JP2009252521A - Electrode catalyst for solid polymer type fuel cell and its manufacturing method - Google Patents

Electrode catalyst for solid polymer type fuel cell and its manufacturing method Download PDF

Info

Publication number
JP2009252521A
JP2009252521A JP2008098756A JP2008098756A JP2009252521A JP 2009252521 A JP2009252521 A JP 2009252521A JP 2008098756 A JP2008098756 A JP 2008098756A JP 2008098756 A JP2008098756 A JP 2008098756A JP 2009252521 A JP2009252521 A JP 2009252521A
Authority
JP
Japan
Prior art keywords
vsi
curve
catalyst
solution
saturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008098756A
Other languages
Japanese (ja)
Inventor
Hiroshi Inoue
博史 井上
Eiji Higuchi
栄次 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Osaka Prefecture University
Original Assignee
Osaka University NUC
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Osaka Prefecture University filed Critical Osaka University NUC
Priority to JP2008098756A priority Critical patent/JP2009252521A/en
Publication of JP2009252521A publication Critical patent/JP2009252521A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode catalyst as a non-Pt-base fuel cell cathode catalyst, wherein it is expected that voltage loss due to resistance in a catalyst layer is reduced when used as an ORR catalyst because metal silicide is superior in electron conductivity, through following processes: the ORR activity of various metal silicides is investigated, its characteristics are utilized, the conditions of heat treatment is studied, and the structure of the manufactured catalyst is analyzed in details using XRD, XPS, FT-IR; and to provide its manufacturing method. <P>SOLUTION: The electrode catalyst for a solid high polymer fuel cell uses a catalyst formed of heat-treated metal silicide having oxygen reduction activity. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、非白金系電極触媒からなる固体高分子形燃料電池用電極触媒及びその製法に関するものである。   The present invention relates to an electrode catalyst for a polymer electrolyte fuel cell comprising a non-platinum electrode catalyst and a method for producing the same.

燃料電池は用いる電解質によって、アルカリ電解質形燃料電池(AFC)、リン酸形燃料電池(PAFC)、溶融炭酸塩形燃料電池(MCFC)、固体高分子形燃料電池(PEFC)、固体酸化物形燃料電池(SOFC)などに大別される。特に、PEFCは100℃未満と比較的低温で作動し、かつ小型化が可能であることから家庭用、自動車用、モバイル機器用の電源として幅広い範囲で期待されている。PEFCでは主に水素やアルコールが燃料として用いられ、特にメタノールを直接燃料として用いるPEFCは直接形メタノール燃料電池(DMFC)と呼ばれ、多くの研究がなされている。燃料極(アノード)では水素やメタノールの酸化反応が、空気極(カソード)では酸素の還元反応が起こる。各電極および電池全体の反応式は以下のようになる。   Depending on the electrolyte used, fuel cells can be alkaline electrolyte fuel cells (AFC), phosphoric acid fuel cells (PAFC), molten carbonate fuel cells (MCFC), polymer electrolyte fuel cells (PEFC), solid oxide fuels It is roughly divided into batteries (SOFC). In particular, since PEFC operates at a relatively low temperature of less than 100 ° C. and can be downsized, it is expected in a wide range as a power source for home use, automobile use, and mobile equipment. In PEFC, hydrogen or alcohol is mainly used as a fuel. In particular, PEFC using methanol as a direct fuel is called a direct methanol fuel cell (DMFC), and many studies have been made. An oxidation reaction of hydrogen or methanol occurs at the fuel electrode (anode), and an oxygen reduction reaction occurs at the air electrode (cathode). The reaction formula of each electrode and the whole battery is as follows.

燃料極(アノード):H2→2H++2e-
CH3OH+H2O→CO2+6H++6e-(DMFC) (1)
酸素極(カソード):O2+4H++4e-→2H2O (2)
全 電 池 反 応:2H2+O2→2H2
CH3OH+H2O→CO2+3H2O(DMFC) (3)
この反応において、アノードでの分極ロスはほとんど無視できるが、カソードでの分極ロスは、全ロスの約80%を占める。カソードでの酸素還元反応(ORR)は以下に示すようにO2が直接H2Oへと還元される4電子反応と、H22が生成する2電子反応が知られている。
2+4H++4e-→2H2 (4)
2+2H++2e-→H22 (5)
2電子還元反応が起こると、4電子還元反応の場合と比べてエネルギー効率が低下し、さらに発生したH22が電解質膜を劣化させるなどの電池性能の低下を招く。また、DMFCではアノードのメタノールが電解質膜を透過してカソードに到達し、ORRと伴にメタノール酸化反応(MOR)が起こり、さらに電圧損失が起こる。
Fuel electrode (anode): H 2 → 2H + + 2e
CH 3 OH + H 2 O → CO 2 + 6H + + 6e (DMFC) (1)
Oxygen electrode (cathode): O 2 + 4H + + 4e → 2H 2 O (2)
Total battery response: 2H 2 + O 2 → 2H 2 O
CH 3 OH + H 2 O → CO 2 + 3H 2 O (DMFC) (3)
In this reaction, the polarization loss at the anode is almost negligible, but the polarization loss at the cathode accounts for about 80% of the total loss. And 4-electron reaction which is reduced as the oxygen reduction reaction at the cathode (ORR), as shown below O 2 is directly H 2 O, 2-electron reaction of H 2 O 2 is generated is known.
O 2 + 4H + + 4e → 2H 2 (4)
O 2 + 2H + + 2e → H 2 O 2 (5)
When the two-electron reduction reaction occurs, the energy efficiency is reduced as compared with the case of the four-electron reduction reaction, and the generated H 2 O 2 further deteriorates the battery performance such as deterioration of the electrolyte membrane. In the DMFC, methanol at the anode passes through the electrolyte membrane and reaches the cathode, and a methanol oxidation reaction (MOR) occurs along with the ORR, resulting in a voltage loss.

現在、カソードには、ORR活性の高い白金(以下Ptと記す)が主に用いられている。しかし、Ptは非常に高価であり、埋蔵量が少なく、資源の枯渇も危惧されている。そのため、Ptと異種金属とを合金化したり、Ptをナノ粒子化して活性面積を大きくしたりすることによりPt使用量の低減の試みがなされている。しかし、それでもPt使用量低減には限界があり、代替材料として新たな非Pt系の燃料電池用カソード触媒が強く求められ、近年研究が活発に行われはじめている。   Currently, platinum having a high ORR activity (hereinafter referred to as Pt) is mainly used for the cathode. However, Pt is very expensive, its reserves are small, and resource depletion is a concern. For this reason, attempts have been made to reduce the amount of Pt used by alloying Pt and dissimilar metals or by increasing the active area by forming nanoparticles of Pt. However, there is still a limit to reducing the amount of Pt used, and a new non-Pt-based cathode catalyst for fuel cells is strongly demanded as an alternative material. In recent years, research has been actively conducted.

Pt代替材料としては、Pt以外の貴金属元素を異種金属元素と合金化したものが挙げられる。近年、酸性溶液中でも安定したORR活性を有するPd−Co合金触媒が開発された。それ以来、特にパラジウム(以下Pdと記す)基合金を中心に研究が行われており、Pd−Ni、Pd−Cr、Pd−Ti、Pd−Fe、Pd−Co、Pd−Co−Au、Pd−Co−Moなどが報告されている。しかし、Pdをはじめ貴金属はPtと同様にコストがかかってしまう問題もある。   Examples of the Pt substitute material include a material obtained by alloying a noble metal element other than Pt with a different metal element. In recent years, Pd—Co alloy catalysts having stable ORR activity even in acidic solutions have been developed. Since then, research has been conducted mainly on palladium (hereinafter referred to as Pd) -based alloys, and Pd—Ni, Pd—Cr, Pd—Ti, Pd—Fe, Pd—Co, Pd—Co—Au, Pd -Co-Mo etc. are reported. However, there is a problem that noble metals such as Pd are costly like Pt.

近年、非Pt系触媒の中でも最も高いORR活性を有し、注目されているのが、第4,5族の非貴金属の遷移金属化合物(主に酸化物)を触媒として利用する研究である。特に、WC+Ta、TaON、TaCN、ZrON、ZrO2-x、TiO2-x、Co34-x、SnO2-x、Nb25-x、CrCNなどの化合物のORR活性が調査されている。これらの化合物中のWやTa、Zr、Tiはバルブメタル(弁金属)と呼ばれ、表面に酸化物被膜を形成することにより優れた耐酸性を示す特徴があり、それらを用いた上記の触媒は酸に対して化学的、および電気化学的に非常に高い安定性を示す。
しかし、いずれの触媒もPtの特性には、及ばないため、さらなる活性の向上が必要である。また、金属酸化物上でのORR機構ははっきりとわかっておらず、高活性な触媒の開発のためにもORR機構の解明も急務の課題である。このように、燃料電池用非Pt系触媒に関する研究は様々な材料を用いて行われているがPtに対抗し得る触媒は未だに見つかっていない。
In recent years, the highest ORR activity among non-Pt-based catalysts has attracted attention, and research using a transition metal compound (mainly oxide) of a group 4 or 5 non-noble metal as a catalyst has attracted attention. In particular, the ORR activity of compounds such as WC + Ta, TaON, TaCN, ZrON, ZrO 2-x , TiO 2-x , Co 3 O 4-x , SnO 2-x , Nb 2 O 5-x , CrCN was investigated. Yes. W, Ta, Zr, and Ti in these compounds are called valve metals (valve metals), and are characterized by excellent acid resistance by forming an oxide film on the surface. Is very chemically and electrochemically stable to acids.
However, since any catalyst does not reach the characteristics of Pt, further activity improvement is required. In addition, the ORR mechanism on metal oxides is not clearly understood, and elucidation of the ORR mechanism is an urgent issue for the development of a highly active catalyst. As described above, research on non-Pt-based catalysts for fuel cells has been carried out using various materials, but no catalyst capable of countering Pt has yet been found.

遷移金属のケイ化物は一般的に高融点で硬度も高く、高い電子伝導性を有する金属間化合物である。そのため、耐熱材料や高温加熱材料、熱電半導体などの熱電材料として広く利用されている。
特許文献1には、ケイ化物、ケイ化バナジウムについて燃料電池触媒とすることが記載されているが、その製法、特性についての詳細な記載はない。また、特許文献2には、ケイ化物を過酸化物分解触媒として使用されている。
特開2005−310418号公報 特開2006−107967号公報
Transition metal silicides are generally intermetallic compounds having a high melting point, high hardness, and high electronic conductivity. Therefore, it is widely used as a thermoelectric material such as a heat-resistant material, a high-temperature heating material, and a thermoelectric semiconductor.
Patent Document 1 describes that a silicide and vanadium silicide are used as a fuel cell catalyst, but there is no detailed description of the production method and characteristics thereof. In Patent Document 2, silicide is used as a peroxide decomposition catalyst.
JP 2005-310418 A JP 2006-107967 A

金属ケイ化物が電子伝導性に優れていることから、ORR触媒として利用した際に触媒層での抵抗による電圧損失は小さくなることが期待される。そこで、本発明では、種々の金属ケイ化物のORR活性を調べ、その特性を生かし、新たに、熱処理の条件などを検討し、作製した触媒の構造をXRD、XPS、FT−IRを用いて詳細に解析し、これに適した電極触媒及びその製法を提供する。   Since the metal silicide is excellent in electronic conductivity, it is expected that the voltage loss due to the resistance in the catalyst layer is reduced when it is used as an ORR catalyst. Therefore, in the present invention, the ORR activity of various metal silicides is investigated, its characteristics are utilized, new heat treatment conditions are examined, and the structure of the produced catalyst is detailed using XRD, XPS, and FT-IR. To provide an electrode catalyst suitable for this and a method for producing the same.

本発明の第1の解決手段は、熱処理した酸素還元活性を有する金属ケイ化物からなる触媒を用いたことを特徴とする固体高分子形燃料電池用電極触媒を提供する。   The first solution of the present invention provides an electrode catalyst for a polymer electrolyte fuel cell, characterized in that a catalyst comprising a heat-treated metal silicide having oxygen reduction activity is used.

更に、本発明の第2の解決手段は、前記金属ケイ化物として、ケイ化バナジウム、ケイ化タングステン、ケイ化チタニウム、ケイ化ニオブの群から選択された1種のケイ化物からなることを特徴とする固体高分子形燃料電池用電極触媒を提供する。   Furthermore, the second solving means of the present invention is characterized in that the metal silicide comprises one kind of silicide selected from the group of vanadium silicide, tungsten silicide, titanium silicide, and niobium silicide. An electrode catalyst for a polymer electrolyte fuel cell is provided.

更にまた、前記金属ケイ化物としてケイ化バナジウムにケイ素マイクロ粒子を混合して触媒とすることを特徴とする前項に記載の固体高分子形燃料電池用電極触媒を提供する。   Furthermore, the electrode catalyst for a polymer electrolyte fuel cell as described in the preceding item is provided, wherein the metal silicide is made by mixing silicon microparticles with vanadium silicide.

また、前記ケイ化バナジウムVSi2とケイ素マイクロ粒子Simicroとの比率を1:1とする固体高分子形燃料電池用電極触媒を提供する。 The present invention also provides a polymer electrolyte fuel cell electrode catalyst in which the ratio of the vanadium silicide VSi 2 to the silicon microparticles Simiro is 1: 1.

更に、本発明の第3の解決手段は、金属ケイ化物を約1000℃で熱処理し、その後粉砕して粒子とすることを特徴とする固体高分子形燃料電池用電極触媒の製法を提供する。   Furthermore, the third solution of the present invention provides a method for producing an electrode catalyst for a polymer electrolyte fuel cell, characterized in that a metal silicide is heat-treated at about 1000 ° C. and then pulverized into particles.

更に、金属ケイ化物を空気雰囲気中、加速度2gの条件で約2時間ボールミル加工を施し、約1000℃で熱処理し、その後粉砕して粒子とすることを特徴とする固体高分子形燃料電池用電極触媒の製法を提供する。   Furthermore, the metal silicide is subjected to ball milling for about 2 hours in an air atmosphere under an acceleration condition of 2 g, heat-treated at about 1000 ° C., and then pulverized into particles. A method for making a catalyst is provided.

更にまた、ケイ化バナジウムVSi2とケイ素マイクロ粒子Simicroとの混合物を空気雰囲気中加速度2gの条件で約2時間ボールミル加工を施し、約1000℃で熱処理し、その後粉砕して粒子とすることを特徴とする固体高分子形燃料電池用電極触媒の製法。 Furthermore, the mixture of vanadium silicide VSi 2 and silicon microparticles, Simiro, is ball milled for about 2 hours under an acceleration of 2 g in an air atmosphere, heat treated at about 1000 ° C., and then pulverized into particles. A process for producing an electrode catalyst for a polymer electrolyte fuel cell.

本発明による金属ケイ化物、例えばケイ化バナジウムを熱処理した触媒は、優れた電気化学的安定性を示し、EORRは高い電位を有し、優れたORR活性を示した。また、ケイ化バナジウムにSimicro粒子を添加したものは、優れたORR活性を有することが期待できる。 Catalysts heat treated with metal silicides according to the present invention, for example vanadium silicide, showed excellent electrochemical stability, E ORR had a high potential and excellent ORR activity. Moreover, what added Simico particle | grains to the vanadium silicide can be expected to have excellent ORR activity.

(実験方法)
触媒の作製
金属ケイ化物としてVSi2(和光純薬製586−69111、粒径325mesh以下、純度99.5%)、WSi2(和光純薬製205−12401、粒径6〜12μm)、TiSi2(和光純薬製203−12441、粒径6〜12μm)、NbSi2(和光純薬製142−06232、粒径6〜12μm)、MoSi2(和光純薬製133−11575、粒径6〜12μm)、TaSi2(和光純薬製207−12542、粒径6〜12μm)、ZrSi2(和光純薬製 268−01321、粒径6〜12μm)を用いた。また、比較対照としてV(和光純薬製222−01462、粒径45μm以下、純度99.5%)、Siマイクロ粒子(和光純薬製191−05582、粒径150μm以下、純度99.9%)、Siナノ粒子(Aldrich製633097−10G、平均粒径50nm、純度98%以上)、V25(和光純薬製222−00122、純度99%)を用いた。以降、Siマイクロ粒子をSimicro、Siナノ粒子をSinanoと表記する。
(experimental method)
Preparation of catalyst VSi 2 (586-69111 manufactured by Wako Pure Chemical Industries, particle size 325 mesh or less, purity 99.5%), WSi 2 (205-12401 manufactured by Wako Pure Chemical Industries, particle size 6-12 μm), TiSi 2 (Wako Pure Chemicals 203-12441, particle size 6-12 μm), NbSi 2 (Wako Pure Chemicals 142-06232, particle size 6-12 μm), MoSi 2 (Wako Pure Chemicals 133-11575, particle size 6-12 μm) ), TaSi 2 (manufactured by Wako pure Chemical Industries, Ltd. 207-12542, particle size 6~12μm), ZrSi 2 (manufactured by Wako pure Chemical Industries, Ltd. 268-01321, using a particle size 6~12μm). Further, V (222-01462, manufactured by Wako Pure Chemical Industries, particle size 45 μm or less, purity 99.5%), Si microparticles (191-05582, manufactured by Wako Pure Chemical Industries, particle size 150 μm or less, purity 99.9%) were used as comparative controls. , Si nanoparticles (Aldrich 633097-10G, average particle size 50 nm, purity 98% or more), V 2 O 5 (Wako Pure Chemicals 222-00122, purity 99%) were used. Hereinafter, Si microparticles are denoted as Si micro , and Si nanoparticles are denoted as Si nano .

