JP2005330158A - Method for manufacturing complex oxide sintered body, and sputtering target composed of its sintered body - Google Patents

Method for manufacturing complex oxide sintered body, and sputtering target composed of its sintered body Download PDF

Info

Publication number
JP2005330158A
JP2005330158A JP2004150497A JP2004150497A JP2005330158A JP 2005330158 A JP2005330158 A JP 2005330158A JP 2004150497 A JP2004150497 A JP 2004150497A JP 2004150497 A JP2004150497 A JP 2004150497A JP 2005330158 A JP2005330158 A JP 2005330158A
Authority
JP
Japan
Prior art keywords
sintered body
oxide
resistivity
zinc oxide
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004150497A
Other languages
Japanese (ja)
Other versions
JP4733930B2 (en
Inventor
Shigeru Saito
茂 斎藤
Yutaka Kin
豊 金
Junichi Nitta
純一 新田
Masaru Wada
優 和田
Tadamune Okubo
忠宗 大久保
Kaoru Rinoen
馨 里之園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Techno Ltd
Original Assignee
Ulvac Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Materials Inc filed Critical Ulvac Materials Inc
Priority to JP2004150497A priority Critical patent/JP4733930B2/en
Publication of JP2005330158A publication Critical patent/JP2005330158A/en
Application granted granted Critical
Publication of JP4733930B2 publication Critical patent/JP4733930B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a sintered body which has resistivity lower than that of such sintered body of zinc oxide and aluminum oxide as is obtained by the conventional technique and which however has a density equal to that of such sintered body and to provide a sputtering target composed of the sintered body. <P>SOLUTION: The sintered body is such that a mixed powder consisting of zinc oxide and aluminum oxide is sintered by maintaining 10 hours or longer under an atmosphere of 1,400°C or higher and of an oxygen concentration of 20% or more. The sputtering target comprises the multiple oxide sintered body obtained. This sintered body has a weight ratio of aluminum oxide of 2-7% by weight in terms of aluminum relative to zinc oxide, resistivity of 3 mΩ cm or less, and a density of 5.4-5.6 g/cm<SP>3</SP>. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複合酸化物焼結体の製造方法及びその焼結体からなるスパッタリングターゲットに関し、特にパーティクル発生を制御した酸化亜鉛と酸化アルミニウムとの複合酸化物焼結体の製造方法及びその複合酸化物焼結体からなるスパッタリングターゲットに関する。   TECHNICAL FIELD The present invention relates to a method for producing a composite oxide sintered body and a sputtering target comprising the sintered body, and more particularly to a method for producing a composite oxide sintered body of zinc oxide and aluminum oxide with controlled particle generation and the composite oxidation thereof. The present invention relates to a sputtering target made of a sintered product.

フラットパネルディスプレイの分野において透明導電膜として知られる酸化亜鉛膜のキャリア密度を制御する方法の一つとしてアルミニウムをドープすること、また、酸化亜鉛と酸化アルミニウムとの複合酸化物材料はプラズマ耐性に優れかつ大気中ででの安定性に優れるところから、太陽電池を始めとして各種透明電極材として用いられ得ることが知られている(例えば、特許文献1参照)。   Doping aluminum as one of the methods to control the carrier density of zinc oxide film known as transparent conductive film in the field of flat panel display, and composite oxide material of zinc oxide and aluminum oxide has excellent plasma resistance And since it is excellent in the stability in air | atmosphere, it is known that it can be used as various transparent electrode materials including a solar cell (for example, refer patent document 1).

従来から知られている酸化亜鉛系スパッタリングターゲット(例えば、ZnO−Al系焼結体)は、透明導電膜等の薄膜形成の手段として用いられる場合、スパッタリング成膜時における異常放電の発生により、パーティクルの発生を伴うため、製品歩留まりが低下するという問題がある。例えば、特許文献1では、このような異常放電に伴うパーティクル発生を抑制する手段として、製造方法の工夫による焼結体の高密度化等の方策について提案しているが、焼結体の低抵抗化(低抵抗率化)によるスパッタリング成膜時の負荷電圧の低減によって異常放電の抑制を追求する方策については検討されていない。その結果として、現状では、焼結体の高抵抗による異常放電の発生が避けられず、異常放電に際して飛散するパーティクルによる基板不良が生じ、そのために、生産性の低下は免れないという問題がある。 Conventionally known zinc oxide-based sputtering targets (for example, ZnO—Al 2 O 3 -based sintered bodies) are used as a means for forming a thin film such as a transparent conductive film, and abnormal discharge occurs during sputtering film formation. Therefore, there is a problem that the product yield is lowered due to generation of particles. For example, Patent Document 1 proposes a measure for increasing the density of a sintered body by devising a manufacturing method as means for suppressing the generation of particles accompanying such abnormal discharge. A method for pursuing the suppression of abnormal discharge by reducing the load voltage during sputtering film formation by reducing the resistivity (reducing resistivity) has not been studied. As a result, at present, the occurrence of abnormal discharge due to the high resistance of the sintered body is unavoidable, and there is a problem in that a substrate failure occurs due to particles scattered during the abnormal discharge, and thus a reduction in productivity is inevitable.

一般に、酸化物材料からなるスパッタリングターゲットによるスパッタリング成膜時の異常放電を抑制する手段として、成膜条件の面ではスパッタリング成膜時における低電圧化、また、ターゲット材料の面では低抵抗化及び高密度化という、成膜条件及び材料の両方から検討されている。   In general, as a means of suppressing abnormal discharge during sputtering film formation using a sputtering target made of an oxide material, the voltage during sputtering film formation is low in terms of film formation conditions, and the resistance and high resistance are low in terms of target materials. Densification has been studied from both the film formation conditions and materials.

