JP2009221630A - Breathable-waterproof fabric - Google Patents

Breathable-waterproof fabric Download PDF

Info

Publication number
JP2009221630A
JP2009221630A JP2008067720A JP2008067720A JP2009221630A JP 2009221630 A JP2009221630 A JP 2009221630A JP 2008067720 A JP2008067720 A JP 2008067720A JP 2008067720 A JP2008067720 A JP 2008067720A JP 2009221630 A JP2009221630 A JP 2009221630A
Authority
JP
Japan
Prior art keywords
fabric
moisture
permeable
mass
waterproof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008067720A
Other languages
Japanese (ja)
Inventor
Kiyoshi Nakagawa
清 中川
Yoshiaki Kijima
由明 來島
Munemasa Okubo
宗政 大久保
Kohei Toyofuku
航平 豊福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Fibers Ltd
Original Assignee
Unitika Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Fibers Ltd filed Critical Unitika Fibers Ltd
Priority to JP2008067720A priority Critical patent/JP2009221630A/en
Publication of JP2009221630A publication Critical patent/JP2009221630A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a breathable-waterproof fabric having high moisture-permeation performance and waterproof performance and excellent in handling feel, durability, etc. <P>SOLUTION: The breathable-waterproof fabric has a microporous polyurethane membrane having a membrane thickness of 10.0-50.0 μm and containing 15-45 mass% fumed silica powder on one surface of a fiber fabric, and has a water-pressure resistance of 100-300 kPa and a moisture permeability of 8,000-12,000 g/m<SP>2</SP>×24 hrs measured in conformity to JIS L1099(A-1 method). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、透湿防水性布帛に関するものである。   The present invention relates to a moisture-permeable and waterproof fabric.

透湿性と防水性とを併せ持つ透湿防水性布帛は、身体からの発汗による水蒸気を衣服外へ放出する機能と、雨が衣服内に侵入するのを防ぐ機能とを有するものであり、スポーツ衣料や防寒衣料などに広く用いられている。   A moisture-permeable and waterproof fabric having both moisture permeability and waterproof properties has a function of releasing water vapor generated by perspiration from the body to the outside of clothes and a function of preventing rain from entering the clothes. It is widely used for cold clothing.

このような透湿防水性布帛としては、糸を高密度に織り込んだ高密度織物や、繊維布帛の片面にポリウレタン、ポリエステル、ポリアミド又はポリテトラフルオロエチレンなどの樹脂からなる樹脂膜を形成した透湿防水性布帛がよく知られている。その中でも、汎用性並びにコストや性能面からポリウレタン樹脂が好ましく用いられている。   As such a moisture-permeable and waterproof fabric, a moisture-permeable fabric having a high-density woven fabric in which yarns are woven in high density or a resin film made of a resin such as polyurethane, polyester, polyamide or polytetrafluoroethylene is formed on one side of a fiber fabric. Waterproof fabrics are well known. Among these, polyurethane resins are preferably used in view of versatility, cost, and performance.

前記透湿防水性布帛の一例として、下記特許文献1には、繊維布帛上に、平均粒子径が1μm以下で、N,N−ジメチルホルムアミドの吸着量の多い無機微粉末を1質量%以上含有させたポリウレタン樹脂を湿式凝固することで、ポリウレタン樹脂特有のハニカムスキンコア構造の他にサブミクロンオーダーの微細孔を多数有する樹脂膜を備えた透湿防水性布帛が開示されている。同文献によれば、当該透湿防水性布帛は、透湿度7000g/m・24hrs、耐水圧0.6kgf/cmを満足する。
特開平6−272168号公報
As an example of the moisture permeable and waterproof fabric, Patent Document 1 below contains 1% by mass or more of inorganic fine powder having an average particle diameter of 1 μm or less and a large amount of adsorption of N, N-dimethylformamide on a fiber fabric. A moisture-permeable and waterproof fabric including a resin film having many fine pores on the order of submicrons in addition to a honeycomb skin core structure unique to a polyurethane resin by wet coagulation of the polyurethane resin thus disclosed is disclosed. According to this document, the moisture-permeable and waterproof fabric satisfies a moisture permeability of 7000 g / m 2 · 24 hrs and a water pressure resistance of 0.6 kgf / cm 2 .
JP-A-6-272168

近年、アウトドアブームの高まりによって、透湿防水性布帛の用途が従来のスポーツ衣料だけでなく、広くレジャー分野全般に渡るようになってきており、透湿防水性布帛における透湿性能、防水性能、風合い及び洗濯耐久性などの機能強化が要望されている。   In recent years, with the rise of outdoor boom, the use of moisture-permeable and waterproof fabrics has been extended not only to conventional sports clothing, but also to the entire leisure field. Functional enhancements such as texture and washing durability are desired.

しかしながら、特許文献1記載の透湿防水性布帛における樹脂膜は、一般のポリウレタン樹脂膜と同じく、孔径10〜50μm程度の孔を多数有するハニカムスキンコア構造であるため、十分な防水性能を得ることができない。つまり、所望の防水性能を得るには、樹脂膜の厚みを40〜100μm程度にまで厚くする必要があり、結果、厚みによる透湿抵抗から透湿性能が低下するという問題に加え、風合いが損なわれるという問題が生じる。   However, since the resin film in the moisture-permeable waterproof fabric described in Patent Document 1 has a honeycomb skin core structure having a large number of pores having a pore diameter of about 10 to 50 μm, like a general polyurethane resin film, sufficient waterproof performance can be obtained. I can't. That is, in order to obtain a desired waterproof performance, it is necessary to increase the thickness of the resin film to about 40 to 100 μm. As a result, in addition to the problem that the moisture permeability performance decreases due to the moisture permeability resistance due to the thickness, the texture is impaired Problem arises.

本発明はこのような現状に鑑みて行われたもので、高い透湿性能と防水性能とを備えると共に、風合いや耐久性などにも優れた透湿防水性布帛を提供することを目的とする。   The present invention has been made in view of such a situation, and an object thereof is to provide a moisture-permeable and waterproof fabric having high moisture permeability and waterproof performance, and having excellent texture and durability. .

本発明は、上記の目的を達成するもので、次の構成よりなるものである。   The present invention achieves the above-mentioned object and has the following configuration.

(1)繊維布帛の片面に、膜厚が10.0〜50.0μmであり、フュームドシリカ系微粉末を15〜45質量%含有してなるポリウレタン微多孔質膜を有してなり、耐水圧が100〜300kPaであり、JIS L1099(A−1法)に準じて測定される透湿度が8000〜12000g/m・24hrsであることを特徴とする透湿防水性布帛。 (1) On one side of the fiber fabric, it has a polyurethane microporous membrane having a film thickness of 10.0 to 50.0 μm and containing 15 to 45% by mass of fumed silica-based fine powder. A moisture-permeable and waterproof fabric characterized in that the water pressure is 100 to 300 kPa, and the moisture permeability measured according to JIS L1099 (A-1 method) is 8000 to 12000 g / m 2 · 24 hrs.

(2)繊維布帛の片面に、膜厚が10.0〜50.0μmであり、フュームドシリカ系微粉末を15〜45質量%含有してなるポリウレタン微多孔質膜と、その上に膜厚が0.5〜15.0μmの無孔質膜とを順次備えてなり、耐水圧が150〜800kPaであり、JIS L1099(A−1法)に準じて測定される透湿度が5000〜11000g/m・24hrsであることを特徴とする透湿防水性布帛。 (2) A polyurethane microporous film having a film thickness of 10.0 to 50.0 μm and containing 15 to 45% by mass of fumed silica-based fine powder on one side of the fiber fabric, and a film thickness thereon Is sequentially provided with a non-porous membrane having a thickness of 0.5 to 15.0 μm, a water pressure resistance of 150 to 800 kPa, and a water vapor permeability measured according to JIS L1099 (A-1 method) of 5000 to 11000 g / A moisture-permeable and waterproof fabric characterized by being m 2 · 24 hrs.

本発明の透湿防水性布帛は、高い透湿性能と防水性能とを備えると共に、風合い及び洗濯などの耐久性にも非常に優れている。そのため、本発明の透湿防水性布帛は、スポーツ衣料だけでなく、広くレジャー分野全般に用いることができる。   The moisture-permeable and waterproof fabric of the present invention has high moisture permeability and waterproof performance, and is extremely excellent in durability such as texture and washing. Therefore, the moisture-permeable waterproof fabric of the present invention can be widely used not only for sports clothing but also in the general leisure field.

また、本発明の透湿防水性布帛が備えてなる微多孔質膜は、構造としてハニカムスキン構造をとるのではなく、ナノオーダーの微細な孔を多数有する微多孔質なものであるから、膜厚を抑えることができ、結果、風合い向上や質量感低減などに非常に有利である。   In addition, the microporous membrane provided in the moisture-permeable and waterproof fabric of the present invention is not a honeycomb skin structure, but a microporous membrane having many nano-order fine pores. The thickness can be suppressed, and as a result, it is very advantageous for improving texture and reducing mass feeling.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の透湿防水性布帛に用いうる繊維布帛としては、例えば、ナイロン6、ナイロン66で代表されるポリアミド系合成繊維、ポリエチレンテレフタレートで代表されるポリエステル系合成繊維、ポリアクリルニトリル系合成繊維、ポリビニルアルコール系合成繊維などの合成繊維、トリアセテートなどの半合成繊維、あるいはナイロン6/綿、ポリエチレンテレフタレート/綿などの混合繊維からなる織物、編物又は不織布などがあげられる。   Examples of fiber fabrics that can be used for the moisture-permeable and waterproof fabric of the present invention include, for example, polyamide-based synthetic fibers represented by nylon 6, nylon 66, polyester-based synthetic fibers represented by polyethylene terephthalate, polyacrylonitrile-based synthetic fibers, Examples include synthetic fibers such as polyvinyl alcohol-based synthetic fibers, semi-synthetic fibers such as triacetate, and woven fabrics, knitted fabrics, and non-woven fabrics made of mixed fibers such as nylon 6 / cotton and polyethylene terephthalate / cotton.

本発明の透湿防水性布帛は、上記繊維布帛の片面に特定の要件を満足するポリウレタン微多孔質膜を備えてなるものである。   The moisture-permeable waterproof fabric of the present invention comprises a polyurethane microporous membrane that satisfies specific requirements on one side of the fiber fabric.