(触媒の表面改質)
VSi2粉末1.0000gをArで満たされたグローブボックス内でステンレス製ボール7個の入ったステンレス製ボールミルポット(FRITSCH製、容積45ml)に入れた。アルゴン雰囲気で密封後、遊星型ボールミル装置(FRITSCH製、P−7旧型)にセットし、加速度2gで2時間ボールミルした。ボールミル後、試料をグローブボックス内で回収、保管した。このボールミルで表面改質した触媒をmilled−VSi2と表記する。また、VSi2にV粉末やSimicro粉末、Sinano粉末を任意の割合で加え、加速度2g、種々のボールミル時間で表面改質した試料も作製した。比較対象としてV粉末とSinano粉末を混ぜてボールミルした触媒も作製した。作製した触媒と用いた試薬の量やボールミル条件を表1にまとめて示す。
(Surface modification of catalyst)
1.000 g of VSi 2 powder was placed in a stainless steel ball mill pot (made by FRITSCH, volume 45 ml) containing 7 stainless steel balls in a glove box filled with Ar. After sealing in an argon atmosphere, it was set in a planetary ball mill apparatus (manufactured by FRITSCH, P-7 old model), and ball milled at an acceleration of 2 g for 2 hours. After the ball mill, the sample was collected and stored in the glove box. The catalyst surface-modified with this ball mill is expressed as milled-VSi 2 . In addition, V powder, Si micro powder, and Si nano powder were added to VSi 2 at an arbitrary ratio, and samples were surface-modified at an acceleration of 2 g and various ball mill times. As a comparison object, a catalyst obtained by mixing V powder and Si nano powder and ball milling was also prepared. Table 1 summarizes the amount of the produced catalyst and the reagent used and the ball mill conditions.

(触媒の熱処理)
差動型示差熱天秤(理学電機 TG8120)を用いて熱重量分析(TG−DTA)試験を行うとともに、触媒の熱処理を行った。試料10mgをPtパンに入れ、均一な厚さにしてからPt蓋を取り付けた。標準物質としてAl23を用いた。空気雰囲気で昇温速度5Kmin-1もしくは100Kmin-1で室温から1000℃まで加熱したときの試料の重量変化(TG)と熱量変化(DTA)を測定した。TG−DTA試験後の試料を回収し、触媒として用いた。TG−DTA試験後の試料は焼結していたため、メノウ乳鉢で10分間粉砕して粉末状にした。VSi2を1000℃で2時間保持した触媒をVSi2(1000℃−2h)と表記する。
(Catalytic heat treatment)
A thermogravimetric analysis (TG-DTA) test was performed using a differential type differential thermal balance (Rigaku Denki TG8120), and the catalyst was heat-treated. A sample of 10 mg was placed in a Pt pan to obtain a uniform thickness, and a Pt lid was attached. Al 2 O 3 was used as a standard substance. Weight change of the sample when heated to 1000 ° C. from room temperature at a heating rate 5Kmin -1 or 100Kmin -1 air atmosphere (TG) and heat change (DTA) was measured. A sample after the TG-DTA test was collected and used as a catalyst. Since the sample after the TG-DTA test was sintered, it was pulverized in an agate mortar for 10 minutes to form a powder. The 2 hour hold catalyst VSi 2 at 1000 ° C. is denoted VSi 2 and (1000 ℃ -2h).

(電極の作製)
グラッシーカーボン(GC、直径5mm、高さ5mm、幾何面積0.196cm2)をアルミナ粉末を用いてバフ研磨した。粒径1.0μm、0.3μm、0.06μmの順でそれぞれ15分ずつ研磨し、超純水中で5分間の超音波洗浄を2回、エタノール中で5分間の超音波洗浄を1回行い、鏡面研磨したGCを得た。
次に、0.05wt.% Nafionエタノール溶液0.5ml中に触媒粉末9.8mgを入れて10分間超音波分散させた。この溶液10μlをマイクロピペットで取り、鏡面研磨したGC上に滴下した。これをペトリ皿中に置いたスライドガラスの上に置いた。
(Production of electrodes)
Glassy carbon (GC, diameter 5 mm, height 5 mm, geometric area 0.196 cm 2 ) was buffed with alumina powder. Polishing for 15 minutes each in the order of particle size 1.0μm, 0.3μm, 0.06μm, ultrasonic cleaning twice for 5 minutes in ultrapure water and ultrasonic cleaning once for 5 minutes in ethanol And mirror-polished GC was obtained.
Next, 0.05 wt. 9.8 mg of the catalyst powder was placed in 0.5 ml of% Nafion ethanol solution and ultrasonically dispersed for 10 minutes. 10 μl of this solution was taken with a micropipette and dropped onto a mirror-polished GC. This was placed on a glass slide placed in a Petri dish.

図1は、触媒層固定化手段の模型図である。このように触媒1を、ペトリ皿2の中央に載置したスライドグラスシート3に、グラッシーカーボン円柱4を載せ、この上に塗布固定し、ペトリ皿2中に少量のエタノール5を入れ、僅かに隙間が出来るようにサイズの異なるペトリ皿6で蓋をして、室温、エタノール飽和蒸気圧下で乾燥させた。乾燥後、熱処理する。
図2は、触媒の熱処理装置の模型図を示す。このようにセラミック製の炉心管21(アサヒ理化製作所 ARF−50MC)の中にセラミックス製ボート形状シート22を置いて、その上に、作成したグラッシーカーボンGC23上の触媒層24を、置き、炉心管21を電気管状炉25の中に挿入し、炉心管21を加熱する。炉心管は空気又はAr入り口21−1及び同出口21−2を形成する。これらの雰囲気下、120℃で1時間熱処理することにより触媒層を固定化し、電極を作製した。なお、電極の触媒担持量は1mg cm-2とした。
FIG. 1 is a model diagram of the catalyst layer fixing means. The glassy carbon cylinder 4 is placed on the slide glass sheet 3 placed in the center of the Petri dish 2 in this way, and the glassy carbon cylinder 4 is applied and fixed thereon. A small amount of ethanol 5 is put in the Petri dish 2, and slightly. The mixture was covered with a Petri dish 6 having a different size so that a gap was formed, and dried at room temperature under ethanol saturated vapor pressure. After drying, heat treatment is performed.
FIG. 2 shows a model diagram of a catalyst heat treatment apparatus. In this way, the ceramic boat-shaped sheet 22 is placed in the ceramic core tube 21 (Asahi Rika Seisakusho ARF-50MC), and the catalyst layer 24 on the glassy carbon GC 23 is placed on the ceramic boat-shaped sheet 22. 21 is inserted into the electric tubular furnace 25, and the core tube 21 is heated. The core tube forms air or Ar inlet 21-1 and outlet 21-2. Under these atmospheres, heat treatment was performed at 120 ° C. for 1 hour to immobilize the catalyst layer and produce an electrode. The amount of catalyst supported on the electrode was 1 mg cm −2 .

(電気化学測定)
図3は、電気化学測定用作用電極の取付けを示す模型図である。前項で作製した電極31を熱収縮チューブ32を用いて銅柱33に固定した。電極と銅柱の間にカーボンペースト34を塗ることにより密着性と導電性を確保した。さらにRDE用のPTFE(ポリテトラフルオロエチレン)ホルダー35を取り付け、これを作用極としたセルは、図4に電気化学測定用セルの正面図として示すRDE用の試験槽41を用い、対極42にPt板、参照極43に溜め込み式可逆水素電極(RHE)を用いた。電解液44には0.5M H2SO4水溶液もしくは(1M CH3OH+0.5M H2SO4)水溶液を用い、測定前に30分間O2バブリングすることによりO2飽和溶液、20分間ArバブリングすることによりAr飽和溶液とした。電位走査は0.1〜1.0 Vvs.RHEの範囲を走査速度10mVs-1で行い、測定中は恒温槽45で温度を30℃に保った。測定にはコンピュータ制御のポテンショスタット(BAS CV−50W)46を用いた。触媒電極47はモータ48によって回転させる。得られた電流値は幾何面積(0.1963cm2)で規格化した。
(Electrochemical measurement)
FIG. 3 is a model diagram showing attachment of the working electrode for electrochemical measurement. The electrode 31 produced in the previous section was fixed to the copper pillar 33 using the heat shrinkable tube 32. Adhesion and conductivity were ensured by applying a carbon paste 34 between the electrode and the copper column. Furthermore, an RDE PTFE (polytetrafluoroethylene) holder 35 is attached, and a cell using this holder as a working electrode uses an RDE test tank 41 shown as a front view of the electrochemical measurement cell in FIG. A Pt plate and a reference reversible hydrogen electrode (RHE) were used for the reference electrode 43. As the electrolytic solution 44, a 0.5 MH 2 SO 4 aqueous solution or a (1M CH 3 OH + 0.5 MH 2 SO 4 ) aqueous solution was used, and O 2 bubbling was performed for 30 minutes before measurement, whereby an O 2 saturated solution and 20 minutes Ar bubbling were performed. Thus, an Ar saturated solution was obtained. The potential scan is 0.1 to 1.0 Vvs. The RHE range was performed at a scanning speed of 10 mVs −1 , and the temperature was kept at 30 ° C. in the thermostatic chamber 45 during the measurement. A computer-controlled potentiostat (BAS CV-50W) 46 was used for the measurement. The catalyst electrode 47 is rotated by a motor 48. The obtained current value was normalized by the geometric area (0.1963 cm 2 ).

(X線回折測定(XRD))
X線回折装置(島津製作所 XRD−6100)を用いて触媒のXRDパターンを測定した。X線源にはCuKα線(0.15405nm)を用い、管電圧50kV、管電流30mA、走査速度1°min-1または4°min-1の条件で測定した。ICDDデータベースのPDFデータによりピークの帰属を行い、得られたピークから結晶子サイズと格子定数を算出した。結晶子サイズは以下のScherrer式を適応して求めた。
(X-ray diffraction measurement (XRD))
The XRD pattern of the catalyst was measured using an X-ray diffractometer (Shimadzu Corporation XRD-6100). A CuKα ray (0.15405 nm) was used as the X-ray source, and measurement was performed under the conditions of a tube voltage of 50 kV, a tube current of 30 mA, and a scanning speed of 1 ° min −1 or 4 ° min −1 . Peak assignment was performed using PDF data in the ICDD database, and the crystallite size and lattice constant were calculated from the obtained peaks. The crystallite size was determined by applying the following Scherrer equation.

(走査型電子顕微鏡(SEM)観察およびエネルギー分散型X線分光(EDX)分析)
触媒の形態を観察するために、走査型電子顕微鏡(KEYENCE VE−9800)を使用した。加速電圧は20kVとした。また、バルク組成を分析するために、EDX分析装置(EDAX Standard)を使用した。
(Scanning electron microscope (SEM) observation and energy dispersive X-ray spectroscopy (EDX) analysis)
A scanning electron microscope (KEYENCE VE-9800) was used to observe the morphology of the catalyst. The acceleration voltage was 20 kV. In addition, an EDX analyzer (EDAX Standard) was used to analyze the bulk composition.

(X線光電子分光分析(XPS))
X線光電子分光分析装置(島津製作所 ESCA−3200)を用いて触媒の電子状態を調べた。X線源にはMgKα線(1253.6eV)を用い、電圧8kV、電流30mAで測定した。分析室の真空度が5.0×10-6MPa以下になったことを確認し、測定を開始した。スペクトルはLorentzian−Gaussian関数で波形分離し、バックグラウンドは直線法により除去した。表面元素の定量分析はピーク面積をRSF(relative sensitive fanctor)で規格化して行った。
(X-ray photoelectron spectroscopy (XPS))
The electronic state of the catalyst was examined using an X-ray photoelectron spectroscopic analyzer (Shimadzu ESCA-3200). MgKα ray (1253.6 eV) was used as the X-ray source, and measurement was performed at a voltage of 8 kV and a current of 30 mA. After confirming that the degree of vacuum in the analysis chamber was 5.0 × 10 −6 MPa or less, measurement was started. The spectrum was separated by the Lorentzian-Gaussian function, and the background was removed by the linear method. Quantitative analysis of surface elements was performed by standardizing the peak area with RSF (relative sensitive factor).

(フーリエ変換赤外分光分析(FT−IR))
フーリエ変換赤外分光分析装置(日本分光 FT/IR−6100)を用いて、触媒の構造を調べた。触媒粉末とKBr粉末をメノウ乳鉢を用いて十分に混合した。この粉末を錠剤成型器(島津製作所 202−32010型)に均一な厚さになるように入れ、手動油圧ポンプ(理研機器 P−1B)を用い、5t cm-2の圧力をかけて1分間保持することにより直径13mmのペレットを作製した。このペレットを測定室のサンプルホルダにセットして赤外光を照射し、透過のIRスペクトルを測定した。測定範囲は400〜4000cm-1、積算回数は300回、検出器にはDLATGSを用いた。
(Fourier transform infrared spectroscopy (FT-IR))
The structure of the catalyst was examined using a Fourier transform infrared spectrometer (JASCO FT / IR-6100). The catalyst powder and KBr powder were thoroughly mixed using an agate mortar. This powder is put into a tablet molding machine (Shimadzu Corporation 202-32010 type) to a uniform thickness, and is held for 1 minute using a manual hydraulic pump (RIKEN EQUIPMENT P-1B) with a pressure of 5 t cm -2. As a result, a pellet having a diameter of 13 mm was produced. This pellet was set in a sample holder in a measurement chamber and irradiated with infrared light, and the IR spectrum of the transmission was measured. The measurement range was 400 to 4000 cm −1 , the number of integrations was 300 times, and DLATGS was used as the detector.

(試験結果と考察)
金属ケイ化物のORR活性
図5(1)〜(7)に、種々の金属ケイ化物(VSi2、WSi2、TiSi2、NbSi2、MoSi2、TaSi2、ZrSi2)のO2飽和およびAr飽和0.5M H2SO4水溶液中でのサイクリックボルタモグラム(CV)を示す。O2飽和溶液中でのCV曲線の電流値からAr飽和溶液中でのCV曲線の電流値を引いた値をORR電流(iORR)とした。図6にVSi2の電流(iORR)−電位(E)曲線を示す。また、iORR=−0.2μAのときの電位をORR開始電位(EORR)とし、表2に種々の金属ケイ化物のEORRを示す。EORRがより正電位であるほどORR活性は高い。30℃、0.5M H2SO4中において、VSi2>WSi2=TiSi2>NbSi2>MoSi2>ZrSi2>TaSi2の順にORR活性は高く、本研究で用いた金属ケイ化物の中で、VSi2が最も優れたORR活性を有することがわかった。そこで、今後はVSi2に着目し、さらなる性能の向上を目指して触媒の改質を行った。
(Test results and discussion)
The ORR activity Figure 5 of the metal silicide (1) to (7), various metal silicide (VSi 2, WSi 2, TiSi 2, NbSi 2, MoSi 2, TaSi 2, ZrSi 2) O 2 saturation and Ar of It shows cyclic voltammograms of a saturated 0.5M H 2 SO 4 in aqueous solution (CV). The value obtained by subtracting the current value of the CV curve in the Ar saturated solution from the current value of the CV curve in the O 2 saturated solution was defined as an ORR current (i ORR ). FIG. 6 shows a current (i ORR ) -potential (E) curve of VSi 2 . Further, the potential when i ORR = −0.2 μA is defined as the ORR start potential (E ORR ), and Table 2 shows E ORR of various metal silicides. ORR activity as E ORR is at a more positive potential is high. 30 ° C., in 0.5M H 2 SO in 4, VSi 2> WSi 2 = TiSi 2> NbSi 2> MoSi 2> ZrSi 2> in the order of TaSi 2 ORR activity is high, among the metal silicide used in this study Thus, it was found that VSi 2 has the most excellent ORR activity. Therefore, focusing on VSi 2 in the future, the catalyst was reformed with the aim of further improving the performance.

(VおよびSi 単味の電気化学特性)
まず、VSi2の構成成分であるVとSiについて、電気化学特性を調べた。SiにはSinano とSimicroの2種類を用いた。
図7(1)にO2飽和0.5M H2SO4水溶液中でのVの10サイクル目のCV曲線を示す。0.4V以上から大きな酸化電流が流れた。CVの後、同じ溶液にArバブリングし、Ar飽和溶液中で得た10サイクル目のCV曲線を図7(2)に示す。Ar飽和溶液中でもO2飽和溶液中と同様にVが酸化されており、Vは0.5M H2SO4溶液中で酸化され、電気化学的に不安定であることが分かった。
(V and Si simple electrochemical properties)
First, the electrochemical characteristics of V and Si, which are constituents of VSi 2 , were examined. Two types of Si nano and Si micro were used for Si.
FIG. 7 (1) shows a CV curve at the 10th cycle of V in an O 2 saturated 0.5 MH 2 SO 4 aqueous solution. A large oxidation current flowed from 0.4 V or higher. FIG. 7 (2) shows a CV curve at the 10th cycle obtained by Ar bubbling in the same solution after CV and obtained in an Ar saturated solution. V was oxidized in the Ar saturated solution as in the O 2 saturated solution, and V was oxidized in the 0.5 MH 2 SO 4 solution, and was found to be electrochemically unstable.