しかるに、ZnO−Al系材料の異常放電防止策に関する従来の試みは、もっぱら材料の高密度化に注力されており、低抵抗化への注力はない。この高密度化に関しては、焼結体原料粉体の微細化を図り、高い密度の焼結体を得る方法が提案されている(例えば、特許文献2参照)。しかしながら、この場合においても、焼結体の抵抗率は十分に低いとはいえない。その結果、スパッタリング成膜時の異常放電とそれに伴うパーティクル発生は、スパッタリングの生産性を大きく低下させている。このことは、ZnO−Al系材料においても、材料の高密度化のみならず、同時に低抵抗化も達成しなければ、従来の問題点の解決が困難であることを示唆している。 However, conventional attempts related to measures for preventing abnormal discharge of ZnO—Al 2 O 3 -based materials have been focused exclusively on increasing the density of the materials and not on reducing the resistance. Regarding this densification, a method has been proposed in which the sintered compact raw material powder is refined to obtain a high density sintered compact (see, for example, Patent Document 2). However, even in this case, it cannot be said that the resistivity of the sintered body is sufficiently low. As a result, the abnormal discharge during the sputtering film formation and the accompanying particle generation greatly reduce the sputtering productivity. This suggests that, even in a ZnO-Al 2 O 3 based material, it is difficult to solve the conventional problems unless the material is densified and at the same time the resistance is not reduced. .

ところで、スパッタリング成膜時の放電特性、特に同じスパッタリングレートを確保するのに電圧(放電インピーダンス)が低ければ低い程、異常放電の発生回数は少なくなることが知られている。放電インピーダンスを抑える手法としては、できるだけ抵抗率が低い焼結体をスパッタリングターゲットとして使用することが必要である。焼結体の低抵抗化に関しては、「酸素欠陥の導入」が提案されているが、酸化亜鉛と酸化アルミニウムとの複合酸化物焼結体の場合には、せいぜい5mΩ・cm程度の抵抗率が得られているに過ぎない。酸化亜鉛ZnOは1300℃を越える領域において昇華還元反応が始まることが知られており(非特許文献1参照)、1300℃を越える焼結温度で得られた焼結体の抵抗率は充分に低いとは言えず、その結果、現状では、スパッタリング成膜時のパーティクル発生量が充分に減少しているとは言えない。
特許第2805813号(特許請求の範囲、2頁左欄7−11行等) 特許第3301755号(特許請求の範囲等) 大谷正康著、「鉄冶金力学」(103頁)
By the way, it is known that the lower the voltage (discharge impedance) is, the smaller the number of occurrences of abnormal discharge is, in order to ensure the discharge characteristics during sputtering film formation, particularly the same sputtering rate. As a technique for suppressing the discharge impedance, it is necessary to use a sintered body having a resistivity as low as possible as a sputtering target. Regarding the reduction of the resistance of the sintered body, “introduction of oxygen defects” has been proposed, but in the case of a composite oxide sintered body of zinc oxide and aluminum oxide, the resistivity is about 5 mΩ · cm at most. It has only been obtained. Zinc oxide ZnO is known to start a sublimation reduction reaction in a region exceeding 1300 ° C. (see Non-Patent Document 1). The resistivity of a sintered body obtained at a sintering temperature exceeding 1300 ° C. is sufficiently low. However, as a result, at present, it cannot be said that the amount of particles generated during sputtering film formation is sufficiently reduced.
Patent No. 2805813 (claims, page 2, left column, lines 7-11) Patent No. 3301755 (Claims etc.) Masaya Otani, “Iron Metallurgical Mechanics” (page 103)

本発明者らは、酸化亜鉛と酸化アルミニウムとからなる焼結体の低抵抗化に関して、酸素欠陥の導入ではなく、酸化亜鉛へのドーパントの面から検討し、電気伝導を担う大きなキャリア密度を有するアルミニウムの酸化亜鉛中への置換固溶を促進することの方が抵抗率を下げるのに有効と考え、酸化亜鉛と酸化アルミニウムとの焼結条件の検討を行った。その結果、従来技術で得られた酸化亜鉛と酸化アルミニウムとの焼結体と同等の密度を維持しながら、より抵抗率を下げる製造条件を見出し、本発明を完成せしめるに至った。   The inventors of the present invention have considered a reduction in resistance of a sintered body made of zinc oxide and aluminum oxide, not from introduction of oxygen defects, but from the aspect of dopant to zinc oxide, and have a large carrier density responsible for electrical conduction. We considered that the promotion of substitutional solid solution of aluminum in zinc oxide is more effective in reducing the resistivity, and investigated the sintering conditions of zinc oxide and aluminum oxide. As a result, while maintaining the same density as the sintered body of zinc oxide and aluminum oxide obtained by the prior art, manufacturing conditions for lowering the resistivity were found, and the present invention was completed.

本発明の課題は、上述の従来技術の問題点を解決することにあり、従来技術で得られた酸化亜鉛と酸化アルミニウムとの焼結体と同等の密度を維持しながら、より抵抗率の低い焼結体を製造する方法及びこの焼結体からなるスパッタリングターゲットを提供することにある。   An object of the present invention is to solve the above-mentioned problems of the prior art, and the resistivity is lower while maintaining the same density as the sintered body of zinc oxide and aluminum oxide obtained by the prior art. It is providing the method of manufacturing a sintered compact, and the sputtering target which consists of this sintered compact.