具体的に、ポリウレタン微多孔質膜の膜厚としては、10.0〜50.0μmが好ましく、15.0〜40.0μmがより好ましい。膜厚が10.0μm未満になると、防水性能が低減する傾向にあり、一方、50.0μmを超えると、ハニカムスキンコア構造に近い形態を呈しやすくなる他、風合いの悪化を招きやすい傾向にあるので、いずれも好ましくない。   Specifically, the thickness of the polyurethane microporous membrane is preferably 10.0 to 50.0 μm, and more preferably 15.0 to 40.0 μm. When the film thickness is less than 10.0 μm, the waterproof performance tends to be reduced. On the other hand, when the film thickness exceeds 50.0 μm, a form close to the honeycomb skin core structure tends to be exhibited, and the texture tends to be deteriorated. Therefore, neither is preferable.

本発明におけるポリウレタン微多孔質膜は、基本的に、凝固液として水又はN,N−ジメチルホルムアミドを少量含有する水混合液を使用して、所定のポリウレタン樹脂を凝固させる、いわゆる湿式法により形成する。つまり、樹脂溶液中の溶媒と、凝固液中に含まれる水との間で生じる溶媒置換を利用することで、製膜するのである。したがって、ポリウレタン樹脂は固形のままで使用されるのではなく、溶液にして用いるのが一般的である。このとき、ポリウレタン樹脂を溶解させる溶媒としては、ポリウレタン樹脂を溶解する極性有機溶媒であれば特段限定されないが、後述するフュームドシリカ系微粉末がN,N−ジメチルホルムアミドを多量に吸着しやすい特性を有することから、N,N−ジメチルホルムアミドが好適である。   The polyurethane microporous membrane in the present invention is basically formed by a so-called wet method in which a predetermined polyurethane resin is coagulated using water or a water mixed solution containing a small amount of N, N-dimethylformamide as a coagulating solution. To do. That is, a film is formed by utilizing solvent substitution that occurs between the solvent in the resin solution and the water contained in the coagulation liquid. Therefore, the polyurethane resin is generally used as a solution, not as a solid. At this time, the solvent for dissolving the polyurethane resin is not particularly limited as long as it is a polar organic solvent that dissolves the polyurethane resin, but the fumed silica-based fine powder described later has a characteristic of easily adsorbing a large amount of N, N-dimethylformamide. N, N-dimethylformamide is preferable.

上記ポリウレタン樹脂としては、例えば、イソシアネート成分とポリオール成分とを反応させて得られる重合体があげられる。イソシアネート成分としては、例えば、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネートなどが単独で又は混合して用いられる。具体的には、トリレン−2,4−ジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、1,6−ヘキサンジイソシアネート又は1,4−シクロヘキサンジイソシアネートなどを主成分として用い、必要に応じ3官能以上のイソシアネートを使用してもよい。一方、ポリオール成分としては、例えば、ポリエーテルポリオールやポリエステルポリオールなどが用いられる。ポリエーテルポリオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール又はポリテトラエチレングリコールなどが用いられる。ポリエステルポリオールとしては、例えば、エチレングリコールやプロピレングリコールなどのジオールと、アジピン酸やセバチン酸などの二塩基酸との反応生成物、又はカプロラクトンなどの開環重合物を用いることができ、勿論、オキシ酸モノマーあるいはそのプレポリマーの重合物も用いることができる。   Examples of the polyurethane resin include a polymer obtained by reacting an isocyanate component and a polyol component. As an isocyanate component, aromatic diisocyanate, aliphatic diisocyanate, alicyclic diisocyanate, etc. are used individually or in mixture, for example. Specifically, tolylene-2,4-diisocyanate, 4,4′-diphenylmethane diisocyanate, 1,6-hexane diisocyanate or 1,4-cyclohexane diisocyanate is used as a main component, and trifunctional or higher functional isocyanate is used as necessary. May be used. On the other hand, as a polyol component, polyether polyol, polyester polyol, etc. are used, for example. As the polyether polyol, for example, polyethylene glycol, polypropylene glycol, polytetraethylene glycol or the like is used. As the polyester polyol, for example, a reaction product of a diol such as ethylene glycol or propylene glycol and a dibasic acid such as adipic acid or sebacic acid, or a ring-opening polymer such as caprolactone can be used. A polymer of an acid monomer or a prepolymer thereof can also be used.

本発明の透湿防水性布帛は主に衣料用途に適用するものであるから、微多孔質膜は当然、使用に耐えうるだけの強伸度を有していることが好ましい。そのため、かかるポリウレタン樹脂の強伸度として、具体的に100%モジュラスが1〜20MPaの範囲を満足することが好ましく、2〜15MPaを満足することがより好ましい。100%モジュラスが1MPa未満では、布帛の耐水圧や透湿性能などが低下する傾向にあり、一方、20MPaを超えると、微多孔質膜の形態安定性が低下するだけでなく、布帛の風合いも硬くなる傾向にあり、いずれも好ましくない。なお、この強伸度は、樹脂を無孔質膜とし、測定されるものである。   Since the moisture-permeable and waterproof fabric of the present invention is mainly applied to apparel use, it is naturally preferable that the microporous membrane has a high elongation enough to withstand use. Therefore, it is preferable that the 100% modulus specifically satisfies the range of 1 to 20 MPa, and more preferably 2 to 15 MPa as the strong elongation of the polyurethane resin. If the 100% modulus is less than 1 MPa, the water pressure resistance or moisture permeability of the fabric tends to be reduced. On the other hand, if it exceeds 20 MPa, not only the shape stability of the microporous membrane is lowered but also the texture of the fabric is reduced. It tends to be hard and neither is preferable. This high elongation is measured using a resin as a nonporous film.

また、本発明では、繊維布帛との接着性向上の観点から、ポリウレタン樹脂が架橋されたものであることが好ましい。架橋に用いる架橋剤としては、イソシアネート化合物などが好適であり、一般には、ポリウレタン樹脂に対し1〜10質量%程度の割合で用いる。この他、樹脂中には、目的に応じ、顔料、フィラーなどの各種添加剤、抗菌剤、消臭剤、難燃剤などの各種機能材を含有させてもよい。   Moreover, in this invention, it is preferable that a polyurethane resin is bridge | crosslinked from a viewpoint of an adhesive improvement with a fiber fabric. As a crosslinking agent used for crosslinking, an isocyanate compound or the like is suitable, and in general, it is used at a ratio of about 1 to 10% by mass with respect to the polyurethane resin. In addition, the resin may contain various functional materials such as various additives such as pigments and fillers, antibacterial agents, deodorants, and flame retardants, depending on the purpose.

本発明に使用しうるポリウレタン樹脂は、純然たるポリウレタン樹脂であってよいことは当然であるが、何らこれに限定されず、少量であればポリウレタン樹脂以外の重合体が含まれていてもよい。具体的には、ポリウレタン樹脂中に含まれる当該重合体の比率としては、20質量%以下が好ましい。   The polyurethane resin that can be used in the present invention may of course be a pure polyurethane resin, but is not limited to this, and a small amount of a polymer other than the polyurethane resin may be included as long as the amount is small. Specifically, the proportion of the polymer contained in the polyurethane resin is preferably 20% by mass or less.

かかる重合体としては、例えば、ポリアクリル酸、ポリ塩化ビニル、ポリスチレン、ポリブタジエン、ポリアミノ酸、ポリカーボネートなどの他、これらの共重合体、あるいは、これらをフッ素やシリコンなどで変成したものなどがあげられる。なお、これらの重合体の100%モジュラスも、前述の範囲を満足するのが好ましいことはいうまでもない。   Examples of such a polymer include polyacrylic acid, polyvinyl chloride, polystyrene, polybutadiene, polyamino acid, polycarbonate and the like, copolymers thereof, and those modified with fluorine or silicon. . Needless to say, the 100% modulus of these polymers also preferably satisfies the aforementioned range.

かかる微多孔質膜は、以上のような所定のポリウレタン樹脂から形成されてなるものであるが、本発明では、この微多孔質膜にフュームドシリカ系微粉末が15〜45質量%含有されている。これにより、孔径1μm以下のナノオーダーレベルにある多数の孔が膜全体に渡って略均等に配された構造の微多孔質膜形成が可能となる。つまり、かかる微粉末の含有量が15質量%未満であると、上記構造を呈する微多孔質膜を形成することができず、ハニカムスキンコア構造を呈する従来のものと同様の構造となることがある。加えて、布帛に対し透湿、防水の両機能を同時に付与することが困難となる。一方、45質量%を超えると、微多孔質膜が脆くなる傾向にあり、結果、洗濯耐久性の低下などを招く恐れがある。また、布帛の質量が過度に増える傾向にあり、用途が限られる恐れがある。   Such a microporous membrane is formed from a predetermined polyurethane resin as described above. In the present invention, the microporous membrane contains 15 to 45% by mass of fumed silica-based fine powder. Yes. As a result, it is possible to form a microporous film having a structure in which a large number of pores having a pore diameter of 1 μm or less at a nano-order level are arranged substantially evenly over the entire film. That is, when the content of the fine powder is less than 15% by mass, it is not possible to form a microporous film exhibiting the above structure, and a structure similar to the conventional one exhibiting a honeycomb skin core structure may be obtained. is there. In addition, it becomes difficult to simultaneously impart both moisture permeability and waterproof functions to the fabric. On the other hand, if it exceeds 45% by mass, the microporous membrane tends to become brittle, and as a result, the washing durability may be lowered. Moreover, there exists a tendency for the mass of a fabric to increase excessively and there exists a possibility that a use may be restricted.

ここで、フュームドシリカ系超微粉末とは、アモルファス構造で細孔のない球状二酸化珪素粒子が凝集した一次粒子からなるものである。   Here, the fumed silica ultrafine powder is composed of primary particles in which spherical silicon dioxide particles having an amorphous structure and no pores are aggregated.

