JP2009226874A - Flexible copper clad laminate - Google Patents

Flexible copper clad laminate Download PDF

Info

Publication number
JP2009226874A
JP2009226874A JP2008078060A JP2008078060A JP2009226874A JP 2009226874 A JP2009226874 A JP 2009226874A JP 2008078060 A JP2008078060 A JP 2008078060A JP 2008078060 A JP2008078060 A JP 2008078060A JP 2009226874 A JP2009226874 A JP 2009226874A
Authority
JP
Japan
Prior art keywords
copper foil
copper
polyimide resin
layer
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008078060A
Other languages
Japanese (ja)
Other versions
JP4907580B2 (en
Inventor
Yasuyuki Takao
康幸 高尾
Kei Sanada
計 眞田
Akiko Furukawa
暁子 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2008078060A priority Critical patent/JP4907580B2/en
Priority to KR1020090008929A priority patent/KR101574587B1/en
Priority to TW098108377A priority patent/TWI519412B/en
Priority to CN2009101294482A priority patent/CN101547559B/en
Publication of JP2009226874A publication Critical patent/JP2009226874A/en
Application granted granted Critical
Publication of JP4907580B2 publication Critical patent/JP4907580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/22Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Landscapes

  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flexible copper clad laminate that excels in heat resistance, dimensional stability and the like, that can cope with demand for high integration and high densification, and that suppresses circuit separation in chemical polishing by improving adhesive reliability between a copper foil and a polyimide resin layer. <P>SOLUTION: In the copper clad laminate in which a copper foil is laminated on one side or both sides of a polyimide resin layer, the copper foil surface that comes in contact with the polyimide resin layer is provided with a surface finishing layer composed of a plurality of processing layers including a silane coupling processing layer. The surface finishing layer contains copper, cobalt, nickel and zinc, wherein the ratio of nickel/(nickel+cobalt+zinc) is ≥0.23 (by ICP-AES measurement), wherein zinc content is in the range of 0.2-0.6 mg/dm<SP>2</SP>, and wherein the silane coupling processing layer is formed by a silane coupling agent containing an amino group. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ポリイミド樹脂からなる絶縁層とその片面又は両面に銅箔が設けられたフレキシブル銅張積層板に関する。   The present invention relates to an insulating layer made of polyimide resin and a flexible copper-clad laminate provided with a copper foil on one or both sides thereof.

近年、携帯電話やデジタルカメラ、デジタルビデオ、PDA、カーナビゲータ、ハードディスクその他の各種電子機器の高機能化、小型化、そして軽量化に伴い、これらの電気配線用基板材料として従来用いられてきたリジット基板に変わって配線の自由度が高く、薄型化が容易なフレキシブルプリント基板が採用される例が増加している。そして、より高度化していくこれらの機器に用いられているフレキシブルプリント基板に関しては更なる小型高密度化、多層化、ファイン化、高耐熱化等の要求が高まっている。   In recent years, with the increasing functionality, miniaturization, and weight reduction of various electronic devices such as mobile phones, digital cameras, digital video, PDAs, car navigators, hard disks, etc., the rigid that has been used in the past as a substrate material for these electrical wiring There is an increasing number of cases where a flexible printed board is employed instead of a board, which has a high degree of freedom in wiring and can be easily thinned. With respect to flexible printed circuit boards used in these increasingly sophisticated devices, there are increasing demands for further miniaturization, higher density, multilayering, finer, higher heat resistance, and the like.

このような要求に応えるため、導体上に直接ポリイミド樹脂層を塗工形成し、かつ熱膨張係数の異なる複数のポリイミド樹脂層で多層化して形成することにより、温度変化に対する寸法安定性、接着力、更にはエッチング後の平面性等で信頼性に優れたフレキシブルプリント基板を提供する方法が特許文献1などに開示されている。   In order to meet these demands, a polyimide resin layer is directly formed on a conductor, and a plurality of polyimide resin layers having different thermal expansion coefficients are formed into multiple layers, thereby enabling dimensional stability and adhesive strength against temperature changes. Furthermore, Patent Document 1 discloses a method for providing a flexible printed circuit board having excellent reliability such as flatness after etching.

このようなフレキシブルプリント基板に用いられる接着剤層を有さない銅張積層板においては、例えば特許文献2、特許文献3、特許文献4等のように、樹脂層との接着力を高めるために銅箔表面が粗化処理された銅箔が用いられている。   In a copper-clad laminate without an adhesive layer used for such a flexible printed circuit board, for example, Patent Document 2, Patent Document 3, Patent Document 4, etc., in order to increase the adhesive force with the resin layer A copper foil whose surface is roughened is used.

ところで、近年、回路の微細化が進行するにあたって、回路加工後の回路端部やポリイミド上に残渣が生じやすくなり、残渣を除去する必要が生じている。また、回路加工のメッキ工程等における銅箔表面の前処理工程として回路表面の洗浄が必要とされている。このような目的において、銅箔表面の酸洗浄に加えて過酸化水素/硫酸など銅を溶解する薬液を主成分とする化学研磨液により銅箔の表面を研磨する工程が行われている。しかしながら、上記した粗化処理された銅箔を用いて製造された銅張積層板、特にこれに回路加工して得られるフレキシブルプリント基板において、この化学研磨を実施すると回路のエッジ部分に化学研磨液が染み込み、回路のピール強度の低下を引き起こしやすく、更に回路配線の微細化を進めると回路剥がれによる回路の浮き上がり、断線につながるため、改善する必要があった。   By the way, in recent years, as the miniaturization of a circuit proceeds, a residue tends to be generated on a circuit end portion and polyimide after circuit processing, and it is necessary to remove the residue. In addition, cleaning of the circuit surface is required as a pretreatment step of the copper foil surface in the plating step of circuit processing. For this purpose, a step of polishing the surface of the copper foil with a chemical polishing liquid mainly composed of a chemical solution that dissolves copper such as hydrogen peroxide / sulfuric acid is performed in addition to the acid cleaning of the copper foil surface. However, in a copper-clad laminate manufactured using the above-mentioned roughened copper foil, particularly a flexible printed circuit board obtained by processing a circuit therewith, when this chemical polishing is performed, a chemical polishing liquid is applied to the edge portion of the circuit. It is easy to cause the peeling strength of the circuit to decrease, and further miniaturization of the circuit wiring causes the circuit to rise due to peeling of the circuit, resulting in disconnection.