図8(1)にO2飽和0.5M H2SO4溶液中でのSinanoのCV曲線を示す。初期のサイクルでは正電位側で大きな酸化電流が流れたが、サイクルを重ねる毎に酸化電流は小さくなり、10サイクル後には安定した挙動が得られた。このCV後に同じ電解液にArをバブリングし、Ar飽和溶液中で得た10サイクル目のCV曲線とO2飽和溶液中で安定したときのCV曲線とを比較して図8(2)に示す。0.8V以上の電位ではやや酸化電流が大きくなり、この電位以上ではSinanoは酸化され、電気化学的に不安定であった。また、EORRは0.28Vであり、SinanoのORR活性は低かった。 FIG. 8 (1) shows a CV curve of Si nano in an O 2 saturated 0.5 MH 2 SO 4 solution. In the initial cycle, a large oxidation current flowed on the positive potential side. However, the oxidation current decreased each time the cycle was repeated, and a stable behavior was obtained after 10 cycles. After this CV, Ar was bubbled into the same electrolytic solution, and the CV curve at the 10th cycle obtained in the Ar saturated solution was compared with the CV curve when stabilized in the O 2 saturated solution, as shown in FIG. . At a potential of 0.8 V or higher, the oxidation current slightly increased. Above this potential, Si nano was oxidized and electrochemically unstable. Also, E ORR is 0.28 V, ORR activity of Si nano was low.

図9(1)にO2飽和0.5M H2SO4溶液中でのSimicroのCV曲線を示す。Sinanoの場合と異なり、初期のサイクルから安定した挙動を示した。Siはナノ粒子になることで表面が活性になり、酸化されやすくなるものと考えられる。このCV後に同じ電解液にArをバブリングし、Ar飽和溶液中で得た10サイクル目のCV曲線とO2飽和溶液中で安定したときのCV曲線とを比較して図9(2)に示す。Simicroでは、正電位側で酸化電流が流れず、0.5M H2SO4溶液に対して電気化学的に安定であった。一方、EORRは0.32Vであり、SimicroのORR活性も低いものであった。 FIG. 9 (1) shows a CV curve of Si micro in an O 2 saturated 0.5 MH 2 SO 4 solution. Unlike the case of Si nano , it showed stable behavior from the initial cycle. It is considered that Si becomes nanoparticles and the surface becomes active and is easily oxidized. After this CV, Ar was bubbled into the same electrolytic solution, and the CV curve at the 10th cycle obtained in the Ar saturated solution and the CV curve when stabilized in the O 2 saturated solution were compared and shown in FIG. . In Si micro , the oxidation current did not flow on the positive potential side, and it was electrochemically stable with respect to the 0.5 MH 2 SO 4 solution. On the other hand, E ORR was 0.32 V, and the ORR activity of Si micro was also low.

以上の結果から、金属ケイ化物としては安定で且つEORR0.35V以上のものを活性のあるものとして、ケイ化バナジウム、ケイ化タングステン、ケイ化チタニウム、ケイ化ニオブが優れている。特にケイ化バナジウムが適正を有しているので、これについての実験を行っているが、これに限定されるものではない。 From the above results, vanadium silicide, tungsten silicide, titanium silicide, and niobium silicide are excellent as metal silicides that are stable and have an E ORR of 0.35 V or more as active. In particular, vanadium silicide has an appropriateness, so an experiment on this is conducted, but the present invention is not limited to this.

(ボールミルにより作製したV+Siの電気化学特性)
VSi2との比較のため、VとSinanoを1:2の割合で混合し、Ar雰囲気、2g、2hの条件でボールミルした触媒を作製した。この触媒をV+2Sinanoと記す。図10にV+2SinanoのEDXスペクトルを示す。Feなどの不純物の混入は見られず、VとSiの原子比は仕込み比と一致した。V+2SinanoのXRDパターンを図11に示す。このXRDパターンは体心立方構造のVと面心立方構造のSiに帰属されるピークのみからなり、VSi2をはじめとするケイ化バナジウムの相は見られなかった。
(Electrochemical properties of V + Si produced by ball mill)
For comparison with VSi 2 , V and Si nano were mixed at a ratio of 1: 2, and a ball milled catalyst was produced under conditions of Ar atmosphere, 2 g, and 2 h. This catalyst is referred to as V + 2Si nano . FIG. 10 shows an EDX spectrum of V + 2Si nano . Impurities such as Fe were not mixed, and the atomic ratio of V and Si coincided with the charged ratio. The XRD pattern of V + 2Si nano is shown in FIG. This XRD pattern consisted of only peaks attributed to V having a body-centered cubic structure and Si having a face-centered cubic structure, and no phase of vanadium silicide including VSi 2 was observed.

図12(1)にO2飽和0.5M H2SO4溶液中でのV+2SinanoのCV曲線を示す。初期のサイクルで大きな酸化電流が流れたが、サイクルを重ねる毎に酸化電流は小さくなり、10サイクル後には安定した挙動が得られた。このCV後に同じ電解液にArをバブリングし、Ar飽和溶液中で得た10サイクル目のCV曲線とO2飽和溶液中で安定したときのCV曲線とを比較して図12(2)に示す。0.7V以上で大きな酸化電流が流れ、V+2Sinanoは電気化学的に不安定であった。また、EORRは0.26Vであり、ORR活性は低かった。
XRDパターンからV+2SinanoはVとSinanoで構成されており、これらは図7(1)および図8(1)にあるように正電位側で酸化される。このことから、V+2SinanoはVやSinano単味と同じ電気化学特性しか表れず、正電位側で大きく酸化されてORR活性も低かったと考えられる。
FIG. 12 (1) shows a CV curve of V + 2Si nano in an O 2 saturated 0.5 MH 2 SO 4 solution. A large oxidation current flowed in the initial cycle, but the oxidation current decreased with each cycle, and a stable behavior was obtained after 10 cycles. After this CV, Ar was bubbled into the same electrolytic solution, and the CV curve at the 10th cycle obtained in the Ar saturated solution and the CV curve when stabilized in the O 2 saturated solution were compared and shown in FIG. . A large oxidation current flowed above 0.7 V, and V + 2Si nano was electrochemically unstable. In addition, E ORR is 0.26V, ORR activity was low.
From the XRD pattern, V + 2Si nano is composed of V and Si nano , which are oxidized on the positive potential side as shown in FIGS. 7 (1) and 8 (1). From this, it is considered that V + 2Si nano exhibited only the same electrochemical characteristics as V and Si nano, and was greatly oxidized on the positive potential side and had low ORR activity.

(VSi2のORR活性に及ぼすボールミルの影響)
VSi2をボールミルにより改質することでORR活性の向上を試みた。ボールミルはAr雰囲気、2g、2hの条件で行った。この触媒をmilled−VSi2と記す。図13にmilled−VSi2のEDXスペクトルを示す。Feなどの不純物の混入は見られなかった。図14にボールミル前後のVSi2のXRDパターンを示す。ボールミル前のVSi2は六方晶構造に特有のXRDパターンを示した。milled−VSi2はXRDパターンがブロードになっており、ボールミルによりナノ粒子化またはアモルファス化されたと考えられる。ピーク位置は変化せず、格子の収縮や拡張は見られなかった。
また、すべてのピークはVSi2に帰属することができた。表3にXRDパターンから算出した結晶子サイズと格子定数を示す。結晶子サイズはVSi2(112)のピーク(2θ=48.989°)から算出した。格子定数aは(110)のピーク(2θ=39.403°)、cは(003)のピーク(2θ=42.530°)から算出した。ボールミルすることにより結晶子サイズは小さくなるが、格子定数は変化しないことが分かった。
(Effect of ball mill on ORS activity of VSi 2 )
An attempt was made to improve ORR activity by modifying VSi 2 with a ball mill. The ball mill was performed under conditions of Ar atmosphere, 2 g, and 2 h. This catalyst is referred to as a milled-VSi 2. FIG. 13 shows an EDX spectrum of milled-VSi 2 . No contamination of impurities such as Fe was observed. FIG. 14 shows XRD patterns of VSi 2 before and after the ball mill. VSi 2 before the ball mill showed an XRD pattern unique to the hexagonal crystal structure. Milled-VSi 2 has a broad XRD pattern, and is considered to have been made into nanoparticles or amorphous by a ball mill. The peak position did not change, and no grid contraction or expansion was observed.
In addition, all of the peak was able to belong to VSi 2. Table 3 shows the crystallite size and lattice constant calculated from the XRD pattern. The crystallite size was calculated from the peak of VSi 2 (112) (2θ = 48.989 °). The lattice constant a was calculated from the peak of (110) (2θ = 39.403 °), and c was calculated from the peak of (003) (2θ = 42.530 °). It was found that the ball mill reduces the crystallite size but does not change the lattice constant.

図15(1)にO2飽和0.5M H2SO4溶液中でのmilled−VSi2のCV曲線を示す。初期のサイクルで大きな酸化電流が流れた。VSi2は、ボールミルによりナノ粒子化されて表面が活性になり、酸化されやすくなったと考えられる。酸化電流はサイクルを重ねる毎に小さくなり、10サイクル後には安定した挙動となった。このCV後に同じ電解液にArをバブリングし、Ar飽和溶液中で得た10サイクル目のCV曲線とO2飽和溶液中で安定したときのCV曲線とを比較して図15(2)に示す。0.8V以上でやや酸化電流が流れ、milled−VSi2は電気化学的に不安定であった。また、EORRは0.47Vであり、VSi2よりもORR活性は低くなった。 FIG. 15 (1) shows a CV curve of milled-VSi 2 in an O 2 saturated 0.5 MH 2 SO 4 solution. A large oxidation current flowed in the initial cycle. It is considered that VSi 2 was nanoparticulated by a ball mill, the surface became active, and was easily oxidized. The oxidation current decreased with each cycle and became stable after 10 cycles. After this CV, Ar was bubbled into the same electrolytic solution, and the CV curve at the 10th cycle obtained in the Ar saturated solution was compared with the CV curve when stabilized in the O 2 saturated solution, as shown in FIG. . The oxidation current flowed slightly above 0.8 V, and milled-VSi 2 was electrochemically unstable. E ORR was 0.47 V, and the ORR activity was lower than VSi 2 .

(VSi2へのVの添加効果)
VSi2とVを1:1の割合で混合し、ボールミルすることによりORR活性の向上を試みた。図16(1)にVSi2+VのEDXスペクトルを示す。不純物の混入は見られず、VとSiの原子比は仕込み比と一致した。図16(2)にVSi2+VのXRDパターンを示す。得られたピークはVSi2とVのみであり、他の構造は見られなかった。
図17(1)にO2飽和0.5M H2SO4溶液中でのVSi2+VのCV曲線を示す。初期のサイクルで大きな酸化電流が流れたが、10サイクル後には安定した挙動が得られた。このCV後に同じ電解液にArをバブリングし、Ar飽和溶液中で得た10サイクル目のCV曲線とO2飽和溶液中で安定したときのCV曲線とを比較して図17(2)に示す。0.8V以上では、やや酸化電流が流れた。XRD測定でVが存在していることから、VSi2+VはVの電気化学的酸化の影響により、不安定になったと考えられる。EORRは0.32Vであり、VSi2+VのORR活性は低かった。
(Effect of V addition to VSi 2 )
VSI 2 and V were mixed at a ratio of 1: 1 and ball milling was attempted to improve ORR activity. FIG. 16A shows an EDX spectrum of VSi 2 + V. Impurities were not mixed in, and the atomic ratio of V and Si coincided with the charged ratio. FIG. 16B shows an XRD pattern of VSi 2 + V. The obtained peaks were only VSi 2 and V, and no other structure was observed.
FIG. 17 (1) shows a CV curve of VSi 2 + V in an O 2 saturated 0.5 MH 2 SO 4 solution. A large oxidation current flowed in the initial cycle, but stable behavior was obtained after 10 cycles. After this CV, Ar was bubbled into the same electrolytic solution, and the CV curve at the 10th cycle obtained in the Ar saturated solution was compared with the CV curve when stabilized in the O 2 saturated solution, as shown in FIG. . At 0.8 V or higher, a slight oxidation current flowed. Since V is present in the XRD measurement, VSi 2 + V is considered to be unstable due to the influence of electrochemical oxidation of V. E ORR was 0.32 V, and ORS activity of VSi 2 + V was low.

(VSi2へのSiの添加効果)
ボールミル時間の影響
VSi2とSinanoを1:1の割合で混合し、ボールミルすることによりORR活性の向上を試みた。このとき、ボールミル時間を変えて触媒を作製することによりボールミル時間が触媒活性へどのような影響を及ぼすかを調べた。ボールミル時間は0.5h,1h,2h,4h,8hとした。
図18に各触媒のEDXスペクトルを示す。ボールミル時間が長くなっても不純物の混入は見られず、表4に示すようにVとSiの原子比は仕込み比と一致した。
(Effect of adding Si to VSi 2 )
Effect of Ball Mill Time VSR 2 and Si nano were mixed at a ratio of 1: 1, and an attempt was made to improve ORR activity by ball milling. At this time, the influence of the ball mill time on the catalyst activity was examined by preparing the catalyst by changing the ball mill time. The ball mill time was 0.5 h, 1 h, 2 h, 4 h, and 8 h.
FIG. 18 shows an EDX spectrum of each catalyst. As shown in Table 4, the atomic ratio of V and Si coincided with the charged ratio as no contamination was observed even when the ball mill time was increased.

図19に各触媒のXRDパターンを示す。全ての触媒でVSi2とSiの回折ピークのみが確認され、他の構造の形成は見られなかった。また、表5にXRDパターンから算出した結晶子サイズと格子定数を示す。ボールミル時間が長くなるほど結晶子サイズは小さくなり、ナノ粒子化またはアモルファス化された。一方、格子定数は変化せず、格子の収縮や拡張は見られなかった。 FIG. 19 shows the XRD pattern of each catalyst. Only the diffraction peaks of VSi 2 and Si were confirmed in all the catalysts, and formation of other structures was not observed. Table 5 shows the crystallite size and lattice constant calculated from the XRD pattern. The longer the ball mill time, the smaller the crystallite size, and it became nano-sized or amorphous. On the other hand, the lattice constant did not change, and no contraction or expansion of the lattice was observed.

図20(1)にO2飽和0.5M H2SO4溶液中でのVSi2+Sinano(2g,0.5h)のCV曲線を示す。初期のサイクルでは大きな酸化電流が流れたが、サイクルを重ねる毎に酸化電流は小さくなり、10サイクル後には安定した挙動が得られた。このCV後に同じ電解液にArをバブリングし、Ar飽和溶液中で得た10サイクル目のCV曲線とO2飽和溶液中で安定したときのCV曲線とを比較して図20(2)に示す。0.8V以上で酸化電流が流れ、VSi2+Sinano (2g,0.5h)は電気化学的に不安定であった。また、EORRは0.28Vであり、ORR活性は低かった。 FIG. 20 (1) shows a CV curve of VSi 2 + Si nano (2 g, 0.5 h) in an O 2 saturated 0.5 MH 2 SO 4 solution. A large oxidation current flowed in the initial cycle, but the oxidation current decreased with each cycle, and a stable behavior was obtained after 10 cycles. After the CV, Ar was bubbled into the same electrolytic solution, and the CV curve at the 10th cycle obtained in the Ar saturated solution was compared with the CV curve when stabilized in the O 2 saturated solution, as shown in FIG. . An oxidation current flowed at 0.8 V or higher, and VSi 2 + Si nano (2 g, 0.5 h) was electrochemically unstable. In addition, E ORR is 0.28V, ORR activity was low.

図21(1)にO2飽和0.5M H2SO4溶液中でのVSi2+Sinano(2g,1h)のCV曲線を示す。1サイクル目はやや大きな酸化電流が流れたが、2サイクル目以降はほぼ安定した挙動を示した。このCV後に同じ電解液にArをバブリングし、Ar飽和溶液中で得た10サイクル目のCV曲線とO2飽和溶液中で安定したときのCV曲線とを比較して図21(2)に示す。正電位側で酸化電流は流れず、VSi2+Sinano(2g,1h)は0.5M H2SO4水溶液中で電気化学的に安定であった。しかし、EORRは0.38Vであり、ORR活性は低かった。 FIG. 21 (1) shows a CV curve of VSi 2 + Si nano (2 g, 1 h) in an O 2 saturated 0.5 MH 2 SO 4 solution. Although a slightly large oxidation current flowed in the first cycle, the behavior after the second cycle was almost stable. After this CV, Ar was bubbled into the same electrolytic solution, and the CV curve at the 10th cycle obtained in the Ar saturated solution was compared with the CV curve when stabilized in the O 2 saturated solution, as shown in FIG. 21 (2). . The oxidation current did not flow on the positive potential side, and VSi 2 + Si nano (2 g, 1 h) was electrochemically stable in a 0.5 MH 2 SO 4 aqueous solution. However, E ORR was 0.38 V and ORR activity was low.

図22(1)にO2飽和0.5M H2SO4溶液中でのVSi2+Sinano(2g,2h)のCV曲線を示す。1サイクル目から安定した挙動が得られた。このCV後に同じ電解液にArをバブリングし、Ar飽和溶液中で得た10サイクル目のCV曲線とO2飽和溶液中で安定したときのCV曲線とを比較して図22(2)に示す。VSi2+Sinano(2g,2h)もまた、正電位側で酸化電流は流れず、0.5M H2SO4に対して優れた電気化学的安定性を示した。EORRは0.62Vであり、VSi2よりも優れたORR活性を示した。しかし電流密度は小さく、さらなる活性の向上が必要である。 FIG. 22 (1) shows a CV curve of VSi 2 + Si nano (2 g, 2 h) in an O 2 saturated 0.5 MH 2 SO 4 solution. Stable behavior was obtained from the first cycle. After this CV, Ar was bubbled into the same electrolytic solution, and the CV curve at the 10th cycle obtained in the Ar saturated solution was compared with the CV curve when stabilized in the O 2 saturated solution, as shown in FIG. . VSi 2 + Si nano (2 g, 2 h) also showed no electrochemical current on the positive potential side and showed excellent electrochemical stability against 0.5 MH 2 SO 4 . E ORR was 0.62 V, indicating an ORR activity superior to VSi 2 . However, the current density is small and further activity improvement is required.