本発明の複合酸化物焼結体の製造方法は、酸化亜鉛と酸化アルミニウムとからなる混合粉体を、1400℃以上、望ましくは1450℃以上の焼結温度で、酸素濃度20%以上、望ましくは90%以上の焼結雰囲気下に、10時間以上、望ましくは14時間以上保持して焼結せしめ、酸化亜鉛と酸化アルミニウムとの複合酸化物焼結体を得ることを特徴とする。焼結温度が1400℃未満であると、所望の燒結体密度を実現するように焼き固められずまた低抵抗化も実現し難く、酸素濃度が20%未満であると、酸素欠陥が生じ、所望の低抵抗化を実現し難く、焼結時間が10時間未満であると、所望の焼結体密度を実現するように焼き固められずまた低抵抗化も実現し難い。   In the method for producing a composite oxide sintered body of the present invention, a mixed powder composed of zinc oxide and aluminum oxide is sintered at a temperature of 1400 ° C. or higher, preferably 1450 ° C. or higher, and an oxygen concentration of 20% or higher, preferably It is characterized by being sintered in a sintering atmosphere of 90% or more for 10 hours or more, preferably 14 hours or more to obtain a composite oxide sintered body of zinc oxide and aluminum oxide. If the sintering temperature is less than 1400 ° C., it cannot be baked and solidified to achieve a desired sintered density, and it is difficult to achieve a low resistance. If the oxygen concentration is less than 20%, oxygen defects are generated and desired. When the sintering time is less than 10 hours, it is difficult to achieve a desired sintered body density, and it is difficult to achieve a low resistance.

本発明のスパッタリングターゲットは、上記製造方法で得られた複合酸化物焼結体からなることを特徴とする。この複合酸化物焼結体は、抵抗率(比抵抗)が3mΩ・cm以下であり、焼結密度が5.4〜5.6g/cmであることを特徴とする。このような密度を有しかつ抵抗率が低いと、スパッタリング成膜時にパーティクルの発生が抑制されうる。 The sputtering target of the present invention is characterized by comprising a complex oxide sintered body obtained by the above production method. This composite oxide sintered body has a resistivity (specific resistance) of 3 mΩ · cm or less and a sintered density of 5.4 to 5.6 g / cm 3 . When the density is low and the resistivity is low, the generation of particles can be suppressed during sputtering film formation.

本発明のスパッタリングターゲットにおいて、酸化アルミニウムの量が酸化亜鉛に対してアルミニウム換算で2〜7重量%であることを特徴とする。酸化アルミニウムの量が2重量%未満であると酸化亜鉛と酸化アルミニウムとを均一分散させ難く、また、7重量%を超えると得られた焼結体の抵抗率が高くなる。   In the sputtering target of the present invention, the amount of aluminum oxide is 2 to 7% by weight in terms of aluminum with respect to zinc oxide. When the amount of aluminum oxide is less than 2% by weight, it is difficult to uniformly disperse zinc oxide and aluminum oxide, and when it exceeds 7% by weight, the resistivity of the obtained sintered body increases.

本発明のスパッタリングターゲットは、上記したように、酸化アルミニウムの量が酸化亜鉛に対してアルミニウム換算で2〜7重量%である酸化亜鉛と酸化アルミニウムとの複合酸化物焼結体であって、焼結密度が5.4〜5.6g/cmであり、抵抗率が3mΩ・cm以下である複合酸化物焼結体からなることを特徴とする。 As described above, the sputtering target of the present invention is a composite oxide sintered body of zinc oxide and aluminum oxide in which the amount of aluminum oxide is 2 to 7% by weight in terms of aluminum with respect to zinc oxide. It is characterized by comprising a complex oxide sintered body having a consolidation density of 5.4 to 5.6 g / cm 3 and a resistivity of 3 mΩ · cm or less.

本発明によれば、焼結温度1400℃以上、焼結時の酸素分圧20%以上、焼結時間10時間以上の焼結条件で、抵抗率3mΩ・cm以下、例えば〜1mΩcm程度、焼結密度5.4g/cm以上、好ましくは5.4〜5.6g/cmという所望の物性を有する焼結体を製造できると共に、この焼結体からなるスパッタリングターゲットを用いてスパッタリングすると、スパッタリング成膜時に発生する異常放電回数を著しく低減でき、パーティクルの発生を抑制できるという効果を奏する。 According to the present invention, the sintering temperature is 1400 ° C. or higher, the partial pressure of oxygen is 20% or higher, and the sintering time is 10 hours or longer. density 5.4 g / cm 3 or more, and preferably it is possible to produce a sintered body having desired physical properties of 5.4~5.6g / cm 3, sputtering using a sputtering target composed of the sintered body, a sputtering The number of abnormal discharges that occur during film formation can be remarkably reduced, and the generation of particles can be suppressed.

比表面積が5m/g以下の粒径を有する酸化亜鉛粉体と酸化アルミニウム粉体とを、酸化アルミニウム粉体の量が酸化亜鉛粉体に対してアルミニウム換算で5wt%になるように配合し、ボールミル中において混合粉砕して、酸化物混合体を製作した。得られた混合体をCIP(冷間静水圧プレス)法により2ton/cmの圧力でプレスして、予備成形体を製作し、この成形体を一定量の酸素濃度雰囲気下において、焼成炉を用いて、所定温度まで2℃/min以下の昇温速度で昇温せしめ、1400℃に10時間保持して、酸化亜鉛と酸化アルミニウムとの複合酸化物焼結体を得た。 A zinc oxide powder having a specific surface area of 5 m 2 / g or less and an aluminum oxide powder are blended so that the amount of the aluminum oxide powder is 5 wt% in terms of aluminum with respect to the zinc oxide powder. The mixture was pulverized in a ball mill to produce an oxide mixture. The obtained mixture was pressed at a pressure of 2 ton / cm 2 by a CIP (cold isostatic pressing) method to produce a preform, and this molded body was subjected to a firing furnace in a certain amount of oxygen concentration atmosphere. The temperature was raised to a predetermined temperature at a rate of 2 ° C./min or less and held at 1400 ° C. for 10 hours to obtain a composite oxide sintered body of zinc oxide and aluminum oxide.

上記焼結工程において導入した酸素の量を20〜100%の間で変化させて得られた焼結体において、酸素量(%)と燒結体密度(g/cm)及び抵抗率(mΩ・cm)との関係を図1に示す。図1から明らかなように、酸素量が20%以上の酸素濃度雰囲気下において焼結することにより、密度5.4〜5.6g/cmの焼結体が得られた。また、酸素量が20%の時の抵抗率は2.8mΩ・cmであり、さらに酸素導入量を増加させると燒結体の抵抗率はさらに減少し、〜1mΩ・cmの抵抗率が得られた。 In a sintered body obtained by changing the amount of oxygen introduced in the sintering step between 20% and 100%, the oxygen amount (%), the sintered body density (g / cm 3 ), and the resistivity (mΩ · cm)) is shown in FIG. As is apparent from FIG. 1, a sintered body having a density of 5.4 to 5.6 g / cm 3 was obtained by sintering in an oxygen concentration atmosphere having an oxygen content of 20% or more. The resistivity when the oxygen content was 20% was 2.8 mΩ · cm, and when the oxygen introduction amount was further increased, the resistivity of the sintered body was further reduced, and a resistivity of ˜1 mΩ · cm was obtained. .

従来技術で得られる酸化亜鉛と酸化アルミニウムとの複合酸化物焼結体においては、特許文献1(特許第2805813号)記載のように、空気中で焼結した時の燒結体密度は5.3g/cm以下であり、さらに燒結体の高密度化を図る目的でAr雰囲気中で燒結した場合、密度は5.6g/cmと増加したが、抵抗率は5.0mΩ・cmであり、充分に低い抵抗率を有する燒結体は得られていない。 In the composite oxide sintered body of zinc oxide and aluminum oxide obtained by the prior art, as described in Patent Document 1 (Patent No. 2805813), the sintered body density when sintered in air is 5.3 g. / Cm 3 or less, and further, when sintered in an Ar atmosphere for the purpose of increasing the density of the sintered body, the density increased to 5.6 g / cm 3 , but the resistivity was 5.0 mΩ · cm, No sintered body having a sufficiently low resistivity has been obtained.

なお、上記予備成形体の製作方法は、混合体にクラック等の不具合が発生しない限り、特に上記CIP法に限定するものではなく、HIP法、HP法、スリップキャスト法等の製作方法を用いても特に問題はない。   The method for producing the preform is not particularly limited to the CIP method as long as no defects such as cracks occur in the mixture, and production methods such as the HIP method, the HP method, and the slip cast method are used. There is no particular problem.

実施例1と同様にして同じ予備成形体を製作し、次いで実施例1に準じて焼結した。但し、焼結は、酸素量40%の焼結雰囲気中で、焼結温度1400℃の条件下において焼結時間を5〜20時間の間で変化させて行った。得られた酸化亜鉛と酸化アルミニウムとの複合酸化物焼結体の焼結時間と、密度及び抵抗率との関係を図2に示す。図2から明らかなように、10時間以上の焼結時間で密度5.4〜5.6g/cmの焼結体が得られた。 The same preform was produced in the same manner as in Example 1, and then sintered according to Example 1. However, the sintering was performed in a sintering atmosphere having an oxygen amount of 40%, with the sintering time being varied between 5 and 20 hours under the condition of the sintering temperature of 1400 ° C. FIG. 2 shows the relationship between the sintering time, density and resistivity of the obtained composite oxide sintered body of zinc oxide and aluminum oxide. As apparent from FIG. 2, a sintered body having a density of 5.4 to 5.6 g / cm 3 was obtained in a sintering time of 10 hours or more.

また、上記したようにして製作した焼結体の抵抗率を測定したところ、焼結時間10時間以上で、〜1.04mΩ・cmという従来技術では得られない低い抵抗率を有する酸化亜鉛と酸化アルミニウムとの複合酸化物焼結体を得ることができた(図2参照)。   Further, when the resistivity of the sintered body manufactured as described above was measured, it was found that the sintering time was 10 hours or more, and zinc oxide and oxide having a low resistivity that cannot be obtained by the prior art of ˜1.04 mΩ · cm. A composite oxide sintered body with aluminum was obtained (see FIG. 2).

従来技術(特許文献1(特許第2805813号))で得られる酸化亜鉛と酸化アルミニウムとの複合酸化物焼結体(空気中焼結)の抵抗率は、100mΩ・cmである。   The resistivity of the composite oxide sintered body (sintered in air) of zinc oxide and aluminum oxide obtained by the conventional technique (Patent Document 1 (Patent No. 2805813)) is 100 mΩ · cm.

実施例1と同様にして同じ予備成形体を製作し、次いで実施例1に準じて焼結した。但し、酸素量40%の焼結雰囲気中で、焼結時間を10時間とし、焼結温度を1100〜1500℃の間で変化させて行った。得られた酸化亜鉛と酸化アルミニウムとの複合酸化物焼結体の焼結温度と密度及び抵抗率との関係を図3に示す。図3から明らかなように、1400℃以上の焼結温度において、密度5.4〜5.6g/cmの焼結体が得られた。この場合、1480℃が好ましい焼結温度であった。焼結温度が1300℃以下では、密度は低く、3.5〜4.0g/cmの間であった(図3の比較例参照)。 The same preform was produced in the same manner as in Example 1, and then sintered according to Example 1. However, in a sintering atmosphere with an oxygen amount of 40%, the sintering time was 10 hours, and the sintering temperature was changed between 1100-1500 ° C. FIG. 3 shows the relationship between the sintering temperature, density and resistivity of the obtained composite oxide sintered body of zinc oxide and aluminum oxide. As is clear from FIG. 3, a sintered body having a density of 5.4 to 5.6 g / cm 3 was obtained at a sintering temperature of 1400 ° C. or higher. In this case, 1480 ° C. was a preferable sintering temperature. When the sintering temperature was 1300 ° C. or lower, the density was low, and was between 3.5 and 4.0 g / cm 3 (see the comparative example in FIG. 3).

従来技術(特許文献1(特許第2805813号))で知られる酸化亜鉛と酸化アルミニウムとの複合酸化物焼結体(空気中、10時間焼結)の密度は、相対的に本発明の場合よりも低かった(3.5〜5.3g/cm)。 The density of a composite oxide sintered body (sintered in air for 10 hours) of zinc oxide and aluminum oxide known from the prior art (Patent Document 1 (Patent No. 2805813)) is relatively higher than that of the present invention. Was also low (3.5 to 5.3 g / cm 3 ).

また、上記したようにして製作した焼結体の抵抗率を測定したところ、焼結温度1400℃以上で、低い抵抗率(1.04mΩ・cm)を有する酸化亜鉛と酸化アルミニウムとの複合酸化物焼結体を得ることができたが、1300℃以下では、抵抗率は高く、1×10〜1×10mΩ・cmの間であった。この場合、特許文献1(特許第2805813号)記載の酸化亜鉛と酸化アルミニウムとの複合酸化物焼結体(低抵抗化を目的としたAr雰囲気中焼結)の抵抗率は、5mΩ・cmで本発明よりも高い。
(比較例1)
Further, when the resistivity of the sintered body manufactured as described above was measured, a composite oxide of zinc oxide and aluminum oxide having a low resistivity (1.04 mΩ · cm) at a sintering temperature of 1400 ° C. or higher. Although a sintered body could be obtained, the resistivity was high at 1300 ° C. or lower, and was between 1 × 10 2 and 1 × 10 5 mΩ · cm. In this case, the resistivity of the composite oxide sintered body of zinc oxide and aluminum oxide (sintered in an Ar atmosphere for the purpose of reducing resistance) described in Patent Document 1 (Patent No. 2805813) is 5 mΩ · cm. It is higher than the present invention.
(Comparative Example 1)

実施例1と同一条件(但し、酸素量は0、10%とした)で、実施例1と同様にして焼結体を製作した。図1に示すように、酸素量10%で得られた酸化亜鉛と酸化アルミニウムとの複合酸化物焼結体では、抵抗率が5.2mΩ・cmと高く、密度は5.45g/cmであり(図1の比較例参照)、また、酸素量が0%で得られた複合酸化物焼結体では、抵抗率は4.4mΩ・cmと高かった(図1の比較例参照)。従って、酸素量が20%未満であると所望の抵抗率を有する焼結体を得ることができない。
(比較例2)
A sintered body was manufactured in the same manner as in Example 1 under the same conditions as in Example 1 (however, the oxygen content was 0 and 10%). As shown in FIG. 1, the composite oxide sintered body of zinc oxide and aluminum oxide obtained with an oxygen content of 10% has a high resistivity of 5.2 mΩ · cm and a density of 5.45 g / cm 3 . Yes (see the comparative example in FIG. 1), and the composite oxide sintered body obtained with an oxygen content of 0% had a high resistivity of 4.4 mΩ · cm (see the comparative example in FIG. 1). Therefore, if the oxygen amount is less than 20%, a sintered body having a desired resistivity cannot be obtained.
(Comparative Example 2)

実施例2と同一条件で、但し焼結時間を5時間、8時間として、実施例2と同様にして焼結体を製作した。この場合、抵抗率は各々,4.8mΩ・cm、3.3mΩ・cmと高く(図2の比較例参照)、実施例1〜3で得られたような充分に低い抵抗率を有する酸化亜鉛と酸化アルミニウムとの複合酸化物焼結体は得られなかった。なお、この時の焼結体の密度は各々5.2g/cm、5.3g/cmであった(図2の比較例参照)。
(比較例3)
A sintered body was manufactured in the same manner as in Example 2 under the same conditions as in Example 2 except that the sintering time was 5 hours and 8 hours. In this case, the resistivity is as high as 4.8 mΩ · cm and 3.3 mΩ · cm, respectively (see the comparative example in FIG. 2), and zinc oxide having a sufficiently low resistivity as obtained in Examples 1 to 3. A composite oxide sintered body of aluminum oxide and aluminum oxide was not obtained. The density of the sintered body at this time, respectively 5.2 g / cm 3, was 5.3 g / cm 3 (see Comparative Example in Fig. 2).
(Comparative Example 3)

実施例3と同一条件で、焼結温度を1300℃として、実施例3と同様にして焼結体を製作した。この場合、100mΩ・cmと高い抵抗率を有し、かつ5.11g/cmと低い密度を有する酸化亜鉛と酸化アルミニウムとの複合酸化物焼結体が得られた(図3の比較例参照)。
(比較例4)
A sintered body was manufactured in the same manner as in Example 3 with the same temperature as in Example 3 and a sintering temperature of 1300 ° C. In this case, a composite oxide sintered body of zinc oxide and aluminum oxide having a high resistivity of 100 mΩ · cm and a low density of 5.11 g / cm 3 was obtained (see the comparative example in FIG. 3). ).
(Comparative Example 4)

実施例1と同様にして、但し酸化アルミニウムの量を酸化亜鉛に対してアルミニウム換算で1重量%及び8重量%配合して実施例1に準じて予備成形体を製作した。1重量%配合したものは酸化亜鉛と酸化アルミニウムとを均一分散させ難くかった。また、8重量%配合したものは、均一に分散した予備成形体が得られたが、これを実施例1記載の方法に準じて燒結して得られた複合酸化物燒結体の抵抗率は高かった。   In the same manner as in Example 1, except that the amount of aluminum oxide was blended at 1% by weight and 8% by weight in terms of aluminum with respect to zinc oxide, a preform was produced in accordance with Example 1. It was difficult to uniformly disperse zinc oxide and aluminum oxide in the case of 1% by weight. In addition, when 8% by weight was blended, a uniformly dispersed preform was obtained, and the composite oxide sintered body obtained by sintering according to the method described in Example 1 had a high resistivity. It was.

酸化亜鉛と酸化アルミニウムとの複合酸化物燒結体において酸化アルミニウムの組成割合と抵抗率との相関を調べるために、酸化アルミニウムの量が2wt%、5wt%、7wt%からなる酸化亜鉛との混合体を上記した好ましい燒結条件である1480℃、酸素濃度100%の条件で15時間燒結し、得られた複合酸化物燒結体の抵抗率を調べた。その結果、各々の組成からなる燒結体の抵抗率はそれぞれ、2mΩ・cm、0.9mΩ・cm、2.5mΩ・cmであった。すなわち、酸化亜鉛と酸化アルミニウムとの複合酸化物燒結体において酸化アルミニウムの量が2〜7wt%の範囲で本発明で得られた低い抵抗率を有する燒結体を得ることができた。   In order to investigate the correlation between the composition ratio of aluminum oxide and the resistivity in the composite oxide sintered body of zinc oxide and aluminum oxide, a mixture of zinc oxide with the amount of aluminum oxide being 2 wt%, 5 wt%, and 7 wt% Was sintered for 15 hours under the above-mentioned preferred sintering conditions of 1480 ° C. and oxygen concentration of 100%, and the resistivity of the obtained composite oxide sintered body was examined. As a result, the resistivity of the sintered body having each composition was 2 mΩ · cm, 0.9 mΩ · cm, and 2.5 mΩ · cm, respectively. That is, in the composite oxide sintered body of zinc oxide and aluminum oxide, a sintered body having a low resistivity obtained in the present invention was obtained when the amount of aluminum oxide was in the range of 2 to 7 wt%.

上記実施例で得られた酸化亜鉛と酸化アルミニウムとの複合酸化物焼結体を通常の条件で加工し、スパッタリングターゲット(127mm×457mm×6mmT)を製作した。このターゲットを用い、スパッタ室の圧力を0.4Paに設定し、Ar雰囲気中で、投入電力密度3.22W/cmでスパッタリングし、スパッタリング時間(hr)と異常放電回数(カウント/hr)との相関を調べた結果を図4に示す。図4は、Ar雰囲気中(燒結温度1480℃、燒結時間15時間)で製作された抵抗率が7.05mΩ・cm(燒結体密度5.6g/cm)の酸化亜鉛と酸化アルミニウムとの複合酸化物焼結体ターゲットと、本発明による酸素雰囲気下(酸素量100%、燒結温度1480℃、燒結時間15時間)で得られた抵抗率が0.83mΩ・cm(燒結体密度5.5g/cm)の酸化亜鉛と酸化アルミニウムとの複合酸化物焼結体ターゲットとに関して、実際にスパッタリングにより発生する異常放電現象の回数を、スパッタリング時間との関係で比較したグラフである。なお、比較した2種類のターゲットの酸化アルミニウム組成割合はいずれも5wt%であった。 The composite oxide sintered body of zinc oxide and aluminum oxide obtained in the above example was processed under normal conditions to produce a sputtering target (127 mm × 457 mm × 6 mmT). Using this target, the sputtering chamber pressure was set to 0.4 Pa, sputtering was performed in an Ar atmosphere at an input power density of 3.22 W / cm 2 , the sputtering time (hr), the number of abnormal discharges (count / hr), The result of examining the correlation is shown in FIG. FIG. 4 shows a composite of zinc oxide and aluminum oxide having a resistivity of 7.05 mΩ · cm (sintered body density: 5.6 g / cm 3 ) manufactured in an Ar atmosphere (sintering temperature: 1480 ° C., sintering time: 15 hours). The resistivity obtained in the oxygen atmosphere according to the present invention (oxygen amount 100%, sintering temperature 1480 ° C., sintering time 15 hours) was 0.83 mΩ · cm (sintered body density 5.5 g / cm). It is the graph which compared the frequency | count of the abnormal discharge phenomenon which actually generate | occur | produces by sputtering regarding the complex oxide sintered compact target of the zinc oxide and aluminum oxide of cm < 3 >) in relation to sputtering time. The aluminum oxide composition ratio of the two types of targets compared was 5 wt%.

図4から明らかなように、酸素雰囲気下で焼結することで得られる抵抗率の低いスパッタリングターゲットの場合、放電インピーダンスが低いため、異常放電の回数が抑制されることが分かる。このような異常放電は、通常、ターゲットからターゲット物質の飛散を引き起こし、異常放電に伴う飛散物が基板に付着すると、いわゆるパーティクルとなり、基板に形成される膜の欠陥となり、歩留まりを著しく低下させる。すなわち、異常放電の抑制はパーティクルの有無と密接に関係してくるため、本発明により得られた抵抗率の低い酸化亜鉛と酸化アルミニウムとの複合酸化物焼結体をスパッタリングターゲットとして使用することにより、パーティクルの発生を抑制することが可能となる。   As can be seen from FIG. 4, in the case of a sputtering target having a low resistivity obtained by sintering in an oxygen atmosphere, the discharge impedance is low, so that the number of abnormal discharges is suppressed. Such an abnormal discharge usually causes scattering of the target material from the target, and when the scattered matter accompanying the abnormal discharge adheres to the substrate, it becomes so-called particles, which causes defects in the film formed on the substrate and significantly reduces the yield. That is, since the suppression of abnormal discharge is closely related to the presence or absence of particles, the composite oxide sintered body of zinc oxide and aluminum oxide having a low resistivity obtained by the present invention is used as a sputtering target. It is possible to suppress the generation of particles.

以上のことから、本発明による酸化亜鉛と酸化アルミニウムとの複合酸化物スパッタリングターゲットを用いるとスパッタリング成膜時の放電安定性が高まり、パーティクル発生による歩留まりの悪化を防ぎ、高い生産性を提供することができる。   From the above, when the composite oxide sputtering target of zinc oxide and aluminum oxide according to the present invention is used, the discharge stability at the time of sputtering film formation is increased, the deterioration of the yield due to the generation of particles is prevented, and high productivity is provided. Can do.

本発明によれば、従来技術で得られた酸化亜鉛と酸化アルミニウムとの複合酸化物焼結体と同等の密度を維持しながら、より抵抗率の低い焼結体を製造することができるので、この焼結体からなるスパッタリングターゲットを用いると、スパッタリング成膜時の放電安定性が高く、異常放電の回数が抑制され、その結果、パーティクルの発生が抑制される。かくして、所望の透明導電膜等の薄膜を形成するフラットパネルディスプレイの分野において、スパッタリングターゲットとして好都合に適用可能である。   According to the present invention, it is possible to produce a sintered body having a lower resistivity while maintaining a density equivalent to that of the composite oxide sintered body of zinc oxide and aluminum oxide obtained by the prior art. When a sputtering target made of this sintered body is used, the discharge stability during sputtering film formation is high, the number of abnormal discharges is suppressed, and as a result, the generation of particles is suppressed. Thus, it can be advantageously applied as a sputtering target in the field of flat panel displays for forming a desired thin film such as a transparent conductive film.

実施例1で製作した焼結体に関し、焼結時酸素量(%)と焼結体密度(g/cm)及び抵抗率(mΩ・cm)との関係を示すグラフ。The graph which shows the relationship between the oxygen amount (%) at the time of sintering, a sintered compact density (g / cm < 3 >), and a resistivity (m (omega | ohm) * cm) regarding the sintered compact manufactured in Example 1. FIG. 実施例2で製作した焼結体に関し、焼結時間(hr)と焼結体密度及び抵抗率との関係を示すグラフ。The graph which shows the relationship between sintering time (hr), a sintered compact density, and a resistivity regarding the sintered compact manufactured in Example 2. FIG. 実施例3で製作した焼結体に関し、焼結温度(℃)と焼結体密度及び抵抗率との関係を示すグラフ。The graph which shows the relationship between a sintering temperature (degreeC), a sintered compact density, and a resistivity regarding the sintered compact manufactured in Example 3. FIG. 本発明のスパッタリングターゲットと従来のスパッタリングターゲットとのスパッタ成膜時の異常放電回数を比較して示すグラフ。The graph which compares and shows the frequency | count of abnormal discharge at the time of sputtering film-forming with the sputtering target of this invention, and the conventional sputtering target.

Claims (6)

酸化亜鉛と酸化アルミニウムとからなる混合粉体を、1400℃以上の焼結温度で、酸素濃度20%以上の焼結雰囲気下に、10時間以上保持して焼結せしめ、酸化亜鉛と酸化アルミニウムとの複合酸化物焼結体を得ることを特徴とする複合酸化物焼結体の製造方法。   A mixed powder composed of zinc oxide and aluminum oxide is sintered at a sintering temperature of 1400 ° C. or more and held in a sintering atmosphere having an oxygen concentration of 20% or more for 10 hours or more. A method for producing a composite oxide sintered body, comprising: 前記焼結温度が1450℃以上であり、酸素濃度が90%以上であり、保持時間が14時間以上であることを特徴とする請求項1記載の複合酸化物焼結体の製造方法。   The method for producing a composite oxide sintered body according to claim 1, wherein the sintering temperature is 1450 ° C or higher, the oxygen concentration is 90% or higher, and the holding time is 14 hours or longer. 請求項1又は2記載の製造方法で得られた複合酸化物焼結体からなることを特徴とするスパッタリングターゲット。   A sputtering target comprising a complex oxide sintered body obtained by the production method according to claim 1. 請求項1又は2記載の製造方法で得られた複合酸化物焼結体からなり、抵抗率が3mΩ・cm以下であり、密度が5.4〜5.6g/cmであることを特徴とするスパッタリングターゲット。 The composite oxide sintered body obtained by the production method according to claim 1 or 2, characterized by having a resistivity of 3 mΩ · cm or less and a density of 5.4 to 5.6 g / cm 3. Sputtering target. 請求項1又は2記載の方法で得られた複合酸化物焼結体からなり、酸化アルミニウムの量が酸化亜鉛に対してアルミニウム換算で2〜7重量%であることを特徴とするスパッタリングターゲット。   A sputtering target comprising the composite oxide sintered body obtained by the method according to claim 1 or 2, wherein the amount of aluminum oxide is 2 to 7% by weight in terms of aluminum with respect to zinc oxide. 酸化アルミニウムの量が酸化亜鉛に対してアルミニウム換算で2〜7重量%である酸化亜鉛と酸化アルミニウムとの複合酸化物焼結体であって、焼結密度が5.4〜5.6g/cmであり、抵抗率が3mΩ・cm以下である複合酸化物焼結体からなることを特徴とするスパッタリングターゲット。 A composite oxide sintered body of zinc oxide and aluminum oxide in which the amount of aluminum oxide is 2 to 7% by weight in terms of aluminum with respect to zinc oxide, and the sintered density is 5.4 to 5.6 g / cm 3. A sputtering target comprising a complex oxide sintered body having a resistivity of 3 or less and 3 mΩ · cm or less.
JP2004150497A 2004-05-20 2004-05-20 Method for producing composite oxide sintered body and sputtering target comprising the sintered body Active JP4733930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004150497A JP4733930B2 (en) 2004-05-20 2004-05-20 Method for producing composite oxide sintered body and sputtering target comprising the sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004150497A JP4733930B2 (en) 2004-05-20 2004-05-20 Method for producing composite oxide sintered body and sputtering target comprising the sintered body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010187277A Division JP5399344B2 (en) 2010-08-24 2010-08-24 Method for producing composite oxide sintered body

Publications (2)

Publication Number Publication Date
JP2005330158A true JP2005330158A (en) 2005-12-02
JP4733930B2 JP4733930B2 (en) 2011-07-27

Family

ID=35485068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004150497A Active JP4733930B2 (en) 2004-05-20 2004-05-20 Method for producing composite oxide sintered body and sputtering target comprising the sintered body

Country Status (1)

Country Link
JP (1) JP4733930B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238375A (en) * 2006-03-08 2007-09-20 Tosoh Corp ZnO-Al2O3-BASED SINTERED COMPACT, SPUTTERING TARGET AND METHOD OF FORMING TRANSPARENT CONDUCTIVE FILM
WO2007142333A1 (en) * 2006-06-08 2007-12-13 Mitsubishi Materials Corporation Sputtering target for forming high strength optical recording medium protection film
WO2009041694A1 (en) * 2007-09-27 2009-04-02 Mitsubishi Materials Corporation ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM
JP2009102698A (en) * 2007-10-24 2009-05-14 Mitsubishi Materials Corp Sputtering target for forming transparent conductive film, and transparent conductive film formed by using the target
JP2009235541A (en) * 2008-03-28 2009-10-15 Hitachi Metals Ltd Method for producing zinc oxide based sintered target
CN102965620A (en) * 2011-08-29 2013-03-13 三菱综合材料株式会社 Sputtering target and manufacturing method thereof, film obtained by utilizing the target, film sheet and laminating sheet
CN110073029A (en) * 2017-03-15 2019-07-30 捷客斯金属株式会社 Al2O3Sputtering target and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149459A (en) * 1988-08-09 1990-06-08 Tosoh Corp Oxide sintered body, production and use thereof
JPH03164461A (en) * 1989-08-10 1991-07-16 Tosoh Corp Sputtering target of sintered body of conductive zinc oxide and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149459A (en) * 1988-08-09 1990-06-08 Tosoh Corp Oxide sintered body, production and use thereof
JPH03164461A (en) * 1989-08-10 1991-07-16 Tosoh Corp Sputtering target of sintered body of conductive zinc oxide and production thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238375A (en) * 2006-03-08 2007-09-20 Tosoh Corp ZnO-Al2O3-BASED SINTERED COMPACT, SPUTTERING TARGET AND METHOD OF FORMING TRANSPARENT CONDUCTIVE FILM
WO2007142333A1 (en) * 2006-06-08 2007-12-13 Mitsubishi Materials Corporation Sputtering target for forming high strength optical recording medium protection film
JP2007327103A (en) * 2006-06-08 2007-12-20 Mitsubishi Materials Corp High strength sputtering target for forming protective film for light recording medium
US8268141B2 (en) 2006-06-08 2012-09-18 Mitsubishi Materials Corporation High-strength sputtering target for forming protective film for optical recording medium
WO2009041694A1 (en) * 2007-09-27 2009-04-02 Mitsubishi Materials Corporation ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM
US20100243966A1 (en) 2007-09-27 2010-09-30 Mitsubishi Materials Corporation ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM
US8231812B2 (en) 2007-09-27 2012-07-31 Mitsubishi Materials Corporation ZnO vapor deposition material, process for producing the same, and ZnO film
US8409477B2 (en) 2007-09-27 2013-04-02 Mitsubishi Materials Corporation ZnO vapor deposition material, process for producing the same, and ZnO film
JP2009102698A (en) * 2007-10-24 2009-05-14 Mitsubishi Materials Corp Sputtering target for forming transparent conductive film, and transparent conductive film formed by using the target
JP2009235541A (en) * 2008-03-28 2009-10-15 Hitachi Metals Ltd Method for producing zinc oxide based sintered target
CN102965620A (en) * 2011-08-29 2013-03-13 三菱综合材料株式会社 Sputtering target and manufacturing method thereof, film obtained by utilizing the target, film sheet and laminating sheet
CN110073029A (en) * 2017-03-15 2019-07-30 捷客斯金属株式会社 Al2O3Sputtering target and its manufacturing method

Also Published As

Publication number Publication date
JP4733930B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP5205696B2 (en) Gallium oxide based sintered body and method for producing the same
KR102322184B1 (en) Indium zinc oxide (izo) based sputtering target, and method for producing same
JPH10306367A (en) Zno-ga2o3 sintered body for sputtering target and its production
JPH10158827A (en) Ito (indium tin oxide) sintered body and ito sputtering target
JP4733930B2 (en) Method for producing composite oxide sintered body and sputtering target comprising the sintered body
KR20120105964A (en) Method of manufacturing an oxide dispersion strengthened platinum-rhodium alloy
JP5399344B2 (en) Method for producing composite oxide sintered body
JP4813182B2 (en) ITO sputtering target
JP5369444B2 (en) GZO sintered body manufacturing method
JP4196805B2 (en) Indium oxide target and method for manufacturing the same
JP2007290875A (en) Titanium oxide-based sintered compact and its manufacturing method
JPH07243036A (en) Ito sputtering target
CN108585832A (en) The preparation method of tin indium oxide target material
JP6415361B2 (en) Coarse and uniform, spherical titanium silicide powder and method for producing the same
JPH10297964A (en) Production of zno-ga2o3-based sintered compact for sputtering target
TWI480404B (en) Preparation method of molybdenum containing molybdenum and molybdenum sputtering target
JP3030913B2 (en) Manufacturing method of ITO sintered body
JPH10297963A (en) Zno-ga2o3-based sintered compact for sputtering target and production of the sintered compact
JP3715504B2 (en) High-density ITO sintered sputtering target and method for producing the same
JP5115249B2 (en) Vapor deposition material and method for forming a vapor deposition film using the vapor deposition material
JP7178707B2 (en) Method for manufacturing MgO-TiO-based sputtering target
JP2003002749A (en) Indium oxide powder and method for manufacturing ito sputtering target
JP2002194536A (en) Sputtering target with low oxygen content
JPH05339721A (en) Production of indium oxide-tin oxide sputtering target
JPH10297966A (en) Production of zno-ga2o3-based sintered compact for sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101018

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20101109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4733930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250