JP2009249238A - Method of manufacturing carbon material - Google Patents

Method of manufacturing carbon material Download PDF

Info

Publication number
JP2009249238A
JP2009249238A JP2008099912A JP2008099912A JP2009249238A JP 2009249238 A JP2009249238 A JP 2009249238A JP 2008099912 A JP2008099912 A JP 2008099912A JP 2008099912 A JP2008099912 A JP 2008099912A JP 2009249238 A JP2009249238 A JP 2009249238A
Authority
JP
Japan
Prior art keywords
pva
halogen
mol
treatment
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008099912A
Other languages
Japanese (ja)
Other versions
JP5326077B2 (en
Inventor
Tsuyoshi Kuroda
剛史 黒田
Junya Yamashita
順也 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP2008099912A priority Critical patent/JP5326077B2/en
Publication of JP2009249238A publication Critical patent/JP2009249238A/en
Application granted granted Critical
Publication of JP5326077B2 publication Critical patent/JP5326077B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a carbon material by treating polyvinyl alcohol (PVA) based resin with halogen and then heat-treating, wherein a high carbonization yield is attained in a short time halogenation. <P>SOLUTION: Before the halogenation, ≥0.7×10<SP>-2</SP>mol of at least one kind of a metal salt selected from alkali metal salts and alkaline earth metal salts is incorporated per 1 mol structural unit of the PVA based resin. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はポリビニルアルコール(以下、「PVA」とも記す。)系樹脂を原料として炭素材料を製造する方法に関する。   The present invention relates to a method for producing a carbon material using a polyvinyl alcohol (hereinafter also referred to as “PVA”) resin as a raw material.

PVA系樹脂を原料として炭素繊維等の炭素材料を製造する技術が種々開発されている。その中で、炭素化過程での熱安定性を向上させて、炭化収率を向上させる目的で、PVA系樹脂にヨウ素処理等のハロゲン処理をした後、熱処理する技術が開発されている(特許文献1,2)。   Various techniques for producing carbon materials such as carbon fibers using PVA-based resins as raw materials have been developed. Among them, for the purpose of improving the thermal stability in the carbonization process and improving the carbonization yield, a technology has been developed in which a PVA resin is subjected to a halogen treatment such as iodine treatment and then heat-treated (patent) References 1, 2).

しかしながら、PVA系樹脂の炭化収率を向上させるには、長時間のハロゲン処理が必要となるので、製造コスト低減の観点からは課題が残る。すなわち、炭化収率を上げれば原料コストは下がるが、工程時間が長くなると結果的に製造コストが上がることになる。例えば、特許文献1の実施例2に記載されたPVA粉末では、炭素化物の収率47%を得るために、ヨウ素処理を120時間行なっており、製造コスト低減の観点からは未だ改善の余地が残されている。
特開2003−128407号公報 特開2004−339627号公報
However, in order to improve the carbonization yield of the PVA-based resin, a long-time halogen treatment is required, so that a problem remains from the viewpoint of reducing manufacturing costs. That is, if the carbonization yield is increased, the raw material cost is reduced, but if the process time is increased, the production cost is increased. For example, in the PVA powder described in Example 2 of Patent Document 1, iodine treatment is performed for 120 hours in order to obtain a yield of carbonized product of 47%, and there is still room for improvement from the viewpoint of reducing manufacturing costs. It is left.
JP 2003-128407 A JP 2004-339627 A

本発明は、PVA系樹脂をハロゲン処理した後、熱処理して炭素材料を製造する方法において、短時間のハロゲン処理で高炭化収率を得ることを目的とする。   An object of the present invention is to obtain a high carbonization yield by a short-time halogen treatment in a method for producing a carbon material by subjecting a PVA-based resin to a halogen treatment and then a heat treatment.

上記課題を解決するために本発明者らは鋭意検討した結果、PVA系樹脂をハロゲン処理する前に、PVA系樹脂に対して、アルカリ金属塩およびアルカリ土類金属塩から選ばれる少なくとも一種の金属塩を特定量以上共存させることによって、従来よりも短時間のハロゲン処理で高炭化収率が得られることを見いだした。   In order to solve the above-mentioned problems, the present inventors have intensively studied. As a result, before the PVA resin is halogenated, the PVA resin is at least one metal selected from alkali metal salts and alkaline earth metal salts. It has been found that a high carbonization yield can be obtained by a halogen treatment in a shorter time than in the prior art by coexisting a specific amount of salt.