具体的に、フュームドシリカ系超微粉末の一次粒子径としては、7〜40nmが好ましく、10〜30nmがより好ましい。粒子径が7nm未満であると、取り扱いが煩雑になることに加え、均一分散性の点で不利となり易い傾向にあり、好ましくない。一方、40nmを超えると、膜内に孔径の大きな孔が形成される結果、布帛の防水性能を低下させてしまうことがあり、好ましくない。   Specifically, the primary particle size of the fumed silica-based ultrafine powder is preferably 7 to 40 nm, and more preferably 10 to 30 nm. If the particle diameter is less than 7 nm, handling becomes complicated, and it tends to be disadvantageous in terms of uniform dispersibility, which is not preferable. On the other hand, if the thickness exceeds 40 nm, pores having a large pore diameter are formed in the membrane, and as a result, the waterproof performance of the fabric may be deteriorated.

また、フュームドシリカ系微粉末が微多孔質膜形成に寄与する点を考慮し、当該微粉末はN,N−ジメチルホルムアミドを吸着するものであることが好ましい。具体的な吸着量としては、200mL/100g以上が好ましく、250mL/100g以上がより好ましい。N,N−ジメチルホルムアミドの吸着量が200mL/100g未満であると、ナノオーダーレベルの孔を形成し難くなる傾向にあり、布帛に優れた透湿性能を付与し難くなるので好ましくない。   In consideration of the fact that the fumed silica-based fine powder contributes to the formation of the microporous film, the fine powder preferably adsorbs N, N-dimethylformamide. The specific adsorption amount is preferably 200 mL / 100 g or more, and more preferably 250 mL / 100 g or more. If the amount of N, N-dimethylformamide adsorbed is less than 200 mL / 100 g, it tends to be difficult to form nano-order level pores, and it becomes difficult to impart excellent moisture permeability to the fabric.

ここで、N,N−ジメチルホルムアミドの吸着量は、以下の方法で測定されるものである。すなわち、フュームドシリカ系微粉末5gをガラス平板上におき、N,N−ジメチルホルムアミドを1滴滴下するごとにステンレス製のへらを用いて練り合わせる作業を繰り返し、N,N−ジメチルホルムアミドの1滴で急激に柔らかくなる直前までに要したN,N−ジメチルホルムアミドの体積(単位:mL)を測定する。つまり、この測定方法は、JIS K−5101Kを準用したものであり、煮あまに油に代えてN,N−ジメチルホルムアミドを用いた方法である。   Here, the adsorption amount of N, N-dimethylformamide is measured by the following method. That is, 5 g of fumed silica-based fine powder was placed on a glass plate and kneaded with a stainless steel spatula each time one drop of N, N-dimethylformamide was added to repeat 1 of N, N-dimethylformamide. Measure the volume (unit: mL) of N, N-dimethylformamide required until immediately before dripping and softening. That is, this measurement method is a method using JIS K-5101K, and using N, N-dimethylformamide instead of boiled sesame oil.

本発明におけるフュームドシリカ系微粉末は、上記の物性を有するものであれば、基本的にどのようなものでも使用できる。例えば、粒子表面に多数のシラノール基を有する親水性フュームドシリカ系微粉末や、この粒子にジメチルジクロロシランなどの有機珪素ハロゲン化物を反応させることで疎水改質した、疎水性フュームドシリカ系微粉末などが使用できる。また、フュームド金属酸化物も、かかる微粉末の一態様といえ、例えば、親水又は疎水性のフュームド酸化アルミニウム微粉末、フュームド酸化チタン微粉末、酸化ジルコニウム微粉末などが使用可能である。さらに、例示したこれらの微粉末と各種金属酸化物とを混合して得た微粉末も有効である。   As the fumed silica-based fine powder in the present invention, basically any fine powder can be used as long as it has the above physical properties. For example, a hydrophilic fumed silica fine powder having a large number of silanol groups on the particle surface, or a hydrophobic fumed silica fine powder that has been hydrophobically modified by reacting an organic silicon halide such as dimethyldichlorosilane with the particle. Powder etc. can be used. A fumed metal oxide is also an embodiment of such a fine powder. For example, a hydrophilic or hydrophobic fumed aluminum oxide fine powder, a fumed titanium oxide fine powder, a zirconium oxide fine powder, or the like can be used. Furthermore, fine powders obtained by mixing these exemplified fine powders with various metal oxides are also effective.

このような微粉末を具体的に例示すれば、日本アエロジル(株)製、「AEROSIL 90(商品名)」、「AEROSIL 130(商品名)」、「AEROSIL 150(商品名)」、「AEROSIL 200(商品名)」、「AEROSIL300(商品名)」といった親水性フュームドシリカ系微粉末、「AEROSIL R104(商品名)」、「AEROSIL R106(商品名)」、「AEROSIL R202(商品名)」、「AEROSIL R805(商品名)」、「AEROSIL RX200(商品名)」、「AEROSIL RX300(商品名)」、「AEROSIL R972(商品名)」、「AEROSIL R974(商品名)」、「AEROSIL R976(商品名)」、「AEROSIL R7200(商品名)」、「AEROSIL R8200(商品名)」、「AEROSIL R9200(商品名)」といった疎水性フュームドシリカ系微粉末などがあげられ、この他にも、フュームドシリカとフュームド酸化アルミニウムを混合させた微粉末として「AEROSIL COK84(商品名)」、疎水性フュームド酸化アルミニウム微粉末として「AEROXIDE Alu C 805(商品名)」などがあげられる。   Specific examples of such fine powder include “AEROSIL 90 (trade name)”, “AEROSIL 130 (trade name)”, “AEROSIL 150 (trade name)”, “AEROSIL 200” manufactured by Nippon Aerosil Co., Ltd. (Trade name) ”,“ AEROSIL 300 (trade name) ”, such as hydrophilic fumed silica fine powder,“ AEROSIL R104 (trade name) ”,“ AEROSIL R106 (trade name) ”,“ AEROSIL R202 (trade name) ”, “AEROSIL R805 (product name)”, “AEROSIL RX200 (product name)”, “AEROSIL RX300 (product name)”, “AEROSIL R972 (product name)”, “AEROSIL R974 (product name)”, “AEROSIL R976 (product name) Name) ”,“ AEROSIL R720 Hydrophobic fumed silica-based fine powders such as “0 (trade name)”, “AEROSIL R8200 (trade name)”, “AEROSIL R9200 (trade name)”, and the like. In addition, fumed silica and fumed aluminum oxide "AEROSIL COK84 (trade name)" as a fine powder mixed with, and "AEROXIDE Alu C 805 (trade name)" as a hydrophobic fumed aluminum oxide fine powder.

本発明では、上記に列挙したフュームドシリカ系超微粉末を、目的に応じ単独又は複数選択し、使用すればよい。例えば、膜形態を均一にさせ、微多孔質膜の透湿性能を向上させる観点からは、親水性又は疎水性フュームドシリカ系微粉末が好ましく、中でも漏水性や防水耐久性の点で疎水性フュームドシリカ系微粉末が好ましい。また、微多孔質膜の負帯電防止性や微多孔質膜形成の際に用いる樹脂溶液の分散性、流動性及び安定性などを考慮すれば、親水性及び/又は疎水性フュームドシリカ系微粉末とフュームド金属酸化物とを混用して用いるのがよい。   In the present invention, the fumed silica ultrafine powder listed above may be used alone or in combination depending on the purpose. For example, hydrophilic or hydrophobic fumed silica-based fine powder is preferable from the viewpoint of making the membrane form uniform and improving the moisture permeability of the microporous membrane, and in particular, hydrophobicity in terms of water leakage and waterproof durability. Fumed silica fine powder is preferred. Further, considering the negative antistatic property of the microporous membrane and the dispersibility, fluidity, and stability of the resin solution used for forming the microporous membrane, hydrophilic and / or hydrophobic fumed silica-based fine particles are used. It is preferable to use a mixture of powder and fumed metal oxide.

また、上記フュームドシリカ系超微粉末の製法としては、公知の方法が採用でき、例えば、燃焼加水分解法により得ることができる。具体的には、公知の乾式法シリカの一種たる珪素塩化物を気化し、高温の炎中において気層状態で酸化すれば、容易に目的の微粉末を得ることができる。   Moreover, as a manufacturing method of the said fumed silica type | system | group ultra fine powder, a well-known method is employable, For example, it can obtain by a combustion hydrolysis method. Specifically, the desired fine powder can be easily obtained by evaporating silicon chloride, which is a kind of known dry-process silica, and oxidizing it in a gas phase in a high-temperature flame.

以上、本発明おけるポリウレタン微多孔質膜は、フュームドシリカ系微粉末を特定質量含有するものである。これにより、かかる微多孔質膜は、孔径1μm以下のナノオーダーレベルにある多数の孔が膜全体に渡って略均等に配された構造を呈するから、膜圧を薄くしても、優れた防水性能と透湿性能とを同時に実現させることができる。この点、本発明の透湿防水性布帛は、風合いの向上や質量感の低減などに効果があり、従来の透湿防水性布帛のように、ハニカムスキンコア構造の厚い樹脂膜を備えてなるものとは大きく異なる。   As described above, the polyurethane microporous membrane according to the present invention contains a specific mass of fumed silica-based fine powder. As a result, the microporous membrane has a structure in which a large number of pores having a pore size of 1 μm or less at a nano-order level are arranged substantially evenly over the entire membrane, so that even if the membrane pressure is reduced, excellent waterproofing is achieved. Performance and moisture permeability can be realized at the same time. In this respect, the moisture-permeable and waterproof fabric of the present invention is effective in improving the texture and reducing the feeling of mass, and is provided with a thick resin film having a honeycomb skin core structure as in the conventional moisture-permeable and waterproof fabric. It is very different from the thing.

本発明の透湿防水性布帛が奏しうる、具体的な防水性能及び透湿性能としては、防水性能の指標たる耐水圧として100〜300kPaが、透湿性能の指標たる透湿度として8000〜12000g/m・24hrsが達成可能となる。なお、耐水圧は、JIS L1092(高水圧法)に、透湿度は、JIS L1099(A−1法)にそれぞれ準じ測定されるものである。 Specific waterproof performance and moisture permeability performance that the moisture permeable waterproof fabric of the present invention can exhibit are 100 to 300 kPa as a water pressure resistance as an index of waterproof performance, and 8000 to 12000 g / as a moisture permeability as an index of moisture permeability performance. m 2 · 24 hrs can be achieved. The water pressure resistance is measured according to JIS L1092 (high water pressure method), and the moisture permeability is measured according to JIS L1099 (A-1 method).