特公平6−93537号公報Japanese Patent Publication No. 6-93537 特開平2−292894号公報JP-A-2-292894 特開平6−169168号公報JP-A-6-169168 特開平8−335775号公報JP-A-8-335775

本発明では耐熱性や寸法安定性等に優れ、電子機器類の分野にて近年急速に進む高集積化や高密度化の要請に対応でき、かつ、銅箔とポリイミド樹脂層との接着信頼性を向上させることで化学研磨における回路はがれを抑制する方法を提供するものである。   The present invention is excellent in heat resistance, dimensional stability, etc., can respond to the demand for high integration and high density that have been rapidly progressing in recent years in the field of electronic equipment, and is reliable in adhesion between copper foil and polyimide resin layer. The method of suppressing the circuit peeling in chemical polishing by improving this is provided.

上記課題を解決するために鋭意検討した結果、ポリイミド樹脂層と接する銅箔の表面の特性を特定範囲に制御することで、銅箔とポリイミド樹脂層との接着信頼性を向上させることが可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, it is possible to improve the adhesion reliability between the copper foil and the polyimide resin layer by controlling the characteristics of the surface of the copper foil in contact with the polyimide resin layer to a specific range. As a result, the present invention has been completed.

すなわち、本発明は、ポリイミド樹脂層の片面又は両面に銅箔が積層された銅張積層板において、前記銅箔のポリイミド樹脂層と接する銅箔表面は、シランカップリング処理層を含む複数の処理層からなる表面処理層を有し、この表面処理層は、銅、コバルト、ニッケル及び亜鉛を含有し、ニッケル/(ニッケル+コバルト+亜鉛)比が0.23以上(ICP-AES測定による)で、かつ、亜鉛含有量が0.2〜0.6mg/dm2の範囲にあり、前記シランカップリング処理層がアミノ基を有するシランカップリング剤により形成されたものであることを特徴とするフレキシブル銅張積層板である。 That is, the present invention provides a copper clad laminate in which a copper foil is laminated on one or both sides of a polyimide resin layer, wherein the copper foil surface in contact with the polyimide resin layer of the copper foil includes a plurality of treatments including a silane coupling treatment layer. This surface treatment layer contains copper, cobalt, nickel and zinc, and the nickel / (nickel + cobalt + zinc) ratio is 0.23 or more (according to ICP-AES measurement). And the zinc content is in the range of 0.2 to 0.6 mg / dm 2 and the silane coupling treatment layer is formed of a silane coupling agent having an amino group. It is a copper clad laminate.

本発明のフレキシブル銅張積層板の好ましい態様を次に示す。
1) 表面処理層におけるシランカップリング処理層が最外層に位置するものであること。
2) ポリイミド樹脂層が複数層からなり、銅箔と接するポリイミド樹脂層(A)が、熱可塑性ポリイミド樹脂からなること。
3) 銅箔が圧延銅箔であり、ポリイミド樹脂層と接する表面処理された銅箔表面の表面粗度(Rz)が0.5〜2μmの範囲にあること。
4) ポリイミド樹脂層と銅箔との1mm幅での初期接着力が、0.6kN/m以上であること。
The preferable aspect of the flexible copper clad laminated board of this invention is shown next.
1) The silane coupling treatment layer in the surface treatment layer is located in the outermost layer.
2) The polyimide resin layer is composed of a plurality of layers, and the polyimide resin layer (A) in contact with the copper foil is composed of a thermoplastic polyimide resin.
3) The copper foil is a rolled copper foil, and the surface roughness (Rz) of the surface-treated copper foil surface in contact with the polyimide resin layer is in the range of 0.5 to 2 μm.
4) The initial adhesive strength at 1 mm width between the polyimide resin layer and the copper foil is 0.6 kN / m or more.

本発明の銅張積層板は、樹脂層と銅箔の接着強度、耐熱性、難燃性及び寸法安定性等に優れており、また、微細回路加工性に優れると共に化学研磨による剥がれ等の不具合が発生しない。このため、フレキシブルプリント基板として電気、電子部品に使用した際に信頼性に優れ、特に微細配線が要求される用途に好適に用いることができる。   The copper clad laminate of the present invention is excellent in adhesive strength, heat resistance, flame retardancy, dimensional stability, etc. between the resin layer and the copper foil, and is excellent in fine circuit processability and defects such as peeling due to chemical polishing. Does not occur. For this reason, it is excellent in reliability when used as a flexible printed board for electrical and electronic components, and can be suitably used particularly for applications requiring fine wiring.

以下、本発明を詳細に説明する。
本発明のフレキシブル銅張積層板は、絶縁層となるポリイミド樹脂層(絶縁層ともいう)と銅箔とからなる。銅箔は、例えば圧延銅箔、電解銅箔等の公知の製造方法によって得られたものを用いることができる。銅箔の好ましい厚み範囲は、6〜35μmであり、9〜18μmの範囲がより好ましい。銅箔の厚みが6μmに満たないと、銅張積層板を大量生産する場合のようなライン製造の工程において、テンションの調整等が困難となるおそれがあり、反対に35μmを超えるとフレキシブル銅張積層板の屈曲性が劣る。
Hereinafter, the present invention will be described in detail.
The flexible copper-clad laminate of the present invention comprises a polyimide resin layer (also referred to as an insulating layer) serving as an insulating layer and a copper foil. What was obtained by well-known manufacturing methods, such as rolled copper foil and electrolytic copper foil, can be used for copper foil, for example. The preferable thickness range of copper foil is 6-35 micrometers, and the range of 9-18 micrometers is more preferable. If the thickness of the copper foil is less than 6 μm, it may be difficult to adjust the tension in the line manufacturing process as in the case of mass production of copper clad laminates. The flexibility of the laminate is poor.

使用する銅箔は、絶縁層であるポリイミド樹脂層との密着力を向上させるため、シランカップリング処理層を含む複数の処理層からなる表面処理層を有する。シランカップリング処理層以外の処理層としては、粗化処理層を含むことが望ましい。   The copper foil to be used has a surface treatment layer composed of a plurality of treatment layers including a silane coupling treatment layer in order to improve adhesion with a polyimide resin layer which is an insulating layer. As a treatment layer other than the silane coupling treatment layer, it is desirable to include a roughening treatment layer.

