉄(III)の比表面積は、他の(水)酸化鉄(III)類(Fe23・nH2O)である磁鉄鉱や赤鉄鉱および燐鉄鉱よりも大きい。 Amorphous iron hydroxide (III) is excellent in affinity with heavy metals such as arsenic, mainly because of its wide specific surface area. As shown in Table 1, the specific surface area of amorphous iron hydroxide (III) is magnetite, hematite, and phosphorus, which are other (water) iron (III) oxides (Fe 2 O 3 .nH 2 O). Bigger than iron ore.

また、非晶質チタン(IV)水酸化物は、TiO2・nH2Oの組成を有する含チタン水酸化物の一種である。より具体的には、水酸化チタン(IV)(Ti(OH)4),オキシ水酸化チタン(IV)(TiO(OH))および水素化酸化チタン(IV)(TiH3)が混在した無定形のものである。 Amorphous titanium (IV) hydroxide is a kind of titanium-containing hydroxide having a composition of TiO 2 · nH 2 O. More specifically, titanium hydroxide (IV) (Ti (OH) 4 ), titanium oxyhydroxide (IV) (TiO (OH) 2 ) and hydrogenated titanium oxide (IV) (TiH 2 O 3 ) are mixed. It is amorphous.

本発明において、「非晶質」とは、後記する方法でX線回折を行なったとき、結晶構造がみられないものをいう。詳細には、X線回折法で2θ値10°から80°に頂点を有するブロードな散乱帯を有する物であり、結晶性の回折線を有してもよい。好ましくは2θ値で10°以上80°以下にみられる結晶性の回折線のうち、最も強い強度が、2θ値で10°以上80°以下にみられるブロードな散乱帯の頂点の回折線強度の500倍以下であることが好ましく、さらに好ましくは100倍以下であり、特に好ましくは5倍以下であり、最も好ましくは結晶性の回折線を有さないことである。   In the present invention, “amorphous” refers to a material in which no crystal structure is observed when X-ray diffraction is performed by a method described later. Specifically, the X-ray diffraction method has a broad scattering band having a peak at a 2θ value of 10 ° to 80 °, and may have a crystalline diffraction line. Preferably, the strongest intensity among the crystalline diffraction lines seen from 2 ° to 10 ° to 80 ° is the intensity of the diffraction line at the peak of the broad scattering band seen from 2 ° to 10 ° to 80 °. It is preferably 500 times or less, more preferably 100 times or less, particularly preferably 5 times or less, and most preferably no crystalline diffraction line.

本発明において、優れた重金属吸着能を得るためには、TiとFeの含有比率は、概して、Feの比率が高い方がよい。特にヒ素に関しては、後記する実施例で実証したように、非晶質TiのAs除去能は非晶質FeのAs除去能より劣る傾向にあり、Feの比率が少なくなってTiの比率が高くなると、Feの活性サイトがTiで覆われ、Feの吸着能が低下するのではないかと推察される。具体的には、処理対象となる重金属の種類や濃度、汚染物質の性状などによって適宜適切に設定すれば良いが、Ti:Feのモル比は、おおむね1:1〜1:5であることが好ましい。   In the present invention, in order to obtain an excellent heavy metal adsorption capacity, the content ratio of Ti and Fe is generally better when the ratio of Fe is high. Especially for arsenic, as demonstrated in the examples described later, the As removal ability of amorphous Ti tends to be inferior to the As removal ability of amorphous Fe, and the ratio of Fe decreases and the ratio of Ti increases. Then, it is presumed that the active site of Fe is covered with Ti and the adsorption ability of Fe is lowered. Specifically, it may be appropriately set depending on the type and concentration of the heavy metal to be treated, the nature of the pollutant, etc., but the molar ratio of Ti: Fe is generally 1: 1 to 1: 5. preferable.

上記Bimetal水酸化物は、例えば、Fe供給源(硝酸鉄(III)、塩化鉄(III)など)とTi供給源(塩化チタン(IV)など)との混合水溶液をアルカリ金属水酸化物で中和し、沈殿して得られる。従って、本発明では、このようにして得られた沈殿物を本発明の除去剤として用いることができる。具体的には、TiとFeの比率が所定比率となるように、硝酸鉄(III)水和物の水溶液と塩化チタン(IV)の水溶液を混合し、NaOHなどのアルカリ金属水酸化物で、おおむねpH7近傍(例えば、pH7±1の範囲)になるように調整し、得られた沈殿物を凍結乾燥するなどして調製すれば良い。   For example, the Bimetal hydroxide is prepared by mixing a mixed aqueous solution of an Fe supply source (such as iron (III) nitrate and iron chloride (III)) and a Ti supply source (such as titanium (IV) chloride) with an alkali metal hydroxide. It is obtained by adding and precipitating. Therefore, in the present invention, the precipitate thus obtained can be used as the removing agent of the present invention. Specifically, an aqueous solution of iron nitrate (III) and an aqueous solution of titanium chloride (IV) are mixed so that the ratio of Ti and Fe is a predetermined ratio, and an alkali metal hydroxide such as NaOH, What is necessary is just to adjust and adjust so that it may become about pH7 (for example, the range of pH7 +/- 1), and freeze-dry the obtained precipitate.

本発明の除去方法は、上記の除去剤を重金属汚染物質と接触させることを特徴とする。これにより、汚染物質中の重金属は当該除去剤に吸着され、不溶化する。   The removal method of the present invention is characterized in that the above-mentioned removal agent is brought into contact with a heavy metal contaminant. Thereby, the heavy metal in the pollutant is adsorbed by the removal agent and insolubilized.

本発明の処理対象となる重金属汚染物質は、固体、液体、気体のいずれの状態にあるものであってもよい。例えば、As、Cd、Pb、およびCrよりなる群から選択される少なくとも一種の重金属によって汚染された土壌、汚染された地下水、鉱山や工場からの排水、工場から排出される煤煙等を挙げることができる。   The heavy metal contaminant to be treated in the present invention may be in any state of solid, liquid, and gas. For example, soil contaminated with at least one heavy metal selected from the group consisting of As, Cd, Pb, and Cr, contaminated groundwater, drainage from mines and factories, smoke discharged from factories, etc. it can.

As、Cd、Pb、Crなどの重金属は、環境中で単体として存在する場合もあり得るが、ほとんどは塩やイオンの状態で存在する。本発明方法は、これら重金属をイオン状態で吸着する性能に優れているので、処理すべき対象に応じた処理態様を取る必要がある。例えば、煤煙を処理する場合には、本発明除去剤をフィルターに担持したものに煤煙を通すことも考えられる。   Heavy metals such as As, Cd, Pb, and Cr may exist as simple substances in the environment, but most exist in the form of salts or ions. Since the method of the present invention is excellent in the performance of adsorbing these heavy metals in an ionic state, it is necessary to take a treatment mode according to the object to be treated. For example, when processing soot, it is also conceivable to pass soot through a filter carrying the removing agent of the present invention.

具体的な処理方法としては、例えば汚染土壌を処理する場合には、汚染土壌に水と本発明除去剤を加え、攪拌することによって不溶化させることが好ましい。処理対象が液体である場合は、本発明除去剤をそのまま添加した上で攪拌してもよい。   As a specific treatment method, for example, when treating contaminated soil, it is preferable to add water and the removal agent of the present invention to the contaminated soil and to insolubilize by stirring. When the treatment target is a liquid, the removal agent of the present invention may be added as it is and stirred.

処理中の温度は、特に制限されるものではないが、例えば5〜50℃程度でよい。5℃以上とすることで、重金属の水中への溶出効率や、本発明除去剤への重金属吸着効率を高くできるからである。また、50℃以下にすることで、処理対象物質の変質を抑制し、再利用を可能にできる。   Although the temperature in process is not specifically limited, For example, about 5-50 degreeC may be sufficient. It is because elution efficiency of heavy metals in water and heavy metal adsorption efficiency to the removal agent of the present invention can be increased by setting the temperature to 5 ° C. or higher. Moreover, by making it 50 degrees C or less, alteration of a process target substance can be suppressed and reuse can be performed.

汚染物質を処理する場合におけるpHの適値は、除去すべき重金属の種類により異なる。例えば、AsおよびCrの少なくとも一方に汚染されている物質を処理する場合には、pH3〜10の水中で本発明除去剤と汚染物質とを混合することが好ましい。詳細には、後記する実施例で示すように、ヒ素についてはAs(III)、As(V)の種類によって、クロムについてはCr(III)、Cr(VI)の種類によって、それぞれ至適pHは相違する。例えば、As(III)およびCr(III)では、おおむねpH8〜10のアルカリ付近で吸着量が最大となり、一方、As(V)およびCr(VI)では、おおむねpH2〜3近傍の酸性付近で吸着量が最大となる。いずれにせよ、本発明の除去剤を用いれば、排水基準のpH範囲(pH5.8〜8.6)において、いずれの形態の重金属にも良好な吸着能を発揮することが確認された。   The appropriate value of pH when processing contaminants varies depending on the type of heavy metal to be removed. For example, when a substance contaminated with at least one of As and Cr is treated, it is preferable to mix the removing agent of the present invention and the contaminant in water having a pH of 3 to 10. Specifically, as shown in the examples described later, the optimum pH depends on the types of As (III) and As (V) for arsenic, and the types of Cr (III) and Cr (VI) for chromium. Is different. For example, As (III) and Cr (III) have a maximum adsorption amount around an alkali of pH 8-10, while As (V) and Cr (VI) adsorb around an acidity around pH 2-3. The amount is maximized. In any case, it was confirmed that when the removing agent of the present invention is used, it exhibits a good adsorption ability for any form of heavy metal in the pH range (pH 5.8 to 8.6) of the drainage standard.

また、Pbに汚染されている物質を処理する場合には、pH4〜6.5(より好ましくはpH5〜6)の水中で本発明除去剤と汚染物質とを混合することが好ましい。pH4以上であれば、土壌の植物生育能等は失活することはなく、また、pH6.6以下においてPb(OH)からPb2+が溶出するので、この溶出Pb2+を本発明除去剤により効率よく吸着し、不溶化することができるからである。当該範囲内における本発明除去剤および本発明方法の優れた効果は、後述する実施例で充分実証されている。 Moreover, when processing the substance contaminated with Pb, it is preferable to mix this removal agent and a pollutant in the water of pH 4-6.5 (more preferably pH 5-6). If pH4 or plant viability, etc. Soil is not being deactivated, also, since Pb 2+ is eluted from the Pb (OH) 2 at pH6.6 or less, the present invention removing agent the elution Pb 2+ This is because it can be efficiently adsorbed and insolubilized. The excellent effects of the removing agent of the present invention and the method of the present invention within the above range are well demonstrated in the examples described later.

また、Cdに汚染されている物質を処理する場合には、pH4〜8(より好ましくはpH6〜8)の水中で本発明除去剤と汚染物質とを混合することが好ましい。pH4以上であれば、土壌の植物生育能等は失活することはなく、また、pH8以下においてCd(OH)からCd2+が溶出することので、この溶出Cd2+を本発明除去剤により効率よく吸着し、不溶化することができるからである。当該範囲内における本発明除去剤および本発明方法の優れた効果は、後述する実施例で充分実証されている。 Moreover, when processing the substance contaminated by Cd, it is preferable to mix this removal agent and a contaminant in water of pH 4-8 (more preferably pH 6-8). If pH4 or plant viability, etc. Soil is not being deactivated, and because the Cd 2+ is eluted from Cd (OH) 2 at pH8 or less, the present invention removing agent The eluted Cd 2+ efficiency This is because it can be well adsorbed and insolubilized. The excellent effects of the removing agent of the present invention and the method of the present invention within the above range are well demonstrated in the examples described later.

本発明除去剤の添加量などは、処理すべき汚染物質の濃度やpHなどによって適切に定めれば良い。   The addition amount of the removal agent of the present invention may be appropriately determined depending on the concentration and pH of the contaminant to be treated.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例により制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

以下の実施例1〜3では、下記(ア)〜(エ)の4種類の試料を用い、各試料の結晶構造、並びにpHおよび電解質に対する安定性を調べた。   In Examples 1 to 3 below, the following four types of samples (a) to (d) were used, and the crystal structure of each sample, and the stability to pH and electrolyte were examined.

(1)試料の製造方法
以下に示すように、TiとFeを0.5:0.5または0.2:0.8のモル比で含有する2種類の非晶質Bimetal水酸化物(本発明例1、2)の試料を製造した。比較のため、Tiのみを含有しFeを含有しない非晶質Monometal水酸化物、およびFeのみを含有しTiを含有しない非晶質Monometal水酸化物(特許文献1および特許文献2に記載の非晶質水酸化鉄)の試料も同様に製造した。
(ア)本発明例1(後記する図および表では、「1:1−s」と略記)
Ti:Fe=0.5:0.5の非晶質Bimetal水酸化物
(イ)本発明例2(後記する図および表では、「1:4−s」と略記)
Ti:Fe=0.2:0.8の非晶質Bimetal水酸化物
(ウ)比較例1(後記する図および表では、「Ti−s」と略記)
Ti:Fe=1.0:0.0の非晶質Monometal水酸化物
(エ)比較例2(後記する図および表では、「Fe−s」と略記)
Ti:Fe=0.0:1.0の非晶質Monometal水酸化物
(1) Sample production method As shown below, two types of amorphous Bimetal hydroxides containing Ti and Fe in a molar ratio of 0.5: 0.5 or 0.2: 0.8 (present Samples of Invention Examples 1 and 2) were produced. For comparison, amorphous Monometal hydroxide containing only Ti and not containing Fe, and amorphous Monometal hydroxide containing only Fe and not containing Ti (non-described in Patent Document 1 and Patent Document 2) A sample of (crystalline iron hydroxide) was prepared in the same manner.
(A) Invention Example 1 (abbreviated as “1-1-s” in the figures and tables to be described later)
Amorphous Bimetal hydroxide with Ti: Fe = 0.5: 0.5 (A) Invention Example 2 (abbreviated as “1: 4-s” in the figures and tables described later)
Ti: Fe = 0.2: 0.8 amorphous Bimetal hydroxide (c) Comparative example 1 (abbreviated as “Ti-s” in the figures and tables described later)
Amorphous Monometal hydroxide with Ti: Fe = 1.0: 0.0 (D) Comparative Example 2 (abbreviated as “Fe-s” in the figures and tables described later)
Amorphous Monometal hydroxide with Ti: Fe = 0.0: 1.0

具体的には、まず、硝酸鉄(III)九水和物(和光純薬工業製のFe(NO・9HO)および四塩化チタン(和光純薬工業製のTiCl)を上記の比率に従って希釈し、各溶液5000mLを調製した。次に、pHメーターの電極を上記溶液に浸け、1MのNaOHでpHを7.0に調整した。3時間静置後に1MのNaOHでpHを7.0±0.1に再度調整し、4時間静置後に沈殿物と水が分離した時点で上澄み液をデカンテーション法で取り除いた。得られた沈殿物を透析膜に入れ、脱イオン水に浸けて透析を行った。脱イオン水の電気伝導度(EC)が変化しなくなるまで1日2回脱イオン水を交換した。透析後の沈殿物を凍結乾燥用ビーカーに移し、エタノール層で試料を回しながら凍らせ、完全に凍ったら凍結乾燥機(TOKYO TIKAKIKAI CO.LTD.,FD−1)を用いて凍結乾燥を開始した。凍結乾燥終了後、得られた粉末試料をガラス瓶に入れ、実験を行なうまでデシケーター中で保管した。 Specifically, first, the iron (III) nitrate nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd. Fe (NO 3) 3 · 9H 2 O) and titanium tetrachloride (manufactured by Wako Pure Chemical Industries, Ltd. TiCl 4) Each solution was diluted with 5000 mL. Next, the electrode of the pH meter was immersed in the above solution, and the pH was adjusted to 7.0 with 1M NaOH. After standing for 3 hours, the pH was adjusted again to 7.0 ± 0.1 with 1 M NaOH, and when the precipitate and water separated after standing for 4 hours, the supernatant was removed by decantation. The resulting precipitate was placed in a dialysis membrane and immersed in deionized water for dialysis. The deionized water was changed twice a day until the electrical conductivity (EC) of the deionized water did not change. The dialyzed precipitate was transferred to a freeze-drying beaker, frozen while rotating the sample in the ethanol layer, and when completely frozen, freeze-drying was started using a freeze-dryer (TOKYO TIKAKIKAI CO. LTD., FD-1). . After lyophilization, the obtained powder sample was placed in a glass bottle and stored in a desiccator until the experiment was conducted.

実施例1 X線回折による結晶構造の確認
上記(1)の方法で得られた(ア)〜(エ)の4種類の試料をアルミ試料板の穴に載せ、平らに押し固めて余分な粉末試料を取り除いた。このように処理した各試料の結晶構造を、X線回折装置(SIMAZDU XD−D1w)を用いて以下の測定条件で行った。
<測定条件>
・電圧 :30kV
・電流 :20mA
・スキャンモード :連続スキャン
・高角度 :80deg
・低角度 :10deg
・積分時間 :1sec
・走査速度 :2deg/min
・フルスケール :5.0kcps
・ゴニオメーターの駆動軸:θ−2θ
・固定軸&角度 :10.0000deg
Example 1 Confirmation of Crystal Structure by X-Ray Diffraction Four types of samples (a) to (d) obtained by the method (1) above were placed in holes in an aluminum sample plate, pressed flatly, and excess powder. The sample was removed. The crystal structure of each sample thus treated was measured under the following measurement conditions using an X-ray diffractometer (SIMAZDU XD-D1w).
<Measurement conditions>
・ Voltage: 30kV
・ Current: 20 mA
-Scan mode: Continuous scan-High angle: 80 deg
・ Low angle: 10deg
・ Integration time: 1 sec
Scanning speed: 2 deg / min
・ Full scale: 5.0 kcps
・ Drive shaft of goniometer: θ-2θ
・ Fixed shaft & angle: 10.0000deg

X線回折の結果を図1に示す。参考のため、商業用TiO(和光純薬)のX線回折結果を図1に併記する。 The result of X-ray diffraction is shown in FIG. For reference, the X-ray diffraction results of commercial TiO 2 (Wako Pure Chemical Industries) are also shown in FIG.

図1に示すように、商業用TiOでは結晶性を示すピークがみられたのに対し、上記の方法で製造した4種類の試料は、いずれも結晶性を示すピークは見られず、非晶質の形態であると推察された。 As shown in FIG. 1, the commercial TiO 2 showed a peak showing crystallinity, whereas the four types of samples produced by the above method did not show any peak showing crystallinity. Presumed to be crystalline.

実施例2 安定性試験(pHの影響)
本実施例では、pHに対する安定性(pH3〜11)を調べた。
Example 2 Stability test (effect of pH)
In this example, the stability to pH (pH 3 to 11) was examined.

まず、100mL容フタ付瓶に0.05MのNaCl溶液を40mL入れ、この溶液をスターラーで撹拌しながら、0.1MのHClと0.1MのNaOHでpH=3、5、7、9、11に調整した。このようにして得られたpH調整液のそれぞれに、上記の各試料を10mg(250mg/L)ずつ加えて24時間振とうした後、0.45μmメンブレンフィルターで濾過した。濾液中のTiおよびFeの濃度を、高周波プラズマ発光分光分析装置(SHIMADZU ICP−1000IV)にて測定し、TiおよびFeの溶解率を調べた。   First, 40 mL of 0.05 M NaCl solution is placed in a 100 mL bottle with a lid, and this solution is stirred with a stirrer, and pH = 3, 5, 7, 9, 11 with 0.1 M HCl and 0.1 M NaOH. Adjusted. 10 mg (250 mg / L) of each sample was added to each of the pH adjustment solutions thus obtained, shaken for 24 hours, and then filtered through a 0.45 μm membrane filter. The concentrations of Ti and Fe in the filtrate were measured with a high-frequency plasma optical emission spectrometer (SHIMADZU ICP-1000IV), and the dissolution rates of Ti and Fe were examined.

これらの結果を表2に示す。また、各試料における濾液中のTi残存濃度およびFe残存濃度の結果を、それぞれ、図2(a)および図2(b)に示す。濾液中のTi/Feの残存濃度が低い程、試料からのTi/Feの溶解が少なく、安定であることを意味している。   These results are shown in Table 2. Moreover, the result of Ti residual density | concentration and Fe residual density | concentration in the filtrate in each sample is shown to Fig.2 (a) and FIG.2 (b), respectively. It means that the lower the residual concentration of Ti / Fe in the filtrate, the less the Ti / Fe dissolved from the sample and the more stable it is.

まず、Fe濃度について考察する。図2(b)から明らかなように、本発明例1、2は、比較例1、2と同様、pH3でFeの濃度が最も高くなったが、いずれも10mg/L以下であり、環境省による鉄の水質汚濁防止法の排水基準値(10mg/L以下)を満足していた。pH3のFe濃度が最も高かった本発明例2からのFe溶解率は、全Fe量(40mg)の約6%以下であり、pHの変化に対して概ね安定であることが確認された。   First, the Fe concentration will be considered. As is clear from FIG. 2 (b), Examples 1 and 2 of the present invention had the highest Fe concentration at pH 3 as in Comparative Examples 1 and 2, but both were 10 mg / L or less, and the Ministry of the Environment The water drainage standard value (10 mg / L or less) of the iron water pollution prevention method by the above was satisfied. The Fe dissolution rate from Example 2 of the present invention having the highest Fe concentration at pH 3 was about 6% or less of the total Fe amount (40 mg), and it was confirmed that the Fe dissolution rate was generally stable against changes in pH.

次に、Ti濃度について考察する。図2(a)から明らかなように、本発明例1、2は、比較例1、2と同様、pHの変化にかかわらず殆ど安定であり、いずれも1mg/L以下と非常に低く、Feに比べて極めて安定であることが分かった。また、本発明例からのTi溶解率は、全Ti量(40mg)の約1%程度であり、pHの変化に対して極めて安定であることが確認された。   Next, the Ti concentration will be considered. As is clear from FIG. 2 (a), Examples 1 and 2 of the present invention, as in Comparative Examples 1 and 2, are almost stable regardless of the change in pH, and both are very low at 1 mg / L or less. It was found to be extremely stable compared to. Moreover, the Ti dissolution rate from the inventive examples was about 1% of the total Ti amount (40 mg), and it was confirmed that the Ti dissolution rate was extremely stable against changes in pH.

実施例3 安定性試験(電解質の影響)
本実施例では、電解質(NaCl)に対する安定性を調べた。
Example 3 Stability test (effect of electrolyte)
In this example, the stability against the electrolyte (NaCl) was examined.

まず、100mL容フタ付瓶に0.05MのNaCl溶液を40mL加え、スターラーで撹拌しながら、0.1MのHClと0.1MのNaOHを用いてpH5.0±0.1に調整した。このpH調整液(pH5)中に上記の各試料を10mgずつ加えて24時間振とうした後、0.45μmメンブレンフィルターで濾過した。濾液中のTi濃度およびFe濃度を、前述した実施例2と同様にして測定した。   First, 40 mL of 0.05 M NaCl solution was added to a 100 mL bottle with a lid, and the pH was adjusted to 5.0 ± 0.1 using 0.1 M HCl and 0.1 M NaOH while stirring with a stirrer. 10 mg of each sample was added to this pH adjusting solution (pH 5), shaken for 24 hours, and then filtered through a 0.45 μm membrane filter. Ti concentration and Fe concentration in the filtrate were measured in the same manner as in Example 2 described above.

比較のため、0.05MのNaCl溶液の代わりに脱イオン水を用意し、上記と同様にして実験を行い、濾液中のTi濃度およびFe濃度を測定した。   For comparison, deionized water was prepared instead of the 0.05M NaCl solution, and an experiment was performed in the same manner as described above, and the Ti concentration and Fe concentration in the filtrate were measured.

これらの結果を図3に示す。図3(a)および図3(b)は、各試料における濾液中のFe濃度およびTi濃度の結果をそれぞれ、示している。   These results are shown in FIG. FIG. 3A and FIG. 3B show the results of Fe concentration and Ti concentration in the filtrate in each sample, respectively.

まず、Fe濃度について考察する。図3(a)から明らかなように、本発明例1、2のFe濃度は、比較例2と同様、約0.5mg/L以下と非常に低く、環境省による鉄の水質汚濁防止法の排水基準値(10μg/L以下)を充分満足していた。   First, the Fe concentration will be considered. As is clear from FIG. 3 (a), the Fe concentrations in Invention Examples 1 and 2 are as low as about 0.5 mg / L or less, as in Comparative Example 2. The drainage standard value (10 μg / L or less) was sufficiently satisfied.

次に、Ti濃度について考察する。図3(b)から明らかなように、本発明例1、2のTi濃度は、Feの場合と同様、約0.5mg/L以下と非常に低かった。   Next, the Ti concentration will be considered. As is clear from FIG. 3B, the Ti concentrations in Examples 1 and 2 of the present invention were very low, about 0.5 mg / L or less, as in the case of Fe.

以上の結果より、本発明例1、2の試料は、NaClに殆ど溶解せず、電解質中で極めて安定であることが確認された。   From the above results, it was confirmed that the samples of Invention Examples 1 and 2 were hardly dissolved in NaCl and extremely stable in the electrolyte.

以下の実施例4〜7では、上記(ア)〜(エ)の各試料を用い、種々の条件下でヒ素の吸着試験を行なった。実験に用いたヒ素溶液の調製方法は以下のとおりである。   In Examples 4 to 7 below, arsenic adsorption tests were performed under various conditions using the samples (A) to (D). The method for preparing the arsenic solution used in the experiment is as follows.

ヒ酸[As(V)]および亜ヒ酸[As(III)]はそれぞれ、NaHAsO・7HO、NaAsOを脱イオン水で希釈し、1000mg/Lに調整したものを原液として用いた。後記する吸着実験には、この原液を脱イオン水で適宜希釈した水溶液を用いた。 Arsenic acid [As (V)] and arsenous acid [As (III)] were prepared by diluting NaHAsO 4 .7H 2 O and NaAsO 2 with deionized water to 1000 mg / L, respectively. . In the adsorption experiments described later, an aqueous solution obtained by appropriately diluting this stock solution with deionized water was used.

実施例4 ヒ素の吸着試験(1)
本実施例では、ヒ素濃度:5mg/L、試料の添加量:10mg、pH7.0、0.05MのNaClの一定条件下で、以下のようにして吸着処理を行なった。
Example 4 Arsenic adsorption test (1)
In this example, the adsorption treatment was performed as follows under the constant conditions of arsenic concentration: 5 mg / L, sample addition amount: 10 mg, pH 7.0, 0.05 M NaCl.

まず、0.05MのNaClを電解質として用い、5.0mg/Lのヒ素溶液を40ml調製した。この溶液をスターラーで撹拌しながら、0.1MのHClと0.1MのNaOHを用いてpH7±0.1に調整した。このpH調整液に各試料を10mgずつ加えて24時間振とうした後、0.45μmメンブレンフィルターで濾過した。   First, 0.05 ml of NaCl was used as an electrolyte to prepare 40 ml of a 5.0 mg / L arsenic solution. While stirring this solution with a stirrer, the pH was adjusted to 7 ± 0.1 using 0.1 M HCl and 0.1 M NaOH. 10 mg of each sample was added to this pH adjusting solution, shaken for 24 hours, and then filtered through a 0.45 μm membrane filter.

このようにして得られた濾液中のAs(V)濃度を高周波誘導結合プラズマ発光分光分析装置(SHIMADZU ICP−1000IV)にて測定した。また、濾液中のAs(III)濃度は、形態別As分析用前処理装置(SHIMAZU:ASA−2sp)を接続した原子吸光光度計(SHIMAZU:AA−6800)にて測定した。As(III)については、酸化によりAsの形態が変化しないように窒素ガスで充満させたグローブボックス(As−600BR アズワン株式会社)内で吸着処理を行い、分析直前までシリコン栓をした。   The As (V) concentration in the filtrate thus obtained was measured with a high-frequency inductively coupled plasma optical emission spectrometer (SHIMADZU ICP-1000IV). Further, the As (III) concentration in the filtrate was measured with an atomic absorption photometer (SHIMAZU: AA-6800) connected to a pretreatment apparatus for as-analyzed As analysis (SHIMAZU: ASA-2sp). As (III) was subjected to adsorption treatment in a glove box (As-600BR AS ONE Co., Ltd.) filled with nitrogen gas so that the form of As did not change due to oxidation, and a silicon plug was used until just before analysis.

これらの結果を図4に示す。濾液中As(V)およびAs(III)の濃度は、それぞれの残存率を示し、残存率が高いほど、吸着量が少ないことを示している。   These results are shown in FIG. The concentrations of As (V) and As (III) in the filtrate indicate the residual ratio, and the higher the residual ratio, the smaller the amount of adsorption.

また、表3に、図4の結果から算出したAs(V)およびAs(III)の除去率を示す。   Table 3 shows the removal rates of As (V) and As (III) calculated from the results of FIG.

まず、As(III)について考察する。本発明例1、2のAs(III)除去率は、いずれも90%以上と高い。特に、非晶質水酸化物中のFe率が高い本発明例2(1:4−s)では約96.5%と非常に高く、非晶質Feの比較例2よりも高くなった。   First, As (III) will be considered. The As (III) removal rates of Invention Examples 1 and 2 are both as high as 90% or more. In particular, the present invention example 2 (1: 4-s) having a high Fe ratio in the amorphous hydroxide was very high at about 96.5%, which was higher than the comparative example 2 of amorphous Fe.

次に、As(V)について考察する。本発明例1、2のAs(V)除去率は、いずれも約85%以上と高かった。   Next, As (V) will be considered. The As (V) removal rates of Invention Examples 1 and 2 were both as high as about 85% or more.

従って、本発明1および本発明2のようなバイメタル試料を用いれば、As(V)に対する優れた除去率が得られるだけでなく、比較例1、2のモノメタル試料では達成できなかった極めて優れたAs(III)に対する除去率も得られる点で、非常に有用であることが確認された。更に、本発明例による優れたAs吸着能は、バイメタル中のFeの比率が高くなるにつれて向上する傾向にあることも確認された。   Therefore, when bimetallic samples such as the present invention 1 and the present invention 2 are used, not only an excellent removal rate with respect to As (V) can be obtained, but also extremely excellent that cannot be achieved with the monometal samples of Comparative Examples 1 and 2. In addition, it was confirmed that the removal rate for As (III) was very useful. Furthermore, it was also confirmed that the excellent As adsorption ability according to the present invention example tends to improve as the ratio of Fe in the bimetal increases.

実施例5 ヒ素の吸着試験(2)
本実施例では、ヒ素濃度(初期濃度)を1〜50mg/Lの範囲で変化させたときの吸着能を調べた。詳細には、試料の添加量(10mg)およびpH(As(III)ではpH7.0、As(V)ではpH6.0)を一定にし、ヒ素濃度を表4のように種々変化させ、以下の吸着処理を行った。
Example 5 Arsenic adsorption test (2)
In this example, the adsorption ability when the arsenic concentration (initial concentration) was changed in the range of 1 to 50 mg / L was examined. Specifically, the sample addition amount (10 mg) and pH (pH 7.0 for As (III) and pH 6.0 for As (V)) were kept constant, and the arsenic concentration was variously changed as shown in Table 4 to obtain the following: Adsorption treatment was performed.

まず、0.05MのNaClを電解質として用い、1.0mg/L、2.0mg/L、5.0mg/L、7.5mg/L、10.0mg/Lの各種ヒ素溶液を40mL調製した。この溶液をスターラーで撹拌しながら、0.1MのHClと0.1MのNaOHを用いて、As(V)溶液はpH6±0.5に、As(III)溶液はpH7±0.1に、それぞれpHを調整した。このpH調整液に各試料を5mgずつ加え、24時間振とうした後、0.45μmメンブレンフィルターで濾過した。このようにして得られた濾液中のAs(V)濃度およびAs(III)濃度を、前述した実施例4と同様にして測定した。   First, 0.05 mL of NaCl was used as an electrolyte to prepare 40 mL of various arsenic solutions of 1.0 mg / L, 2.0 mg / L, 5.0 mg / L, 7.5 mg / L, 10.0 mg / L. While stirring this solution with a stirrer, using 0.1 M HCl and 0.1 M NaOH, the As (V) solution was adjusted to pH 6 ± 0.5, the As (III) solution was adjusted to pH 7 ± 0.1, The pH was adjusted respectively. 5 mg of each sample was added to this pH adjusting solution, shaken for 24 hours, and then filtered through a 0.45 μm membrane filter. The As (V) concentration and As (III) concentration in the filtrate thus obtained were measured in the same manner as in Example 4 described above.

このようにして得られた濾液中のAs残存濃度を表4に示す。表中の太字斜線は、環境省の排水基準値(100μg/L以下)を満足しているものである(以下の表についても同じ。)。   The As residual concentration in the filtrate thus obtained is shown in Table 4. Bold diagonal lines in the table satisfy the wastewater standard value (100 μg / L or less) of the Ministry of the Environment (the same applies to the following tables).

まず、As(III)について検討すると、As濃度が同じ場合、本発明例1および本発明例2の吸着能は、他の試料を用いた場合に比べて上昇する傾向が見られた。As濃度が2mg/L以下の場合、本発明例1および2の試料を用いれば、環境省の排水基準値(0.1mg/L以下)を達成でき、特に、バイメタル中のFeの比率が高い本発明例2を用いれば、比較例2よりも高いAs(III)吸着能が発揮されることが確認された。バイメタル中のTiとFeの比率に着目すると、Feの比率が高い本発明例2の方が、Feの比率が少ない本発明例1よりもAs(III)吸着能が高いことが分かる。   First, when As (III) was examined, when the As concentration was the same, the adsorptive capacity of Inventive Example 1 and Inventive Example 2 tended to increase as compared to the case of using other samples. When the As concentration is 2 mg / L or less, the wastewater standard value (0.1 mg / L or less) of the Ministry of the Environment can be achieved if the samples of Invention Examples 1 and 2 are used, and in particular, the ratio of Fe in the bimetal is high. It was confirmed that the use of Invention Example 2 exhibited higher As (III) adsorption ability than Comparative Example 2. Focusing on the ratio of Ti to Fe in the bimetal, it can be seen that the present invention example 2 having a higher Fe ratio has higher As (III) adsorption capacity than the present invention example 1 having a lower Fe ratio.

上記とほぼ同様の傾向は、As(V)についても見られた。   A tendency similar to the above was also observed for As (V).

更に、Langmuirのモデル式によって得られる吸着等温線に基づき、表4の結果から各試料におけるAs(III)およびAs(V)の最大吸着量を算出した。その結果を表5に示す。   Furthermore, the maximum adsorption amount of As (III) and As (V) in each sample was calculated from the results of Table 4 based on the adsorption isotherm obtained by the Langmuir model formula. The results are shown in Table 5.

表5より、As(III)の最大吸着量は、本発明例2では93.6mg/g、本発明例1では88.0mg/gと非常に高く、いずれの比較例よりも高値を示した。また、本発明例1、2におけるAs(V)の最大吸着量は41.9mg/gと、比較例2とほぼ同程度の高値を示した。このように本発明例のヒ素の最大吸着量は非常に高く、従来汎用されている活性アルミナなどの吸着剤に比べても際立って高くなっている。   From Table 5, the maximum adsorption amount of As (III) was 93.6 mg / g in Invention Example 2 and 88.0 mg / g in Invention Example 1, which was very high, showing a higher value than any of Comparative Examples. . Moreover, the maximum adsorption amount of As (V) in Invention Examples 1 and 2 was 41.9 mg / g, which was as high as Comparative Example 2. Thus, the maximum adsorption amount of arsenic of the present invention example is very high, and is significantly higher than that of conventionally used adsorbents such as activated alumina.

以上の結果を勘案すれば、本発明例の吸着剤は、特に、As(III)の吸着能に優れており、バイメタル中のFeの比率が高いほどヒ素に対する吸着能は向上することが確認された。   Considering the above results, it is confirmed that the adsorbent of the present invention example is particularly excellent in the adsorption ability of As (III), and that the adsorption capacity for arsenic increases as the ratio of Fe in the bimetal increases. It was.

実施例6 ヒ素の吸着試験(3)
本実施例では、pHを3〜10の間で変化させたときの吸着能を調べた。詳細には、試料の添加量(10mg)およびヒ素濃度(5.0mg/L)を一定にし、pHを3〜10の間で変化させ、以下の吸着処理を行った。
Example 6 Arsenic adsorption test (3)
In this example, the adsorption ability when the pH was changed between 3 and 10 was examined. Specifically, the amount of sample added (10 mg) and arsenic concentration (5.0 mg / L) were kept constant, the pH was changed between 3 and 10, and the following adsorption treatment was performed.

まず、0.05MのNaClを電解質として用い、5.0mg/Lのヒ素溶液を40ml調製した。この溶液をスターラーで撹拌しながら、0.1MのHClと0.1MのNaOHを用いて、pH=3、5、7、9、10(いずれも、±0.1の範囲内)に調整した。次に、各pH調整液中に試料を5mgずつ加え、24時間振とうした後、0.45μmメンブレンフィルターで濾過した。このようにして得られた濾液中のAs(V)濃度およびAs(III)濃度を、前述した実施例4と同様にして測定し、濾液中の各ヒ素濃度(残存率)から吸着量を算出した。   First, 0.05 ml of NaCl was used as an electrolyte to prepare 40 ml of a 5.0 mg / L arsenic solution. While stirring this solution with a stirrer, the pH was adjusted to 3, 5, 7, 9, 10 (all within ± 0.1) using 0.1 M HCl and 0.1 M NaOH. . Next, 5 mg of each sample was added to each pH adjusting solution, shaken for 24 hours, and then filtered through a 0.45 μm membrane filter. The As (V) concentration and As (III) concentration in the filtrate thus obtained were measured in the same manner as in Example 4 described above, and the amount of adsorption was calculated from each arsenic concentration (residual rate) in the filtrate. did.

これらの結果を図5に示す。   These results are shown in FIG.

図5(a)にAs(III)吸着量の結果を示す。本発明例1では、pHが高くなるにつれてAs(III)吸着量が顕著に増加したのに対し、本発明例2では、pHによる変化は本発明1に比べて小さく、アルカリ側(pH8〜9)で高い吸着量を示した。   FIG. 5A shows the results of As (III) adsorption amount. In Example 1 of the present invention, the amount of As (III) adsorbed markedly increased as the pH increased, whereas in Example 2 of the present invention, the change due to pH was smaller than that of the present invention 1, and the alkali side (pH 8-9). ) Showed a high adsorption amount.

図5(b)にAs(V)吸着量の結果を示す。本発明例1ではpHの影響を殆ど受けないのに対し、本発明例2ではpH3で最も高く、pHが高くなるにつれて吸着量は減少した。   FIG. 5B shows the results of As (V) adsorption amount. Inventive example 1 was hardly affected by pH, while in inventive example 2, the highest was at pH 3, and the amount of adsorption decreased with increasing pH.

また、排水基準のpH範囲(pH5.8〜8.6)に着目すると、As(III)の吸着量は本発明例2が最も高く、As(V)の吸着量は本発明例2より本発明例1の方が高くなった。   Further, paying attention to the pH range (pH 5.8 to 8.6) of the drainage standard, the adsorption amount of As (III) is the highest in Invention Example 2, and the adsorption amount of As (V) is higher than that in Invention Example 2. Invention Example 1 was higher.

これらの結果を勘案すると、本発明の吸着剤は、特に排水基準のpH範囲において極めて有効に発揮されることが分かった。また、バイメタル中のTiとFeの比率が異なる2種類以上の吸着剤を併用して用いると、より優れた特性が発揮されることも示唆された。   Taking these results into consideration, it has been found that the adsorbent of the present invention is very effective particularly in the pH range of the drainage standard. It was also suggested that when two or more kinds of adsorbents having different ratios of Ti and Fe in the bimetal were used in combination, more excellent characteristics were exhibited.

実施例7 ヒ素の吸着試験(4)
本実施例では、吸着剤の添加量を2〜30mgに変化させたときの吸着能を調べた。詳細には、ヒ素濃度(5.0mg/L)およびpH(7±0.1)と一定にし、試料の添加量を表6に示すように変化させ、以下の吸着処理を行った。
Example 7 Arsenic adsorption test (4)
In this example, the adsorption ability when the amount of adsorbent added was changed to 2 to 30 mg was examined. Specifically, arsenic concentration (5.0 mg / L) and pH (7 ± 0.1) were kept constant, the amount of sample added was changed as shown in Table 6, and the following adsorption treatment was performed.

まず、0.05MのNaClを電解質として用い、5.0mg/Lのヒ素溶液を40ml調製した。この溶液をスターラーで撹拌しながら、0.1MのHClと0.1MのNaOHを用いてpH7±0.1に調整した。このpH調整液に各試料を2mg、5mg、10mg、30mg、50mgずつ加え、24時間振とうした後、0.45μmメンブレンフィルターで濾過した。このようにして得られた濾液中のAs(III)濃度およびAs(V)濃度を、前述した実施例4と同様にして測定した。   First, 0.05 ml of NaCl was used as an electrolyte to prepare 40 ml of a 5.0 mg / L arsenic solution. While stirring this solution with a stirrer, the pH was adjusted to 7 ± 0.1 using 0.1 M HCl and 0.1 M NaOH. 2 mg, 5 mg, 10 mg, 30 mg, and 50 mg of each sample were added to this pH adjusting solution, shaken for 24 hours, and then filtered through a 0.45 μm membrane filter. The As (III) concentration and As (V) concentration in the filtrate thus obtained were measured in the same manner as in Example 4 described above.

これらの結果を表6にまとめて示す。   These results are summarized in Table 6.

表より、吸着剤の添加量が増加するにつれ、As(III)およびAs(V)の残存濃度は減少し、吸着量は増加した。   From the table, as the adsorbent addition amount increased, the residual concentrations of As (III) and As (V) decreased and the adsorption amount increased.

詳細には、As(III)の吸着能は、本発明例2が最も優れており、比較例2よりも高くなった。本発明1のAs(III)吸着能も高く、本発明例1、2はいずれも、20mgの添加量でAs(III)濃度を排水基準値以下に低減することができた。   Specifically, the adsorption capacity of As (III) was most excellent in Inventive Example 2, and was higher than Comparative Example 2. The As (III) adsorption capacity of the present invention 1 was also high, and both of the present invention examples 1 and 2 were able to reduce the As (III) concentration below the effluent standard value with an addition amount of 20 mg.

また、As(V)の吸着能は、比較例2よりも若干劣るが、本発明例1、2のいずれも、20mgの添加量でAs(V)濃度を排水基準値以下に低減することができた。すなわち、ヒ素濃度5mg/Lの溶液に本発明例の試料を0.5〜1g/L程度添加すれば、ヒ素濃度を排水基準値以下に抑えられることが分かった。   Moreover, although the adsorption capacity of As (V) is slightly inferior to that of Comparative Example 2, both of Inventive Examples 1 and 2 can reduce the As (V) concentration below the drainage standard value with an addition amount of 20 mg. did it. That is, it was found that the arsenic concentration can be suppressed to a drainage standard value or less by adding about 0.5 to 1 g / L of the sample of the present invention to a solution having an arsenic concentration of 5 mg / L.

これらの実施例の結果より、本発明例1、2のAs吸着能は非常に優れており、特に、As(III)に対する吸着能が格段に向上すること、このような効果は、バイメタル中のFeの比率が高いほど有効に発揮されることが充分実証された。水中にはAs(III)とAs(V)の両方が存在することを考慮すると、Feの比率が高い本発明例2はいずれの吸着量も高いため、As吸着剤として極めて有用であることが示唆された。また、これらの結果より、吸着剤の添加量やpHなどの処理条件を適切に調整することによって、処理水のAs濃度をWHOの飲料水基準値(10μg/L)以下に抑えることも充分可能であることが示唆された。更には、本発明例1と本発明例2を組み合わせて用いるなどの二段階吸着処理を行うことにより、As(V)とAs(III)の両方をより完全に除去することも可能であると考えられる。   From the results of these Examples, the As adsorption capacity of Examples 1 and 2 of the present invention is very excellent. In particular, the adsorption ability for As (III) is remarkably improved. It has been sufficiently demonstrated that the higher the ratio of Fe, the more effective. Considering the presence of both As (III) and As (V) in water, the present invention example 2 having a high Fe ratio has a high adsorption amount, so that it is extremely useful as an As adsorbent. It was suggested. In addition, from these results, it is possible to keep the As concentration of treated water below the WHO drinking water reference value (10 μg / L) by appropriately adjusting treatment conditions such as the amount of adsorbent added and pH. It was suggested that Furthermore, it is possible to more completely remove both As (V) and As (III) by performing a two-step adsorption treatment such as using the present invention example 1 and the present invention example 2 in combination. Conceivable.

実施例8 Cdの吸着試験
本実施例では、上記(ア)〜(ウ)の3種類の試料を用い、試料の添加量(10mg)およびpH(7±0.1)を一定にし、Cd濃度(初期濃度)を5〜50mg/Lの範囲で変化させたときの各試料のCd吸着能を調べた。
Example 8 Cd adsorption test In this example, the above three types of samples (a) to (c) were used, the sample addition amount (10 mg) and pH (7 ± 0.1) were kept constant, and the Cd concentration The Cd adsorption capacity of each sample when the (initial concentration) was changed in the range of 5 to 50 mg / L was examined.

まず、CdCl2を脱イオン水で希釈し、1000mg/Lに調製したものを原液として用いた。この原液を脱イオン水で更に適宜希釈し、5mg/L、10mg/L、20mg/L、30mg/L、50mg/Lの各種濃度のCd溶液を40mLずつ調製した。 First, CdCl 2 was diluted with deionized water and adjusted to 1000 mg / L, and used as a stock solution. This stock solution was further appropriately diluted with deionized water to prepare 40 mL of Cd solutions having various concentrations of 5 mg / L, 10 mg / L, 20 mg / L, 30 mg / L and 50 mg / L.

次に、100mL容フタ付瓶に0.05MのNaCl溶液40mLを加えた後、上記の各種Cd溶液を40mLずつ加えたこの溶液をスターラーで撹拌しながら、0.1MのHClと0.1MのNaOHを用いてpH7±0.1に調整した。このpH調整液に各試料を10mgずつ加え、24時間振とうした後、0.45μmメンブレンフィルターで濾過した。このようにして得られた濾液中のCd濃度を、原子吸光光度計(SHIMAZU:AA−6800)を用いて測定し、濾液中のCd濃度(残存率)から吸着量を算出した。   Next, after adding 40 mL of 0.05M NaCl solution to a 100 mL bottle with a lid, 40 mL of each of the above-mentioned various Cd solutions was added while stirring this solution with a stirrer. The pH was adjusted to 7 ± 0.1 using NaOH. 10 mg of each sample was added to this pH adjusting solution, shaken for 24 hours, and then filtered through a 0.45 μm membrane filter. The Cd concentration in the filtrate thus obtained was measured using an atomic absorption photometer (SHIMAZU: AA-6800), and the adsorption amount was calculated from the Cd concentration (residual rate) in the filtrate.

このようにして得られたCd吸着量を図6に示す。また、濾液中のCd残存濃度を表7に示す。   The Cd adsorption amount thus obtained is shown in FIG. Table 7 shows the residual Cd concentration in the filtrate.

これらの結果より、本発明例1(表および図中、「1:1−s」)および本発明例2(表および図中、「1:4−s」)のCd吸着能は、比較例1(表および図中、「Fe−s」)と同等またはそれ以上に優れており、Cd初期濃度が5〜30mg/Lの場合、比較例1よりも優れたCd吸着能が確認された。   From these results, the Cd adsorption ability of Example 1 of the present invention (“1: 1-s” in the table and drawings) and Example 2 of the present invention (“1: 4-s” in the tables and drawings) was found to be a comparative example. 1 ("Fe-s" in the table and the figure) or better than that, Cd adsorption ability superior to Comparative Example 1 was confirmed when the Cd initial concentration was 5 to 30 mg / L.

更に、Langmuirのモデル式によって得られる吸着等温線に基づき、表7の結果から各試料におけるCdの最大吸着量を算出した。その結果、Cdの最大吸着量は、Feの比率が少ない本発明例1では約33mg/gであり、一方、Feの比率が高い本発明例2と比較例1の最大吸着量は同じで、約26mg/gであった。   Further, based on the adsorption isotherm obtained by the Langmuir model formula, the maximum adsorption amount of Cd in each sample was calculated from the results in Table 7. As a result, the maximum adsorption amount of Cd is about 33 mg / g in the present invention example 1 where the ratio of Fe is small, while the maximum adsorption amount of the present invention example 2 and the comparative example 1 where the ratio of Fe is high is the same. About 26 mg / g.

実施例9 Pbの吸着試験
本実施例では、上記(ア)〜(ウ)の3種類の試料を用い、試料の添加量(10mg)およびpH(6±0.1)を一定にし、Pb濃度(初期濃度)を5〜250mg/Lの範囲で変化させたときの各試料のCd吸着能を調べた。
Example 9 Pb adsorption test In this example, the three types of samples (a) to (c) above were used, the sample addition amount (10 mg) and pH (6 ± 0.1) were kept constant, and the Pb concentration The Cd adsorption capacity of each sample when the (initial concentration) was changed in the range of 5 to 250 mg / L was examined.

まず、PbCl2を脱イオン水で希釈し、1000mg/Lに調製したものを原液として用いた。この原液を脱イオン水で更に適宜希釈し、5mg/L、10mg/L、100mg/L、150mg/L、200mg/L、250mg/Lの各種Pb溶液を40mLずつ調製した。 First, PbCl 2 diluted with deionized water to a concentration of 1000 mg / L was used as a stock solution. This stock solution was further appropriately diluted with deionized water to prepare 40 mL of various Pb solutions of 5 mg / L, 10 mg / L, 100 mg / L, 150 mg / L, 200 mg / L and 250 mg / L.

次に、100mL容フタ付瓶に0.05MのNaCl溶液40mLを加えた後、上記の各濃度のPb溶液を40mLずつ加えた。この溶液をスターラーで撹拌しながら、0.1MのHClと0.1MのNaOHを用いてpH6±0.1に調整した。このpH調整液に各試料を10mgずつ加え、24時間振とうした後、0.45μmメンブレンフィルターで濾過した。このようにして得られた濾液中のPb濃度を、原子吸光光度計(SHIMAZU:AA−6800)を用いて測定し、濾液中のPb濃度(残存率)から吸着量を算出した。   Next, 40 mL of 0.05M NaCl solution was added to a 100 mL bottle with a lid, and then 40 mL of the Pb solution having each concentration described above was added. While stirring this solution with a stirrer, the pH was adjusted to 6 ± 0.1 using 0.1 M HCl and 0.1 M NaOH. 10 mg of each sample was added to this pH adjusting solution, shaken for 24 hours, and then filtered through a 0.45 μm membrane filter. The Pb concentration in the filtrate thus obtained was measured using an atomic absorption photometer (SHIMAZU: AA-6800), and the adsorption amount was calculated from the Pb concentration (residual rate) in the filtrate.

このようにして得られたCd吸着量を図7に示す。また、濾液中のPb残存濃度(mg/L)を表8に示す。   The amount of Cd adsorption obtained in this way is shown in FIG. Table 8 shows the Pb residual concentration (mg / L) in the filtrate.

これらの結果より、本発明例1(表および図中、「1:1−s」)および本発明例2(表および図中、「1:4−s」)のPb吸着能は、比較例1とほぼ同等またはそれ以上に優れており、Pb初期濃度が250mg/L近傍では、比較例1(表および図中、「Fe−s」)よりもPb吸着能が高くなる傾向が見られた。   From these results, the Pb adsorbing ability of Example 1 of the present invention (“1: 1-s” in the table and figure) and Example 2 of the present invention (“1: 4-s” in the table and figure) are comparative examples. The Pb adsorption capacity tended to be higher than that of Comparative Example 1 (“Fe-s” in the table and the figure) when the Pb initial concentration was around 250 mg / L. .

更に、Langmuirのモデル式によって得られる吸着等温線に基づき、各試料におけるPbの最大吸着量を算出した。その結果、Pbの最大吸着量は、本発明例2が最も高く257.4mg/gであり、次いで、本発明例1の216.3mg/gであり、いずれも比較例1(187.7mg/g)より高かった。   Further, the maximum adsorption amount of Pb in each sample was calculated based on the adsorption isotherm obtained by the Langmuir model formula. As a result, the maximum adsorption amount of Pb was the highest in Invention Example 2 and was 257.4 mg / g, and then 216.3 mg / g of Invention Example 1, both of which were Comparative Example 1 (187.7 mg / g). g) higher than.

実施例10 Crの吸着試験
本実施例では、上記(ア)〜(ウ)の3種類の試料を用い、試料の添加量(10mg)およびCr濃度(5.0mg/L)を一定にし、pHを2〜10の間で変化させたときのCr吸着能を調べた。
Example 10 Cr adsorption test In this example, the three types of samples (a) to (c) described above were used, the sample addition amount (10 mg) and the Cr concentration (5.0 mg / L) were kept constant, and the pH was adjusted. Cr adsorption ability when V was changed between 2 and 10 was examined.

まず、Cr(NO・9HO[Cr(III)]およびKCr[(Cr(VI)]をそれぞれ脱イオン水に希釈し、1000mg/Lに調製したものを原液として用い、脱イオン水で希釈して、5.0mg/Lの各Cr溶液を調製した。 First, Cr (NO 3) 3 · 9H 2 O [Cr (III)] and K 2 Cr 2 O 7 was diluted [(Cr (VI)] in deionized water respectively, the stock solution which was adjusted to 1000 mg / L And diluted with deionized water to prepare 5.0 mg / L of each Cr solution.

次に、100mL容フタ付瓶に0.05MのNaCl溶液40mLを加えた後、上記の各Cr溶液を40mLずつ加えた。この溶液をスターラーで撹拌しながら、0.1MのHClと0.1MのNaOHを用いてpH=2、4、6、8、10(いずれも±0.1の範囲内)に調整した。次に、各pH調整液中に試料を10mgずつ加え、24時間振とうした後、0.45μmメンブレンフィルターで濾過した。このようにして得られた濾液中のCr(III)濃度およびCr(VI)濃度を、原子吸光光度計(SHIMAZU:AA−6800)を用いて測定し、濾液中の各Cr濃度(残存率)から吸着量を算出した。   Next, 40 mL of 0.05 M NaCl solution was added to a 100 mL bottle with a lid, and then 40 mL of each Cr solution was added. While stirring this solution with a stirrer, the pH was adjusted to 2, 4, 6, 8, 10 (all within ± 0.1) using 0.1 M HCl and 0.1 M NaOH. Next, 10 mg of each sample was added to each pH adjusting solution, shaken for 24 hours, and then filtered through a 0.45 μm membrane filter. The Cr (III) concentration and the Cr (VI) concentration in the filtrate thus obtained were measured using an atomic absorption photometer (SHIMAZU: AA-6800), and each Cr concentration (residual rate) in the filtrate was measured. The amount of adsorption was calculated from

Cr(VI)吸着量の結果を図8(a)に、Cr(III)吸着量の結果を図8(b)に、それぞれ示す。   The result of the Cr (VI) adsorption amount is shown in FIG. 8 (a), and the result of the Cr (III) adsorption amount is shown in FIG. 8 (b).

図8に示すように、本発明例(図中、「1:1−s」および「1:4−s」)はいずれも、比較例1(図中、「Fe−s」)とほぼ同程度の良好なCr吸着能を有しており、Cr(VI)では、本発明例2の方が良好な吸着作用が確認された。   As shown in FIG. 8, all of the inventive examples (“1: 1-s” and “1: 4-s” in the figure) are almost the same as Comparative Example 1 (“Fe-s” in the figure). The present invention example 2 has a good Cr adsorbing ability, and in the case of Cr (VI), the inventive example 2 was confirmed to have a better adsorbing action.

更にCr溶液のpHと各試料のCr吸着能を詳細に検討すると、Crイオンの種類によって相違が見られた。詳細には、Cr(III)ではpHが高くなるにつれて吸着量が増加し、pH8〜10の範囲で、いずれの試料も吸着量が最大となったのに対し、Cr(VI)ではpHが低くなるにつれて吸着量は高くなってpH2〜3近傍で吸着量が最大となり、pHが高くなると吸着量は低下した。Cr(VI)の上記挙動は前述したAs(V)に類似しており、Cr(III)の上記挙動は前述したAs(III)に類似している。   Further, when the pH of the Cr solution and the Cr adsorbing ability of each sample were examined in detail, differences were observed depending on the type of Cr ions. Specifically, the amount of adsorption increases with increasing pH in Cr (III), and the amount of adsorption is maximum in any sample in the range of pH 8 to 10, whereas the pH is lower in Cr (VI). As the amount of adsorption increased, the amount of adsorption reached a maximum in the vicinity of pH 2 to 3, and the amount of adsorption decreased as the pH increased. The behavior of Cr (VI) is similar to As (V) described above, and the behavior of Cr (III) is similar to As (III) described above.

このようにCrイオンの種類によって逆転現象が生じるのは、両者のイオン形態が相違することに起因すると考えられる。すなわち、Cr(VI)は水中で、HCrO ,CrO 2−,Cr 2−などのアニオン形態で存在するのに対し、Cr(III)は水中で、Cr(OH) 2+,Cr(OH) ,Cr(OH) 4+,Cr(OH) 5+などのカチオン形態で存在する。一般にpHが高くなるにつれ、吸着剤の表面は負荷電が増加するため,カチオンであるCr(III)イオンが引きつけられ、当該Cr(III)の吸着量が増加する。逆にpHが低くなると吸着剤の表面は正の荷電が増加するため、アニオンであるCr(VI)イオンが引きつけられ、当該Cr(VI)の吸着量が増加する。その結果、Cr(III)とCr(VI)は、正反対の挙動を示したと考えられる。 The reason why the reverse phenomenon occurs depending on the kind of Cr ions is considered to be due to the difference in ion form between the two. That is, Cr (VI) is present in an anionic form such as HCrO 4 , CrO 4 2− , Cr 2 O 7 2− in water, while Cr (III) is in water and Cr (OH) 2 2+. , Cr (OH) 2 + , Cr 2 (OH) 2 4+ , Cr 3 (OH) 4 5+ and the like. In general, as the pH increases, negative charge increases on the surface of the adsorbent, so that Cr (III) ions, which are cations, are attracted and the amount of Cr (III) adsorbed increases. Conversely, when the pH is lowered, the surface of the adsorbent increases in positive charge, so that Cr (VI) ions that are anions are attracted, and the adsorption amount of the Cr (VI) increases. As a result, it is considered that Cr (III) and Cr (VI) showed the opposite behavior.

上記8〜10の実験結果より、本発明の除去剤は、Asのほか、Cd、Cr、Pbに対しても良好な吸着除去作用を有することが確認された。   From the above experimental results of 8 to 10, it was confirmed that the removing agent of the present invention has a good adsorption removing action on Cd, Cr and Pb in addition to As.

Claims (9)

重金属を除去するための除去剤であって、非晶質Ti−Fe水酸化物を含有することを特徴とする除去剤。   A remover for removing heavy metals, comprising an amorphous Ti-Fe hydroxide. 重金属を除去するための除去剤であって、硝酸鉄(III)または塩化鉄(III)と塩化チタン(IV)との混合水溶液をアルカリ金属水酸化物で中和して得られる沈殿物を含有することを特徴とする除去剤。   A removal agent for removing heavy metals, containing precipitates obtained by neutralizing iron (III) nitrate or mixed aqueous solution of iron (III) chloride and titanium (IV) with alkali metal hydroxide A remover characterized by that. Ti:Feのモル比は、1:1〜1:5である請求項1または2に記載の除去剤。   The removal agent according to claim 1 or 2, wherein the molar ratio of Ti: Fe is 1: 1 to 1: 5. 前記重金属は、ヒ素、カドミウム、鉛、およびクロムなる群より選択される少なくとも一種である請求項1〜3のいずれかに記載の除去剤。   The removal agent according to any one of claims 1 to 3, wherein the heavy metal is at least one selected from the group consisting of arsenic, cadmium, lead, and chromium. 重金属に汚染された汚染物質から重金属を除去する方法であって、請求項1〜4のいずれかに記載の除去剤を前記汚染物質と接触させることを特徴とする除去方法。   A method for removing heavy metal from a pollutant contaminated with heavy metal, wherein the removing agent according to claim 1 is brought into contact with the pollutant. 前記汚染物質は汚染水または汚染土壌である請求項5に記載の除去方法。   The removal method according to claim 5, wherein the contaminant is contaminated water or contaminated soil. 前記汚染物質はヒ素またはクロムであり、pH3〜10下で接触させるものである請求項5または6に記載の除去方法。   The removal method according to claim 5 or 6, wherein the contaminant is arsenic or chromium and is contacted at a pH of 3 to 10. 前記汚染物質は鉛であり、pH4〜6.5下で接触させるものである請求項5または6に記載の除去方法。   The removal method according to claim 5 or 6, wherein the contaminant is lead and is brought into contact under pH 4 to 6.5. 前記汚染物質はカドミウムであり、pH4〜8下で接触させるものである請求項5または6に記載の除去方法。   The removal method according to claim 5 or 6, wherein the contaminant is cadmium and is contacted at a pH of 4 to 8.
JP2009026625A 2008-03-26 2009-02-06 Removing agent and method using the same for removing heavy metal Pending JP2009255050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009026625A JP2009255050A (en) 2008-03-26 2009-02-06 Removing agent and method using the same for removing heavy metal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008081981 2008-03-26
JP2009026625A JP2009255050A (en) 2008-03-26 2009-02-06 Removing agent and method using the same for removing heavy metal

Publications (1)

Publication Number Publication Date
JP2009255050A true JP2009255050A (en) 2009-11-05

Family

ID=41383177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009026625A Pending JP2009255050A (en) 2008-03-26 2009-02-06 Removing agent and method using the same for removing heavy metal

Country Status (1)

Country Link
JP (1) JP2009255050A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011440A (en) * 2011-09-23 2013-04-03 沈阳铝镁设计研究院有限公司 Method for treatment on titanium sponge production waste water
JP2014133221A (en) * 2013-01-11 2014-07-24 Nihon Kaisui:Kk Insolubilization material for arsenic-containing heavy metal contaminated soil, and insolubilization method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509751A (en) * 2000-09-26 2004-04-02 バイエル アクチェンゲゼルシャフト Contact and adsorbent granules
JP2005023373A (en) * 2003-07-02 2005-01-27 Nihon Kagaku Sangyo Co Ltd Treatment method for chromium etching waste solution
JP2006218359A (en) * 2005-02-08 2006-08-24 Kochi Univ Heavy metal remover and removal method for heavy metal
JP2007196170A (en) * 2006-01-27 2007-08-09 Toda Kogyo Corp Adsorbent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509751A (en) * 2000-09-26 2004-04-02 バイエル アクチェンゲゼルシャフト Contact and adsorbent granules
JP2005023373A (en) * 2003-07-02 2005-01-27 Nihon Kagaku Sangyo Co Ltd Treatment method for chromium etching waste solution
JP2006218359A (en) * 2005-02-08 2006-08-24 Kochi Univ Heavy metal remover and removal method for heavy metal
JP2007196170A (en) * 2006-01-27 2007-08-09 Toda Kogyo Corp Adsorbent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011440A (en) * 2011-09-23 2013-04-03 沈阳铝镁设计研究院有限公司 Method for treatment on titanium sponge production waste water
JP2014133221A (en) * 2013-01-11 2014-07-24 Nihon Kaisui:Kk Insolubilization material for arsenic-containing heavy metal contaminated soil, and insolubilization method therefor

Similar Documents

Publication Publication Date Title
Mondal et al. Removal of selenate by Fe and NiFe nanosized particles
Genç-Fuhrman et al. Increasing the arsenate adsorption capacity of neutralized red mud (Bauxsol)
Parida et al. Studies on ferric oxide hydroxides: III. Adsorption of selenite (SeO2− 3) on different forms of iron oxyhydroxides
US7445718B2 (en) Removal of arsenic from drinking and process water
US8648008B2 (en) Arsenic adsorbing composition and methods of use
WO2011016038A1 (en) Method for removal of selenium contaminants from aqueous fluids
WO2010150273A1 (en) A method and device for purification of arsenic contaminated water
US10676376B2 (en) Modification of iron-based media for water treatment
JP5046853B2 (en) Treatment agent and treatment method for contaminated water containing heavy metals
JP2010227868A (en) Removing agent and method for removing the same
JP2009255050A (en) Removing agent and method using the same for removing heavy metal
JP2011156470A (en) Method for treatment of contaminant components
JP2006218359A (en) Heavy metal remover and removal method for heavy metal
JP6208648B2 (en) Treatment agent and treatment method for contaminated water or soil
Wang et al. Reductive sequestration of Cr (VI) in soil and groundwater using Ca-Fe-S microparticles
JP4936559B2 (en) Arsenic remover
JP2007054818A (en) Method for treating water polluted with selenium and agent therefor
JP3830878B2 (en) Water-soluble selenium removing agent and method for removing water-soluble selenium using the same
Caniyilmaz Arsenic removal from groundwater by Fe-Mn oxidation and microfiltration
KR102402227B1 (en) Method of waste water treatment using manganese-oxide coated sand generated from mine drainage treatment facility
Anfaresi et al. Bangka’s Tin Sea Sand-Fe3O4 as A Removal of Heavy Metals in By-Product of Tin Ore Processing
US20230415121A1 (en) Mixed metal oxide-hydroxide biopolymer composite beads and a process thereof
RU2744898C2 (en) Method for the synthesis of negatively charged manganese pheroxygite for the selective removal of mercury from water
Silva et al. Arsenate adsorption onto aluminium and iron (hydr) oxides as an alternative for water treatment
JPH0432716B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130423