本発明の透湿防水性布帛は以上の構成を有するものであるが、必要に応じて、微多孔質膜上に別途樹脂膜を形成することを何ら制限するものでない。例えば、防水性能を向上させたいときは、微多孔質膜上に所定の膜厚を有する無孔質膜を順次設ければよい。これにより、耐水圧として150〜800kPaが達成可能となる。ただ、微多孔質膜上に別途樹脂膜を形成することは、当該樹脂膜の組成、形態にもよるが、一般には透湿性能を阻害する傾向にあり、上記の態様の場合では、透湿度は5000〜11000g/m・24hrsに低減する。 The moisture-permeable and waterproof fabric of the present invention has the above-described configuration, but does not restrict the formation of a separate resin film on the microporous film as necessary. For example, when it is desired to improve the waterproof performance, a nonporous film having a predetermined film thickness may be sequentially provided on the microporous film. Thereby, 150 to 800 kPa can be achieved as the water pressure resistance. However, forming a separate resin film on the microporous film generally depends on the composition and form of the resin film, but generally tends to inhibit moisture permeability. Is reduced to 5000 to 11000 g / m 2 · 24 hrs.

当該態様の場合、無孔質膜の膜厚としては、0.5〜15.0μmが好ましく1.0〜12.0μmがより好ましく、1.0〜8.0μmが特に好ましい。膜厚が0.5μm未満になると、防水性能をあまり向上させることができない傾向にあり、一方、15.0μmを超えると、防水性能を大幅に向上させることができるものの、透湿性能を著しく阻害する傾向にあり、いずれも好ましくない。   In the case of the said aspect, as a film thickness of a nonporous film | membrane, 0.5-15.0 micrometers is preferable, 1.0-12.0 micrometers is more preferable, 1.0-8.0 micrometers is especially preferable. When the film thickness is less than 0.5 μm, there is a tendency that the waterproof performance cannot be improved so much. On the other hand, when it exceeds 15.0 μm, the waterproof performance can be greatly improved, but the moisture permeability performance is significantly inhibited. Both tend to be undesirable.

また、無孔質膜を形成しうる樹脂としては、特に限定されるものでないが、微多孔質膜との接着性の観点から、好ましくはポリウレタン樹脂を用いる。   The resin capable of forming a nonporous film is not particularly limited, but a polyurethane resin is preferably used from the viewpoint of adhesiveness with the microporous film.

そして、樹脂を溶解させる溶媒としては、特段限定こそされないが、微多孔質膜の場合とは異なり、好ましくはN,N−ジメチルホルムアミドの含有率が少ないもの、もしくはこれを全く含まないものを用いる。なぜなら、N,N−ジメチルホルムアミドは、ポリウレタン樹脂の親溶媒にあたるところ、溶媒中にこれが多く含まれていると、微多孔質膜の表面が侵蝕されることがあるからである。   The solvent for dissolving the resin is not particularly limited. However, unlike the case of the microporous membrane, a solvent having a low content of N, N-dimethylformamide or a solvent not containing this at all is used. . This is because N, N-dimethylformamide is a parent solvent for polyurethane resin, and if the solvent contains a large amount of N, N-dimethylformamide, the surface of the microporous film may be eroded.

無孔膜を形成する手段としては、特に限定されるものでないが、樹脂溶液を塗布して乾燥する、いわゆる乾式法が採用できる。このとき、溶媒中にN,N−ジメチルホルムアミドが10%質量%含有されているときは、上記の理由から速やかに乾燥して無孔膜を形成することが好ましい。   The means for forming the nonporous film is not particularly limited, but a so-called dry method in which a resin solution is applied and dried can be employed. At this time, when 10% by mass of N, N-dimethylformamide is contained in the solvent, it is preferable to dry quickly to form a nonporous film for the above reasons.

次に、本発明の透湿防水性布帛の製法について説明する。なお、かかる製法は、何ら制限を受けるものではないが、以下の製法が代表例としてあげられる。   Next, the manufacturing method of the moisture-permeable waterproof fabric of this invention is demonstrated. In addition, although this manufacturing method does not receive a restriction | limiting at all, the following manufacturing methods are mention | raise | lifted as a representative example.

まず、繊維布帛を用意する。本発明では、繊維布帛として製織編しただけのもの(生機)をそのまま用いてもよいが、繊維布帛に樹脂溶液を塗布する際にかかる樹脂溶液が繊維布帛内部へ深く浸透するのを防ぐ観点から、撥水加工やカレンダー加工された繊維布帛を用いるのがよい。   First, a fiber fabric is prepared. In the present invention, a woven or knitted fabric (raw machine) may be used as it is as a fiber fabric. However, from the viewpoint of preventing the resin solution from penetrating deeply into the fiber fabric when the resin solution is applied to the fiber fabric. It is preferable to use a water-repellent or calendered fiber fabric.

かかる撥水加工に用いる撥水剤としては、例えば、パラフィン系撥水剤、ポリシロキサン系撥水剤、フッ素系撥水剤などがあげられ、加工方法としては、例えば、パディング法、コーティング法、スプレー法などがあげられる。   Examples of the water repellent used for such water repellent processing include paraffin-based water repellent, polysiloxane-based water repellent, fluorine-based water repellent and the like. Examples of processing methods include padding, coating, The spray method etc. are mention | raise | lifted.

樹脂溶液の繊維布帛への浸透は、基本的に上記手段を採用すれば防ぐことができるが、それでも浸透を防ぐことができないときは、透湿性能に支障を及ぼし難い樹脂、例えば、アクリル系樹脂やポリウレタン系樹脂などを用いて、パディング法、スプレー法といったプライマー処理やコーティング法、グラビアコーティング法といった片面処理などを実施すればよい。   The penetration of the resin solution into the fiber fabric can basically be prevented by adopting the above-mentioned means, but if the penetration cannot be prevented even then, a resin that does not easily impair the moisture permeability, such as an acrylic resin Or a single-sided treatment such as a primer method such as a padding method or a spray method, a coating method, or a gravure coating method may be used.

本発明では、上記繊維布帛の片面に、前述のポリウレタン樹脂を含む樹脂溶液を塗布する。樹脂溶液中に含まれる固形分濃度(固形分とは、揮発、蒸発などしない成分の総称であり、具体的には、樹脂成分、微粉末、添加剤成分、機能剤成分の他、各種助剤成分などが該当する)としては、15〜35%が好ましく、粘度としては、5000〜30000mPa・s(25℃)が好ましい。   In the present invention, a resin solution containing the aforementioned polyurethane resin is applied to one side of the fiber fabric. Concentration of solid content contained in resin solution (Solid content is a general term for components that do not volatilize or evaporate. Specifically, in addition to resin components, fine powder, additive components, functional agent components, various auxiliary agents. 15 to 35% is preferable as the component), and the viscosity is preferably 5000 to 30000 mPa · s (25 ° C.).

そして、かかる樹脂溶液中には、フュームドシリカ系微粉末が含まれており、含有量は全固形分中に15〜45質量%含まれる。   And in this resin solution, fumed silica type | system | group fine powder is contained, and 15-45 mass% of content is contained in the total solid.

フュームドシリカ系微粉末は、均一構造の微多孔質膜を形成する観点から、溶液中に均一に含有されていることが好ましく、このため、溶液中に当該微粉末を含有させる際は、その目的に沿う手段を採用する。具体的には、3本ロールミル機、ニーダー機、サンドミル機などの混練機を用いて、所定の含有率に均一分散する、又は同混練機で高含有率に混練した後、所定の含有率に均一撹拌するなどの手段が好ましく採用される。   From the viewpoint of forming a microporous film having a uniform structure, the fumed silica-based fine powder is preferably contained uniformly in the solution. Therefore, when the fine powder is contained in the solution, Adopt a means that suits the purpose. Specifically, using a kneader such as a three roll mill, a kneader, or a sand mill, uniformly disperse to a predetermined content, or after kneading to a high content with the same kneader, to a predetermined content Means such as uniform stirring are preferably employed.

また、ポリウレタン樹脂を溶解させる溶媒としては、前述のようにN,N−ジメチルホルムアミドが好ましいが、本発明の効果を損なわない範囲で、N,N−ジメチルホルムアミド以外のものを併用してもよい。   Further, as described above, N, N-dimethylformamide is preferable as a solvent for dissolving the polyurethane resin, but other than N, N-dimethylformamide may be used in combination as long as the effects of the present invention are not impaired. .

本発明では、以上の樹脂溶液を繊維布帛の片面に塗布する。かかる塗布の手段としては、例えば、コンマコータ、ナイフコータなどを用いて塗布する手段があげられる。そして、塗布量としては、最終的に得られる微多孔質膜の膜厚を十分考慮しつつ、適宜決定すればよい。   In the present invention, the above resin solution is applied to one side of the fiber fabric. Examples of the application means include means for applying using a comma coater, a knife coater or the like. And as an application quantity, what is necessary is just to determine suitably, fully considering the film thickness of the microporous film | membrane finally obtained.

樹脂溶液塗布の後は、樹脂溶液中に含まれる固形分を凝固させる。   After application of the resin solution, the solid content contained in the resin solution is solidified.

湿式凝固に用いる凝固液としては、前述のように、水又はN,N−ジメチルホルムアミドを少量含有する水混合液を使用する。水混合液の場合、濃度としては、操業性や環境面を考慮し、5〜30%程度が好ましい。また、凝固液の温度としては5〜35℃が好ましく、凝固時間としては30秒間〜5分間が好ましい。   As the coagulation liquid used for wet coagulation, as described above, water or a water mixed solution containing a small amount of N, N-dimethylformamide is used. In the case of a water mixture, the concentration is preferably about 5 to 30% in consideration of operability and environmental aspects. The temperature of the coagulation liquid is preferably 5 to 35 ° C., and the coagulation time is preferably 30 seconds to 5 minutes.

固形分を凝固させた後は、N,N−ジメチルホルムアミドの除去を促進する目的で、35〜80℃の温度下で1〜10分間湯洗する。そして、湯洗後は、50〜150℃の温度下で1〜10分間乾燥する。   After solidifying the solid content, it is washed with hot water at a temperature of 35 to 80 ° C. for 1 to 10 minutes for the purpose of promoting the removal of N, N-dimethylformamide. And after hot water washing, it dries for 1 to 10 minutes at the temperature of 50-150 degreeC.