図23(1)にO2飽和0.5M H2SO4溶液中でのVSi2+Sinano(2g,4h)のCV曲線を示す。初期のサイクルでは大きな酸化電流が流れたが、サイクルを重ねる毎に酸化電流は小さくなり、10サイクル後には安定した挙動が得られた。このCV後に同じ電解液にArをバブリングし、Ar飽和溶液中で得た10サイクル目のCV曲線とO2飽和溶液中で安定したときのCV曲線とを比較して図23(2)に示す。VSi2+Sinano(2g,4h)では0.6V付近から酸化電流が流れ、電気化学的に不安定であった。また、EORRは0.32Vであり、ORR活性は低かった。 FIG. 23 (1) shows a CV curve of VSi 2 + Si nano (2 g, 4 h) in an O 2 saturated 0.5 MH 2 SO 4 solution. A large oxidation current flowed in the initial cycle, but the oxidation current decreased with each cycle, and a stable behavior was obtained after 10 cycles. After this CV, Ar was bubbled into the same electrolytic solution, and the CV curve at the 10th cycle obtained in the Ar saturated solution was compared with the CV curve when stabilized in the O 2 saturated solution, as shown in FIG. . In VSi 2 + Si nano (2 g, 4 h), an oxidation current flowed from around 0.6 V, which was electrochemically unstable. In addition, E ORR is 0.32V, ORR activity was low.

図24(1)にO2飽和0.5M H2SO4溶液中でのVSi2+Sinano(2g,8h)のCV曲線を示す。初期のサイクルでは大きな酸化電流が流れたが、サイクルを重ねる毎に酸化電流は小さくなり、10サイクル後には安定した挙動が得られた。このCV後に同じ電解液にArをバブリングし、Ar飽和溶液中で得た10サイクル目のCV曲線とO2飽和溶液中で安定したときのCV曲線とを比較して図24(2)に示す。VSi2+Sinano(2g,8h)では0.6V以上で酸化電流が流れ、電気化学的に不安定であった。また、EORRは0.30Vであり、ORR活性は低かった。 FIG. 24 (1) shows a CV curve of VSi 2 + Si nano (2 g, 8 h) in an O 2 saturated 0.5 MH 2 SO 4 solution. A large oxidation current flowed in the initial cycle, but the oxidation current decreased with each cycle, and a stable behavior was obtained after 10 cycles. After this CV, Ar was bubbled into the same electrolytic solution, and the CV curve at the 10th cycle obtained in the Ar saturated solution was compared with the CV curve when stabilized in the O 2 saturated solution, as shown in FIG. . With VSi 2 + Si nano (2 g, 8 h), an oxidation current flowed at 0.6 V or more, which was electrochemically unstable. In addition, E ORR is 0.30V, ORR activity was low.

ORR活性に及ぼす触媒表面の電子状態を調べるため、XPS分析を行った。図25(1)と(2)にVSi2のV2pとSi2pのXPSスペクトル、および図26(1)と(2)はVSi2+Sinano(2g,0.5h)でのV2pとSi2pのXPSスペクトルを示し、その他のボールミル時間についてのV2pとSi2pのXPSスペクトル図は添付しない。V2pでは、512.1eVおよび516.3eVにピークが確認され、それぞれV0 3/2およびV4+ 3/2と一致する。Si2pでは、99.2eVと102.6eV、103.3eVにピークが見られた。99.2eVと103.3eVはそれぞれSi0とSi4+と一致する。一方、102.6eVのピークに関する文献は確認できなかったため、Six+(0<x<4)と記す。得られたXPSスペクトルから表面のVとSiの原子比、V0とV4+の組成比、Si0とSix+とSi4+の組成比を算出し、表6にまとめて示す。 In order to investigate the electronic state of the catalyst surface on the ORR activity, XPS analysis was performed. FIGS. 25 (1) and (2) show XPS spectra of V2p and Si2p of VSi 2 , and FIGS. 26 (1) and (2) show XPS spectra of V2p and Si2p in VSi 2 + Si nano (2g, 0.5h). The XPS spectrum diagrams of V2p and Si2p for other ball mill times are not attached. At V2p, peaks are observed at 512.1 eV and 516.3 eV, which are consistent with V 0 3/2 and V 4+ 3/2 , respectively. In Si2p, peaks were observed at 99.2 eV, 102.6 eV, and 103.3 eV. 99.2 eV and 103.3 eV correspond to Si 0 and Si 4 + , respectively. On the other hand, since the literature regarding the peak of 102.6 eV could not be confirmed, it is written as Si x + (0 <x <4). From the obtained XPS spectrum, the atomic ratio of V and Si on the surface, the composition ratio of V 0 and V 4+ , and the composition ratio of Si 0 , Si x + and Si 4+ are calculated and summarized in Table 6.

VSi2粉末表面の組成は、Vが少なく、Siの割合が大きかった。また、V、Siともに酸化物の状態であった。VSi2+Sinanoでは、ボールミル時間が長くなるほど表面のVの割合が大きくなった。ボールミル時間が短いとVSi2表面をSinanoが覆うだけで触媒内部まで均一な複合化が起こらず、表面のSi量が多くなったと考えられる。ボールミル時間が0.5hや1hの場合、正電位で電気化学的に酸化が起こった。これは表面のSiが電気化学的に酸化されたためと考えられる。一方で、ボールミル時間が4hや8hの場合でも正電位で電気化学的な酸化反応が起こった。これはmilled−VSi2の場合と同様に、ボールミルによりVSi2がナノ粒子化もしくはアモルファス化して活性になり、0.5M H2SO4水溶液中で、電気化学的な酸化反応が起きやすくなったためと考えられる。ボールミル時間が2hの場合、VSi2とSinanoが均一に複合化し、かつナノ粒子化もしくはアモルファス化しすぎることなく、0.5M H2SO4水溶液中で電気化学的に安定であったと考えられる。 The composition of the VSi 2 powder surface had a small V and a large proportion of Si. Further, both V and Si were in an oxide state. In VSi 2 + Si nano , the proportion of V on the surface increased as the ball mill time increased. When the ball mill time is short, it is considered that Si nano covers the surface of VSi 2 and uniform composite does not occur to the inside of the catalyst, and the amount of Si on the surface increases. When the ball mill time was 0.5 h or 1 h, oxidation occurred electrochemically at a positive potential. This is presumably because the surface Si was electrochemically oxidized. On the other hand, even when the ball mill time was 4 h or 8 h, an electrochemical oxidation reaction occurred at a positive potential. As in the case of milled-VSi 2 , VSi 2 becomes nanoparticulate or amorphous by the ball mill and becomes active, and an electrochemical oxidation reaction is likely to occur in a 0.5 MH 2 SO 4 aqueous solution. it is conceivable that. When the ball mill time is 2 h, it is considered that VSi 2 and Si nano were uniformly composited and were electrochemically stable in a 0.5 MH 2 SO 4 aqueous solution without being too nano- sized or amorphous.

VSi2+SinanoのV2pスペクトルではV0付近の結合エネルギーを持つピークが現れた。VSi2は金属間化合物であることから、VSi2中のVはV0付近にピークを持つと考えられる。VSi2+Sinanoではボールミルによって内部に存在していた酸化されていないVSi2が表面に現れ、V0のピークが現れたと考えられる。V0とV4+の組成比を見ると、電気化学測定後にV4+が減少していることから、V4+が電気化学測定中に溶解したと考えられる。Si0とSix+とSi4+組成比は、電気化学測定後にSi0とSix+が減少し、Si4+が増加していた。このことから、Si0とSix+の一部が電気化学測定中にSi4+へと酸化されたと考えられる。 In the V2p spectrum of VSi 2 + Si nano , a peak having a binding energy near V 0 appeared. Since VSi 2 is an intermetallic compound, V in VSi 2 is considered to have a peak near V 0 . In VSi 2 + Si nano , it is considered that non-oxidized VSi 2 existing inside by the ball mill appeared on the surface, and a peak of V 0 appeared. Looking at the composition ratio between V 0 and V 4+ , it can be considered that V 4+ was dissolved during the electrochemical measurement because V 4+ decreased after the electrochemical measurement. As for the + composition ratio of Si 0 , Si x + and Si 4 , Si 0 and Si x + decreased and Si 4+ increased after electrochemical measurement. From this, it is considered that part of Si 0 and Si x + was oxidized to Si 4+ during the electrochemical measurement.

この結果から、直接ボールミルによる、ORR活性の大きな特性はあまり期待できないように思われるが、粉末からの触媒作成する手法としては、一つの手段として評価される方法である。   From this result, it seems that a large characteristic of ORR activity by a direct ball mill cannot be expected so much. However, as a method for preparing a catalyst from powder, it is a method evaluated as one means.

(Si添加量の影響)
VSi2とSinanoを1:2または1:3の割合で混合し、ボールミルすることによりSi添加量の違いによるORR活性への影響を調べた。ボールミル時間は、2hとした。
図27にVSi2+2SinanoおよびVSi2+3SinanoのEDXスペクトルを示す。Feなどの不純物の混入は見られず、表7に示すようにVとSiの原子比は仕込み比と一致した。図28にVSi2+2SinanoおよびVSi2+3SinanoのXRDパターンを示す。全ての触媒でVSi2とSiの回折ピークのみが確認され、他の構造の形成は見られなかった。また、表8にXRDパターンから算出した結晶子サイズと格子定数を示す。Si添加量が多いほど結晶子サイズは大きくなった。これはVSi2の表面がSiで改質されたためと考えられる。一方、格子定数に変化はなく、格子の収縮や拡張は見られなかった。
(Influence of Si addition amount)
VSi 2 and Si nano were mixed at a ratio of 1: 2 or 1: 3, and ball milling was performed to examine the influence on the ORR activity due to the difference in the amount of Si added. The ball mill time was 2 hours.
FIG. 27 shows EDX spectra of VSi 2 + 2Si nano and VSi 2 + 3Si nano . No contamination of impurities such as Fe was observed, and the atomic ratio of V and Si coincided with the charged ratio as shown in Table 7. FIG. 28 shows XRD patterns of VSi 2 + 2Si nano and VSi 2 + 3Si nano . Only the diffraction peaks of VSi 2 and Si were confirmed in all the catalysts, and formation of other structures was not observed. Table 8 shows the crystallite size and lattice constant calculated from the XRD pattern. The crystallite size increased as the Si content increased. This is presumably because the surface of VSi 2 was modified with Si. On the other hand, there was no change in the lattice constant, and no contraction or expansion of the lattice was observed.

図29(1)にO2飽和0.5M H2SO4溶液中でのVSi2+2SinanoのCV曲線を示す。初期のサイクルでは大きな酸化電流が流れたが、サイクルを重ねる毎に酸化電流は小さくなり、10サイクル後には安定した挙動が得られた。このCV後に同じ電解液にArをバブリングし、Ar飽和溶液中で得た10サイクル目のCV曲線とO2飽和溶液中で安定したときのCV曲線とを比較して図29(2)に示す。0.6V以上で酸化電流が流れ、VSi2+2Sinanoは電気化学的に不安定であった。また、EORRは0.25Vであり、ORR活性は低かった。 FIG. 29 (1) shows a CV curve of VSi 2 + 2Si nano in an O 2 saturated 0.5 MH 2 SO 4 solution. A large oxidation current flowed in the initial cycle, but the oxidation current decreased with each cycle, and a stable behavior was obtained after 10 cycles. After this CV, Ar was bubbled into the same electrolytic solution, and the CV curve at the 10th cycle obtained in the Ar saturated solution was compared with the CV curve when stabilized in the O 2 saturated solution, as shown in FIG. . An oxidation current flowed at 0.6 V or more, and VSi 2 + 2Si nano was electrochemically unstable. Moreover, EORR was 0.25V and ORR activity was low.

図30(1)にO2飽和0.5M H2SO4溶液中でのVSi2+3SinanoのCV曲線を示す。初期のサイクルでは大きな酸化電流が流れたが、サイクルを重ねる毎に酸化電流は小さくなり、10サイクル後には安定した挙動が得られた。このCV後に同じ電解液にArをバブリングし、Ar飽和溶液中で得た10サイクル目のCV曲線とO2飽和溶液中で安定したときのCV曲線とを比較して図30(2)に示す。0.6V以上で酸化電流が流れ、VSi2+3Sinanoは電気化学的に不安定であった。また、
ORRは0.27Vであり、ORR活性は低かった。
FIG. 30 (1) shows a CV curve of VSi 2 + 3Si nano in an O 2 saturated 0.5 MH 2 SO 4 solution. A large oxidation current flowed in the initial cycle, but the oxidation current decreased with each cycle, and a stable behavior was obtained after 10 cycles. After this CV, Ar was bubbled into the same electrolytic solution, and the CV curve at the 10th cycle obtained in the Ar saturated solution and the CV curve when stabilized in the O 2 saturated solution were compared and shown in FIG. . An oxidation current flowed at 0.6 V or more, and VSi 2 + 3Si nano was electrochemically unstable. Also,
E ORR was 0.27 V and ORR activity was low.

ORR活性に及ぼす触媒表面の電子状態を調べるため、XPS分析を行った。図31(1)〜(2)にVSi2+2Sinanoの電気化学測定前後のV2pおよびSi2pのXPSスペクトルの変化を示す。また、図32(1)〜(2)には、VSi2+3Sinanoの電気化学測定前後のV2pおよびSi2pのXPSスペクトルの変化を示す。さらに、得られたXPSスペクトルから表面のVとSiの原子比、V0とV4+の組成比、Si0とSix+とSi4+の組成比を算出し、表9にまとめて示す。 In order to investigate the electronic state of the catalyst surface on the ORR activity, XPS analysis was performed. FIGS. 31 (1) to (2) show changes in XPS spectra of V2p and Si2p before and after electrochemical measurement of VSi 2 + 2Si nano . 32 (1) to (2) show changes in XPS spectra of V2p and Si2p before and after electrochemical measurement of VSi 2 + 3Si nano . Further, the atomic ratio of V and Si on the surface, the composition ratio of V 0 and V 4+ , and the composition ratio of Si 0 , Si x + and Si 4+ were calculated from the obtained XPS spectrum, and are summarized in Table 9.

VとSiの原子比に着目すると、VSi2+Sinanoの場合よりもVSi2+2SinanoおよびVSi2+3Sinanoでは、表面のVの割合が小さかった。これは、VSi2+Sinanoよりも仕込んだSinanoの量が多く、均一に複合化せずにSinanoがVSi2の表面を覆ってしまったためと考えられる。そのため、表面のSiが電気化学的酸化されて酸化電流が流れ、EORRもSinanoと同程度だったと考えられる。電気化学測定前後のV0とV4+の組成比やSi0とSix+とSi4+の組成比の変化は、VSi2+Sinanoの場合と同様で、V4+の還元、Si0とSix+のSi4+への酸化が示唆された。 Focusing on the atomic ratio of V and Si, the proportion of V on the surface was smaller in VSi 2 + 2Si nano and VSi 2 + 3Si nano than in the case of VSi 2 + Si nano . This is thought to be because the amount of Si nano charged was larger than that of VSi 2 + Si nano , and Si nano covered the surface of VSi 2 without being uniformly compounded. Therefore, it is considered that the surface Si was electrochemically oxidized and an oxidation current flowed, and E ORR was also comparable to Si nano . Change in the composition ratio and Si 0 and Si x + and Si 4+ composition ratio of V 0 and V 4+ around electrochemical measurements, similar to the case of VSi 2 + Si nano, reduction of V 4+, and Si 0 Oxidation of Si x + to Si 4+ was suggested.

(Si粒子サイズの影響)
これまでにVSi2+SinanoのORR活性を調べてきた。そこで、VSi2とSimicroを1:1の割合で混合し、ボールミルすることによりORR活性に及ぼすSi粒子サイズの影響を調べた。ボールミルは、Ar雰囲気、2g、2hの条件で行った。
図33にVSi2+SimicroのEDXスペクトルを示す。Feなど、不純物の混入は見られず、VとSiの原子比は仕込み比と一致した。図34にVSi2+SimicroのXRDパターンを示す。VSi2とSiの回折ピークのみが確認され、他の構造の形成は見られなかった。また、表10にXRDパターンから算出した結晶子サイズと格子定数を示す。VSi2の粒子サイズはVSi2+Sinanoの場合と同じ程度だった。また、格子定数に変化はなく、格子の収縮や拡張は見られなかった。
(Influence of Si particle size)
So far, the ORR activity of VSi 2 + Si nano has been investigated. Therefore, the influence of the Si particle size on the ORR activity was investigated by mixing VSi 2 and Si micro at a ratio of 1: 1 and ball milling. The ball mill was performed under conditions of Ar atmosphere, 2 g, and 2 h.
FIG. 33 shows an EDX spectrum of VSi 2 + Si micro . No contamination of impurities such as Fe was observed, and the atomic ratio of V and Si coincided with the charged ratio. FIG. 34 shows an XRD pattern of VSi 2 + Si micro . Only the diffraction peaks of VSi 2 and Si were confirmed, and formation of other structures was not observed. Table 10 shows the crystallite size and lattice constant calculated from the XRD pattern. Particle size of VSi 2 was the same degree as in the case of VSi 2 + Si nano. In addition, there was no change in the lattice constant, and no contraction or expansion of the lattice was observed.