本発明の製造方法において、アルカリ金属塩やアルカリ土類金属塩を共存させることにより本発明の効果が得られる理由は、定かではないが、以下の通りに推定される。   In the production method of the present invention, the reason why the effects of the present invention can be obtained by coexisting an alkali metal salt or alkaline earth metal salt is not clear, but is estimated as follows.

1.ハロゲン処理において、例えばヨウ素はヨウ素イオン(I)となってPVA系樹脂の熱安定化に寄与するが、アルカリ金属やアルカリ土類金属の対カチオンの存在によって、ヨウ素イオンが安定化される。 1. In the halogen treatment, for example, iodine becomes iodine ion (I ) and contributes to the thermal stabilization of the PVA resin, but the iodine ion is stabilized by the presence of an alkali metal or alkaline earth metal counter cation.

2.PVA系樹脂をアルカリ金属やアルカリ土類金属の存在下で加熱すると、PVA系樹脂に脱水がおこり、共役二重結合が形成されることが知られている。PVA系樹脂が炭化される場合も、その初期段階で同様の反応が起こると推定される。   2. It is known that when a PVA resin is heated in the presence of an alkali metal or alkaline earth metal, dehydration occurs in the PVA resin and a conjugated double bond is formed. Even when the PVA-based resin is carbonized, it is estimated that the same reaction occurs in the initial stage.

なお、PVA系樹脂は、一般的に、ポリ酢酸ビニルを水酸化ナトリウム触媒にてケン化して製造されるので、PVA系樹脂中には副生物である酢酸ナトリウムが含有されている。しかし、酢酸ナトリウムの含有量はせいぜい約1重量%であり、これはケン化度99%程度のPVA系樹脂の構造単位1モルに対してアルカリ金属塩をせいぜい0.6×10−2モル含有することになるが、この程度の含有量では、後述の比較例1に示すように、本発明による効果が期待できない。 In addition, since a PVA-type resin is generally manufactured by saponifying polyvinyl acetate with a sodium hydroxide catalyst, the PVA-type resin contains sodium acetate as a by-product. However, the content of sodium acetate is at most about 1% by weight, which is at most 0.6 × 10 −2 mol of alkali metal salt per mol of PVA resin structural unit having a saponification degree of about 99%. However, with such a content, as shown in Comparative Example 1 described later, the effect of the present invention cannot be expected.

本発明の製造方法によれば、短時間のハロゲン処理で高炭化収率を得ることができるので、原料コストのみならず、総合的な製造コストを低減することができる。   According to the production method of the present invention, a high carbonization yield can be obtained by a short halogen treatment, so that not only the raw material cost but also the overall production cost can be reduced.

以下、本発明の実施形態を説明する。本発明の製造方法は、ポリビニルアルコール系樹脂をハロゲン処理した後、熱処理して炭素材料を製造するに際して、ハロゲン処理の前に、アルカリ金属塩およびアルカリ土類金属塩から選ばれる少なくとも一種の金属塩をポリビニルアルコール系樹脂に対して特定量以上含有させることを特徴とする。   Embodiments of the present invention will be described below. In the production method of the present invention, at least one metal salt selected from an alkali metal salt and an alkaline earth metal salt is used before producing a carbon material by subjecting a polyvinyl alcohol-based resin to a halogen treatment followed by a heat treatment. Is contained in a specific amount or more with respect to the polyvinyl alcohol-based resin.

〔PVA系樹脂〕
本発明で用いられるポリビニルアルコール系樹脂としては、ポリビニルアルコール、変性ポリビニルアルコールのいずれでも良い。ポリビニルアルコールは酢酸ビニルを単独重合し、更にそれをケン化して製造される。また変性ポリビニルアルコールは酢酸ビニルと他の不飽和単量体との共重合体をケン化して製造され、あるいはポリビニルアルコールを後変性して製造される。
[PVA resin]
The polyvinyl alcohol resin used in the present invention may be either polyvinyl alcohol or modified polyvinyl alcohol. Polyvinyl alcohol is produced by homopolymerizing vinyl acetate and further saponifying it. The modified polyvinyl alcohol is produced by saponifying a copolymer of vinyl acetate and another unsaturated monomer, or is produced by post-modifying polyvinyl alcohol.