以上のようにして、本発明の透湿防水性布帛を得ることができる。   As described above, the moisture-permeable and waterproof fabric of the present invention can be obtained.

本発明の透湿防水性布帛は、既に述べたように、特異な構造の微多孔質膜を備えるものである。特異な構造とは、ナノオーダーレベルにある多数の孔が、膜全体に渡って略均等に配された構造を意味することは、前述の通りである。ここで、微多孔質膜が、ハニカムスキンコア構造ではなく、なぜこのような構造を呈するかについては、詳細は不明であるものの、本発明者らは以下のように推測している。   As described above, the moisture-permeable and waterproof fabric of the present invention includes a microporous membrane having a unique structure. As described above, the unique structure means a structure in which a large number of pores at the nano-order level are arranged substantially evenly over the entire film. Here, although the details are unknown as to why the microporous film has such a structure instead of the honeycomb skin core structure, the present inventors presume as follows.

すなわち、樹脂溶液中に含まれる固形分の濃度が15〜35%である点、固形分中に含まれるフュームドシリカ系微粉末の割合が15〜45質量%である点、並びに溶媒置換をフュームドシリカ系微粉末の周囲で先行させる点、並びに膜厚を10.0〜50.0μmとする点などが有機的に作用し、相乗効果として、均一構造の微多孔質膜が形成されるものと推測する。   That is, the concentration of the solid content contained in the resin solution is 15 to 35%, the ratio of the fumed silica-based fine powder contained in the solid content is 15 to 45% by mass, and the solvent substitution is fume. The point that precedes the dosilica fine powder and the point that the film thickness is set to 10.0 to 50.0 μm acts organically, and as a synergistic effect, a microporous film having a uniform structure is formed. I guess.

また、本発明では、防水性能や洗濯耐久性などの向上のため、微多孔質膜の形成の後、撥水加工してもよい。この場合の撥水加工としては、前述した繊維布帛を撥水加工する手段を準用すればよい。   In the present invention, in order to improve waterproof performance and washing durability, water repellent treatment may be performed after the formation of the microporous membrane. As the water repellent finish in this case, the above-described means for water repellent finish of the fiber fabric may be applied.

さらに、前述のように、本発明では、必要に応じ微多孔質膜上に別途樹脂膜を形成してもよい。この場合、例えば、無孔質膜を設けるのであれば、ナイフコータやリバースコータなどを用いて、乾燥後の膜厚を十分考慮しながら所定の樹脂溶液を塗布すればよい。なお、無孔質膜形成後に必要に応じ撥水加工してもよいことは、いうまでもない。   Furthermore, as described above, in the present invention, a resin film may be separately formed on the microporous film as necessary. In this case, for example, if a nonporous film is provided, a predetermined resin solution may be applied using a knife coater, a reverse coater, or the like while sufficiently considering the film thickness after drying. Needless to say, the water-repellent treatment may be performed as necessary after forming the nonporous film.

以下、実施例により本発明をさらに具体的に説明する。なお、実施例、比較例における布帛の性能の測定、評価は、次の方法で行った。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, the measurement of the performance of the fabric in an Example and a comparative example and evaluation were performed with the following method.

(1)耐水圧
JIS L−1092(高水圧法)に準じて測定した。
(1) Water pressure resistance Measured according to JIS L-1092 (high water pressure method).

(2)洗濯耐久性
同一の布帛について、洗濯前の耐水圧と、JIS L−0217(103法)に準じた洗濯を50回繰り返した後の耐水圧とを測定し、両者の測定値を比較することで布帛の洗濯耐久性を評価した。
(2) Washing durability For the same fabric, the water pressure resistance before washing and the water pressure resistance after washing 50 times according to JIS L-0217 (Method 103) were measured, and the measured values were compared. Thus, the washing durability of the fabric was evaluated.

(3)透湿度
JIS L1099(A?1法)塩化カルシウム法に準じて測定した。
(3) Moisture permeability Measured according to JIS L1099 (A-1 method) calcium chloride method.

(4)風合い
下記3水準で官能評価した。
○:ソフト
△:普通
×:ペーパーライクで粗硬
(4) Texture The sensory evaluation was performed according to the following three levels.
○: Soft △: Normal ×: Paper-like and coarse

(5)樹脂膜の膜厚及び断面形態の観察
オリンパス光学工業(株)製、「OLYMPUS BH−2型(商品名)」を用いて、倍率660倍の光学写真を撮影し、樹脂膜の膜厚及び断面形態を観察した。
(5) Observation of film thickness and cross-sectional shape of resin film Using Olympus Optical Co., Ltd., “OLYMPUS BH-2 type (trade name)”, an optical photograph with a magnification of 660 times was taken, and the film of the resin film The thickness and cross-sectional morphology were observed.

(実施例1)
経緯糸にナイロン6フィラメント糸78dtex/68fを用い、経糸密度115本/2.54cm、緯糸密度95本/2.54cmの繊維布帛たるタフタを製織した。得られた繊維布帛を精練した後、酸性染料(日本化薬(株)製、「Kayanol Blue N2G(商品名)」)1.0%omfを用いて染色した。その後、フッ素系撥水剤エマルジョン(旭硝子(株)製、「アサヒガードGS10(商品名)」の5%水分散液を用いて、布帛をパディングし(絞り率40%)、乾燥後、170℃で40秒間熱処理した。続いて、鏡面ロールを有するカレンダー加工機を用いて、温度170℃、圧力300kPa、速度30m/分の条件で布帛をカレンダー加工し、布帛Aを得た。
Example 1
Nylon 6 filament yarn 78dtex / 68f was used for the warp and weaved taffeta as a fiber fabric having a warp density of 115 yarns / 2.54 cm and a weft density of 95 yarns / 2.54 cm. The obtained fiber fabric was scoured and then dyed with 1.0% omf of an acidic dye (manufactured by Nippon Kayaku Co., Ltd., “Kayanol Blue N2G (trade name)”). Then, the fabric was padded with a 5% aqueous dispersion of a fluorine-based water repellent emulsion (Asahi Guard GS10 (trade name), manufactured by Asahi Glass Co., Ltd.) (squeezing rate 40%), dried, and 170 ° C. Then, the fabric was calendered using a calendering machine having a mirror roll at a temperature of 170 ° C., a pressure of 300 kPa, and a speed of 30 m / min to obtain a fabric A.

一方で、N,N−ジメチルホルムアミドを溶媒とするエステル型ポリウレタン樹脂溶液であって固形分濃度が28%である、セイコー化成(株)製、「ラックスキン1740−29B(商品名)」と、一次粒子径が16nmの疎水性フュームドシリカ系微粉末であってN,N−ジメチルホルムアミドの吸着量が260mL/100gである、日本アエロジル(株)製、「AEROSIL R972(商品名)」と、N,N−ジメチルホルムアミドとを順に3:1:1の割合で粗練りした後、3本ロールミル機を用いて均一に混練し、無色透明の樹脂溶液(樹脂溶液A)を得た。   On the other hand, an ester type polyurethane resin solution using N, N-dimethylformamide as a solvent and having a solid content of 28%, manufactured by Seiko Kasei Co., Ltd., “Lack Skin 1740-29B (trade name)”, “AEROSIL R972 (trade name)” manufactured by Nippon Aerosil Co., Ltd., which is a hydrophobic fumed silica-based fine powder having a primary particle size of 16 nm and has an adsorption amount of N, N-dimethylformamide of 260 mL / 100 g, N, N-dimethylformamide was roughly kneaded in order at a ratio of 3: 1: 1, and then uniformly kneaded using a three-roll mill to obtain a colorless and transparent resin solution (resin solution A).

次いで、上記樹脂溶液Aを含有する、下記処方1に示す組成のポリウレタン樹脂溶液を準備した。なお、この樹脂溶液の粘度は25℃下において9000mPa・sであり、固形分濃度は24%、全固形分中に占める疎水性フュームドシリカ系微粉末の割合は30質量%であった。   Subsequently, the polyurethane resin solution of the composition shown in the following prescription 1 containing the resin solution A was prepared. The viscosity of this resin solution was 9000 mPa · s at 25 ° C., the solid content concentration was 24%, and the proportion of the hydrophobic fumed silica fine powder in the total solid content was 30% by mass.

《処方1》
エステル型ポリウレタン樹脂溶液(セイコー化成(株)製、「ラックスキン1740−29B(商品名)」) 50質量部
樹脂溶液A 50質量部
イソシアネート化合物(大日精化工業(株)製、架橋剤「レザミンX(商品名)」固形分100%) 1質量部
N,N−ジメチルホルムアミド 40質量部
<< Prescription 1 >>
Ester-type polyurethane resin solution (manufactured by Seiko Kasei Co., Ltd., “Rack Skin 1740-29B (trade name)”) 50 parts by mass
Resin solution A 50 parts by mass Isocyanate compound (manufactured by Dainichi Seika Kogyo Co., Ltd., cross-linking agent “Rezamine X (trade name)” solid content 100%) 1 part by mass N, N-dimethylformamide 40 parts by mass

そして、コンマコータを用いて、布帛Aのカレンダー加工された面に、かかる樹脂溶液を速度10m/分で100g/m塗布した。塗布後、直ちに、かかる布帛をN,N−ジメチルホルムアミドを濃度15%含有する水混合液(20℃)に2分間浸漬した。続いて、布帛を50℃の温度下で5分間湯洗し、マングルで絞った後、130℃で2分間乾燥した。 Then, 100 g / m 2 of the resin solution was applied to the calendered surface of the fabric A at a speed of 10 m / min using a comma coater. Immediately after application, the fabric was immersed in an aqueous mixture (20 ° C.) containing 15% N, N-dimethylformamide for 2 minutes. Subsequently, the fabric was washed with hot water at a temperature of 50 ° C. for 5 minutes, squeezed with a mangle, and then dried at 130 ° C. for 2 minutes.

その後、フッ素系溶剤型撥水剤(旭硝子(株)製「アサヒガードAG5850(商品名)」の3%ミネラルターペン溶液を用いて、得られた布帛をパディングし(絞り率30%)、乾燥後、170℃で40秒熱処理し、本発明の透湿防水性布帛を得た。   Thereafter, the resulting fabric was padded with a 3% mineral turpentine solution of “Asahi Guard AG5850 (trade name)” manufactured by Asahi Glass Co., Ltd. And heat treated at 170 ° C. for 40 seconds to obtain a moisture-permeable and waterproof fabric of the present invention.