図35(1)にO2飽和0.5M H2SO4溶液中でのVSi2+SimicroのCV曲線を示す。初期のサイクルでは大きな酸化電流が流れたが、サイクルを重ねる毎に酸化電流は小さくなり、10サイクル後には安定した挙動が得られた。このCV後に同じ電解液にArをバブリングし、Ar飽和溶液中で得た10サイクル目のCV曲線とO2飽和溶液中で安定したときのCV曲線とを比較して図35(2)に示す。VSi2+Simicroは正電位側で酸化電流は流れず、0.5M H2SO4水溶液中で優れた電気化学的安定性を示した。また、EORRは0.71Vであり、VSi2+Sinanoよりも優れたORR活性を示した。しかし、電流密度は小さく、さらなる活性の向上が必要である。 FIG. 35 (1) shows a CV curve of VSi 2 + Si micro in an O 2 saturated 0.5 MH 2 SO 4 solution. A large oxidation current flowed in the initial cycle, but the oxidation current decreased with each cycle, and a stable behavior was obtained after 10 cycles. After this CV, Ar was bubbled into the same electrolytic solution, and the CV curve at the 10th cycle obtained in the Ar saturated solution was compared with the CV curve when stabilized in the O 2 saturated solution, as shown in FIG. 35 (2). . VSi 2 + Si micro showed positive electrochemical stability in a 0.5 MH 2 SO 4 aqueous solution with no oxidation current flowing on the positive potential side. Further, E ORR was 0.71 V, which showed an ORR activity superior to VSi 2 + Si nano . However, the current density is small and further activity improvement is required.

VSi2+Simicroは、ORR活性を期待できる。 VSi 2 + Si micro can be expected to have ORR activity.

ORR活性に及ぼす触媒表面に電子状態を調べるため、XPS分析を行った。図36(1)と(2)にVSi2+Simicroの電気化学測定前後でのV2pおよびSi2pのXPSスペクトルの変化を示す。さらに、得られたXPSスペクトルから表面のVとSiの原子比、V0とV4+の組成比、Si0とSix+とSi4+の組成比を算出し、表11にまとめて示す。VとSiの原子比を見ると、VSi2+Sinanoの場合と比較してVSi2+Simicroでは、表面のVの割合が大きかった。SimicroはSinanoと比べると粒径が大きい分表面が小さくなり、VSi2を覆うSiの量が少なかったためと考えられる。
この結果とEORRがVSi2+Sinanoよりも正電位であることから、V成分がORRの活性点ではないかと考えられる。
XPS analysis was performed to investigate the electronic state on the catalyst surface affecting ORR activity. 36 (1) and (2) show changes in XPS spectra of V2p and Si2p before and after electrochemical measurement of VSi 2 + Si micro . Furthermore, the atomic ratio of V and Si on the surface, the composition ratio of V 0 and V 4+ , and the composition ratio of Si 0 , Si x + and Si 4+ were calculated from the obtained XPS spectrum, and are summarized in Table 11. Looking at the atomic ratio of V to Si, the ratio of V on the surface was larger in VSi 2 + Si micro than in the case of VSi 2 + Si nano . Si micro is thought to be because the surface of Si micro is smaller than Si nano due to its larger particle size, and the amount of Si covering VSi 2 is less.
Since this result and E ORR are more positive than VSi 2 + Si nano , it is considered that the V component is the active point of ORR.

電気化学測定前後のV0とV4+組成比やSi0とSix+とSi4+組成比の変化はVSi2+Sinanoの場合と同様に、V4+の溶解、Si0とSix+のSi4+への酸化が示唆された。 Like the change in electrochemical measurements before and after the V 0 and V 4+ composition ratio and Si 0 and Si x + and Si 4+ composition ratio in the case of VSi 2 + Si nano, dissolution of V 4+, Si 0 and Si x + a Oxidation to Si 4+ was suggested.

(熱処理の効果)
ORR活性の高い金属ケイ化物のうち、特に優れているケイ化バナジウムについて、その熱処理による効果を評価する。そこで、VSi2とその構成成分であるV、Siをも併せて評価することにして、空気中で熱処理して酸化させることにより、ORR活性の向上を試みた。
(Effect of heat treatment)
Among the metal silicides having high ORR activity, the effect of the heat treatment is evaluated on the particularly excellent vanadium silicide. Thus, VSi 2 and its constituent components V and Si were evaluated together, and an attempt was made to improve ORR activity by heat treatment in air and oxidation.

(触媒に及ぼす熱処理の効果)
図37にVSi2(1000℃−0h)のTG−DTA曲線を示す。室温から1000℃まで100Kmin-1で昇温させ、保持せずにすぐに冷却した。その結果、重量の増加はまったく見られなかった。測定後、メノウ乳鉢で粉砕した触媒粉末は黒色で、VSi2と同じ色であった。
(Effect of heat treatment on catalyst)
FIG. 37 shows a TG-DTA curve of VSi 2 (1000 ° C.-0 h). The temperature was raised from room temperature to 1000 ° C. at 100 Kmin −1 and immediately cooled without being held. As a result, no increase in weight was observed. After the measurement, the catalyst powder pulverized in an agate mortar was black and had the same color as VSi 2 .

図38にVSi2(1000℃−1h)のTG−DTA曲線を示す。室温から1000℃まで100Kmin-1で昇温させ、1000℃で1h保持した。1000℃で保持すると重量増加が始まり、最終的には、60.6wt.%の重量増加となった。測定後、メノウ乳鉢で粉砕した触媒粉末は黒い緑色であった。
図39にVSi2(1000℃−2h)のTG−DTA曲線を示す。室温から1000℃まで5Kmin-1で昇温させ、1000℃で2h保持した。また、図40にVSi2(1000℃−2h)の100Kmin-1で昇温させた時のTG−DTA曲線を示す。図39の曲線では500℃付近からわずかに重量増加が起こり始め、1000℃では、10.2wt.%の重量増加であった。さらに、1000℃で保持すると急激に重量が増加した。保持時間が90分を過ぎると重量増加が小さくなり、最終的には、85.3wt.%の重量増加となった。測定後、メノウ乳鉢で粉砕した触媒粉末は黄土色であった。
FIG. 38 shows a TG-DTA curve of VSi 2 (1000 ° C.-1 h). The temperature was raised from room temperature to 1000 ° C. at 100 Kmin −1 and held at 1000 ° C. for 1 h. When held at 1000 ° C., the weight starts to increase, and finally, 60.6 wt. % Weight gain. After the measurement, the catalyst powder pulverized in an agate mortar was black green.
FIG. 39 shows a TG-DTA curve of VSi 2 (1000 ° C.− 2 h). The temperature was raised from room temperature to 1000 ° C. at 5 Kmin −1 and held at 1000 ° C. for 2 hours. FIG. 40 shows a TG-DTA curve when the temperature is raised at 100 Kmin −1 of VSi 2 (1000 ° C.− 2 h). In the curve of FIG. 39, a slight weight increase starts from around 500 ° C., and at 1000 ° C., 10.2 wt. % Weight gain. Furthermore, when it kept at 1000 degreeC, the weight increased rapidly. When the holding time exceeds 90 minutes, the weight increase becomes small, and finally, 85.3 wt. % Weight gain. After the measurement, the catalyst powder ground in an agate mortar was ocher.

図41にVSi2(1000℃−3h)のTG−DTA曲線を示す。室温から1000℃まで100Kmin-1で昇温させ、1000℃で3h保持した。1000℃で保持すると重量増加が始まり、最終的には、86.3wt.%の重量増加となった。測定後、メノウ乳鉢で粉砕した触媒粉末は黄土色であった。 FIG. 41 shows a TG-DTA curve of VSi 2 (1000 ° C.-3 h). The temperature was raised from room temperature to 1000 ° C. at 100 Kmin −1 and held at 1000 ° C. for 3 hours. When held at 1000 ° C., the weight starts to increase, and finally, 86.3 wt. % Weight gain. After the measurement, the catalyst powder ground in an agate mortar was ocher.

図42にV(1000℃−2h)のTG−DTA曲線を示す。室温から1000℃まで5Kmin-1で昇温させ、1000℃で2h保持した。500℃を超えると急激な重量増加が起こり、酸化に伴う発熱ピークが見られた。1000℃に達する前に重量増加は止まり、最終的には70.4wt.%の重量増加が見られた。測定後、メノウ乳鉢で粉砕した触媒粉末は橙色であった。この重量増加が次式のように、VからV25への酸化反応によると推測される。
2V+5/2O2→V25 (7)
測定に用いたVは10.0mgであり、モル数は10.0/50.94=0.196mmolとなる。重量増加分は反応したO2の量で、その重量は7.04mgとなり、モル数は7.04/32.00=0.22mmolである。上式(7)より、反応したVのモル数は0.22×2/5×2=0.176mmolとなる。したがって、0.176/0.196×100=89.8より、最初のVの89.8%がV25へと変化したことになる。
FIG. 42 shows a TG-DTA curve of V (1000 ° C.-2 h). The temperature was raised from room temperature to 1000 ° C. at 5 Kmin −1 and held at 1000 ° C. for 2 hours. When the temperature exceeded 500 ° C., a rapid weight increase occurred, and an exothermic peak accompanying oxidation was observed. The weight increase stopped before reaching 1000 ° C., and finally 70.4 wt. % Weight gain was seen. After the measurement, the catalyst powder ground with an agate mortar was orange. This weight increase is presumed to be due to the oxidation reaction from V to V 2 O 5 as shown in the following equation.
2V + 5 / 2O 2 → V 2 O 5 (7)
V used for the measurement is 10.0 mg, and the number of moles is 10.0 / 50.94 = 0.196 mmol. The weight increase is the amount of O 2 reacted, the weight is 7.04 mg, and the number of moles is 7.04 / 32.00 = 0.22 mmol. From the above formula (7), the number of moles of reacted V is 0.22 × 2/5 × 2 = 0.176 mmol. Therefore, from 0.176 / 0.196 × 100 = 89.8, 89.8% of the first V is changed to V 2 O 5 .

図43にSimicro(1000℃−2h)のTG−DTA曲線を示す。室温から1000℃まで5Kmin-1で昇温させ、1000℃で2h保持した。1000℃まで重量増加は見られなかった。1000℃で保持すると重量が増加し、最終的に6.2wt.%の重量増加が見られた。測定後、メノウ乳鉢で粉砕した触媒粉末は黒色で、Simicroと同じ色であった。
この重量変化が次式のように、SiからSiO2への酸化反応によると推測される。
Si + O2 → SiO2 (8)
測定に用いたSiは10.0mgであり、モル数は10.0/28.09=0.356mmolとなる。重量増加分は反応したO2の量で、その重量は0.62mgとなり、モル数は0.62/32.00=0.019mmolである。上式(8)より、反応したSiのモル数は0.019mmolとなる。したがって、0.019/0.356×100=5.3より、より最初のSiの5.3 %がSiO2へと変化したことになる。
FIG. 43 shows a TG-DTA curve of Si micro (1000 ° C.-2 h). The temperature was raised from room temperature to 1000 ° C. at 5 Kmin −1 and held at 1000 ° C. for 2 hours. No weight increase was observed up to 1000 ° C. When held at 1000 ° C., the weight increases, and finally 6.2 wt. % Weight gain was seen. After the measurement, the catalyst powder pulverized in an agate mortar was black and had the same color as Si micro .
This change in weight is presumed to be due to an oxidation reaction from Si to SiO 2 as shown in the following equation.
Si + O 2 → SiO 2 (8)
Si used for the measurement is 10.0 mg, and the number of moles is 10.0 / 28.09 = 0.356 mmol. The weight increase is the amount of reacted O 2 , the weight is 0.62 mg, and the number of moles is 0.62 / 32.00 = 0.19 mmol. From the above formula (8), the number of moles of reacted Si is 0.019 mmol. Therefore, from 0.019 / 0.356 × 100 = 5.3, 5.3% of the first Si is changed to SiO 2 .

(触媒のモルフォロジー)
図44に熱処理後にメノウ乳鉢を用いて10分間粉砕することで粉末状態にしたVSi2(1000℃−2h)のSEM像を示す。さらに、SEM像から無作為に粒子を選択して粒径を測定した。図45にVSi2(1000℃−2h)の粒径分布を示す。平均粒径は1.7 μmであり、標準偏差は1.5 μmであった。そのため、メノウ乳鉢を用いての10分間の粉砕では、均一なサイズの触媒は得られていない可能性がある。
(Catalyst morphology)
FIG. 44 shows an SEM image of VSi 2 (1000 ° C.- 2 h) powdered by pulverization for 10 minutes using an agate mortar after heat treatment. Furthermore, particles were randomly selected from the SEM image and the particle size was measured. FIG. 45 shows the particle size distribution of VSi 2 (1000 ° C.− 2 h). The average particle size was 1.7 μm and the standard deviation was 1.5 μm. Therefore, there is a possibility that a catalyst having a uniform size is not obtained by pulverization for 10 minutes using an agate mortar.

(熱処理した触媒の構造)
図46に種々の保持時間により熱処理したVSi2のXRDパターンを示す。VSi2(1000℃−0h)はVSi2の構造のみで、酸化物の形成は見られなかった。VSi2(1000℃−1h)は、VSi2とV25さらに帰属できないピークの3種類が見られた。帰属できないピークは2θ=28.3°と36.0°に存在した。また、2θ=21.7°に大きなピークが見られ、これはV25(101)に帰属される。しかし、2θ=21.71°のV25(101)ピークは、通常2θ=20.26°のV25(001)ピークよりも小さい強度で現れる。そのため、2θ=21.7°付近のピークは帰属できないピークとV25(101)ピークが重なった可能性がある。
VSi2(1000℃−2h)とVSi2(1000℃−3h)では、V25のピークと帰属できないピークの2種類のみが見られ、VSi2のピークは見られなかった。そのため、酸化が完全に進行したと考えられる。
(Structure of heat-treated catalyst)
FIG. 46 shows XRD patterns of VSi 2 heat-treated with various holding times. VSi 2 (1000 ° C.−0 h) has only the structure of VSi 2 , and no oxide was formed. VSi 2 (1000 ° C.-1 h) showed three types of peaks, VSi 2 and V 2 O 5, which could not be assigned further. Unidentifiable peaks were present at 2θ = 28.3 ° and 36.0 °. A large peak is observed at 2θ = 21.7 °, which is attributed to V 2 O 5 (101). However, the V 2 O 5 (101) peak at 2θ = 21.71 ° usually appears at a lower intensity than the V 2 O 5 (001) peak at 2θ = 20.26 °. Therefore, there is a possibility that the peak near 2θ = 21.7 ° is overlapped with the peak that cannot be assigned and the V 2 O 5 (101) peak.
In VSi 2 (1000 ° C.- 2 h) and VSi 2 (1000 ° C.-3 h), only two types of peaks, V 2 O 5 peak and non-assignable peak, were observed, and no VSi 2 peak was observed. Therefore, it is considered that the oxidation has progressed completely.

VSi2を室温から1000℃まで上昇させるとV25とアモルファスのSiO2が生成することが報告されている。本発明では、1000℃に達した時点では酸化物のピークは全く認められず、VSi2の結晶構造が得られていたが、1000℃での熱処理時間が長くなるにつれ、VSi2に帰属されるピークは小さくなった。また、1000℃で1h熱処理した後には、V25に帰属されるピークが出現したが、さらに長時間熱処理してもピーク強度はあまり変化しなかった。これに対して、各触媒のXRDパターンからはSiO2のピークは見られず、SiO2はアモルファス状態で存在していることが示唆される。 It has been reported that when VSi 2 is raised from room temperature to 1000 ° C., V 2 O 5 and amorphous SiO 2 are formed. In the present invention, when the temperature reached 1000 ° C., no oxide peak was observed, and a crystal structure of VSi 2 was obtained. However, as the heat treatment time at 1000 ° C. becomes longer, it is attributed to VSi 2. The peak became smaller. Moreover, after the heat treatment at 1000 ° C. for 1 h, a peak attributed to V 2 O 5 appeared, but the peak intensity did not change much even after the heat treatment for a longer time. On the other hand, the SiO 2 peak is not observed from the XRD pattern of each catalyst, suggesting that SiO 2 exists in an amorphous state.

そこで、本発明でも2θ=36.0°付近にある帰属できないピークをXとし、Xのピーク強度と、2θ=20.26°のV25(001)のピーク強度との比を算出した。Xのピーク強度をI[X]、V25(001)のピーク強度をI[V2O5]とし、I[X]/(I[X]+I[V2O5])の値を算出した。その結果、VSi2(1000℃−1h)は0.33、VSi2(1000℃−2h)は0.46、VSi2(1000℃−3h)は0.33であった。VSi2(1000℃−0h)はXもV25も存在しなかったため、算出していない。 Therefore, in the present invention, an unidentifiable peak in the vicinity of 2θ = 36.0 ° is defined as X, and the ratio between the peak intensity of X and the peak intensity of V 2 O 5 (001) at 2θ = 20.26 ° was calculated. . The peak intensity of the X I [X], V 2 O 5 the peak intensity of (001) and I [V2O5], was calculated value of I [X] / (I [ X] + I [V2O5]). As a result, VSi 2 (1000 ° C.-1 h) was 0.33, VSi 2 (1000 ° C.- 2 h) was 0.46, and VSi 2 (1000 ° C.-3 h) was 0.33. VSi 2 (1000 ° C.−0 h) is not calculated because neither X nor V 2 O 5 existed.

図47にV(1000℃−2h)のXRDパターンを示す。斜方晶V25のピークのみが確認され、Vは熱処理によりV25へと酸化されることがわかった。
図48にSi(1000℃−2h)のXRDパターンを示す。Siのみのピークが見られ、Si酸化物に起因するピークは見られなかった。TG−DTAにおける重量増加はSiの酸化によるものだと考えられるが、Siのごく表面にしか酸化物が形成されなかったか、形成した酸化物がアモルファス状態だったため、Si酸化物のピークが得られなかったと考えられる。
FIG. 47 shows an XRD pattern of V (1000 ° C.−2 h). Only the orthorhombic V 2 O 5 peak was confirmed, and it was found that V was oxidized to V 2 O 5 by the heat treatment.
FIG. 48 shows an XRD pattern of Si (1000 ° C.−2 h). A peak only for Si was observed, and a peak attributable to Si oxide was not observed. The increase in weight in TG-DTA is thought to be due to the oxidation of Si, but the oxide was formed only on the very surface of Si, or the formed oxide was in an amorphous state, so a peak of Si oxide was obtained. Probably not.