上記で他の不飽和単量体としては、例えばエチレン、プロピレン、イソブチレン、α−オクテン、α−ドデセン、α−オクタデセン等のオレフィン類、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸等の不飽和酸類、その塩またはモノもしくはジアルキルエステル等、アクリロニトリル、メタアクリロニトリル等のニトリル類、アクリルアミド、メタクリルアミド等のアミド類、エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸あるいはその塩、アルキルビニルエーテル類、N−アクリルアミドメチルトリメチルアンモニウムクロライド、アリルトリメチルアンモニウムクロライド、ジメチルアリルビニルケトン、N−ビニルピロリドン、塩化ビニル、塩化ビニリデン、ポリオキシエチレン(メタ)アリルエーテル、ポリオキシプロピレン(メタ)アリルエーテルなどのポリオキシアルキレン(メタ)アリルエーテル、ポリオキシエチレン(メタ)アクリレート、ポリオキシプロピレン(メタ)アクリレート等のポリオキシアルキレン(メタ)アクリレート、ポリオキシエチレン(メタ)アクリルアミド、ポリオキシプロピレン(メタ)アクリルアミド等のポリオキシアルキレン(メタ)アクリルアミド、ポリオキシエチレン(1−(メタ)アクリルアミド−1,1−ジメチルプロピル)エステル、ポリオキシエチレンビニルエーテル、ポリオキシプロピレンビニルエーテル、ポリオキシエチレンアリルアミン、ポリオキシプロピレンアリルアミン、ポリオキシエチレンビニルアミン、ポリオキシプロピレンビニルアミン等が挙げられる。   Examples of other unsaturated monomers include olefins such as ethylene, propylene, isobutylene, α-octene, α-dodecene, α-octadecene, acrylic acid, methacrylic acid, crotonic acid, maleic acid, and maleic anhydride. , Unsaturated acids such as itaconic acid, its salts or mono- or dialkyl esters, nitriles such as acrylonitrile and methacrylonitrile, amides such as acrylamide and methacrylamide, ethylene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, etc. Olefin sulfonic acid or its salt, alkyl vinyl ethers, N-acrylamidomethyltrimethylammonium chloride, allyltrimethylammonium chloride, dimethylallyl vinyl ketone, N-vinylpyrrolidone, vinyl chloride, vinyl chloride Polyoxyalkylene (meth) allyl ether such as polyoxyethylene (meth) allyl ether, polyoxypropylene (meth) allyl ether, polyoxyalkylene such as polyoxyethylene (meth) acrylate and polyoxypropylene (meth) acrylate (Meth) acrylate, polyoxyethylene (meth) acrylamide, polyoxyalkylene (meth) acrylamide such as polyoxypropylene (meth) acrylamide, polyoxyethylene (1- (meth) acrylamide-1,1-dimethylpropyl) ester, Polyoxyethylene vinyl ether, polyoxypropylene vinyl ether, polyoxyethylene allylamine, polyoxypropylene allylamine, polyoxyethylene vinylamine, polyoxypropylene Nbiniruamin, and the like.

また後変性の方法としては、ポリビニルアルコールをアセト酢酸エステル化、アセタール化、ウレタン化、エーテル化、グラフト化、リン酸エステル化、オキシアルキレン化する方法等が挙げられる。   Examples of the post-modification method include acetoacetate esterification, acetalization, urethanization, etherification, grafting, phosphate esterification, and oxyalkyleneation.

かかるPVA系樹脂のなかでも、ケン化度が95〜100モル%が好ましく、特に97〜99.9モル%、更には98〜99.8モル%が好ましい。かかるケン化度が低すぎると、ヨウ素処理後の熱処理時において脱水反応が阻害され、炭化収率が低下するおそれがある。   Among such PVA-based resins, the saponification degree is preferably 95 to 100 mol%, particularly preferably 97 to 99.9 mol%, and more preferably 98 to 99.8 mol%. If the degree of saponification is too low, the dehydration reaction may be inhibited during the heat treatment after the iodine treatment, and the carbonization yield may be reduced.

また、PVA系樹脂の平均重合度は300〜5000が好ましく、特に400〜4000、更には500〜3000が好ましい。かかる平均重合度が高すぎたり、低すぎたりすると、取り扱い性の点で好ましくない。なお、上記ケン化度や平均重合度はJISK6726に準じて測定されるものである。   The average degree of polymerization of the PVA resin is preferably 300 to 5000, particularly preferably 400 to 4000, and more preferably 500 to 3000. If the average degree of polymerization is too high or too low, it is not preferable from the viewpoint of handleability. The saponification degree and average polymerization degree are measured according to JISK6726.