粗化処理層を形成するための粗化処理の程度は、表面粗度(Rz)が0.5〜2μm範囲の範囲が好ましく、0.5〜1μmの範囲がより好ましい。ここで、表面粗度(Rz)とは、JIS B0601(1994)によって定義される10点平均粗さをさす。この粗化処理では、金属の粒子(粗化粒子)を銅箔表面に付着させるなどして表面粗度を高める。これにより、絶縁層と銅箔間にアンカー効果を生じさせて密着力を高めることができる。上記表面粗度(Rz)が、0.5μmに満たないと絶縁層へのアンカー効果が期待できず、密着力に劣る。また、表面粗度(Rz)が、2μmを超えると粗化粒子が回路加工時のエッチング時に除去されず、回路端部や絶縁層上にエッチング残りとして存在してしまう恐れがある。そして、このエッチング残りは微細加工時に回路間のショートやマイグレーションと呼ばれる銅の溶出などの不具合につながる恐れがある。   The degree of the roughening treatment for forming the roughening treatment layer is preferably such that the surface roughness (Rz) is in the range of 0.5 to 2 μm, and more preferably in the range of 0.5 to 1 μm. Here, the surface roughness (Rz) refers to a 10-point average roughness defined by JIS B0601 (1994). In this roughening treatment, the surface roughness is increased by attaching metal particles (roughened particles) to the surface of the copper foil. Thereby, an anchor effect can be produced between an insulating layer and copper foil, and adhesive force can be raised. If the surface roughness (Rz) is less than 0.5 μm, the anchor effect on the insulating layer cannot be expected and the adhesion is poor. On the other hand, if the surface roughness (Rz) exceeds 2 μm, the roughened particles may not be removed during etching during circuit processing, and may exist as an etching residue on the circuit edge or the insulating layer. This etching residue may lead to defects such as short circuit between circuits and copper elution called migration during microfabrication.

この粗化処理で用いられる粗化粒子としては、銅単独、又は銅+ニッケル若しくは銅+ニッケル+コバルトなどの合金を用いることができる。また、粗化粒子を付着後にさらに銅、ニッケル若しくはニッケル+コバルトによる処理を行うことも可能である。ただし、回路加工性に優れ、化学研磨によって剥がれが生じないためにはこの粗化処理層全体として銅、ニッケル、コバルトを必須とする。粗化処理に銅のみを用いた場合は酸化されやすくなり、変色等が起こりやすくなる。また、銅及びニッケル若しくはニッケルのみでは化学研磨に対する耐性は強くなるものの、回路加工時に用いられる銅エッチング液に溶解しにくくなり、エッチング残りが発生しやすくなる恐れがある。銅及びコバルト若しくはコバルトのみでは耐酸性が悪くなり、化学研磨の際に回路剥がれが発生しやすくなる恐れがある。   As roughening particles used in this roughening treatment, copper alone or an alloy such as copper + nickel or copper + nickel + cobalt can be used. Further, it is possible to further perform treatment with copper, nickel or nickel + cobalt after the roughened particles are attached. However, in order to have excellent circuit processability and no peeling due to chemical polishing, copper, nickel, and cobalt are essential for the entire roughened layer. When only copper is used for the roughening treatment, oxidation is likely to occur, and discoloration or the like easily occurs. Further, although only copper and nickel or nickel have high resistance to chemical polishing, it becomes difficult to dissolve in a copper etching solution used in circuit processing, and etching residue may easily occur. If only copper and cobalt or cobalt are used, the acid resistance is poor, and circuit peeling may occur during chemical polishing.

本発明で用いられる銅箔は、表面処理層中に、好ましくは上記粗化処理層中に又は粗化処理層上に亜鉛を0.2〜0.6mg/dm2含有する。亜鉛を含有する層を粗化処理層上に設ける場合、析出処理により層を形成し得る。本発明では、この亜鉛処理により銅の酸化を抑えつつ、化学研磨による回路剥がれを抑制することができる。亜鉛の含有量が0.2mg/dm2に満たないと、酸化による回路の変色や酸化による銅箔の脆化を起こし、回路の断線を引き起こしやすい。また、亜鉛の含有量が0.6mg/dm2を超えると、亜鉛自身が酸に弱いため、化学研磨による回路剥がれ、さらには断線が発生しやすくなる。なお、上記析出処理については、電解メッキなどの銅箔の表面に上述した金属を所定量で析出させることができる手段であれば特に制限されない。 The copper foil used in the present invention contains 0.2 to 0.6 mg / dm 2 of zinc in the surface treatment layer, preferably in the roughening treatment layer or on the roughening treatment layer. When providing the layer containing zinc on a roughening process layer, a layer can be formed by precipitation process. In the present invention, circuit peeling due to chemical polishing can be suppressed while suppressing oxidation of copper by this zinc treatment. If the zinc content is less than 0.2 mg / dm 2 , circuit discoloration due to oxidation and copper foil embrittlement due to oxidation are likely to cause circuit disconnection. On the other hand, when the zinc content exceeds 0.6 mg / dm 2 , zinc itself is weak against acid, and therefore the circuit is peeled off by chemical polishing, and disconnection is likely to occur. The deposition treatment is not particularly limited as long as it is a means capable of depositing the above-described metal in a predetermined amount on the surface of the copper foil such as electrolytic plating.

本発明で用いられる銅箔は、絶縁層との密着力を更に向上させるために、アミノ基を有するシランカップリング剤によるシランカップリング処理層を有する。このシランカップリング処理層は、表面処理層の最外層に存在することが好ましい。アミノ基を有するシランカップリング剤としてはN-2-(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)プトキシ)プロピル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等が挙げられる。これらのシランカップリング剤は単独で用いても、2種以上組み合わせて用いてもよく、複数の場合はアミノ基を有するシランカップリング剤が1種類以上含まれていればよい。また、シランカップリング剤の処理を行う前に絶縁層との密着力を更に挙げる目的でクロメート処理を行うことも可能である。   The copper foil used in the present invention has a silane coupling treatment layer with a silane coupling agent having an amino group in order to further improve the adhesion with the insulating layer. This silane coupling treatment layer is preferably present in the outermost layer of the surface treatment layer. Examples of silane coupling agents having amino groups include N-2- (aminoethyl) γ-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane N-phenyl-3-aminopropyltrimethoxysilane and the like. These silane coupling agents may be used alone or in combination of two or more. In the case of a plurality of these silane coupling agents, it is sufficient that at least one silane coupling agent having an amino group is contained. Moreover, it is also possible to perform a chromate treatment for the purpose of further increasing the adhesion with the insulating layer before the treatment with the silane coupling agent.

シランカップリング処理方法は、例えば上記カップリング剤を用いる場合、先ず、溶媒としての水に所定量のカップリング剤を溶解させ、上記した金属析出処理した後の銅箔表面に塗布し、乾燥させる方法が例示される。この際、必要により加熱処理を行ってもよい。また、銅箔表面に対して水に溶解させたカップリング剤を塗布する方法としては、例えば浸漬法、シャワーリング法、噴霧法等の公知の方法を用いることができる。   In the silane coupling treatment method, for example, when the above coupling agent is used, first, a predetermined amount of the coupling agent is dissolved in water as a solvent, applied to the copper foil surface after the above-described metal deposition treatment, and dried. A method is illustrated. At this time, heat treatment may be performed as necessary. Moreover, as a method of apply | coating the coupling agent dissolved in water with respect to the copper foil surface, well-known methods, such as a dipping method, a showering method, a spraying method, can be used, for example.