(FT−IRによる触媒の構造)
触媒の構造を調べるためにFT−IR測定による解析を行った。図49にVSi2、V25のIRスペクトルと図50に熱処理したVSi2のFT−IRスペクトルを示す。VSi2では、特徴的な吸収は見られなかったが、V25では吸収が見られた。V25中のVO5構造のV=Oの吸収バンドが1020cm-1に、V−O−Vの吸収バンドが823cm-1(伸縮振動)に、VO4構造の吸収バンドが381cm-1(変角振動)に現れることが報告されており、これらに帰属される吸収が見られた。VSi2(1000℃−0h)では特徴的な吸収バンドは見られなかった。XRDより、VSi2(1000℃−0h)はVSi2構造で構成されていることから、IRスペクトルもVSi2と同様であったと考えられる。一方、VSi2(1000℃−1h)、VSi2(1000℃−2h)、VSi2(1000℃−3h)ではV25に帰属される吸収が見られた。これはXRDでV25のピークが見られたことと一致する。また、約1100cm-1に見られる吸収などはV25では見られないことから、これらの触媒はV25とは別の構造も有していることが分かる。
(Catalyst structure by FT-IR)
In order to investigate the structure of the catalyst, analysis by FT-IR measurement was performed. FIG. 49 shows the IR spectrum of VSi 2 and V 2 O 5 and FIG. 50 shows the FT-IR spectrum of VSi 2 subjected to heat treatment. VSi 2 did not show characteristic absorption, but V 2 O 5 showed absorption. The V = O absorption band of the VO 5 structure in V 2 O 5 is 1020 cm −1 , the V—O—V absorption band is 823 cm −1 (stretching vibration), and the VO 4 structure absorption band is 381 cm −1. It has been reported that it appears in (variable vibration), and absorption attributed to these was observed. No characteristic absorption band was observed with VSi 2 (1000 ° C.-0 h). From XRD, it is considered that VSi 2 (1000 ° C.−0 h) has a VSi 2 structure, and therefore the IR spectrum was the same as VSi 2 . On the other hand, in VSi 2 (1000 ° C.-1 h), VSi 2 (1000 ° C.- 2 h), and VSi 2 (1000 ° C.-3 h), absorption attributed to V 2 O 5 was observed. This is consistent with the peak of the V 2 O 5 was observed in XRD. Further, since the absorption, etc. found in approximately 1100 cm -1 is not observed in the V 2 O 5, it can be seen that also has another structure of these catalysts with V 2 O 5.

(電気化学特性)
図51(1)にO2飽和0.5M H2SO4溶液中でのVSi2(1000℃−0h)のCV曲線を示す。初期のサイクルから安定した挙動が得られた。このCV後に同じ電解液にArをバブリングし、Ar飽和溶液中で得た10サイクル目のCV曲線とO2飽和溶液中で安定したときのCV曲線とを比較して図51(2)に示す。EORRは0.83Vであり、高いORR活性を示した。VSi2は、熱処理することによりORR活性が向上することが分かった。測定前後で触媒の色は変化せず、黒色のままだった。
(Electrochemical characteristics)
FIG. 51 (1) shows a CV curve of VSi 2 (1000 ° C.-0 h) in an O 2 saturated 0.5 MH 2 SO 4 solution. Stable behavior was obtained from the initial cycle. After this CV, Ar was bubbled into the same electrolyte, and the 10th cycle CV curve obtained in the Ar saturated solution was compared with the CV curve when stabilized in the O 2 saturated solution, as shown in FIG. 51 (2). . E ORR was 0.83 V, indicating high ORR activity. It has been found that the ORR activity of VSi 2 is improved by heat treatment. The color of the catalyst did not change before and after the measurement and remained black.

図52(1)にO2飽和0.5M H2SO4溶液中でのVSi2(1000℃−1h)のCV曲線を示す。1サイクル目に大きな還元電流が流れたが、2サイクル目以降は安定した挙動を示した。このCV後に同じ電解液にArをバブリングし、Ar飽和溶液中で得た10サイクル目のCV曲線とO2飽和溶液中で安定したときのCV曲線とを比較して図52(2)に示す。EORRは0.91 Vであり、高いORR活性を示した。また、E=0.4VのときのORR電流は−8.1μA cm-2であった。触媒の色を観察すると、測定前は暗緑色だったのが、測定後には灰黒色になっていた。 FIG. 52 (1) shows a CV curve of VSi 2 (1000 ° C.-1 h) in an O 2 saturated 0.5 MH 2 SO 4 solution. Although a large reduction current flowed in the first cycle, it showed stable behavior after the second cycle. After this CV, Ar was bubbled into the same electrolyte, and the CV curve at the 10th cycle obtained in the Ar saturated solution was compared with the CV curve when stabilized in the O 2 saturated solution, as shown in FIG. 52 (2). . E ORR was 0.91 V, indicating high ORR activity. The ORR current when E = 0.4 V was −8.1 μA cm −2 . When the color of the catalyst was observed, it was dark green before the measurement but turned grayish black after the measurement.

図53(1)にO2飽和0.5M H2SO4溶液中でのVSi2(1000℃−2h)のCV曲線を示す。初期のサイクルで非常に大きな還元電流が流れたが、3サイクルほどで安定した挙動が得られた。このCV後に同じ電解液にArをバブリングし、Ar飽和溶液中で得た10サイクル目のCV曲線を図53(2)に示す。CVの挙動は非常に安定しており、VSi2(1000℃−2h)は0.5M H2SO4水溶液中で電気化学的に安定であった。Ar飽和溶液中とO2飽和溶液中での10サイクル目の安定したCV曲線を図54に示す。また、VSi2(1000℃−2h)のiORR−E曲線を図55に示す。negative sweepで得られた電流は、positive sweepで得られた値よりも大きく、VSi2(1000℃−2h)の表面酸化物が優れたORR活性を示す要因であることが示唆される。EORRは0.91Vであり、E=0.4VのときのORR電流は−105.3μA cm-2と、高い値を示した。また、触媒の色を観察すると、測定前は黄土色だったのが、測定後には灰黒色になっていた。 FIG. 53 (1) shows a CV curve of VSi 2 (1000 ° C.− 2 h) in an O 2 saturated 0.5 MH 2 SO 4 solution. A very large reduction current flowed in the initial cycle, but stable behavior was obtained in about 3 cycles. FIG. 53 (2) shows a CV curve at the 10th cycle obtained by bubbling Ar into the same electrolytic solution after this CV and obtained in an Ar saturated solution. The behavior of CV was very stable, and VSi 2 (1000 ° C.- 2 h) was electrochemically stable in a 0.5 MH 2 SO 4 aqueous solution. FIG. 54 shows stable CV curves at the 10th cycle in an Ar saturated solution and an O 2 saturated solution. In addition, FIG. 55 shows an i ORR -E curve of VSi 2 (1000 ° C.− 2 h). The current obtained with the negative sweep is larger than the value obtained with the positive sweep, suggesting that the surface oxide of VSi 2 (1000 ° C.− 2 h) is a factor showing excellent ORR activity. E ORR was 0.91 V, and the ORR current when E = 0.4 V was as high as −105.3 μA cm −2 . Further, when the color of the catalyst was observed, it was ocher before the measurement, but turned grayish black after the measurement.

高いORR活性が得られたことから、電解液を(1M CH3OH+0.5M H2SO4)水溶液に変えてVSi2(1000℃−2h)のMOR活性を調べた。Ar飽和(1M CH3OH+0.5M H2SO4)水溶液中での10サイクル目のCV曲線とAr飽和0.5M H2SO4水溶液中でのCV曲線とを比較して図56(1)に示す。2つのCV曲線は一致し、VSi2(1000℃−2h)はMOR活性を持たないことが分かった。O2飽和(1M CH3OH+0.5M H2SO4)水溶液中での10サイクル目のCV曲線とO2飽和0.5M H2SO4水溶液中でのCV曲線とを比較して図56(2)に示す。この場合も2つのCV曲線は一致し、O2飽和溶液中でもVSi2(1000℃−2h)はMOR活性を持たないことが分かった。 Since a high ORR activity was obtained, the MOR activity of VSi 2 (1000 ° C.− 2 h) was examined by changing the electrolytic solution to a (1M CH 3 OH + 0.5 MH 2 SO 4 ) aqueous solution. FIG. 56 (1) compares the CV curve at the 10th cycle in an Ar saturated (1M CH 3 OH + 0.5M H 2 SO 4 ) aqueous solution and the CV curve in an Ar saturated 0.5M H 2 SO 4 aqueous solution. Shown in The two CV curves matched and VSi 2 (1000 ° C.- 2 h) was found to have no MOR activity. FIG. 56 shows a comparison between the CV curve at the 10th cycle in an O 2 saturated (1M CH 3 OH + 0.5 MH 2 SO 4 ) aqueous solution and the CV curve in an O 2 saturated 0.5 MH 2 SO 4 aqueous solution. 2). Also in this case, the two CV curves coincided, and it was found that VSi 2 (1000 ° C.− 2 h) has no MOR activity even in an O 2 saturated solution.

図57(1)にO2飽和0.5M H2SO4溶液中でのVSi2(1000℃−3h)のCV曲線を示す。1サイクル目に大きな還元電流が流れたが、2サイクル目以降は安定した挙動を示した。このCV後に同じ電解液にArをバブリングし、Ar飽和溶液中で得た10サイクル目のCV曲線とO2飽和溶液中で安定したときのCV曲線とを比較して図57(2)に示す。EORRは0.86Vであり、また、E=0.4VのときのORR電流は−10.6μA cm-2であった。この触媒のORR活性は、VSi2(1000℃−2h)よりも低かった。また、触媒の色を観察すると、測定前は黄土色だったのが、測定後には灰黒色になっていた。 FIG. 57 (1) shows a CV curve of VSi 2 (1000 ° C.-3 h) in an O 2 saturated 0.5 MH 2 SO 4 solution. Although a large reduction current flowed in the first cycle, it showed stable behavior after the second cycle. After this CV, Ar was bubbled into the same electrolytic solution, and the CV curve at the 10th cycle obtained in the Ar saturated solution was compared with the CV curve when stabilized in the O 2 saturated solution, as shown in FIG. 57 (2). . E ORR was 0.86 V, and the ORR current when E = 0.4 V was −10.6 μA cm −2 . The ORR activity of this catalyst was lower than VSi 2 (1000 ° C.- 2 h). Further, when the color of the catalyst was observed, it was ocher before the measurement, but turned grayish black after the measurement.

図58(1)にO2飽和0.5M H2SO4溶液中でのV(1000℃−2h)のCV曲線を示す。初期のサイクルで大きな還元電流が流れたが、サイクルを重ねる毎に小さくなり、3サイクル後には安定した挙動が得られた。このCV後に同じ電解液にArをバブリングし、Ar飽和溶液中で得た10サイクル目のCV曲線とO2飽和溶液中で安定したときのCV曲線とを比較して図58(2)に示す。V(1000℃−2h)のEORRは、0.54Vであり、ORR電流も小さく、VSi2(1000℃−2h)ほどのORR活性は見られなかった。また、触媒の色を観察すると、測定前は橙色だったのが、測定後には灰黒色になっていた。 FIG. 58 (1) shows a CV curve of V (1000 ° C.− 2 h) in an O 2 saturated 0.5 MH 2 SO 4 solution. Although a large reduction current flowed in the initial cycle, it decreased with each cycle, and a stable behavior was obtained after 3 cycles. After this CV, Ar was bubbled into the same electrolytic solution, and the CV curve of the 10th cycle obtained in the Ar saturated solution was compared with the CV curve when stabilized in the O 2 saturated solution, as shown in FIG. . The E ORR of V (1000 ° C.-2 h) was 0.54 V, the ORR current was also small, and the ORR activity as low as VSi 2 (1000 ° C.- 2 h) was not observed. Further, when the color of the catalyst was observed, it was orange before the measurement, but turned grayish black after the measurement.

XRD測定よりV(1000℃−2h)はV25構造になっているため、V25単味の電気化学特性も調べた。図59(1)にO2飽和0.5M H2SO4溶液中でのV25のCV曲線を示す。初期のサイクルで大きな還元電流が流れたが、サイクルを重ねる毎に小さくなり、3サイクル後には安定した挙動が得られた。このCV後に同じ電解液にArをバブリングし、Ar飽和溶液中で得た10サイクル目のCV曲線とO2飽和溶液中で安定したときのCV曲線とを比較して図59(2)に示す。V25のEORRは0.46Vで、ORR活性は小さかった。また、触媒の色を観察すると、測定前は橙色だったのが、測定後には灰黒色になっていた。 Since V (1000 ° C.- 2 h) has a V 2 O 5 structure from XRD measurement, the V 2 O 5 simple electrochemical characteristics were also examined. FIG. 59 (1) shows a CV curve of V 2 O 5 in an O 2 saturated 0.5 MH 2 SO 4 solution. Although a large reduction current flowed in the initial cycle, it decreased with each cycle, and a stable behavior was obtained after 3 cycles. After this CV, Ar was bubbled into the same electrolytic solution, and the CV curve at the 10th cycle obtained in the Ar saturated solution was compared with the CV curve when stabilized in the O 2 saturated solution, as shown in FIG. 59 (2). . The E ORR of V 2 O 5 was 0.46 V, and the ORR activity was small. Further, when the color of the catalyst was observed, it was orange before the measurement, but turned grayish black after the measurement.

図60(1)にSimicro(1000℃−2h)のO2飽和0.5M H2SO4溶液中でのCV曲線を示す。初期のサイクルから安定した挙動を示した。このCV後に同じ電解液にArをバブリングし、Ar飽和溶液中で得た10サイクル目のCV曲線とO2飽和溶液中で安定したときのCV曲線とを比較して図60(2)に示す。Simicro(1000℃−2h)のEORRは0.83Vであり、Simicroは熱処理によりORR活性が向上することがわかった。しかし、VSi2(1000℃−2h)ほどのORR活性は示さなかった。また、触媒の色を観察すると、測定前後で変化はなく、黒色のままであった。表12に電気化学測定前後の触媒の色の様子をまとめて示す。 FIG. 60 (1) shows a CV curve in Si micro (1000 ° C.- 2 h) in an O 2 saturated 0.5 MH 2 SO 4 solution. Stable behavior was shown from the initial cycle. After the CV, Ar was bubbled into the same electrolytic solution, and the CV curve at the 10th cycle obtained in the Ar saturated solution was compared with the CV curve when stabilized in the O 2 saturated solution, as shown in FIG. . The E ORR of Si micro (1000 ° C.-2 h) was 0.83 V, and it was found that the ORR activity of Si micro was improved by heat treatment. However, it did not show the ORR activity as much as VSi 2 (1000 ° C.- 2 h). Moreover, when the color of the catalyst was observed, there was no change before and after the measurement, and it remained black. Table 12 summarizes the color of the catalyst before and after electrochemical measurement.

VSi2(1000℃−1h)、VSi2(1000℃−2h)、VSi2(1000℃−3h)について、保持時間に対するI[X]/(I[X]+I[V2O5])の値とE=0.4VでのORR電流密度の関係を図61に示す。I[X]/(I[X]+I[V2O5])が大きいほどORR電流も大きくなった。そのため、V25よりもXの構造がORR活性の向上に起因していると考えられる。VやSiを単味で熱処理した試料よりもVSi2を熱処理した触媒のORR活性が優れていたことから、V−Siの構造を持った酸化物が高いORR活性を有すると考えられ、XはV−O−Si系の複合酸化物によるピークだと推測される。 VSi 2 (1000 ℃ -1h), VSi 2 (1000 ℃ -2h), for VSi 2 (1000 ℃ -3h), I [X] with respect to the holding time / (I [X] + I [V2O5]) values and E FIG. 61 shows the relationship of the ORR current density at = 0.4V. The larger the current I [X] / (I [X] + I [V2 O5] ), the greater the ORR current. Therefore, it is considered that the structure of X is caused by the improvement of ORR activity rather than V 2 O 5 . Since the ORR activity of the VSi 2 heat-treated catalyst was superior to the V and Si heat-treated sample, the oxide having the V-Si structure is considered to have a high ORR activity. It is presumed to be a peak due to a V—O—Si based complex oxide.

(触媒表面の電子状態および組成)
ORR活性に及ぼす触媒表面の電子状態の影響を調べるため、XPS分析を行った。図62は熱処理したV25の電気化学測定前後のV 2pのXPSスペクトルの変化を示し、図63(1)と(2)は、熱処理したVSi2(1000℃−0h)の電気化学測定前後のV2pおよびSi2pのXPSスペクトルの変化を示す。更に、図64(1)と(2)は、熱処理したVSi2(1000℃−1h) の電気化学測定前後のV2pおよびSi2pのXPSスペクトルの変化、図65(1)と(2)とは、熱処理したVSi2(1000℃−2h)の電気化学測定前後のV2pおよびSi2pのXPSスペクトルの変化、図66(1)と(2)とは、熱処理したVSi2(1000℃−3h)の電気化学測定前後のV2pおよびSi2pのXPSスペクトルの変化をそれぞれ示す。
(Electronic state and composition of catalyst surface)
XPS analysis was performed to investigate the effect of the electronic state of the catalyst surface on the ORR activity. FIG. 62 shows changes in the XPS spectrum of V 2p before and after electrochemical measurement of heat-treated V 2 O 5 , and FIGS. 63 (1) and (2) show electrochemical measurements of heat-treated VSi 2 (1000 ° C.-0h). The change of the XPS spectrum of V2p before and behind and Si2p is shown. Further, FIGS. 64 (1) and (2) show changes in XPS spectra of V2p and Si2p before and after electrochemical measurement of heat-treated VSi 2 (1000 ° C.-1 h). FIGS. 65 (1) and (2) Changes in XPS spectra of V2p and Si2p before and after electrochemical measurement of heat-treated VSi 2 (1000 ° C.- 2 h), FIGS. 66 (1) and 66 (2) are the chemistry of heat-treated VSi 2 (1000 ° C.-3h). The change of the XPS spectrum of V2p and Si2p before and after the measurement is shown.