〔金属塩〕
本発明では、PVA系樹脂をハロゲン処理する前に、アルカリ金属塩およびアルカリ土類金属塩から選ばれる少なくとも一種の金属塩をPVA系樹脂に含有させる。アルカリ金属としては、ナトリウム、カリウムが挙げられ、アルカリ土類金属としてはマグネシウム、カルシウム、バリウムが挙げられるが、なかでも、ナトリウムが好ましい。また、塩としては、塩化物、臭化物、ヨウ化物等のハロゲン化物、硫酸塩、硝酸塩等の無機塩、酢酸塩、シュウ酸塩、乳酸塩等のカルボン酸塩が挙げられるが、これらの中でも、酢酸塩が好ましい。したがって、酢酸ナトリウムが最も好適である。
[Metal salt]
In the present invention, before the PVA resin is halogenated, the PVA resin contains at least one metal salt selected from an alkali metal salt and an alkaline earth metal salt. Examples of the alkali metal include sodium and potassium, and examples of the alkaline earth metal include magnesium, calcium, and barium. Of these, sodium is preferable. Examples of the salt include halides such as chloride, bromide and iodide, inorganic salts such as sulfate and nitrate, and carboxylates such as acetate, oxalate and lactate. Among these, Acetate is preferred. Therefore, sodium acetate is most preferred.

金属塩をPVA系樹脂に含有させる方法としては、特に制限されないが、PVA系樹脂に均一に含有させ易い等の理由から、金属塩を水溶液の状態にて含有させるのが好ましい。金属塩をPVA系樹脂に含有させるタイミングは、ハロゲン処理前であれば特に制限されず、例えばポリ酢酸ビニルのケン化前やケン化後に金属塩を添加しても良い。なお、金属塩を含有させる時のPVA系樹脂の形態も特に制限されず、液状や粒子状等の無定形、フィルム状や繊維状等の定形のいかなる形態であっても良い。   The method for containing the metal salt in the PVA resin is not particularly limited, but it is preferable to contain the metal salt in an aqueous solution because it is easy to uniformly contain the PVA resin. The timing at which the metal salt is contained in the PVA resin is not particularly limited as long as it is before the halogen treatment. For example, the metal salt may be added before or after saponification of polyvinyl acetate. In addition, the form of the PVA resin when the metal salt is contained is not particularly limited, and may be any form such as an amorphous form such as a liquid form or a particulate form, or a regular form such as a film form or a fiber form.

PVA系樹脂に含有させる金属塩の量は、PVA系樹脂の構造単位1モルに対して0.7×10−2モル以上であり、好ましくは0.7×10−2モル以上3×10−2モル以下、より好ましくは0.7×10−2モル以上2.5×10−2モル以下、さらに好ましくは0.8×10−2モル以上2×10−2モル以下である。金属塩の量が少ないと本発明による効果が期待できず、金属塩の量が多すぎると、配合量に見合った効果が期待できなくなる場合がある。 The amount of metal salts to be contained in the PVA-based resin is a resin 0.7 × 10 -2 mol or more with respect to the structural units to 1 mol of the PVA-based resin, preferably 0.7 × 10 -2 mol to 3 × 10 - 2 mol or less, more preferably 0.7 × 10 −2 mol or more and 2.5 × 10 −2 mol or less, further preferably 0.8 × 10 −2 mol or more and 2 × 10 −2 mol or less. If the amount of the metal salt is small, the effect of the present invention cannot be expected, and if the amount of the metal salt is too large, an effect commensurate with the blending amount may not be expected.

〔ハロゲン処理〕
本発明では、アルカリ金属塩およびアルカリ土類金属塩から選ばれる少なくとも一種の金属塩を含有するPVA系樹脂に対してハロゲン処理を行なう。ハロゲン処理において用いられるハロゲンとしては、ヨウ素、フッ素、塩素、臭素、またはそれらの化合物が挙げられ、これらを単独または2種類以上を混合して用いることができる。これらのハロゲンの中で、工業的な汎用性、取り扱い易さ等の点からヨウ素が好ましい。
[Halogen treatment]
In the present invention, halogen treatment is performed on a PVA resin containing at least one metal salt selected from alkali metal salts and alkaline earth metal salts. Examples of the halogen used in the halogen treatment include iodine, fluorine, chlorine, bromine, or a compound thereof, and these can be used alone or in combination of two or more. Among these halogens, iodine is preferable from the viewpoints of industrial versatility and ease of handling.