透湿防水性布帛を得た後、布帛表面に形成された微多孔質膜の態様につき、検証した。まず、光学写真から膜厚は25μmと測定され、従来の透湿防水性布帛に比べ、膜厚が薄いことが確認できた。また、同写真から微多孔質膜はハニカムスキンコア構造を呈していないことも確認できた。また、電界放射形走査電子顕微鏡((株)日立製作所製、「S−4000(商品名)」)を用いて写真撮影することで、さらに検証したところ、膜中には孔径1μm以下の多数の孔が多数存在し、それらは膜全体に渡って略均等に分布していた。なお、撮影の倍率は、1000倍、3000倍、10000倍とし、撮影された写真(図面代用写真)を順に図1〜3に示す。   After obtaining a moisture-permeable and waterproof fabric, the aspect of the microporous membrane formed on the fabric surface was verified. First, the film thickness was measured to be 25 μm from the optical photograph, and it was confirmed that the film thickness was thinner than the conventional moisture-permeable and waterproof fabric. It was also confirmed from the photograph that the microporous film did not exhibit a honeycomb skin core structure. Further, by further taking a picture using a field emission scanning electron microscope (manufactured by Hitachi, Ltd., “S-4000 (trade name)”), a large number of pores having a pore diameter of 1 μm or less were found in the film. There were a large number of pores that were distributed approximately evenly throughout the membrane. In addition, the magnification of imaging | photography was 1000 times, 3000 times, and 10000 times, and the photographed photograph (drawing substitute photograph) is shown in FIGS. 1-3 sequentially.

(実施例2)
布帛Aに代えて下記布帛Bを用いる以外は、実施例1と同一に行い、本発明の透湿防水性布帛を得た。すなわち、経糸としてポリエステルフィラメント糸83dtex/68fを、緯糸としてポリエステルフィラメント糸166dtex/288fを用い、経糸密度120本/2.54cm、緯糸密度76本/2.54cmの繊維布帛たるタフタを製織した。得られた繊維布帛を精練した後、分散染料(日本化薬(株)製、「Dianix Blue UN−SE(商品名)」)1.0%omfを用いて染色し、以降は実施例1と同一に行い、布帛Bを得た。
(Example 2)
A moisture permeable waterproof fabric of the present invention was obtained in the same manner as in Example 1 except that the following fabric B was used instead of the fabric A. That is, a polyester filament yarn 83dtex / 68f was used as the warp, and a polyester filament yarn 166dtex / 288f was used as the weft, and a taffeta as a fiber fabric having a warp density of 120 / 2.54 cm and a weft density of 76 / 2.54 cm was woven. After scouring the obtained fiber fabric, it was dyed with 1.0% omf of disperse dye (Nippon Kayaku Co., Ltd., “Dianix Blue UN-SE (trade name)”). The same operation was performed to obtain Fabric B.

透湿防水性布帛を得た後、実施例1の場合と同様の手段により、微多孔質膜の態様を検証したところ、膜厚が25μmであり、構造はハニカムスキンコア構造ではなく、多数の微細孔を内在する極めて均一な構造であることが確認できた。   After obtaining the moisture-permeable and waterproof fabric, the aspect of the microporous membrane was verified by the same means as in Example 1. As a result, the film thickness was 25 μm, and the structure was not a honeycomb skin core structure. It was confirmed that the structure was extremely uniform and contained fine pores.

(実施例3、4)
樹脂溶液の塗布量を100g/mに代えて60g/m(実施例3)、170g/m(実施例4)とする以外は、実施例2と同一の方法により、本発明の透湿防水布帛を得た。
(Examples 3 and 4)
The transparent solution of the present invention was prepared in the same manner as in Example 2 except that the coating amount of the resin solution was changed to 60 g / m 2 (Example 3) and 170 g / m 2 (Example 4) instead of 100 g / m 2. A wet waterproof fabric was obtained.

透湿防水性布帛を得た後、実施例1の場合と同様の手段により、微多孔質膜の態様を検証したところ、膜厚が15μm(実施例3)、膜厚が45μm(実施例4)であり、構造は何れの場合もハニカムスキンコア構造ではなく、多数の微細孔を内在する極めて均一な構造であることが確認できた。   After obtaining the moisture-permeable and waterproof fabric, the aspect of the microporous membrane was verified by the same means as in Example 1. As a result, the film thickness was 15 μm (Example 3) and the film thickness was 45 μm (Example 4). In all cases, it was confirmed that the structure was not a honeycomb skin core structure but a very uniform structure containing a large number of micropores.

(実施例5)
処方1の樹脂溶液に代えて下記処方2の樹脂溶液を用いる以外は、実施例1と同一に行い、本発明の透湿防水性布帛を得た。
(Example 5)
A moisture permeable waterproof fabric of the present invention was obtained in the same manner as in Example 1 except that the resin solution of the following formulation 2 was used instead of the resin solution of the formulation 1.

すなわち、まず、N,N−ジメチルホルムアミドを溶媒とするエステル型ポリウレタン樹脂溶液であって固形分濃度が28%である、セイコー化成(株)製、「ラックスキン1740−29B(商品名)」と、一次粒子径が10〜20nmでありN,N−ジメチルホルムアミドの吸着量が220mL/100gである、日本アエロジル(株)製、「AEROSIL COK 84(商品名)」と、N,N−ジメチルホルムアミドとを順に3:1:1の割合で粗練りした後、3本ロールミル機を用いて均一に混練し、無色透明の樹脂溶液(樹脂溶液B)を得た。   That is, first, “Lack Skin 1740-29B (trade name)” manufactured by Seiko Chemical Co., Ltd., which is an ester type polyurethane resin solution using N, N-dimethylformamide as a solvent and has a solid content concentration of 28%. “AEROSIL COK 84 (trade name)” manufactured by Nippon Aerosil Co., Ltd., which has a primary particle size of 10 to 20 nm and an adsorption amount of N, N-dimethylformamide of 220 mL / 100 g, and N, N-dimethylformamide Were sequentially kneaded at a ratio of 3: 1: 1 and then uniformly kneaded using a three-roll mill to obtain a colorless and transparent resin solution (resin solution B).

次に、上記樹脂溶液Bを含有する、下記処方2に示す組成のポリウレタン樹脂溶液を準備した。なお、この樹脂溶液の粘度は25℃下において10000mPa・sであり、固形分濃度は23%、全固形分中に占める微粉末の割合は30質量%であった。   Next, a polyurethane resin solution containing the resin solution B and having the composition shown in Formula 2 below was prepared. The viscosity of the resin solution was 10,000 mPa · s at 25 ° C., the solid content concentration was 23%, and the proportion of fine powder in the total solid content was 30% by mass.

《処方2》
エステル型ポリウレタン樹脂溶液(セイコー化成(株)製、「ラックスキン1740−29B(商品名)」) 50質量部
樹脂溶液B 50質量部
イソシアネート化合物(大日精化工業(株)製、架橋剤「レザミンX(商品名)」固形分100%) 1質量部
N,N−ジメチルホルムアミド 45質量部
<< Prescription 2 >>
Ester-type polyurethane resin solution (manufactured by Seiko Kasei Co., Ltd., “Rack Skin 1740-29B (trade name)”) 50 parts by mass
Resin solution B 50 parts by mass Isocyanate compound (manufactured by Dainichi Seika Kogyo Co., Ltd., cross-linking agent “Rezamine X (trade name)” solid content 100%) 1 part by mass N, N-dimethylformamide 45 parts by mass

透湿防水性布帛を得た後、実施例1の場合と同様の手段により、微多孔質膜の態様を検証したところ、膜厚が22μmであり、構造はハニカムスキンコア構造ではなく、多数の微細孔を内在する極めて均一な構造であることが確認できた。   After obtaining the moisture-permeable and waterproof fabric, the aspect of the microporous membrane was verified by the same means as in Example 1. As a result, the film thickness was 22 μm, and the structure was not a honeycomb skin core structure. It was confirmed that the structure was extremely uniform and contained fine pores.

(実施例6)
下記処方3に示す組成のポリウレタン樹脂溶液を準備した。なお、この樹脂溶液の粘度は25℃下において3500mPa・sであり、固形分濃度は18%、溶媒中に占めるN,N−ジメチルホルムアミドの割合は1%未満であった。
(Example 6)
A polyurethane resin solution having the composition shown in Formula 3 below was prepared. The viscosity of this resin solution was 3500 mPa · s at 25 ° C., the solid content concentration was 18%, and the proportion of N, N-dimethylformamide in the solvent was less than 1%.

《処方3》
無黄変型ポリウレタン樹脂(セイコー化成(株)製、「ラックスキンU2524(商品名)」固形分が25%) 50質量部
ポリウレタン樹脂用マット剤(セイコー化成(株)製、「ラックスキンU2525M(商品名)」固形分20%) 50質量部
イソプロピルアルコール 10質量部
トルエン 15質量部
<< Prescription 3 >>
Non-yellowing polyurethane resin (Seiko Kasei Co., Ltd., “Lackskin U2524 (trade name)” solid content is 25%) 50 parts by mass Mat for polyurethane resin (Seiko Kasei Co., Ltd., “Lackskin U2525M (Product) Name) "solid content 20%) 50 parts by mass Isopropyl alcohol 10 parts by mass Toluene 15 parts by mass

次に、ナイフコータを用いて、実施例1で得た透湿防水性布帛において微多孔質膜の上から、この樹脂溶液を22g/m塗布し、120℃で2分間乾燥し、膜厚約4μmの無孔質膜を形成した。 Next, using a knife coater, 22 g / m 2 of this resin solution was applied from above the microporous membrane in the moisture-permeable waterproof fabric obtained in Example 1, dried at 120 ° C. for 2 minutes, A 4 μm non-porous membrane was formed.

そして、以降は、得られた布帛を、実施例1を準用して撥水加工し、本発明の透湿防水性布帛を得た。   Thereafter, the obtained fabric was subjected to water repellency using Example 1 mutatis mutandis to obtain the moisture-permeable and waterproof fabric of the present invention.

(実施例7)
処方3のポリウレタン樹脂溶液に代えて下記処方4に示す組成のポリウレタン樹脂溶液を用いると共に、塗布量を7g/m、膜厚を約1μmに変更する以外は、実施例6と同一に行い、微多孔質膜及び無孔質膜を備えてなる本発明の透湿防水性布帛を得た。なお、この樹脂溶液の粘度は25℃下において1500mPa・sであり、固形分濃度は16%であった。
(Example 7)
The same procedure as in Example 6 was performed except that the polyurethane resin solution having the composition shown in the following prescription 4 was used instead of the polyurethane resin solution of the prescription 3, and the coating amount was changed to 7 g / m 2 and the film thickness was changed to about 1 μm. A moisture-permeable waterproof fabric according to the present invention comprising a microporous membrane and a nonporous membrane was obtained. The viscosity of this resin solution was 1500 mPa · s at 25 ° C., and the solid content concentration was 16%.

《処方4》
無黄変型ポリウレタン樹脂(セイコー化成(株)製、「ラックスキンU2524(商品名)」固形分が25%) 50質量部
ポリウレタン樹脂用マット剤(セイコー化成(株)製、「ラックスキンU2525M(商品名)」固形分20%) 50質量部
イソプロピルアルコール 20質量部
トルエン 20質量部
<< Prescription 4 >>
Non-yellowing polyurethane resin (manufactured by Seiko Kasei Co., Ltd., “Lackskin U2524 (trade name)” solid content is 25%) 50 parts by mass matting agent for polyurethane resin (manufactured by Seiko Kasei Co., Ltd., “Rackskin U2525M (product) Name) "solid content 20%) 50 parts by mass Isopropyl alcohol 20 parts by mass Toluene 20 parts by mass

(実施例8)
布帛Bに代えて布帛Cを用いる以外は、実施例4と同一に行い、透湿防水性布帛を得た。すなわち、まず、経緯糸にナイロン高強力フィラメント糸110dtex/24fを用い、経糸密度80本/2.54cm、緯糸密度76本/2.54の繊維布帛たるリップストップタフタを製織した。次に、得られた繊維布帛を精練した後、酸性染料(日本化薬(株)製、「Kayanol Milling Green5GW(商品名)」)1.0%omfを用いて染色し、以降は実施例1と同一に行い、布帛Cを得た。
(Example 8)
A moisture permeable waterproof fabric was obtained in the same manner as in Example 4 except that the fabric C was used in place of the fabric B. That is, first, a nylon high-strength filament yarn 110 dtex / 24f was used as the warp and weaved a ripstop taffeta as a fiber fabric having a warp density of 80 / 2.54 cm and a weft density of 76 / 2.54. Next, after scouring the obtained fiber fabric, it was dyed with 1.0% omf of acid dye (Nippon Kayaku Co., Ltd., "Kayanol Milling Green5GW (trade name)"). And fabric C was obtained.

透湿防水性布帛を得た後、ナイフコータを用いて、当該透湿防水性布帛において微多孔質膜の上から、下記処方5に示す組成のポリウレタン樹脂溶液を60g/m塗付し、120℃で2分間乾燥し、膜厚約12μmの無孔質膜を形成した。なお、この樹脂溶液の粘度は25℃下において5000mPa・sであり、固形分濃度は20%、溶媒中に占めるN,N−ジメチルホルムアミドの割合は1%未満であった。 After obtaining a moisture-permeable and waterproof fabric, using a knife coater, 60 g / m 2 of a polyurethane resin solution having the composition shown in Formula 5 below is applied from above the microporous membrane in the moisture-permeable and waterproof fabric, and 120 The film was dried at 0 ° C. for 2 minutes to form a nonporous film having a thickness of about 12 μm. The viscosity of this resin solution was 5000 mPa · s at 25 ° C., the solid content concentration was 20%, and the proportion of N, N-dimethylformamide in the solvent was less than 1%.

《処方5》
無黄変型ポリウレタン樹脂(セイコー化成(株)製、「ラックスキンU2524(商品名)」固形分が25%) 50質量部
ポリウレタン樹脂用マット剤(セイコー化成(株)製、「ラックスキンU2525M(商品名)」固形分20%) 50質量部
イソプロピルアルコール 10質量部
トルエン 5質量部
<< Prescription 5 >>
Non-yellowing polyurethane resin (manufactured by Seiko Kasei Co., Ltd., “Lackskin U2524 (trade name)” solid content is 25%) 50 parts by mass matting agent for polyurethane resin (manufactured by Seiko Kasei Co., Ltd., “Rackskin U2525M (product) Name) "solid content 20%) 50 parts by mass Isopropyl alcohol 10 parts by mass Toluene 5 parts by mass

その後、実施例6同様、布帛を、実施例1を準用して撥水加工し、本発明の透湿防水性布帛を得た。   Thereafter, as in Example 6, the fabric was water-repellent processed using Example 1 mutatis mutandis to obtain a moisture-permeable and waterproof fabric of the present invention.

(比較例1)
処方1のポリウレタン樹脂溶液に代えて下記処方6に示すポリウレタン樹脂溶液を用いる以外は、実施例1と同一に行い、透湿防水性布帛を得た。なお、この樹脂溶液の粘度は25℃下において12000mPa・sであり、固形分濃度は22%、全固形分中に占める疎水性フュームドシリカ系微粉末の割合は10質量%であった。
(Comparative Example 1)
A moisture-permeable and waterproof fabric was obtained in the same manner as in Example 1 except that the polyurethane resin solution shown in the following formulation 6 was used instead of the polyurethane resin solution in formulation 1. The viscosity of this resin solution was 12000 mPa · s at 25 ° C., the solid content concentration was 22%, and the proportion of the hydrophobic fumed silica fine powder in the total solid content was 10% by mass.

《処方6》
エステル型ポリウレタン樹脂溶液(セイコー化成(株)製、「ラックスキン1740−29B(商品名)」) 85質量部
樹脂溶液A 15質量部
イソシアネート化合物(大日精化工業(株)製、架橋剤「レザミンX(商品名)」固形分100%) 1質量部
N,N−ジメチルホルムアミド 40質量部
<< Prescription 6 >>
Ester-type polyurethane resin solution (manufactured by Seiko Kasei Co., Ltd., “Rack Skin 1740-29B (trade name)”) 85 parts by mass Resin Solution A 15 parts by mass
Isocyanate compound (manufactured by Dainichi Seika Kogyo Co., Ltd., cross-linking agent “Rezamin X (trade name)” solid content 100%) 1 part by mass N, N-dimethylformamide 40 parts by mass

透湿防水性布帛を得た後、実施例1の場合と同様の手段により、かかる樹脂膜の態様を検証したところ、膜厚が60μmと測定され、従来の透湿防水性布帛と略同様であることが確認できた。つまり、構造として孔径10〜40μmの縦長楕円状の孔を多数内在する、いわゆるハニカムスキンコア構造を呈することが確認できた。   After obtaining the moisture permeable waterproof fabric, the aspect of the resin film was verified by the same means as in Example 1. As a result, the film thickness was measured to be 60 μm, which was substantially the same as the conventional moisture permeable waterproof fabric. It was confirmed that there was. That is, it was confirmed that the structure had a so-called honeycomb skin core structure in which a number of vertically long elliptical holes having a pore diameter of 10 to 40 μm were included.

(比較例2)
処方1のポリウレタン樹脂溶液に代えて下記処方7に示すポリウレタン樹脂溶液を用いる以外は、実施例1と同一に行い、透湿防水性布帛を得た。なお、この樹脂溶液の粘度は25℃下において11000mPa・sであり、固形分濃度は27%、全固形分中に占める疎水性フュームドシリカ系微粉末の割合は54質量%であった。
《処方7》
樹脂溶液A 100質量部
イソシアネート化合物(大日精化工業(株)製、架橋剤「レザミンX(商品名)」固形分100%) 1質量部
N,N−ジメチルホルムアミド 40質量部
(Comparative Example 2)
A moisture permeable and waterproof fabric was obtained in the same manner as in Example 1 except that the polyurethane resin solution shown in the following formulation 7 was used instead of the polyurethane resin solution in formulation 1. The viscosity of this resin solution was 11000 mPa · s at 25 ° C., the solid content concentration was 27%, and the proportion of the hydrophobic fumed silica fine powder in the total solid content was 54% by mass.
<< Prescription 7 >>
Resin solution A 100 parts by mass Isocyanate compound (manufactured by Dainichi Seika Kogyo Co., Ltd., cross-linking agent “Rezamine X (trade name)” solid content 100%) 1 part by mass N, N-dimethylformamide 40 parts by mass

透湿防水性布帛を得た後、実施例1の場合と同様の手段により、微多孔質膜の態様を検証したところ、膜厚が30μmと測定され、膜厚としては特段問題なく、しかもハニカムスキンコア構造を呈していないことも確認できた。しかしながら、下記表1に示すように、布帛の洗濯耐水性や風合いは、本発明の透湿防水性布帛に比べ相対的に著しく劣る結果となった。   After obtaining the moisture-permeable and waterproof fabric, the aspect of the microporous membrane was verified by the same means as in Example 1. As a result, the film thickness was measured to be 30 μm, and there was no particular problem with the film thickness. It was also confirmed that the skin core structure was not exhibited. However, as shown in the following Table 1, the washing water resistance and texture of the fabric were relatively inferior compared to the moisture-permeable and waterproof fabric of the present invention.

(比較例3、4)
処方1のポリウレタン樹脂系溶液の塗布量を100g/m2に代えて30g/m、(比較例3)、250g/m(比較例4)とする以外は、実施例1と同一の方法により、透湿防水布帛を得た。
(Comparative Examples 3 and 4)
According to the same method as in Example 1, except that the coating amount of the polyurethane resin solution of Formulation 1 was changed to 30 g / m 2 (Comparative Example 3) and 250 g / m 2 (Comparative Example 4) instead of 100 g / m 2 . A moisture permeable waterproof fabric was obtained.