また、熱処理した各種条件のVSi2のN 1sのXPSスペクトルを図67に示す。さらに、得られたXPSスペクトルから表面のVとSiの原子比、V4+とV5+の組成比、Six+とSi4+の組成比を算出し、表13にまとめて示す。熱処理した各種条件のVSi2の、保持時間に対してVとSiの原子比を図68に示し、V4+とV5+の組成比を図69に示し、Six+とSi4+の組成比を図70に示す。 In addition, FIG. 67 shows XPS spectra of N 1s of VSi 2 under various heat-treated conditions. Further, the atomic ratio of V and Si on the surface, the composition ratio of V 4+ and V 5+ , and the composition ratio of Si x + and Si 4+ were calculated from the obtained XPS spectrum, and are summarized in Table 13. Of VSi 2 heat treated various conditions, the atomic ratio of V and Si shown in FIG. 68 relative to the retention time, the composition ratio of V 4+ and V 5+ shown in FIG. 69, the composition of Si x + and Si 4+ The ratio is shown in FIG.

25では電気化学測定後にVのスペクトルが消えていることから、図59(1)における初期の還元電流はV5+の還元溶解によるものだと考えられる。
熱処理したVSi2のN 1sスペクトルのピークは見られず、窒化物の形成は見られなかった。熱処理後の触媒は、熱処理前と比べて表面のVの量が多かった。これは、Vが酸化に伴って表面付近へと移動してきたためと考えられる。熱処理時間が長くなると酸化が進み触媒表面のVの量も多くなり、VSi2(1000℃−2h)、VSi2(1000℃−3h)では、VSi2(1000℃−0h)やVSi2(1000℃−1h)よりも表面のVの量が多くなったと考えられる。
In V 2 O 5 , since the spectrum of V disappears after electrochemical measurement, it is considered that the initial reduction current in FIG. 59 (1) is due to the reduction dissolution of V 5+ .
No peak of the N 1s spectrum of the heat-treated VSi 2 was observed, and no nitride formation was observed. The amount of V on the surface of the catalyst after the heat treatment was larger than that before the heat treatment. This is presumably because V has moved to the vicinity of the surface along with oxidation. As the heat treatment time becomes longer, the oxidation proceeds and the amount of V on the catalyst surface also increases. In VSi 2 (1000 ° C.- 2 h) and VSi 2 (1000 ° C.-3 h), VSi 2 (1000 ° C.-0 h) and VSi 2 (1000 It is considered that the amount of V on the surface is larger than that at [° C.-1 h].

熱処理したVSi2の表面のV成分はV4+とV5+であり、V25(V5+)以外にV4+の価数をもった構造が存在していることが分かった。VSi2(1000℃−0h)では、他の触媒と異なり、電気化学測定後の触媒表面にVが存在せず、電気化学測定時にV成分が溶解したと考えられる。VSi2(1000℃−1h)、VSi2(1000℃−2h)、VSi2(1000℃−3h)では、電気化学測定後に表面のVの量が大きく減少していた。これは、V25の溶解に伴うものであり、V5+の量が減少していること、初期の電位走査で大きな還元電流が流れることからも裏付けられる。残存したVは主にV4+であり、これはV−O−Si系の複合酸化物に由来するものではないかと推測される。そのため、電気化学測定後の表面のVの量が多く、残存したV4+の量も多い、VSi2(1000℃−2h)が最も優れたORR活性を示したと考えられる。VSi2(1000℃−1h)のORR活性が低かったのは、保持時間が短く、V−O−Si複合酸化物があまり形成されなかったためと考えられる。他方、VSi2(1000℃−3h)のORR活性が低かったのは、保持時間が長く、一度形成されたV−O−Si複合酸化物がさらに酸化されて、V25へと変化してしまったためと考えられる。 The V component on the surface of the heat-treated VSi 2 is V 4+ and V 5+ , and it was found that a structure having a valence of V 4+ exists in addition to V 2 O 5 (V 5+ ). . In VSi 2 (1000 ° C.-0 h), unlike other catalysts, V does not exist on the surface of the catalyst after electrochemical measurement, and it is considered that the V component was dissolved during the electrochemical measurement. In VSi 2 (1000 ° C.-1 h), VSi 2 (1000 ° C.- 2 h), and VSi 2 (1000 ° C.-3 h), the amount of V on the surface was greatly reduced after electrochemical measurement. This is accompanied by the dissolution of V 2 O 5 , and is supported by the fact that the amount of V 5+ decreases and a large reduction current flows in the initial potential scan. The remaining V is mainly V 4+ , which is presumed to be derived from the V—O—Si based complex oxide. Therefore, it is considered that VSi 2 (1000 ° C.− 2 h), which has a large amount of V on the surface after electrochemical measurement and a large amount of remaining V 4+ , exhibited the most excellent ORR activity. The reason why the ORR activity of VSi 2 (1000 ° C.-1 h) was low is considered to be that the retention time was short and the V—O—Si composite oxide was not formed much. On the other hand, the ORR activity of VSi 2 (1000 ° C.-3 h) was low because the retention time was long, and the V—O—Si composite oxide once formed was further oxidized and changed to V 2 O 5 . This is thought to be due to the accident.

このように、本発明において、金属ケイ化物を熱処理をすることによって、安定した高いORR活性を得ることができ、極めて高いORR活性を有する電極触媒として使用可能とした。   Thus, in the present invention, the metal silicide can be heat-treated to obtain a stable and high ORR activity, and can be used as an electrode catalyst having an extremely high ORR activity.

触媒層固定化手段の模型図である。It is a model figure of a catalyst layer fixing means. 触媒の熱処理装置の模型図である。It is a model figure of the heat processing apparatus of a catalyst. 電気化学特性測定用の作用電極の取付け模型図である。It is an attachment model figure of the working electrode for electrochemical property measurement. 電気化学測定用セルの正面図を示す。The front view of the cell for electrochemical measurements is shown. (1)VSi2、(2)WSi2、(3)TiSi2、(4)NbSi2、(5)MoSi2、(6)TaSi2、(7)ZrSi2の各種金属ケイ化物のO2飽和およびAr飽和0.5M H2SO4水溶液中でのサイクリックボルタモグラム(CV曲線)を示す。 (1) VSi 2, (2 ) WSi 2, (3) TiSi 2, (4) NbSi 2, (5) MoSi 2, (6) TaSi 2, (7) ZrSi 2 of the O 2 saturation of the various metal silicides And a cyclic voltammogram (CV curve) in an Ar saturated 0.5 MH 2 SO 4 aqueous solution. VSi2の電流(iORR)−電位(E)曲線VSi 2 current (i ORR ) -potential (E) curve (1)O2飽和0.5M H2SO4水溶液中でのVの10サイクル目のCV曲線、(2)同じ溶液におけるAr飽和溶液中で得た10サイクル目のCV曲線である。(1) CV curve of the 10th cycle of V in an O 2 saturated 0.5 MH 2 SO 4 aqueous solution, (2) CV curve of the 10th cycle obtained in an Ar saturated solution in the same solution. (1)O2飽和0.5M H2SO4溶液中でのSinanoのCV曲線、(2)同じ電解液でAr飽和溶液中でのCV曲線とO2飽和溶液中で安定したときのCV曲線との比較図である。(1) CV curve of Si nano in O 2 saturated 0.5M H 2 SO 4 solution, (2) CV curve in Ar saturated solution and CV when stabilized in O 2 saturated solution with the same electrolyte It is a comparison figure with a curve. (1)O2飽和0.5M H2SO4溶液中でのSimicroのCV曲線、(2)同じ電解液でAr飽和溶液中でのCV曲線とO2飽和溶液中で安定したときのCV曲線との比較図である。(1) Si micro CV curve in O 2 saturated 0.5 MH 2 SO 4 solution, (2) CV curve in Ar saturated solution and CV when stabilized in O 2 saturated solution with the same electrolyte It is a comparison figure with a curve. V+2SinanoのEDXスペクトルを示す。The EDX spectrum of V + 2Si nano is shown. V+2SinanoのXRDパターンを示す。The XRD pattern of V + 2Si nano is shown. (1)O2飽和0.5M H2SO4溶液中でのV+2SinanoのCV曲線、(2)同じ電解液でAr飽和溶液中でのCV曲線とO2飽和溶液中で安定したときのCV曲線との比較図である。(1) CV curve of V + 2Si nano in O 2 saturated 0.5 MH 2 SO 4 solution, (2) CV curve in Ar saturated solution and CV when stabilized in O 2 saturated solution with the same electrolyte It is a comparison figure with a curve. milled−VSi2のEDXスペクトルを示す。It shows the EDX spectrum of the milled-VSi 2. ボールミル前後のVSi2のXRDパターンを示す。It shows the XRD pattern of VSi 2 before and after ball milling. (1)O2飽和0.5M H2SO4溶液中でのmilled−VSi2のCV曲線、(2)同じ電解液でAr飽和溶液中でのCV曲線とO2飽和溶液中で安定したときのCV曲線との比較図である。(1) CV curve of milled-VSi 2 in O 2 saturated 0.5 MH 2 SO 4 solution, (2) CV curve in Ar saturated solution and stable in O 2 saturated solution with the same electrolyte It is a comparison figure with no CV curve. (1)VSi2+VのEDXスペクトル、(2)VSi2+VのXRDパターンを示す。(1) EDX spectrum of VSi 2 + V, (2) XRD pattern of VSi 2 + V. (1)O2飽和0.5M H2SO4溶液中でのVSi2+VのCV曲線、(2)同じ電解液でAr飽和溶液中でのCV曲線とO2飽和溶液中で安定したときのCV曲線との比較図である。(1) CV curve of VSi 2 + V in O 2 saturated 0.5 MH 2 SO 4 solution, (2) CV curve in Ar saturated solution and stable in O 2 saturated solution with the same electrolyte It is a comparison figure with a CV curve. ボールミル時間を変えた場合のVSi2+Sinano触媒のEDXスペクトルを示す。Shows the EDX spectra of VSi 2 + Si nano catalyst when changing the ball milling time. ボールミル時間を変えた場合のVSi2+Sinano触媒のXRDパターンを示す。It shows the XRD pattern of VSi 2 + Si nano catalyst when changing the ball milling time. (1)O2飽和0.5M H2SO4溶液中でのVSi2+Sinano(2g,0.5h)のCV曲線を示す。(2)同じ電解液でAr飽和溶液中でのCV曲線とO2飽和溶液中で安定したときのCV曲線との比較図である。(1) CV curve of VSi 2 + Si nano (2 g, 0.5 h) in an O 2 saturated 0.5 MH 2 SO 4 solution is shown. (2) It is a comparison diagram between a CV curve in an Ar saturated solution and a CV curve when stabilized in an O 2 saturated solution with the same electrolytic solution. (1)O2飽和0.5M H2SO4溶液中でのVSi2+Sinano(2g,1h)のCV曲線を示す。(2)同じ電解液でAr飽和溶液中でのCV曲線とO2飽和溶液中で安定したときのCV曲線との比較図である。(1) A CV curve of VSi 2 + Si nano (2 g, 1 h) in an O 2 saturated 0.5 MH 2 SO 4 solution is shown. (2) It is a comparison diagram between a CV curve in an Ar saturated solution and a CV curve when stabilized in an O 2 saturated solution with the same electrolytic solution. (1)O2飽和0.5M H2SO4溶液中でのVSi2+Sinano(2g,2h)のCV曲線を示す。(2)同じ電解液でAr飽和溶液中でのCV曲線とO2飽和溶液中で安定したときのCV曲線との比較図である。(1) A CV curve of VSi 2 + Si nano (2 g, 2 h) in an O 2 saturated 0.5 MH 2 SO 4 solution is shown. (2) It is a comparison diagram between a CV curve in an Ar saturated solution and a CV curve when stabilized in an O 2 saturated solution with the same electrolytic solution. (1)O2飽和0.5M H2SO4溶液中でのVSi2+Sinano(2g,4h)のCV曲線を示す。(2)同じ電解液でAr飽和溶液中でのCV曲線とO2飽和溶液中で安定したときのCV曲線との比較図である。(1) A CV curve of VSi 2 + Si nano (2 g, 4 h) in an O 2 saturated 0.5 MH 2 SO 4 solution is shown. (2) It is a comparison diagram between a CV curve in an Ar saturated solution and a CV curve when stabilized in an O 2 saturated solution with the same electrolytic solution. (1)O2飽和0.5M H2SO4溶液中でのVSi2+Sinano(2g,8h)のCV曲線を示す。(2)同じ電解液でAr飽和溶液中でのCV曲線とO2飽和溶液中で安定したときのCV曲線との比較図である。(1) A CV curve of VSi 2 + Si nano (2 g, 8 h) in an O 2 saturated 0.5 MH 2 SO 4 solution is shown. (2) It is a comparison diagram between a CV curve in an Ar saturated solution and a CV curve when stabilized in an O 2 saturated solution with the same electrolytic solution. (1)VSi2のV2pのXPSスペクトルを示す。(2)VSi2のSi2pのXPSスペクトルである。(1) A V2p XPS spectrum of VSi 2 is shown. (2) it is an XPS spectrum of Si2p of VSi 2. (1)VSi2+Sinano(2g,0.5h)でのV2pのXPSスペクトルを示し、(2)はVSi2+Sinano(2g, 0.5h)でのSi2pのXPSスペクトルを示す。 (1) VSi 2 + Si nano (2g, 0.5h) shows the XPS spectrum of V2p in, (2) shows the XPS spectrum of Si2p in VSi 2 + Si nano (2g, 0.5h). VSi2+2SinanoおよびVSi2+3SinanoのEDXスペクトルを示す。Shows the EDX spectra of VSi 2 + 2Si nano and VSi 2 + 3Si nano. VSi2+2SinanoおよびVSi2+3SinanoのXRDパターンを示す。The XRD patterns of VSi 2 + 2Si nano and VSi 2 + 3Si nano are shown. (1)O2飽和0.5M H2SO4溶液中でのVSi2+2SinanoのCV曲線を示す。(2)同じ電解液でAr飽和溶液中でのCV曲線とO2飽和溶液中で安定したときのCV曲線との比較図である。(1) A CV curve of VSi 2 + 2Si nano in an O 2 saturated 0.5 MH 2 SO 4 solution is shown. (2) It is a comparison diagram between a CV curve in an Ar saturated solution and a CV curve when stabilized in an O 2 saturated solution with the same electrolytic solution. (1)O2飽和0.5M H2SO4溶液中でのVSi2+3SinanoのCV曲線を示す。(2)同じ電解液でAr飽和溶液中でのCV曲線とO2飽和溶液中で安定したときのCV曲線との比較図である。(1) A CV curve of VSi 2 + 3Si nano in an O 2 saturated 0.5 MH 2 SO 4 solution is shown. (2) It is a comparison diagram between a CV curve in an Ar saturated solution and a CV curve when stabilized in an O 2 saturated solution with the same electrolytic solution. (1)VSi2+2Sinanoの電気化学測定前後のV2pのXPSスペクトルの変化を示し、(2)VSi2+2Sinanoの電気化学測定前後のSi2pのXPSスペクトルの変化を示す。(1) The change of XPS spectrum of V2p before and after electrochemical measurement of VSi 2 + 2Si nano is shown. (2) The change of XPS spectrum of Si2p before and after electrochemical measurement of VSi 2 + 2Si nano is shown. (1)VSi2+3Sinanoの電気化学測定前後のV2pのXPSスペクトルの変化を示し、(2)VSi2+3Sinanoの電気化学測定前後のSi2pのXPSスペクトルの変化を示す。(1) The change of XPS spectrum of V2p before and after electrochemical measurement of VSi 2 + 3Si nano is shown, and (2) The change of XPS spectrum of Si2p before and after electrochemical measurement of VSi 2 + 3Si nano is shown. VSi2+SimicroのEDXスペクトルを示す。Shows the EDX spectra of VSi 2 + Si micro. VSi2+SimicroのXRDパターンを示す。Shows the XRD pattern of VSi 2 + Si micro. (1)O2飽和0.5M H2SO4溶液中でのVSi2+SimicroのCV曲線を示す。(2)同じ電解液でAr飽和溶液中でのCV曲線とO2飽和溶液中で安定したときのCV曲線との比較図である。(1) A CV curve of VSi 2 + Si micro in an O 2 saturated 0.5 MH 2 SO 4 solution is shown. (2) It is a comparison diagram between a CV curve in an Ar saturated solution and a CV curve when stabilized in an O 2 saturated solution with the same electrolytic solution. (1)VSi2+Simicroの電気化学測定前後でのV2pのXPSスペクトルの変化を示し、(2)VSi2+Simicroの電気化学測定前後でのSi2pのXPSスペクトルの変化を示す。(1) The change of XPS spectrum of V2p before and after electrochemical measurement of VSi 2 + Si micro is shown. (2) The change of XPS spectrum of Si2p before and after electrochemical measurement of VSi 2 + Si micro is shown. VSi2(1000℃−0h)のTG−DTA曲線を示す。VSi shows the TG-DTA curve of 2 (1000 ℃ -0h). VSi2(1000℃−1h)のTG−DTA曲線を示す。VSi shows the TG-DTA curve of 2 (1000 ℃ -1h). VSi2(1000℃−2h)のTG−DTA曲線を示す。VSi shows the TG-DTA curve of 2 (1000 ℃ -2h). VSi2(1000℃−2h)の100K min-1で昇温時のTG−DTA曲線を示す。VSi shows a TG-DTA curve during heating at 100K min -1 of 2 (1000 ℃ -2h). VSi2(1000℃−3h)のTG−DTA曲線を示す。VSi shows the TG-DTA curve of 2 (1000 ℃ -3h). V(1000℃−2h)のTG−DTA曲線を示す。The TG-DTA curve of V (1000 degreeC-2h) is shown. Simicro(1000℃−2h)のTG−DTA曲線を示す。The TG-DTA curve of Si micro (1000 degreeC-2h) is shown. 熱処理後に粉末状態にしたVSi2(1000℃−2h)のSEM像を示す。Shows an SEM image of VSi 2 was powdered state after heat treatment (1000 ℃ -2h). VSi2(1000℃−2h)の粒径分布を示す。The particle size distribution of VSi 2 (1000 ° C.- 2 h) is shown. 種々の保持時間により熱処理したVSi2のXRDパターンを示す。 2 shows XRD patterns of VSi 2 heat treated with various holding times. V(1000℃−2h)のXRDパターンを示す。The XRD pattern of V (1000 degreeC-2h) is shown. Si(1000℃−2h)のXRDパターンを示す。The XRD pattern of Si (1000 degreeC-2h) is shown. VSi2、V25のIRスペクトルを示す。It shows the IR spectrum of VSi 2, V 2 O 5. 熱処理したVSi2のFT−IRスペクトルを示す。The FT-IR spectrum of heat-treated VSi 2 is shown. (1)O2飽和0.5M H2SO4溶液中でのVSi2(1000℃−0h)のCV曲線を示し、(2)同じ電解液でAr飽和溶液中でのCV曲線とO2飽和溶液中で安定したときのCV曲線との比較図である。(1) CV curve of VSi 2 (1000 ° C.−0 h) in O 2 saturated 0.5 MH 2 SO 4 solution is shown, and (2) CV curve and O 2 saturation in Ar saturated solution with the same electrolyte. It is a comparison figure with a CV curve when stabilized in a solution. (1)O2飽和0.5M H2SO4溶液中でのVSi2(1000℃−1h)のCV曲線を示し、(2)同じ電解液でAr飽和溶液中でのCV曲線とO2飽和溶液中で安定したときのCV曲線との比較図である。(1) CV curve of VSi 2 (1000 ° C.-1 h) in O 2 saturated 0.5 MH 2 SO 4 solution is shown. (2) CV curve and O 2 saturation in Ar saturated solution with the same electrolyte. It is a comparison figure with a CV curve when stabilized in a solution. (1O2飽和0.5M H2SO4溶液中でのVSi2(1000℃−2h)のCV曲線を示し、(2)同じ電解液でAr飽和溶液中での10サイクル目CV曲線図である。(CV curve of VSi 2 (1000 ° C.− 2 h) in 1O 2 saturated 0.5 MH 2 SO 4 solution is shown, (2) CV curve of 10th cycle in Ar saturated solution with the same electrolytic solution) . Ar飽和溶液中とO2飽和溶液中での10サイクル目の安定したCV曲線図を示す。It shows a stable CV curves at the 10th cycle in Ar saturated solution and O 2 saturated solution. VSi2(1000℃−2h)のiORR−E曲線図を示す。VSi shows the i ORR -E curve chart 2 (1000 ℃ -2h). (1)Ar飽和(1M CH3OH+0.5M H2SO4)水溶液中での10サイクル目のVSi2(1000℃−2h)のCV曲線とAr飽和0.5M H2SO4水溶液中でのCV曲線との比較図を示し、(2)O2飽和(1M CH3OH+0.5M H2SO4)水溶液中での10サイクル目VSi2(1000℃−2h)のCV曲線とO2飽和0.5M H2SO4水溶液中でのCV曲線との比較図である。(1) CV curve of VSi 2 (1000 ° C.− 2 h) at the 10th cycle in Ar saturated (1M CH 3 OH + 0.5M H 2 SO 4 ) aqueous solution and Ar saturated 0.5MH 2 SO 4 aqueous solution The comparison figure with a CV curve is shown, (2) CV curve of 10th cycle VSi 2 (1000 ° C.− 2 h) in an O 2 saturated (1M CH 3 OH + 0.5 MH 2 SO 4 ) aqueous solution and O 2 saturated 0 is a comparison diagram between CV curve in .5M H 2 SO 4 aqueous solution. (1)O2飽和0.5M H2SO4溶液中でのVSi2(1000℃−3h)のCV曲線を示し、(2)同じ電解液でAr飽和溶液中でのCV曲線とO2飽和溶液中で安定したときのCV曲線との比較図である。(1) CV curve of VSi 2 (1000 ° C.- 3 h) in O 2 saturated 0.5 MH 2 SO 4 solution is shown, and (2) CV curve and O 2 saturation in Ar saturated solution with the same electrolyte. It is a comparison figure with a CV curve when stabilized in a solution. (1)O2飽和0.5M H2SO4溶液中でのV(1000℃−2h)のCV曲線を示し、(2)同じ電解液でAr飽和溶液中でのCV曲線とO2飽和溶液中で安定したときのCV曲線との比較図である。(1) A CV curve of V (1000 ° C.− 2 h) in an O 2 saturated 0.5 MH 2 SO 4 solution is shown, and (2) a CV curve and an O 2 saturated solution in an Ar saturated solution with the same electrolytic solution. It is a comparison figure with the CV curve when it stabilizes in. (1)O2飽和0.5M H2SO4溶液中でのV25のCV曲線を示し、(2)同じ電解液でAr飽和溶液中でのCV曲線とO2飽和溶液中で安定したときのCV曲線との比較図である。(1) CV curve of V 2 O 5 in O 2 saturated 0.5M H 2 SO 4 solution is shown, (2) CV curve in Ar saturated solution and stable in O 2 saturated solution with the same electrolyte It is a comparison figure with a CV curve at the time. (1)Simicro(1000℃−2h)のO2飽和0.5M H2SO4溶液中でのCV曲線を示し、(2)同じ電解液でAr飽和溶液中でのCV曲線とO2飽和溶液中で安定したときのCV曲線との比較図である。(1) CV curve in Si micro (1000 ° C.- 2 h) in O 2 saturated 0.5 MH 2 SO 4 solution is shown. (2) CV curve and O 2 saturation in Ar saturated solution with the same electrolyte. It is a comparison figure with a CV curve when stabilized in a solution. 保持時間に対するI[X]/(I[X]+I[V2O5])の値とE=0.4VでのORR電流密度の関係を示す。The relationship between the value of I [X] / (I [X] + I [V2O5] ) with respect to the holding time and the ORR current density at E = 0.4V is shown. 熱処理したV25の電気化学測定前後のV 2pのXPSスペクトルの変化を示す。It shows the change in the XPS spectra of V 2p before and after electrochemical measurement of V 2 O 5 was heat treated. (1)熱処理したVSi2(1000℃−0h)の電気化学測定前後のV2pのXPSスペクトルの変化、(2)熱処理したVSi2(1000℃−0h)の電気化学測定前後のSi2pのXPSスペクトルの変化を示す。(1) Change in XPS spectrum of V2p before and after electrochemical measurement of heat-treated VSi 2 (1000 ° C-0h), (2) XPS spectrum of Si2p before and after electrochemical measurement of heat-treated VSi 2 (1000 ° C-0h) Showing change. (1)熱処理したVSi2(1000℃−1h) の電気化学測定前後のV2pのXPSスペクトルの変化、(2)熱処理したVSi2(1000℃−1h)の電気化学測定前後のSi2pのXPSスペクトルの変化を示す。(1) Change in XPS spectrum of V2p before and after electrochemical measurement of heat treated VSi 2 (1000 ° C.-1 h), (2) XPS spectrum of Si2p before and after electrochemical measurement of heat treated VSi 2 (1000 ° C.-1 h) Showing change. (1)熱処理したVSi2(1000℃−2h)の電気化学測定前後のV2pのXPSスペクトルの変化、(2)熱処理したVSi2(1000℃−2h)の電気化学測定前後のSi2pのXPSスペクトルの変化を示す。(1) changes in the XPS spectra V2p before and after electrochemical measurement of the heat-treated VSi 2 (1000 ℃ -2h), (2) heat treated VSi 2 before and after the electrochemical measurement of (1000 ° C. -2h) of the XPS spectrum of Si2p Showing change. (1)熱処理したVSi2(1000℃−3h)の電気化学測定前後のV2pのXPSスペクトルの変化、(2)熱処理したVSi2(1000℃−3h)の電気化学測定前後のSi2pのXPSスペクトルの変化を示す。(1) Change in XPS spectrum of V2p before and after electrochemical measurement of heat-treated VSi 2 (1000 ° C-3h), (2) XPS spectrum of Si2p before and after electrochemical measurement of heat-treated VSi 2 (1000 ° C-3h) Showing change. 熱処理した各種条件のVSi2のN 1sのXPSスペクトルを示す。Shows the XPS spectra of N 1s of VSi 2 heat treated various conditions. 熱処理した各種条件のVSi2の、保持時間に対するVとSiの原子比を示す。The atomic ratio of V and Si with respect to holding time of VSi 2 under various heat treatment conditions is shown. 熱処理した各種条件のVSi2のV4+とV5+の組成比を示す。The composition ratios of V 4+ and V 5+ of VSi 2 under various heat-treated conditions are shown. 熱処理した各種条件のVSi2のSix+とSi4+の組成比を示す。The composition ratio of Si x + and Si 4+ of VSi 2 under various heat-treated conditions is shown.