PVA系樹脂にハロゲン処理を施す方法としては、必要なハロゲン量をPVA系樹脂の表面または内部に容易かつ均一に含有させることができれば特に制限はない。例えば、ハロゲンを含有する気体または水溶液中にPVA系樹脂を存在または通過させることによって実施することができる。なお、ハロゲンを含有する気体中にPVA系樹脂を存在または通過させる場合には、それに先立ってPVA系樹脂を乾燥させることが好ましい。この乾燥は、PVA系樹脂を乾燥させるのに通常採用されている方法に従って行うことができる。   The method for subjecting the PVA resin to halogen treatment is not particularly limited as long as the necessary halogen amount can be easily and uniformly contained on the surface or inside of the PVA resin. For example, it can be carried out by the presence or passage of a PVA-based resin in a halogen-containing gas or aqueous solution. In addition, when PVA-type resin exists or passes through in the gas containing halogen, it is preferable to dry PVA-type resin prior to that. This drying can be performed according to a method usually employed for drying the PVA-based resin.

ハロゲンを含有する気体を用いてハロゲン処理を行なう場合には、気体中のハロゲン濃度は、使用するハロゲンの種類、PVA系樹脂の形態、炭素材料の用途等によっても異なるが、通常0.1〜100体積%、好ましくは0.2〜50体積%である。ハロゲンを含有させる気体としては、汎用性、安全性などの観点から、窒素、空気、酸素又はこれらの混合ガスが用いられる。   When halogen treatment is performed using a gas containing halogen, the halogen concentration in the gas varies depending on the type of halogen used, the form of the PVA resin, the use of the carbon material, etc. It is 100 volume%, Preferably it is 0.2-50 volume%. As the gas containing halogen, nitrogen, air, oxygen, or a mixed gas thereof is used from the viewpoints of versatility and safety.

ハロゲンを含有する水溶液を用いてハロゲン処理を行なう場合には、水溶液中のハロゲン濃度は、使用するハロゲンの種類等によっても異なるが、通常0.01〜30重量%の範囲である。水溶液中には、ハロゲンが水に溶解し易くする目的で、ヨウ化カリウム等のハロゲン化金属を混合することが好ましい。   When halogen treatment is performed using an aqueous solution containing halogen, the halogen concentration in the aqueous solution is usually in the range of 0.01 to 30% by weight, although it varies depending on the type of halogen used. In the aqueous solution, it is preferable to mix a metal halide such as potassium iodide for the purpose of easily dissolving the halogen in water.

ハロゲン処理に際しては、PVA系樹脂とハロゲンを加熱条件下に接触させる。ハロゲンを含有する気体を用いてハロゲン処理を行なう場合には、ハロゲンが蒸気化し、かつハロゲンガス雰囲気中にPVA系樹脂を存在させることのできる温度、例えばハロゲンがヨウ素であれば、通常50〜200℃、特に80〜180℃、さらに約100℃で処理するのが好ましい。また、ハロゲンを含有する水溶液を用いてハロゲン処理を行なう場合には、水の沸点以下の温度、特に5〜100℃で処理するのが好ましい。   In the halogen treatment, the PVA resin and halogen are brought into contact under heating conditions. When the halogen treatment is performed using a gas containing halogen, the temperature at which the halogen is vaporized and the PVA resin can be present in the halogen gas atmosphere, for example, if the halogen is iodine, usually 50 to 200. It is preferable to treat at a temperature of 80 ° C., in particular 80-180 ° C., more preferably about 100 ° C. Moreover, when performing halogen treatment using the aqueous solution containing halogen, it is preferable to treat at a temperature not higher than the boiling point of water, particularly 5 to 100 ° C.

本発明では、ハロゲン処理に要する時間を従来よりも短時間としつつ、高炭化収率を得ることが特長の一つである。例えばヨウ素ガスを用いてハロゲン処理を行なう場合、特許文献1に記載の方法では50〜150時間を実質的に必要とするが、本発明では数十時間程度、例えば10〜30時間のハロゲン処理で特許文献1に記載の方法と同等の炭化収率を得ることができる。   In the present invention, it is one of the features that a high carbonization yield is obtained while the time required for the halogen treatment is set to be shorter than the conventional time. For example, when halogen treatment is performed using iodine gas, the method described in Patent Document 1 substantially requires 50 to 150 hours, but in the present invention, the halogen treatment is performed for about several tens of hours, for example, 10 to 30 hours. Carbonization yield equivalent to the method described in Patent Document 1 can be obtained.