透湿防水性布帛を得た後、実施例1の場合と同様の手段により、微多孔質の態様を検証したところ、比較例3では、ハニカムスキンコア構造を呈していないことが確認できたが、膜厚が6.0〜8.0μmと非常に薄く、このため、下記表1に示すように、布帛の耐水圧や洗濯耐水性は、本発明の透湿防水性布帛に比べ相対的に著しく劣る結果となった。一方、比較例4では、膜厚が60.0μmと非常に厚く、このため、微多孔質内の一部にハニカムスキンコア構造を呈する部分があるのが認められた。   After obtaining the moisture-permeable and waterproof fabric, the microporous aspect was verified by the same means as in Example 1. In Comparative Example 3, it was confirmed that the honeycomb skin core structure was not exhibited. The film thickness is 6.0 to 8.0 μm, which is very thin. Therefore, as shown in Table 1 below, the water pressure resistance and washing water resistance of the fabric are relatively higher than those of the moisture permeable waterproof fabric of the present invention. The result was significantly inferior. On the other hand, in Comparative Example 4, the film thickness was very large at 60.0 μm. Therefore, it was recognized that there was a portion exhibiting a honeycomb skin core structure in a part of the microporous material.

(比較例5)
ナイフコータを用いて、布帛Bのカレンダー加工された面に、下記処方8に示す組成のポリウレタン樹脂溶液を速度10m/分で90g/m塗布し、120℃で2分間乾燥し、膜厚約20μmの無孔質膜を形成した。なお、この樹脂溶液の粘度は25℃下において12000mPa・sであり、固形分濃度は23%であった。
(Comparative Example 5)
Using a knife coater, 90 g / m 2 of a polyurethane resin solution having the composition shown in Formula 8 below was applied to the calendered surface of Fabric B at a speed of 10 m / min, dried at 120 ° C. for 2 minutes, and a film thickness of about 20 μm. A nonporous film was formed. The resin solution had a viscosity of 12000 mPa · s at 25 ° C. and a solid content concentration of 23%.

《処方8》
無黄変型ポリウレタン樹脂(セイコー化成(株)製、「ラックスキンU2524(商品名)」固形分が25%) 50質量部
ポリウレタン樹脂用マット剤(セイコー化成(株)製、「ラックスキンU2525M(商品名)」固形分20%) 50質量部
<< Prescription 8 >>
Non-yellowing polyurethane resin (manufactured by Seiko Kasei Co., Ltd., “Lackskin U2524 (trade name)” solid content is 25%) 50 parts by mass matting agent for polyurethane resin (manufactured by Seiko Kasei Co., Ltd., “Rackskin U2525M (product) Name) "solid content 20%) 50 parts by weight

以降は、得られた布帛を、実施例1を準用して撥水加工し、透湿防水性布帛を得た。   Thereafter, the obtained fabric was subjected to water repellency using Example 1 mutatis mutandis to obtain a moisture-permeable and waterproof fabric.

上記実施例及び比較例で得られた各布帛の性能を下記表1に示す。   The performance of each fabric obtained in the above examples and comparative examples is shown in Table 1 below.

表1の結果から明らかなように、本発明の透湿防水性布帛は、透湿性能、防水性能共に優れるだけでなく、良好な洗濯耐久性、さらにはソフト感に富む風合いも併せもつものであった。   As is apparent from the results in Table 1, the moisture-permeable and waterproof fabric of the present invention has not only excellent moisture permeability and waterproof performance, but also has good washing durability and a soft texture. there were.

本発明の透湿防水性布帛が備える微多孔質膜の断面を例示する、1000倍の電子顕微鏡写真である。It is a 1000-times electron micrograph which illustrates the cross section of the microporous membrane with which the moisture-permeable waterproof fabric of this invention is provided. 本発明の透湿防水性布帛が備える微多孔質膜の断面を例示する、3000倍の電子顕微鏡写真である。It is an electron micrograph of 3000 times illustrating the cross section of the microporous film | membrane with which the moisture-permeable waterproof fabric of this invention is provided. 本発明の透湿防水性布帛が備える微多孔質膜の断面を例示する、10000倍の電子顕微鏡写真である。It is a 10,000-times electron micrograph which illustrates the cross section of the microporous film | membrane with which the moisture-permeable waterproof fabric of this invention is provided.

Claims (2)

繊維布帛の片面に、膜厚が10.0〜50.0μmであり、フュームドシリカ系微粉末を15〜45質量%含有してなるポリウレタン微多孔質膜を有してなり、耐水圧が100〜300kPaであり、JIS L1099(A−1法)に準じて測定される透湿度が8000〜12000g/m・24hrsであることを特徴とする透湿防水性布帛。 One side of the fiber fabric has a polyurethane microporous film having a film thickness of 10.0 to 50.0 μm and containing 15 to 45% by mass of fumed silica fine powder, and has a water pressure resistance of 100. A moisture permeable and waterproof fabric characterized by having a moisture permeability of 8000 to 12000 g / m 2 · 24 hrs measured in accordance with JIS L1099 (A-1 method). 繊維布帛の片面に、膜厚が10.0〜50.0μmであり、フュームドシリカ系微粉末を15〜45質量%含有してなるポリウレタン微多孔質膜と、その上に膜厚が0.5〜15.0μmの無孔質膜とを順次備えてなり、耐水圧が150〜800kPaであり、JIS L1099(A−1法)に準じて測定される透湿度が5000〜11000g/m・24hrsであることを特徴とする透湿防水性布帛。
A polyurethane microporous film having a film thickness of 10.0 to 50.0 μm and containing 15 to 45% by mass of fumed silica-based fine powder on one side of the fiber fabric, and a film thickness of 0.1% on the polyurethane cloth. 5 to 15.0 μm of a non-porous membrane is sequentially provided, the water pressure resistance is 150 to 800 kPa, and the moisture permeability measured according to JIS L1099 (A-1 method) is 5000 to 11000 g / m 2. A moisture-permeable waterproof fabric characterized by being 24 hrs.
JP2008067720A 2008-03-17 2008-03-17 Breathable-waterproof fabric Pending JP2009221630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067720A JP2009221630A (en) 2008-03-17 2008-03-17 Breathable-waterproof fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067720A JP2009221630A (en) 2008-03-17 2008-03-17 Breathable-waterproof fabric

Publications (1)

Publication Number Publication Date
JP2009221630A true JP2009221630A (en) 2009-10-01

Family

ID=41238693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067720A Pending JP2009221630A (en) 2008-03-17 2008-03-17 Breathable-waterproof fabric

Country Status (1)

Country Link
JP (1) JP2009221630A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009269305A (en) * 2008-05-08 2009-11-19 Unitica Fibers Ltd Moisture-permeable waterproof fabric
CN105968305A (en) * 2016-05-19 2016-09-28 福建师范大学泉港石化研究院 Anti-water-permeation polyurethane material and preparation method thereof
EP2708353B1 (en) * 2012-09-13 2016-10-12 Tec One Co., Ltd. Moisture Permeable Waterproof Composite Film and Moisture Permeable Waterproof Fabric Having Moisture Permeable Waterproof Composite Film
CN113087939A (en) * 2021-03-02 2021-07-09 重庆中膜科技集团有限公司 Waterproof breathable film with heat preservation performance and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169233A (en) * 2002-11-21 2004-06-17 Unitica Fibers Ltd Moisture-permeable and waterproof coating fabric and method for producing the same
JP2006274489A (en) * 2005-03-29 2006-10-12 Unitica Fibers Ltd Moisture-permeable waterproof fabric and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169233A (en) * 2002-11-21 2004-06-17 Unitica Fibers Ltd Moisture-permeable and waterproof coating fabric and method for producing the same
JP2006274489A (en) * 2005-03-29 2006-10-12 Unitica Fibers Ltd Moisture-permeable waterproof fabric and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009269305A (en) * 2008-05-08 2009-11-19 Unitica Fibers Ltd Moisture-permeable waterproof fabric
EP2708353B1 (en) * 2012-09-13 2016-10-12 Tec One Co., Ltd. Moisture Permeable Waterproof Composite Film and Moisture Permeable Waterproof Fabric Having Moisture Permeable Waterproof Composite Film
CN105968305A (en) * 2016-05-19 2016-09-28 福建师范大学泉港石化研究院 Anti-water-permeation polyurethane material and preparation method thereof
CN113087939A (en) * 2021-03-02 2021-07-09 重庆中膜科技集团有限公司 Waterproof breathable film with heat preservation performance and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5230286B2 (en) Moisture permeable waterproof fabric
US9206546B2 (en) Moisture-permeable waterproof fabric and process for producing same
JP5506077B2 (en) Moisture permeable waterproof fabric and method for producing the same
WO2010082648A1 (en) Moisture-permeable and water-proof fabric and process for the production of same
JP5593011B2 (en) Moisture permeable waterproof membrane and manufacturing method thereof
JP2009221630A (en) Breathable-waterproof fabric
JP2014065226A (en) Moisture permeable waterproof fabric for medical care
JP2004256939A (en) Water-repellent fabric and clothes using the same
JP4783046B2 (en) Moisture permeable waterproof fabric and method for producing the same
JP5548344B2 (en) Moisture permeable waterproof fabric
JP5396010B2 (en) Moisture permeable waterproof fabric and method for producing the same
JP2004169233A (en) Moisture-permeable and waterproof coating fabric and method for producing the same
JP2615288B2 (en) Moisture permeable waterproof coating fabric
JP2012202009A (en) Method for producing moisture permeable waterproof fabric
JP2010163729A (en) Moisture-permeable and water-proof fabric and process for the production of same
JPH0860558A (en) Production of soft moisture-permeable waterproof fabric
JP5388597B2 (en) Moisture permeable waterproof fabric and method for producing the same
JP3834123B2 (en) Moisture permeable waterproof coating fabric and method for producing the same
JP2002129479A (en) Method for producing moisture-permeating waterproof coated cloth having soft feeling
JP5183980B2 (en) Waterproof fabric and method for producing the same
JP2015224404A (en) Moisture-permeable waterproof fabric
JPH06280163A (en) Production of moisture-permeable waterproof coating cloth
JP2015172263A (en) Moisture-permeable water-proof fabric
JP2011110753A (en) Moisture-permeable waterproof cloth
JPH10251976A (en) Moisture-permeable and waterproof coated fabric

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20091102

Free format text: JAPANESE INTERMEDIATE CODE: A712

A621 Written request for application examination

Effective date: 20101224

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Effective date: 20120409

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20130205

Free format text: JAPANESE INTERMEDIATE CODE: A02