上記処理により銅箔の表面処理層は全体として、銅、コバルト、ニッケル、及び亜鉛を含有する。そして、ニッケル/(ニッケル+コバルト+亜鉛)比を0.23以上とすることが必要であり、0.24〜0.3の範囲とすることが好ましい。ニッケル/(ニッケル+コバルト+亜鉛)比が、0.23に満たないと、化学研磨の際に回路端部に回路剥れが生じる。ここで、銅、コバルト、ニッケル、及び亜鉛の測定は、ICP-AES測定によるものであり、実施例に記載の条件で測定される。   By the said process, the surface treatment layer of copper foil contains copper, cobalt, nickel, and zinc as a whole. And it is necessary to make nickel / (nickel + cobalt + zinc) ratio 0.23 or more, and it is preferable to set it as the range of 0.24-0.3. If the nickel / (nickel + cobalt + zinc) ratio is less than 0.23, circuit peeling occurs at the circuit edge during chemical polishing. Here, the measurement of copper, cobalt, nickel, and zinc is based on ICP-AES measurement, and is measured under the conditions described in the examples.

上記のような表面処理層が設けられた銅箔の表面処理層側の面に絶縁層であるポリイミド樹脂層を積層する。このポリイミド樹脂層を構成するポリイミド樹脂は、一般的に下記一般式(1)で表され、ジアミン成分と酸二無水物成分とを実質的に等モル使用し、有機極性溶媒中で重合する公知の方法によって製造することができる。

Figure 2009226874
A polyimide resin layer as an insulating layer is laminated on the surface of the copper foil provided with the surface treatment layer as described above on the surface treatment layer side. The polyimide resin constituting this polyimide resin layer is generally represented by the following general formula (1), and is known to be polymerized in an organic polar solvent by using substantially equimolar amounts of a diamine component and an acid dianhydride component. It can manufacture by the method of.
Figure 2009226874

一般式(1)において、Ar1は芳香族環を1個以上有する4価の有機基であり、Ar2は芳香族環を1個以上有する2価の有機基である。そして、Ar1は酸二無水物の残基ということができ、Ar2はジアミンの残基ということができる。 In the general formula (1), Ar 1 is a tetravalent organic group having one or more aromatic rings, and Ar 2 is a divalent organic group having one or more aromatic rings. Ar 1 can be referred to as an acid dianhydride residue, and Ar 2 can be referred to as a diamine residue.

酸二無水物としては、例えば、O(CO)2-Ar1-(CO)2Oによって表される芳香族酸二無水物が挙げられる。好ましいAr1としては、次に示す4価の有機基が例示される。 Examples of acid dianhydrides include aromatic acid dianhydrides represented by O (CO) 2 —Ar 1 — (CO) 2 O. Preferred examples of Ar 1 include the following tetravalent organic groups.

Figure 2009226874
Figure 2009226874

酸二無水物は単独で又は2種以上混合して用いることができる。これらの中でも、ピロメリット酸二無水物(PMDA)、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、4,4'-オキシジフタル酸二無水物(ODPA) から選ばれるものを使用することが好ましい。   An acid dianhydride can be used individually or in mixture of 2 or more types. Among these, pyromellitic dianhydride (PMDA), 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (BPDA), 3,3', 4,4'-benzophenone tetracarboxylic acid An anhydride (BTDA), 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride (DSDA), or 4,4′-oxydiphthalic dianhydride (ODPA) may be used. preferable.

ジアミンとしては、例えば、H2N−Ar2−NH2によって表される芳香族ジアミンが挙げられる。好ましいAr2としては次に示す2価の有機基が例示される。 Examples of the diamine include aromatic diamines represented by H 2 N—Ar 2 —NH 2 . Preferred examples of Ar 2 include the following divalent organic groups.

Figure 2009226874
Figure 2009226874

これらのジアミンの中でも、ジアミノジフェニルエーテル(DAPE)、2,2'−ジメチル−4,4'−ジアミノビフェニル(以下m-TB)、パラフェニレンジアミン(p−PDA)、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、1,4-ビス(4-アミノフェノキシ)ベンゼン(TPE-Q)、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)が好適なものとして例示される。   Among these diamines, diaminodiphenyl ether (DAPE), 2,2′-dimethyl-4,4′-diaminobiphenyl (hereinafter referred to as m-TB), paraphenylenediamine (p-PDA), 1,3-bis (4- Aminophenoxy) benzene (TPE-R), 1,3-bis (3-aminophenoxy) benzene (APB), 1,4-bis (4-aminophenoxy) benzene (TPE-Q), 2,2-bis [ 4- (4-Aminophenoxy) phenyl] propane (BAPP) is exemplified as preferred.

重合に用いる溶媒については、例えばジメチルアセトアミド、n-メチルピロリジノン、2-ブタノン、ジグライム、キシレン等を挙げることができ、これらについては1種若しくは2種以上を併用して使用することもできる。また、重合して得られたポリアミド酸(ポリイミド前駆体)の樹脂粘度については、500cps〜35000cpsの範囲とするのが好ましい。   Examples of the solvent used for polymerization include dimethylacetamide, n-methylpyrrolidinone, 2-butanone, diglyme, xylene, and the like. These can be used alone or in combination of two or more. The resin viscosity of the polyamic acid (polyimide precursor) obtained by polymerization is preferably in the range of 500 cps to 35000 cps.

本発明のフレキシブル銅張積層板のポリイミド樹脂層は、単層からなるものであっても複数層からなるものであってもよいが、フレキシブル銅張積層板の寸法安定性や、銅箔との接着強度を優れたものとするためには、複数層とすることが好ましい。ポリイミド樹脂層を複数層とする場合、線膨張係数(CTE)が30×10-6(1/K)以下、好ましくは1〜30-6(1/K)の範囲の低線膨張係数の樹脂層を主たるポリイミド樹脂層(B)とし、その片面又は両面に熱可塑性ポリイミド樹脂層を設けることが好ましい。好ましくは、銅箔と接する側のポリイミド樹脂層(A)を熱可塑性ポリイミド樹脂層とする。 The polyimide resin layer of the flexible copper-clad laminate of the present invention may be composed of a single layer or a plurality of layers, but the dimensional stability of the flexible copper-clad laminate and the copper foil In order to improve the adhesive strength, it is preferable to have a plurality of layers. When the polyimide resin layer is a plurality of layers, the linear expansion coefficient (CTE) is a resin having a low linear expansion coefficient of 30 × 10 −6 (1 / K) or less, preferably 1 to 30 −6 (1 / K). It is preferable that the layer is a main polyimide resin layer (B), and a thermoplastic polyimide resin layer is provided on one side or both sides thereof. Preferably, the polyimide resin layer (A) on the side in contact with the copper foil is a thermoplastic polyimide resin layer.