なお、ハロゲンを含有する水溶液を用いてハロゲン処理を行なう場合には、PVA系樹脂に水溶液を接触させた後、PVA系樹脂に付着した溶媒の乾燥や、加熱空気や加熱不活性ガスによる熱処理が行なわれる。本発明においては、このような乾燥や熱処理に要する時間もハロゲン処理に要する時間に含まれるものとする。   In addition, when performing halogen treatment using an aqueous solution containing halogen, after bringing the aqueous solution into contact with the PVA resin, drying of the solvent adhering to the PVA resin, or heat treatment with heated air or a heated inert gas is performed. Done. In the present invention, the time required for such drying and heat treatment is included in the time required for the halogen treatment.

〔熱処理〕
本発明では、ハロゲン処理の後に、PVA系樹脂に対して熱処理を行なう。熱処理は、炭酸ガス、水蒸気、空気等の活性ガスが存在しない活性ガス非存在下、または窒素ガス等の不活性ガス存在下で行なわれる。熱処理時の温度は、通常500〜3500℃であり、好ましくは1000〜3000℃である。熱処理に際しては、上記の温度雰囲気中にPVA系樹脂を投入しても良いし、徐々に昇温させて上記温度雰囲気としても良い。また、昇温途上において所定温度に数時間程度保持した後、昇温させても良い。例えば、PVA系樹脂の軟化点(約200℃)よりも高い温度や脱水素反応が進行する温度(約300℃)よりも高い温度で1時間程度保持した後、上記の温度に昇温させても良い。
〔Heat treatment〕
In the present invention, the PVA resin is subjected to heat treatment after the halogen treatment. The heat treatment is performed in the absence of an active gas such as carbon dioxide gas, water vapor, or air, or in the presence of an inert gas such as nitrogen gas. The temperature at the time of heat processing is 500-3500 degreeC normally, Preferably it is 1000-3000 degreeC. In the heat treatment, the PVA-based resin may be put into the above temperature atmosphere, or the temperature atmosphere may be gradually raised. Further, the temperature may be raised after being kept at a predetermined temperature for several hours in the course of temperature raising. For example, after holding for about 1 hour at a temperature higher than the softening point of PVA resin (about 200 ° C.) or higher than the temperature at which dehydrogenation proceeds (about 300 ° C.), the temperature is raised to the above temperature. Also good.

以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention is not limited to a following example, unless the summary is exceeded.

〔実施例1〕
PVA粉末(ケン化度99.3モル%、4%水溶液の粘度13.5mPa・s、酢酸ナトリウム含有量1重量%)に酢酸ナトリウム水溶液を添加、混合し、五酸化リンデシケーター中で乾燥させて、酢酸ナトリウムの含有量が2重量%のPVA粉末を調製した。このPVA粉末は、PVA98重量%、酢酸ナトリウム2重量%であるから、PVAの構造単位1モルに対して酢酸ナトリウムを(2/82)/(98/44.3)=1.1×10−2モル含有する。なお、PVA構造単位の分子量は、ケン化度99.3モル%から、44(ビニルアルコールの分子量)×0.993+86(酢酸ビニルの分子量)×0.007=44.3と算出される。
[Example 1]
Sodium acetate aqueous solution was added to PVA powder (saponification degree 99.3 mol%, 4% aqueous solution viscosity 13.5 mPa · s, sodium acetate content 1 wt%), mixed and dried in a phosphorus pentoxide desiccator. A PVA powder having a sodium acetate content of 2% by weight was prepared. The PVA powder, PVA98 wt%, because it is 2 wt% sodium acetate, sodium acetate relative to the structural units to 1 mol of the PVA (2/82) / (98 / 44.3) = 1.1 × 10 - Contains 2 moles. The molecular weight of the PVA structural unit is calculated as 44 (molecular weight of vinyl alcohol) × 0.993 + 86 (molecular weight of vinyl acetate) × 0.007 = 44.3 from a saponification degree of 99.3 mol%.

PVA粉末とガラス容器に封入されたヨウ素粉末とを反応容器内に入れ、この反応容器内をロータリーポンプで吸引して減圧にした後、密閉した。この反応容器を100℃に制御された電気炉内に静置し、6時間のヨウ素処理を行った後、電気炉から反応容器を取り出し、これを室温まで冷却して、ヨウ素処理されたPVA粉末を得た。   PVA powder and iodine powder sealed in a glass container were placed in a reaction container, and the inside of the reaction container was vacuumed by suction with a rotary pump, and then sealed. This reaction vessel is left in an electric furnace controlled at 100 ° C. and subjected to iodine treatment for 6 hours. Then, the reaction vessel is taken out from the electric furnace and cooled to room temperature, and then the iodine-treated PVA powder is used. Got.