符号の説明Explanation of symbols

1 触媒
2 ペトリ皿
3 スライドグラスシート
4 グラッシーカーボン円柱
5 エタノール
6 サイズの異なるペトリ皿
21 炉心管
22 セラミックス製ボート形状シート
23 GC(グラッシーカーボン)
24 触媒層
25 電気管状炉
31 電極
32 熱収縮チューブ
33 銅柱
34 カーボンペースト
35 PTFEホルダー
41 試験槽
42 対極
43 参照極
44 電解液
45 恒温槽
46 ポテンショスタット(BAS CV−50W)
47 触媒電極
48 モータ
DESCRIPTION OF SYMBOLS 1 Catalyst 2 Petri dish 3 Slide glass sheet 4 Glassy carbon cylinder 5 Ethanol 6 Petri dish 21 of different sizes Core tube 22 Ceramic boat shape sheet 23 GC (Glassy carbon)
24 Catalyst layer 25 Electric tubular furnace 31 Electrode 32 Heat shrinkable tube 33 Copper column 34 Carbon paste 35 PTFE holder 41 Test tank 42 Counter electrode 43 Reference electrode 44 Electrolyte 45 Constant temperature tank 46 Potentiostat (BAS CV-50W)
47 Catalyst electrode 48 Motor

Claims (7)

熱処理した酸素還元活性を有する金属ケイ化物からなる触媒を用いたことを特徴とする固体高分子形燃料電池用電極触媒。   An electrode catalyst for a polymer electrolyte fuel cell, characterized in that a catalyst comprising a heat-treated metal silicide having oxygen reduction activity is used. 前記金属ケイ化物として、ケイ化バナジウム、ケイ化タングステン、ケイ化チタニウム、ケイ化ニオブの群から選択された1種のケイ化物からなることを特徴とする請求項1記載の固体高分子形燃料電池用電極触媒。   2. The polymer electrolyte fuel cell according to claim 1, wherein the metal silicide is one kind of silicide selected from the group consisting of vanadium silicide, tungsten silicide, titanium silicide, and niobium silicide. Electrode catalyst. 前記金属ケイ化物としてケイ化バナジウムにケイ素マイクロ粒子を混合して触媒とすることを特徴とする請求項2記載の固体高分子形燃料電池用電極触媒。   The electrode catalyst for a polymer electrolyte fuel cell according to claim 2, wherein the metal silicide is made by mixing silicon microparticles with vanadium silicide. ケイ化バナジウムとケイ素マイクロ粒子との比率を1:1とすることを特徴とする請求項3記載の固体高分子形燃料電池用電極触媒。   The electrode catalyst for a polymer electrolyte fuel cell according to claim 3, wherein the ratio of vanadium silicide to silicon microparticles is 1: 1. 金属ケイ化物を約1000℃で熱処理し、その後粉砕して粒子とすることを特徴とする固体高分子形燃料電池用電極触媒の製法。   A process for producing an electrode catalyst for a polymer electrolyte fuel cell, characterized in that a metal silicide is heat-treated at about 1000 ° C. and then pulverized into particles. 金属ケイ化物を空気雰囲気中、加速度2gの条件で約2時間ボールミル加工を施し、約1000℃で熱処理し、その後粉砕して粒子とすることを特徴とする固体高分子形燃料電池用電極触媒の製法。   An electrode catalyst for a polymer electrolyte fuel cell, characterized in that a metal silicide is ball milled in an air atmosphere under an acceleration condition of 2 g for about 2 hours, heat treated at about 1000 ° C., and then pulverized into particles. Manufacturing method. ケイ化バナジウムとケイ素マイクロ粒子との混合物を空気雰囲気中加速度2gの条件で約2時間ボールミル加工を施し、約1000℃で熱処理し、その後粉砕して粒子とすることを特徴とする固体高分子形燃料電池用電極触媒の製法。   Solid polymer form characterized in that a mixture of vanadium silicide and silicon microparticles is ball milled for about 2 hours in an air atmosphere at an acceleration rate of 2 g, heat treated at about 1000 ° C., and then pulverized into particles. Manufacturing method of fuel cell electrode catalyst.
JP2008098756A 2008-04-04 2008-04-04 Electrode catalyst for solid polymer type fuel cell and its manufacturing method Pending JP2009252521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008098756A JP2009252521A (en) 2008-04-04 2008-04-04 Electrode catalyst for solid polymer type fuel cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008098756A JP2009252521A (en) 2008-04-04 2008-04-04 Electrode catalyst for solid polymer type fuel cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009252521A true JP2009252521A (en) 2009-10-29

Family

ID=41313042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008098756A Pending JP2009252521A (en) 2008-04-04 2008-04-04 Electrode catalyst for solid polymer type fuel cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009252521A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4913265B2 (en) * 2009-07-16 2012-04-11 昭和電工株式会社 Method for producing catalyst for fuel cell, catalyst for fuel cell obtained by the production method, and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4913265B2 (en) * 2009-07-16 2012-04-11 昭和電工株式会社 Method for producing catalyst for fuel cell, catalyst for fuel cell obtained by the production method, and use thereof

Similar Documents

Publication Publication Date Title
Chen et al. Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media
Alesker et al. Palladium/nickel bifunctional electrocatalyst for hydrogen oxidation reaction in alkaline membrane fuel cell
Lambert et al. Electrodeposited Ni x Co 3− x O 4 nanostructured films as bifunctional oxygen electrocatalysts
CN109906287B (en) Electrocatalyst compositions comprising noble metal oxides supported on tin oxide
JP5907736B2 (en) Active particle-containing catalyst, process for producing the same, electrode including the catalyst, and battery including the electrode
US9947936B2 (en) Oxygen reduction catalyst and method for producing same
US9276269B2 (en) Catalyst layer, membrane electrode assembly, and electrochemical cell
Kim et al. The plasma-assisted formation of Ag@ Co3O4 core-shell hybrid nanocrystals for oxygen reduction reaction
CA2721913A1 (en) Catalyst, process for production of the same, and use of the same
KR20180108805A (en) A carbon powder for a fuel cell, a catalyst using the carbon powder for the fuel cell, an electrode catalyst layer, a membrane electrode assembly and a fuel cell
JP2008155111A (en) Acid resistant electrode catalyst
US11824208B2 (en) Intermetallic catalyst and method for preparing the same
Li et al. Preparation and characterization of carbon-supported PtOs electrocatalysts via polyol reduction method for methanol oxidation reaction
Kamlungsua et al. Inkjet-printed Ag@ SDC core-shell nanoparticles as a high-performance cathode for low-temperature solid oxide fuel cells
JP6040954B2 (en) Method for producing fuel cell catalyst
Han et al. Enhanced activity of carbon-supported PdCo electrocatalysts toward electrooxidation of ethanol in alkaline electrolytes
JP2010280974A (en) Gas diffusion electrode and method of manufacturing the same
US20220178035A1 (en) Conductive, Anticorrosive Magnesium Titanium Oxide Material
JP5320521B2 (en) Method for producing catalyst for direct liquid fuel cell, catalyst produced by the method and use thereof
US20220219158A1 (en) Intermetallic catalyst and method for preparing the same
JP2011181359A (en) Method of manufacturing catalyst, fuel cell with catalyst carrying electrode, and device with the fuel cell
JP2009252521A (en) Electrode catalyst for solid polymer type fuel cell and its manufacturing method
KR20090078911A (en) Palladium electrode catalyst supported by oxide-coated carbide and the preparation method thereof
JP2017016895A (en) Catalyst particle and catalyst for solid polymer type fuel battery, and method of manufacturing catalyst particle
EP4234762A2 (en) Conductive, anti-corrosive magnesium titanium oxide material