ここで、熱可塑性ポリイミド樹脂層とは、線膨張係数(CTE)が30×10-6(1/K)を超え、ガラス転移温度が330℃以下にあるものを言う。好ましい熱可塑性ポリイミド樹脂層の線膨張係数は、30×10-6〜60×10-6(1/K)で、ガラス転移温度が200〜330℃の範囲にあるものである。主たるポリイミド樹脂層(B)のCTEが30×10-6/℃より大きいと、銅張積層板を形成した際のカールが激しくなるおそれがあり、また、寸法安定性が低下するため製品として好ましくない。主たるポリイミド樹脂層(B)の厚みは、全ポリイミド樹脂層の厚みの50%以上、好ましくは70〜95%であることがよい。 Here, the thermoplastic polyimide resin layer refers to a layer having a linear expansion coefficient (CTE) exceeding 30 × 10 −6 (1 / K) and a glass transition temperature of 330 ° C. or lower. The linear expansion coefficient of the preferable thermoplastic polyimide resin layer is 30 × 10 −6 to 60 × 10 −6 (1 / K), and the glass transition temperature is in the range of 200 to 330 ° C. If the CTE of the main polyimide resin layer (B) is greater than 30 × 10 −6 / ° C., curling may occur when a copper-clad laminate is formed, and dimensional stability is reduced, which is preferable as a product. Absent. The thickness of the main polyimide resin layer (B) is 50% or more, preferably 70 to 95% of the total polyimide resin layer thickness.

ポリイミド樹脂層を形成する方法については特に限定されないが、例えば、ポリイミド樹脂の前駆体であるポリアミド酸の樹脂溶液を、表面処理された銅箔表面に直接塗布し、樹脂溶液に含まれる溶剤を150℃以下の温度である程度除去した後、更に、100〜450℃、好ましくは250〜450℃の温度範囲で5〜40分間程度の熱処理を行って、溶媒の乾燥及びイミド化を行うことがよい。2層以上にポリイミド樹脂層を設ける場合は、第一のポリアミド酸の樹脂溶液を塗布、乾燥したのち、第二のポリアミド酸の樹脂溶液を塗布、乾燥し、以下同様にして第三以下のポリアミド酸の樹脂溶液を順次、塗布、乾燥したのち、まとめて250〜450℃の温度範囲で5〜40分間程度の熱処理を行って、イミド化を行うことがよい。熱処理の温度が100℃より低いとポリイミドの脱水閉環反応が十分に進行せず、反対に450℃を超えると、ポリイミド樹脂層及び銅箔が酸化等により劣化するおそれがある。   The method for forming the polyimide resin layer is not particularly limited. For example, a polyamic acid resin solution, which is a polyimide resin precursor, is directly applied to the surface of the surface-treated copper foil, and the solvent contained in the resin solution is 150. After removing to some extent at a temperature of ℃ or less, it is preferable to further perform a heat treatment in a temperature range of 100 to 450 ℃, preferably 250 to 450 ℃ for about 5 to 40 minutes to dry the solvent and imidize. When two or more polyimide resin layers are provided, the first polyamic acid resin solution is applied and dried, then the second polyamic acid resin solution is applied and dried. The acid resin solution is sequentially applied and dried, and then heat treatment is performed at a temperature range of 250 to 450 ° C. for about 5 to 40 minutes to perform imidization. If the temperature of the heat treatment is lower than 100 ° C, the dehydration ring-closing reaction of polyimide does not proceed sufficiently. Conversely, if it exceeds 450 ° C, the polyimide resin layer and the copper foil may be deteriorated due to oxidation or the like.

ポリイミド樹脂層の厚さは、6〜45μmの範囲であるのがよく、好ましくは9〜40μmの範囲である。絶縁層の厚みが6μmに満たないと、銅張り積層板製造等における搬送時にシワが入るなどの不具合が生じるおそれがあり、反対に45μmを超えると銅張り積層板の製造時の寸法安定性や屈曲性等において問題が生じるおそれがある。   The thickness of the polyimide resin layer may be in the range of 6 to 45 μm, and preferably in the range of 9 to 40 μm. If the thickness of the insulating layer is less than 6 μm, there is a risk of problems such as wrinkling during transportation in the manufacture of copper-clad laminates. Conversely, if the thickness exceeds 45 μm, dimensional stability during the production of copper-clad laminates and There is a risk of problems in flexibility and the like.

本発明のフレキシブル銅張積層板は、ポリイミド樹脂層の片面側のみに銅箔を備えた片面銅張積層板であってもよいことはもちろんのこと、ポリイミド樹脂層の両面に銅箔を備えた両面銅張積層板でもよい。なお、両面銅張積層板を得るためには、片面銅張積層板を形成した後、互いにポリイミド樹脂層を向き合わせて熱プレスによって圧着し形成することや、片面銅張積層板のポリイミド樹脂層に銅箔を圧着し形成すること等により得ることができる。   The flexible copper-clad laminate of the present invention may be a single-sided copper-clad laminate having a copper foil only on one side of the polyimide resin layer, and has a copper foil on both sides of the polyimide resin layer. A double-sided copper-clad laminate may also be used. In addition, in order to obtain a double-sided copper-clad laminate, after forming a single-sided copper-clad laminate, the polyimide resin layers are faced to each other and bonded by hot pressing, or a polyimide resin layer of a single-sided copper-clad laminate It can be obtained by pressure-bonding and forming a copper foil.

本発明のフレキシブル銅張積層板は、ポリイミド樹脂層と銅箔との1mm幅での初期接着力が、0.6kN/m以上であることが好ましく、より好ましくは0.8〜2.0kN/mである。この初期接着力は実施例に記載の条件で測定した値である。この初期接着力を得るためには、銅箔と接するポリイミド樹脂層を熱可塑性ポリイミド樹脂層とする他、銅箔の表面処理層中の特定の金属の量を上記範囲にすることにより達成される。   In the flexible copper-clad laminate of the present invention, the initial adhesive strength at 1 mm width between the polyimide resin layer and the copper foil is preferably 0.6 kN / m or more, more preferably 0.8 to 2.0 kN /. m. This initial adhesive force is a value measured under the conditions described in the examples. In order to obtain this initial adhesive force, the polyimide resin layer in contact with the copper foil is made a thermoplastic polyimide resin layer, and the amount of the specific metal in the surface treatment layer of the copper foil is set within the above range. .

以下、本発明を実施例に基づき更に詳細に説明する。なお、以下の実施例において、特に断りのない限り各種評価については下記によるものである。   Hereinafter, the present invention will be described in more detail based on examples. In the following Examples, various evaluations are as follows unless otherwise specified.

[接着力の測定]
銅箔とポリイミド樹脂層との間の接着力は、銅箔上にポリイミド樹脂からなる絶縁層を形成して得られたフレキシブル片面銅張積層板について、線幅1mmに回路加工を行い、東洋精機株式会社製引張試験機(ストログラフ−M1)を用いて、銅箔を180°方向に引き剥がし測定した。
[Measurement of adhesive strength]
The adhesive force between the copper foil and the polyimide resin layer is obtained by performing circuit processing on a flexible single-sided copper-clad laminate obtained by forming an insulating layer made of a polyimide resin on the copper foil to a line width of 1 mm. The copper foil was peeled off in the 180 ° direction and measured using a tensile tester (Strograph-M1) manufactured by KK.

[表面処理層の金属量の測定]
銅箔の表面処理層の金属量の測定は、ICP-AES(Perkin Elmer社製Optima4300DV)にて実施した。測定は表面処理層を有する銅箔を試料とし、試料2gを硝酸及び塩酸分解処理後に100mlに定容し、10倍希釈後に実施した。
[Measurement of metal content of surface treatment layer]
The amount of metal in the surface treatment layer of the copper foil was measured with ICP-AES (Optima 4300 DV manufactured by Perkin Elmer). The measurement was performed using a copper foil having a surface-treated layer as a sample, and 2 g of the sample was fixed to 100 ml after the decomposition treatment with nitric acid and hydrochloric acid, and diluted 10 times.

[化学研磨耐性の測定]
化学研磨耐性の測定は、フレキシブル片面銅張積層板について、線幅1mmに回路加工を行い、過酸化水素2.5wt%/硫酸10wt%の化学研磨液中に40℃、2分間浸漬したのちに絶縁層側から回路端部を200倍の光学顕微鏡を用いて変色の有無を確認した。
[Measurement of chemical polishing resistance]
Chemical polishing resistance is measured after circuit processing is performed on a flexible single-sided copper-clad laminate with a line width of 1 mm and immersed in a chemical polishing solution of 2.5 wt% hydrogen peroxide / 10 wt% sulfuric acid at 40 ° C for 2 minutes. The end of the circuit from the insulating layer side was checked for discoloration using a 200 × optical microscope.

合成例1
熱電対及び攪拌機を備えると共に窒素導入が可能な反応容器に、N,N−ジメチルアセトアミドを入れた。この反応容器に2,2'−ジメチル−4,4'−ジアミノビフェニル(m-TB)を容器中で撹拌しながら溶解させた。次に、3,3', 4,4'−ビフェニルテトラカルボン酸二無水物およびピロメリット酸二無水物(PMDA)を加えた。モノマーの投入総量が15wt%で、各酸無水物のモル比率(BPDA:PMDA)が20:80となるように投入した。その後、3時間撹拌を続け、ポリアミド酸の樹脂溶液aを得た。ポリアミド酸の樹脂溶液aの溶液粘度は20,000cpsであった。このポリアミド酸から得られたポリイミドは25×10-6(1/K)以下の低線膨張係数を示し、非熱可塑性の性質を有していた。
Synthesis example 1
N, N-dimethylacetamide was placed in a reaction vessel equipped with a thermocouple and a stirrer and capable of introducing nitrogen. 2,2′-Dimethyl-4,4′-diaminobiphenyl (m-TB) was dissolved in the reaction vessel with stirring. Next, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride (PMDA) were added. The total amount of monomers charged was 15 wt%, and the molar ratio of each acid anhydride (BPDA: PMDA) was 20:80. Thereafter, stirring was continued for 3 hours to obtain a resin solution a of polyamic acid. The solution viscosity of the polyamic acid resin solution a was 20,000 cps. The polyimide obtained from this polyamic acid had a low linear expansion coefficient of 25 × 10 −6 (1 / K) or less and had non-thermoplastic properties.

合成例2
熱電対及び攪拌機を備えると共に窒素導入が可能な反応容器に、N,N−ジメチルアセトアミドを入れた。この反応容器に2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパンを容器中で撹拌しながら溶解させた。次に、ピロメリット酸二無水物を加え、モノマーの投入総量が12wt%となるようにした。その後、3時間撹拌を続け、ポリアミド酸の樹脂溶液bを得た。ポリアミド酸の樹脂溶液bの溶液粘度は3,000cpsであった。このポリアミド酸から得られるポリイミドは30×10-6(1/K)を超える線膨張係数を示し、熱可塑性の性質を有していた。
Synthesis example 2
N, N-dimethylacetamide was placed in a reaction vessel equipped with a thermocouple and a stirrer and capable of introducing nitrogen. 2,2-bis [4- (4-aminophenoxy) phenyl] propane was dissolved in the reaction vessel with stirring. Next, pyromellitic dianhydride was added so that the total amount of monomers was 12 wt%. Thereafter, stirring was continued for 3 hours to obtain a resin solution b of polyamic acid. The solution viscosity of the polyamide acid resin solution b was 3,000 cps. The polyimide obtained from this polyamic acid had a linear expansion coefficient exceeding 30 × 10 −6 (1 / K) and had thermoplastic properties.

実施例1
銅箔として、表面処理層としてアミノ基を有するシランカップリング剤でシランカップリング処理され表1に示す金属元素を含有する圧延銅箔を準備した。この銅箔は、厚さ18μmで、表面粗さ(Rz)は0.8μmであった。この銅箔上に、合成例2で調製したポリアミド酸の樹脂溶液bと合成例1で調整したポリアミド酸の樹脂溶液aを順次塗布し、乾燥後、最終的に300℃以上約10分で熱処理を行い、ポリイミド樹脂層の厚みが25μmのフレキシブル片面銅張積層板を得た。なお、ポリイミド樹脂層のうち、ポリアミド酸の樹脂溶液aから得られた層は23μmで、ポリアミド酸の樹脂溶液bから得られた層は2μmであった。この銅張積層板の1mmピールは初期接着力が1.0kN/mであった。また、このサンプルの化学研磨後には回路端部に変色は確認されなかった。結果を表2に示す。
Example 1
As a copper foil, a rolled copper foil containing a metal element shown in Table 1 that was silane-coupled with a silane coupling agent having an amino group as a surface treatment layer was prepared. This copper foil had a thickness of 18 μm and a surface roughness (Rz) of 0.8 μm. On this copper foil, the polyamic acid resin solution b prepared in Synthesis Example 2 and the polyamic acid resin solution a prepared in Synthesis Example 1 were sequentially applied, dried, and finally heat treated at 300 ° C. or more for about 10 minutes. And a flexible single-sided copper-clad laminate with a polyimide resin layer thickness of 25 μm was obtained. Of the polyimide resin layers, the layer obtained from the polyamic acid resin solution a was 23 μm, and the layer obtained from the polyamic acid resin solution b was 2 μm. The 1 mm peel of this copper clad laminate had an initial adhesive strength of 1.0 kN / m. Further, no discoloration was observed at the circuit edge after chemical polishing of this sample. The results are shown in Table 2.

実施例2、比較例1、2
表面金属量が異なる表1に示す圧延銅箔を用いた以外は実施例1と同様に行い、ピール強度、化学研磨耐性を評価した。結果を表2に示す。
表1において、Ni比はニッケル量/(ニッケル量+コバルト量+亜鉛量)である。
Example 2 and Comparative Examples 1 and 2
Except having used the rolled copper foil shown in Table 1 from which the amount of surface metals differs, it carried out similarly to Example 1 and evaluated peel strength and chemical-polishing tolerance. The results are shown in Table 2.
In Table 1, the Ni ratio is nickel amount / (nickel amount + cobalt amount + zinc amount).

Figure 2009226874
Figure 2009226874

Figure 2009226874
Figure 2009226874

実施例1、2で得られた銅張積層板では化学研磨処理後に回路端部に変色は観察されず、回路剥がれが発生していないことが確認された。一方、比較例1、2では回路端部全体に回路剥がれによる変色が確認された。   In the copper clad laminates obtained in Examples 1 and 2, no discoloration was observed at the circuit edge after the chemical polishing treatment, and it was confirmed that no circuit peeling occurred. On the other hand, in Comparative Examples 1 and 2, discoloration due to circuit peeling was confirmed on the entire circuit edge.

このように本発明で得られたフレキシブル銅張積層板は化学研磨後に回路剥がれが生じないことから信頼性が高く、さらには微細加工用途に適した材料であることが確認された。   As described above, the flexible copper clad laminate obtained in the present invention has high reliability because it does not cause circuit peeling after chemical polishing, and it has been confirmed that the material is suitable for fine processing applications.

Claims (5)

ポリイミド樹脂層の片面又は両面に銅箔が積層された銅張積層板において、前記銅箔のポリイミド樹脂層と接する銅箔表面は、シランカップリング処理層を含む複数の処理層からなる表面処理層を有し、この表面処理層は、銅、コバルト、ニッケル及び亜鉛を含有し、ニッケル/(ニッケル+コバルト+亜鉛)比が0.23以上(ICP-AES測定による)で、かつ、亜鉛含有量が0.2〜0.6mg/dm2の範囲にあり、前記シランカップリング処理層がアミノ基を有するシランカップリング剤により形成されたものであることを特徴とするフレキシブル銅張積層板。 In the copper clad laminate in which the copper foil is laminated on one side or both sides of the polyimide resin layer, the copper foil surface in contact with the polyimide resin layer of the copper foil is a surface treatment layer comprising a plurality of treatment layers including a silane coupling treatment layer. This surface treatment layer contains copper, cobalt, nickel and zinc, has a nickel / (nickel + cobalt + zinc) ratio of 0.23 or more (according to ICP-AES measurement), and has a zinc content. Is in a range of 0.2 to 0.6 mg / dm 2 , and the silane coupling treatment layer is formed by a silane coupling agent having an amino group. 表面処理層におけるシランカップリング処理層が最外層に位置するものである請求項1に記載のフレキシブル銅張積層板。   The flexible copper-clad laminate according to claim 1, wherein the silane coupling treatment layer in the surface treatment layer is located in the outermost layer. ポリイミド樹脂層が複数層からなり、銅箔と接するポリイミド樹脂層(A)が、熱可塑性ポリイミド樹脂からなる請求項1又は2に記載のフレキシブル銅張積層板。   The flexible copper clad laminate according to claim 1 or 2, wherein the polyimide resin layer comprises a plurality of layers, and the polyimide resin layer (A) in contact with the copper foil comprises a thermoplastic polyimide resin. 銅箔が圧延銅箔であり、ポリイミド樹脂層と接する表面処理された銅箔表面の表面粗度(Rz)が0.5〜2μmの範囲にある請求項1〜3の何れかに記載のフレキシブル銅張積層板。   The flexible foil according to any one of claims 1 to 3, wherein the copper foil is a rolled copper foil, and the surface roughness (Rz) of the surface-treated copper foil in contact with the polyimide resin layer is in the range of 0.5 to 2 µm. Copper-clad laminate. ポリイミド樹脂層と銅箔との1mm幅での初期接着力が、0.6kN/m以上である請求項1〜4の何れかに記載のフレキシブル銅張積層板。   The flexible copper-clad laminate according to any one of claims 1 to 4, wherein an initial adhesive force of 1 mm width between the polyimide resin layer and the copper foil is 0.6 kN / m or more.
JP2008078060A 2008-03-25 2008-03-25 Flexible copper clad laminate Active JP4907580B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008078060A JP4907580B2 (en) 2008-03-25 2008-03-25 Flexible copper clad laminate
KR1020090008929A KR101574587B1 (en) 2008-03-25 2009-02-04 flexible copper clad laminate
TW098108377A TWI519412B (en) 2008-03-25 2009-03-16 Flexible copper-clad lamination board
CN2009101294482A CN101547559B (en) 2008-03-25 2009-03-20 Flexible copper clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008078060A JP4907580B2 (en) 2008-03-25 2008-03-25 Flexible copper clad laminate

Publications (2)

Publication Number Publication Date
JP2009226874A true JP2009226874A (en) 2009-10-08
JP4907580B2 JP4907580B2 (en) 2012-03-28

Family

ID=41194339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008078060A Active JP4907580B2 (en) 2008-03-25 2008-03-25 Flexible copper clad laminate

Country Status (4)

Country Link
JP (1) JP4907580B2 (en)
KR (1) KR101574587B1 (en)
CN (1) CN101547559B (en)
TW (1) TWI519412B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105318A1 (en) * 2010-02-24 2011-09-01 Jx日鉱日石金属株式会社 Copper foil for printed circuit board and copper-clad laminate for printed circuit board
JP2012186211A (en) * 2011-03-03 2012-09-27 Jx Nippon Mining & Metals Corp Copper foil for printed wiring board and laminate sheet using the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9666746B2 (en) * 2011-06-14 2017-05-30 Dai Nippon Printing Co., Ltd. Conductive base for forming wiring pattern of collector sheet for solar cells, and method for producing collector sheet for solar cells
TWI616122B (en) * 2014-05-28 2018-02-21 Jx Nippon Mining & Metals Corp Surface-treated copper foil, copper foil with carrier, laminated body, printed wiring board, electronic device, method for producing surface-treated copper foil, and method for producing printed wiring board
WO2016038923A1 (en) * 2014-09-09 2016-03-17 古河電気工業株式会社 Copper foil for printed wiring board, and copper-clad laminated board
US10051746B2 (en) * 2014-12-16 2018-08-14 Amphenol Corporation High-speed interconnects for printed circuit boards
JP6427454B2 (en) * 2015-03-31 2018-11-21 日鉄ケミカル&マテリアル株式会社 Copper-clad laminate and printed wiring board
CN108172518A (en) * 2017-12-11 2018-06-15 上海申和热磁电子有限公司 A kind of production method for the substrate being bonded with high-temperature plastic
JP7445830B2 (en) 2018-10-05 2024-03-08 パナソニックIpマネジメント株式会社 Copper-clad laminates, wiring boards, and copper foils with resin

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354901A (en) * 1998-06-11 1999-12-24 Mitsui Mining & Smelting Co Ltd Printed circuit copper foil
JP2004082719A (en) * 2002-06-28 2004-03-18 Mitsui Chemicals Inc Polyimide metal laminated plate
JP2005048269A (en) * 2003-07-31 2005-02-24 Nikko Materials Co Ltd Surface treated copper foil, and board obtained by using the same
JP2005344174A (en) * 2004-06-03 2005-12-15 Mitsui Mining & Smelting Co Ltd Surface-treated copper foil, flexible copper-clad laminate manufactured using the same, and film carrier tape
JP2006130747A (en) * 2004-11-04 2006-05-25 Nippon Steel Chem Co Ltd Copper clad laminated sheet for cof and carrier tape for cof
JP2006142514A (en) * 2004-11-16 2006-06-08 Nippon Steel Chem Co Ltd Copper clad laminated sheet
JP2006289959A (en) * 2005-03-14 2006-10-26 Nippon Steel Chem Co Ltd Copper-clad laminate
JP2007022091A (en) * 2002-03-05 2007-02-01 Hitachi Chem Co Ltd Metal foil with resin and metal-clad laminate, and printed wiring board using the same and method for production thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001177204A (en) * 1999-12-15 2001-06-29 Mitsui Mining & Smelting Co Ltd Surface-treated copper foil and method of manufacturing the same
JP2004259256A (en) * 2003-02-05 2004-09-16 Nitto Denko Corp Transparent lamination body, pen input image display device, and image display method
JP4086768B2 (en) 2003-12-10 2008-05-14 日東電工株式会社 Manufacturing method of flexible circuit board

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354901A (en) * 1998-06-11 1999-12-24 Mitsui Mining & Smelting Co Ltd Printed circuit copper foil
JP2007022091A (en) * 2002-03-05 2007-02-01 Hitachi Chem Co Ltd Metal foil with resin and metal-clad laminate, and printed wiring board using the same and method for production thereof
JP2004082719A (en) * 2002-06-28 2004-03-18 Mitsui Chemicals Inc Polyimide metal laminated plate
JP2005048269A (en) * 2003-07-31 2005-02-24 Nikko Materials Co Ltd Surface treated copper foil, and board obtained by using the same
JP2005344174A (en) * 2004-06-03 2005-12-15 Mitsui Mining & Smelting Co Ltd Surface-treated copper foil, flexible copper-clad laminate manufactured using the same, and film carrier tape
JP2006130747A (en) * 2004-11-04 2006-05-25 Nippon Steel Chem Co Ltd Copper clad laminated sheet for cof and carrier tape for cof
JP2006142514A (en) * 2004-11-16 2006-06-08 Nippon Steel Chem Co Ltd Copper clad laminated sheet
JP2006289959A (en) * 2005-03-14 2006-10-26 Nippon Steel Chem Co Ltd Copper-clad laminate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105318A1 (en) * 2010-02-24 2011-09-01 Jx日鉱日石金属株式会社 Copper foil for printed circuit board and copper-clad laminate for printed circuit board
JP5254491B2 (en) * 2010-02-24 2013-08-07 Jx日鉱日石金属株式会社 Copper foil for printed circuit board and copper clad laminate for printed circuit board
KR101344176B1 (en) 2010-02-24 2013-12-20 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Copper foil for printed circuit board and copper-clad laminate for printed circuit board
JP2012186211A (en) * 2011-03-03 2012-09-27 Jx Nippon Mining & Metals Corp Copper foil for printed wiring board and laminate sheet using the same

Also Published As

Publication number Publication date
CN101547559A (en) 2009-09-30
CN101547559B (en) 2012-08-22
KR20090102633A (en) 2009-09-30
TW200940328A (en) 2009-10-01
JP4907580B2 (en) 2012-03-28
KR101574587B1 (en) 2015-12-04
TWI519412B (en) 2016-02-01

Similar Documents

Publication Publication Date Title
JP5031639B2 (en) Flexible copper clad laminate
JP4907580B2 (en) Flexible copper clad laminate
TWI462826B (en) Flexible copper clad sheet
US8313831B2 (en) Thermoplastic polyimide resin film, multilayer body and method for manufacturing printed wiring board composed of same
KR101078234B1 (en) Copper-clad laminate
JP4927963B2 (en) Surface-treated copper foil, method for producing the same, and copper-clad laminate
TWI455671B (en) Printed circuit board manufacturing method
JP2022126664A (en) Metal-clad laminate and circuit board
JP4757666B2 (en) Copper-clad laminate
KR101965174B1 (en) Metal-clad laminate
JP5133724B2 (en) Method for producing polyimide resin laminate and method for producing metal-clad laminate
JP4994992B2 (en) Laminate for wiring board and flexible wiring board for COF
JP5009756B2 (en) Method for producing polyimide resin layer having adhesive layer and method for producing metal tension plate
JP2008168582A (en) Manufacturing method of flexible laminated plate
JP5073801B2 (en) Method for producing copper-clad laminate
JP2009154447A (en) Metal-clad laminate
JP2009154446A (en) Metal-clad laminate and its manufacturing method
JP2009066860A (en) Metal-clad laminate and its manufacturing method
JP5009714B2 (en) Laminated body for flexible wiring board and flexible wiring board for COF
JP2009184256A (en) Metal-clad laminate
JP4976269B2 (en) Method for producing polyimide resin layer having adhesive layer and method for producing metal-clad laminate
JP2008238558A (en) Metal-cladded laminate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4907580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250