次に、ヨウ素処理されたPVA粉末を石英ボートに載せ、これを横型管状炉に入れ、窒素ガス流量250ml/分の窒素気流下、昇降温速度2℃/分で1000℃まで加熱して炭素化処理を行うことにより、粉末状の炭素化物を得た。得られた粉末状の炭素化物の質量を、室温において化学天秤を用いて測定したところ、炭化収率は36.0%であった。   Next, the iodine-treated PVA powder is placed on a quartz boat, placed in a horizontal tubular furnace, and heated to 1000 ° C. at a temperature increase / decrease rate of 2 ° C./min under a nitrogen gas flow of 250 ml / min for carbonization. By performing the treatment, a powdered carbonized product was obtained. When the mass of the obtained powdery carbonized material was measured using an analytical balance at room temperature, the carbonization yield was 36.0%.

〔比較例1〕
酢酸ナトリウム水溶液を添加しないことを除いて、実施例1と同様にして、粉末状の炭素化物を得た。得られた粉末状の炭素化物の炭化収率は31.6%であった。なお、このPVA粉末は、PVA99重量%、酢酸ナトリウム1重量%であるから、PVAの構造単位1モルに対して酢酸ナトリウムを(1/82)/(99/44.3)=0.55×10−2モル含有する。実施例1及び比較例1の結果を表1にまとめる。
[Comparative Example 1]
A powdery carbonized product was obtained in the same manner as in Example 1 except that an aqueous sodium acetate solution was not added. The carbonization yield of the obtained powdery carbonized product was 31.6%. Since this PVA powder is 99% by weight of PVA and 1% by weight of sodium acetate, sodium acetate is (1/82) / (99 / 44.3) = 0.55 × with respect to 1 mol of the structural unit of PVA. Contains 10-2 mol. The results of Example 1 and Comparative Example 1 are summarized in Table 1.

Figure 2009249238
Figure 2009249238

実施例1と比較例1とを対比すれば明らかなように、PVA粉末中の酢酸ナトリウム含有量がPVAの構造単位1モルに対して0.7×10−2モルよりも少ないと、炭化収率が低下し、換言すれば実施例1と同等の炭化収率を得るために更に長時間のヨウ素処理を要することが分かる。 As apparent from the comparison between Example 1 and Comparative Example 1, when the content of sodium acetate in the PVA powder is less than 0.7 × 10 −2 mol relative to 1 mol of the structural unit of PVA, the carbonization yield is reduced. It can be seen that the rate decreases, in other words, a longer iodine treatment is required to obtain the same carbonization yield as in Example 1.

Claims (1)

ポリビニルアルコール系樹脂をハロゲン処理した後、熱処理して炭素材料を製造する方法において、ハロゲン処理の前に、アルカリ金属塩およびアルカリ土類金属塩から選ばれる少なくとも一種の金属塩をポリビニルアルコール系樹脂の構造単位1モルに対して0.7×10−2モル以上含有させることを特徴とする炭素材料の製造方法。 In the method of producing a carbon material by heat-treating a polyvinyl alcohol resin after halogen treatment, before the halogen treatment, at least one metal salt selected from an alkali metal salt and an alkaline earth metal salt is added to the polyvinyl alcohol resin. The manufacturing method of the carbon material characterized by including 0.7 * 10 <-2 > mol or more with respect to 1 mol of structural units.
JP2008099912A 2008-04-08 2008-04-08 Carbon material manufacturing method Expired - Fee Related JP5326077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008099912A JP5326077B2 (en) 2008-04-08 2008-04-08 Carbon material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008099912A JP5326077B2 (en) 2008-04-08 2008-04-08 Carbon material manufacturing method

Publications (2)

Publication Number Publication Date
JP2009249238A true JP2009249238A (en) 2009-10-29
JP5326077B2 JP5326077B2 (en) 2013-10-30

Family

ID=41310280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008099912A Expired - Fee Related JP5326077B2 (en) 2008-04-08 2008-04-08 Carbon material manufacturing method

Country Status (1)

Country Link
JP (1) JP5326077B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011080983A1 (en) 2009-12-29 2011-07-07 楽天株式会社 OBJECT CONTROL METHOD, OBJECT CONTROL PROGRAM, AND WeB SERVER
CN104891475A (en) * 2015-06-10 2015-09-09 北京化工大学 Method for preparing heteroatom-doped carbon material at room temperature
CN104900423A (en) * 2015-06-10 2015-09-09 北京化工大学 Preparing method for doped carbon material of super-capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841042A (en) * 1971-10-01 1973-06-16
JPS4924897A (en) * 1972-07-01 1974-03-05
JPS569423A (en) * 1979-06-28 1981-01-30 Kuraray Co Ltd Preparation of colored fiber or molded article
JP2003128407A (en) * 2001-10-19 2003-05-08 National Institute Of Advanced Industrial & Technology Method for manufacturing carbon material from polyvinyl alcohol
JP2004339627A (en) * 2003-05-14 2004-12-02 Kuraray Co Ltd Method for producing carbonaceous fiber, and carbonaceous fiber and activated carbon fiber
JP2009185425A (en) * 2008-02-08 2009-08-20 Shinshu Univ Hollow carbon fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841042A (en) * 1971-10-01 1973-06-16
JPS4924897A (en) * 1972-07-01 1974-03-05
JPS569423A (en) * 1979-06-28 1981-01-30 Kuraray Co Ltd Preparation of colored fiber or molded article
JP2003128407A (en) * 2001-10-19 2003-05-08 National Institute Of Advanced Industrial & Technology Method for manufacturing carbon material from polyvinyl alcohol
JP2004339627A (en) * 2003-05-14 2004-12-02 Kuraray Co Ltd Method for producing carbonaceous fiber, and carbonaceous fiber and activated carbon fiber
JP2009185425A (en) * 2008-02-08 2009-08-20 Shinshu Univ Hollow carbon fiber

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013007667; 五十嵐 民人 ほか: 'ヨウ素処理を用いたポリビニルアルコール系炭素の製造' 第30回炭素材料学会年会要旨集 , 20031204, 第164〜165ページ *
JPN6013007669; 山下 順也 ほか: '化学的に熱安定化したビニル系ポリマーからの炭素の調製' 炭素 No.204, 20021007, 第182〜191ページ *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011080983A1 (en) 2009-12-29 2011-07-07 楽天株式会社 OBJECT CONTROL METHOD, OBJECT CONTROL PROGRAM, AND WeB SERVER
CN104891475A (en) * 2015-06-10 2015-09-09 北京化工大学 Method for preparing heteroatom-doped carbon material at room temperature
CN104900423A (en) * 2015-06-10 2015-09-09 北京化工大学 Preparing method for doped carbon material of super-capacitor

Also Published As

Publication number Publication date
JP5326077B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5325573B2 (en) Dispersion stabilizer
US9062132B2 (en) Dispersion stabilizer for suspension polymerization
KR102178402B1 (en) Dispersion stabilizer for suspension polymerization, and manufacturing method for vinyl resin
TWI616458B (en) Dispersion stabilizer for suspension polymerization and method for producing vinyl resin
JP6704350B2 (en) Dispersion stabilizer for suspension polymerization and method for producing vinyl resin
WO2010090322A1 (en) Hydrophilic polyacrylic acid (salt) resin and manufacturing method thereof
EP1174444B1 (en) Dispersion stablizer for suspension polymerization of vinyl compound
JP6469086B2 (en) Method for producing chlorinated vinyl chloride resin
JP5326077B2 (en) Carbon material manufacturing method
JP3474307B2 (en) Dispersion stabilizer for suspension polymerization of vinyl compounds
JP5891242B2 (en) Method for producing chlorinated vinyl chloride resin
JP3995584B2 (en) Method for producing dispersion stabilizer for suspension polymerization of vinyl compounds
JP2002097208A (en) Dispersion stabilizer for suspension polymerization of vinyl compound
JP4245784B2 (en) Dispersion stabilizer for suspension polymerization of vinyl chloride
JP4781694B2 (en) Aqueous emulsion
WO2017208974A1 (en) Process for producing vinyl-alcohol-based polymer
JP5465635B2 (en) Dispersion stabilizer for suspension polymerization of vinyl compounds
JP2002097209A (en) Dispersion stabilizer for suspension polymerization of vinyl compound
JP5465615B2 (en) Dispersion stabilizer for suspension polymerization
JP3487742B2 (en) Method for producing chlorinated vinyl chloride resin
JP2002037807A (en) Dispersion stabilizer for suspension polymerization of vinyl compound
JP3563176B2 (en) Dispersion stabilizer for suspension polymerization of vinyl compounds
JP2023147934A (en) Method for immobilizing carbonate, method for manufacturing carbonate immobilized gel, and carbonate immobilized gel
JP2003176306A (en) Dispersion stabilizer for suspension polymerization of vinyl compound
JP2017226781A (en) Vinyl alcohol-based polymer aqueous solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130521

R150 Certificate of patent or registration of utility model

Ref document number: 5326077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees