JP5388597B2 - Moisture permeable waterproof fabric and method for producing the same - Google Patents

Moisture permeable waterproof fabric and method for producing the same Download PDF

Info

Publication number
JP5388597B2
JP5388597B2 JP2009009387A JP2009009387A JP5388597B2 JP 5388597 B2 JP5388597 B2 JP 5388597B2 JP 2009009387 A JP2009009387 A JP 2009009387A JP 2009009387 A JP2009009387 A JP 2009009387A JP 5388597 B2 JP5388597 B2 JP 5388597B2
Authority
JP
Japan
Prior art keywords
mass
moisture
permeable
waterproof fabric
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009009387A
Other languages
Japanese (ja)
Other versions
JP2010163728A (en
Inventor
清 中川
由明 來島
航平 豊福
雅弘 水間
健 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiren Co Ltd
Unitika Trading Co Ltd
Original Assignee
Seiren Co Ltd
Unitika Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiren Co Ltd, Unitika Trading Co Ltd filed Critical Seiren Co Ltd
Priority to JP2009009387A priority Critical patent/JP5388597B2/en
Priority to PCT/JP2010/050467 priority patent/WO2010082648A1/en
Priority to EP10731317.3A priority patent/EP2381031A4/en
Publication of JP2010163728A publication Critical patent/JP2010163728A/en
Priority to US13/183,941 priority patent/US20120070635A1/en
Application granted granted Critical
Publication of JP5388597B2 publication Critical patent/JP5388597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

本発明は、主としてスポーツ衣料用や防寒衣料用として用いられる透湿性能及び防水性能に優れた透湿防水性布帛及びその製造方法に関するものである。   The present invention relates to a moisture-permeable and waterproof fabric excellent in moisture-permeable performance and waterproof performance mainly used for sports clothing and cold clothing and a method for producing the same.

スポーツ衣料や防寒衣料等には、身体からの発汗による水蒸気を衣料外へ放出する透湿機能と、雨水が衣料内に侵入するのを防止する防水機能とが要求されている。したがって、スポーツ衣料や防寒衣料等の素材として、従来より、透湿防水性布帛が用いられている。   Sports clothing, cold clothing, and the like are required to have a moisture permeable function for releasing water vapor generated by perspiration from the body to the outside of the clothing and a waterproof function for preventing rainwater from entering the clothing. Therefore, moisture-permeable and waterproof fabrics have been conventionally used as materials for sports clothing and cold clothing.

かかる透湿防水性布帛は、一般的に、ポリウレタン樹脂を主体とする微多孔膜形成用樹脂組成物を、布帛本体表面に塗布した後、水中に浸漬して前記組成物を湿式凝固させ、布帛本体表面に微多孔膜を形成して製造されている。たとえば、特許文献1には、ポリウレタン樹脂と撥水剤とシリカ微粉末を含有する微多孔膜形成用樹脂組成物を、布帛本体表面に塗布した後、水中に浸漬し、前記組成物を湿式凝固させて透湿防水性布帛を製造することが記載されている。このような方法で得られた透湿防水性布帛は、高い透湿度を持っているため透湿性能に優れており、また高い耐水圧を持っているため防水性能に優れたものであり、好ましいものである。   Such a moisture-permeable and waterproof fabric is generally obtained by applying a resin composition for forming a microporous film mainly composed of a polyurethane resin to the surface of the fabric body and then immersing the composition in water to wet-coagulate the composition. Manufactured by forming a microporous film on the surface of the body. For example, in Patent Document 1, a resin composition for forming a microporous film containing a polyurethane resin, a water repellent and silica fine powder is applied to the surface of a fabric body, and then immersed in water to wet-coagulate the composition. Manufacturing a moisture-permeable and waterproof fabric. The moisture-permeable and waterproof fabric obtained by such a method is excellent in moisture permeability because it has high moisture permeability, and is excellent in waterproof performance because it has high water pressure resistance, which is preferable. Is.

特開平7−166479号公報JP-A-7-166479

しかしながら、特許文献1に記載されているような従来の透湿防水性布帛は、当初は高い耐水圧を持っているが、洗濯を繰り返すと、耐水圧が低下し、所望の防水性能を失ってしまうという欠点があった。本発明は、洗濯を繰り返しても、耐水圧が低下しにくい透湿防水性布帛を提供することにある。   However, the conventional moisture-permeable waterproof fabric as described in Patent Document 1 initially has a high water pressure resistance, but when washing is repeated, the water pressure resistance decreases and the desired waterproof performance is lost. There was a drawback of end. An object of the present invention is to provide a moisture-permeable and waterproof fabric in which the water pressure resistance is unlikely to decrease even after repeated washing.

上記課題を解決するために、本発明は微多孔膜形成用樹脂組成物中に油溶性のフッ素系界面活性剤を混合させておき、得られる微多孔膜中に当該フッ素系界面活性剤を含有せしめて、これにより洗濯を繰り返しても耐水圧が低下しにくいようにしたものである。すなわち、本発明は、布帛本体の片面に、ポリウレタン樹脂を主体とする微多孔膜が積層されてなる透湿防水性布帛において、前記微多孔膜には、シリカ微粉末3〜45質量%、フッ素系撥水剤1〜9質量%及び油溶性のフッ素系界面活性剤0.1〜2質量%が含有されていることを特徴とする透湿防水性布帛及びその製造方法に関するものである。   In order to solve the above-mentioned problems, the present invention mixes an oil-soluble fluorosurfactant in a resin composition for forming a microporous membrane, and contains the fluorosurfactant in the resulting microporous membrane. In this way, the water pressure resistance is less likely to decrease even after repeated washing. That is, the present invention relates to a moisture permeable and waterproof fabric in which a microporous membrane mainly composed of a polyurethane resin is laminated on one side of the fabric body. The microporous membrane includes 3 to 45% by mass of silica fine powder, fluorine The present invention relates to a moisture-permeable and waterproof fabric characterized by containing 1 to 9% by mass of a water-based water repellent and 0.1 to 2% by mass of an oil-soluble fluorosurfactant and a method for producing the same.

本発明に用いる布帛本体としては、従来公知の織物、編物又は不織布等が用いられる。具体的には、ナイロン6、ナイロン66で代表されるポリアミド系合成繊維、ポリエチレンテレフタレートで代表されるポリエステル系合成繊維、ポリアクリルニトリル系合成繊維、ポリビニルアルコール系合成繊維などの合成繊維、トリアセテートなどの半合成繊維、或いはナイロン6/綿、ポリエチレンテレフタレート/綿などの混合繊維からなる織物、編物又は不織布等が用いられる。   As the fabric body used in the present invention, a conventionally known woven fabric, knitted fabric, nonwoven fabric or the like is used. Specifically, polyamide synthetic fiber represented by nylon 6, nylon 66, polyester synthetic fiber represented by polyethylene terephthalate, synthetic fiber such as polyacrylonitrile synthetic fiber, polyvinyl alcohol synthetic fiber, triacetate, etc. A semi-synthetic fiber or a woven fabric, a knitted fabric or a non-woven fabric made of a mixed fiber such as nylon 6 / cotton or polyethylene terephthalate / cotton is used.

布帛本体は撥水加工されているのが好ましい。すなわち、従来公知の撥水剤エマルジョンに布帛本体を浸漬するか、布帛本体の表面に撥水剤エマルジョンを塗布して、撥水加工を施すのが好ましい。撥水剤エマルジョンとしては、従来公知のフッ素系撥水剤エマルジョン、シリコーン系撥水剤エマルジョン或いはパラフィン系撥水剤エマルジョン等を使用しうる。本発明においては、フッ素系撥水剤エマルジョンを使用するのが好ましく、この中でも、フッ素系撥水剤中にパーフルオロオクタン酸が残留していたり或いはフッ素系撥水剤から経時的にパーフルオロオクタン酸が生成しにくいものを用いるのが好ましい。この理由は、パーフルオロオクタン酸は難分解性で、環境に残留する性質があるため、地球環境に好ましくないからである。かかるフッ素系撥水剤としては、側鎖に炭素数1〜6のパーフルオロアルキル基を有するアクリレート化合物を重合して得られたものが代表的である。具体的には、旭硝子株式会社製「アサヒガード AG−E061」、ダイキン工業株式会社製「ユニダイン TG−5521」、日華化学株式会社製「NKガード SCH−02」、クラリアントジャパン株式会社製「NUVA N2114 LIQ」等が挙げられる。   The fabric body is preferably water-repellent. That is, it is preferable to immerse the fabric body in a conventionally known water repellent emulsion or apply the water repellent emulsion to the surface of the fabric body to perform the water repellent treatment. As the water repellent emulsion, a conventionally known fluorine water repellent emulsion, silicone water repellent emulsion, paraffin water repellent emulsion or the like can be used. In the present invention, it is preferable to use a fluorinated water repellent emulsion, and among them, perfluorooctanoic acid remains in the fluorinated water repellent or perfluorooctane over time from the fluorinated water repellent. It is preferable to use one that does not easily generate an acid. This is because perfluorooctanoic acid is difficult to decompose and remains in the environment, which is undesirable for the global environment. A typical example of such a fluorine-based water repellent is one obtained by polymerizing an acrylate compound having a C 1-6 perfluoroalkyl group in the side chain. Specifically, “Asahi Guard AG-E061” manufactured by Asahi Glass Co., Ltd., “Unidyne TG-5521” manufactured by Daikin Industries, Ltd., “NK Guard SCH-02” manufactured by Nikka Chemical Co., Ltd., “NUVA manufactured by Clariant Japan Co., Ltd. N2114 LIQ "and the like.

布帛本体を撥水加工する方法としても、従来公知の方法を採用しうる。具体的には、パディング法、コーティング法、グラビアコーティング法、スプレー法等の手段を採用しうる。たとえば、パディング法では、撥水剤エマルジョンに布帛本体を浸漬後、マングルで絞り、所定の付与量に調整し、80〜150℃の温度で乾燥後、150〜180℃の温度で30秒〜2分間のキュアリングを行う。これによって、両面に撥水加工が施された布帛本体が得られる。また、グラビアコーティング法では、高メッシュのグラビアロールを用いて片面のみに撥水剤エマルジョンを付着させ、その後、同様にして乾燥及びキュアリングを行う。これによって、片面のみに撥水加工が施された布帛本体が得られる。また、乾燥及びキュアリングを行った後、鏡面ロールを具備するカレンダー加工機を用いて、布帛本体表面の目潰し加工を行うのが好ましい。これは、後で塗布する微多孔膜形成用樹脂組成物が、布帛本体内部に深く浸透するのを防止するためである。   A conventionally known method can also be adopted as a method for water-repellent treatment of the fabric body. Specifically, means such as a padding method, a coating method, a gravure coating method, and a spray method can be employed. For example, in the padding method, the fabric body is immersed in a water repellent emulsion, then squeezed with a mangle, adjusted to a predetermined application amount, dried at a temperature of 80 to 150 ° C, and then at a temperature of 150 to 180 ° C for 30 seconds to 2 seconds. Cure for a minute. As a result, a fabric body having a water repellent finish on both sides is obtained. In the gravure coating method, a water repellent emulsion is attached to only one surface using a high mesh gravure roll, and thereafter drying and curing are performed in the same manner. As a result, a fabric body having a water-repellent finish on only one surface is obtained. Moreover, after drying and curing, it is preferable to crush the surface of the fabric body using a calendar processing machine having a mirror surface roll. This is to prevent the resin composition for forming a microporous film to be applied later from penetrating deeply into the fabric body.

撥水剤の付与量は、布帛本体中に、固形分換算で0.1〜3質量%が好ましく、0.3〜2質量%がより好ましい。付与量が0.1質量%未満になると、布帛本体に十分な撥水性能を付与し難く、一方、3質量%を超えると、得られる透湿防水性布帛の風合いが硬化しやくなったり、微多孔膜との接着性が低下したり、或いは微多孔膜の透湿性能に悪影響を及ぼす恐れが生じる。   The applied amount of the water repellent is preferably 0.1 to 3% by mass, more preferably 0.3 to 2% by mass in terms of solid content in the fabric body. When the applied amount is less than 0.1% by mass, it is difficult to impart sufficient water repellency to the fabric body. On the other hand, when the applied amount exceeds 3% by mass, the texture of the resulting moisture-permeable waterproof fabric is hard to be cured. Adhesion with the microporous membrane may be reduced, or the moisture permeability of the microporous membrane may be adversely affected.

撥水剤エマルジョン中には、撥水耐久性を向上させる目的で、トリアジン化合物、イソシアネート化合物等を混合してもよい。これらの中では、環境面からイソシアネート化合物が好適である。また、撥水剤エマルジョンの加工安定性の面からは、イソシアネート基をアセトオキシム、フェノール、カプロラクタム等でブロックした熱解離タイプのブロックイソシアネート化合物がより好適である。   In the water repellent emulsion, a triazine compound, an isocyanate compound or the like may be mixed for the purpose of improving the water repellency durability. In these, an isocyanate compound is suitable from an environmental viewpoint. From the viewpoint of processing stability of the water repellent emulsion, a thermal dissociation type blocked isocyanate compound in which an isocyanate group is blocked with acetoxime, phenol, caprolactam or the like is more preferable.

布帛本体の片面に積層されるポリウレタン樹脂を主体とする微多孔膜は、以下のような微多孔膜形成用樹脂組成物を、湿式凝固させて得られるものである。すなわち、かかる微多孔膜形成用樹脂組成物は、ポリウレタン樹脂を主体とし、シリカ微粉末3〜45質量%、フッ素系撥水剤1〜9質量%及び油溶性のフッ素系界面活性剤0.1〜2質量%を含有する液状のものである。   The microporous film mainly composed of polyurethane resin laminated on one side of the fabric body is obtained by wet coagulation of the following resin composition for forming a microporous film. That is, the resin composition for forming a microporous film mainly comprises a polyurethane resin, 3 to 45% by mass of silica fine powder, 1 to 9% by mass of a fluorine-based water repellent, and 0.1 of an oil-soluble fluorine-based surfactant. It is a liquid containing ˜2% by mass.

ポリウレタン樹脂としては、ポリイソシアネート成分とポリオール成分とを反応させて得られる従来公知のものを採用しうる。ポリイソシアネート成分としては、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネート等が単独で又は混合して用いられる。具体的には、トリレン−2,4−ジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、1,6−ヘキサンジイソシアネート又は1,4−シクロヘキサンジイソシアネート等を主成分として用い、必要に応じ3官能以上のポリイソシアネートを使用してもよい。一方、ポリオール成分としては、ポリエーテルポリオールやポリエステルポリオール等が用いられる。ポリエーテルポリオールとしては、ポリエチレングリコール、ポリプロピレングリコール又はポリテトラエチレングリコール等が用いられる。ポリエステルポリオールとしては、エチレングリコールやプロピレングリコール等のジオールと、アジピン酸やセバチン酸等の二塩基酸との反応生成物、又はカプロラクトン等の開環重合物を用いることができ、勿論、オキシ酸モノマー或いはそのプレポリマーの重合物も用いることができる。   As the polyurethane resin, a conventionally known resin obtained by reacting a polyisocyanate component and a polyol component may be employed. As the polyisocyanate component, aromatic diisocyanate, aliphatic diisocyanate, alicyclic diisocyanate and the like are used alone or in combination. Specifically, a polyisocyanate having 3 or more functional groups is used as the main component, such as tolylene-2,4-diisocyanate, 4,4′-diphenylmethane diisocyanate, 1,6-hexane diisocyanate or 1,4-cyclohexane diisocyanate. May be used. On the other hand, polyether polyol, polyester polyol, or the like is used as the polyol component. As the polyether polyol, polyethylene glycol, polypropylene glycol, polytetraethylene glycol or the like is used. As the polyester polyol, a reaction product of a diol such as ethylene glycol or propylene glycol and a dibasic acid such as adipic acid or sebacic acid, or a ring-opening polymer such as caprolactone can be used. Alternatively, a polymer of the prepolymer can also be used.

ポリウレタン樹脂は、微多孔膜形成用樹脂組成物の固形分中において、50質量%以上含有しているのが好ましい。ポリウレタン樹脂含有量が少なくなると、相対的にシリカ微粉末等の含有量が多くなり、微多孔膜が脆くなる傾向が生じる。もちろん、微多孔膜が脆くならなければ、50質量%よりも若干少なくなっても差し支えない。   The polyurethane resin is preferably contained in an amount of 50% by mass or more in the solid content of the resin composition for forming a microporous film. When the polyurethane resin content is reduced, the content of silica fine powder and the like is relatively increased, and the microporous membrane tends to become brittle. Of course, if the microporous membrane does not become brittle, it may be slightly less than 50% by mass.

シリカ微粉末としては、二酸化珪素よりなる微粉末であれば、従来公知のものを用いることができる。一般的に、一次粒子径が7〜40nm程度の二酸化珪素よりなる微粉末が用いられる。一次粒子径が40nmを超えると、微多孔膜中に形成される孔の径が大きくなり、耐水圧が低下する傾向が生じる。本発明においては、シリカ微粉末として、アモルファスのガラス状で細孔のない球状一次粒子からなるがフュームドシリカ微粉末を用いるのが好ましい。具体的には、親水性フュームドシリカ微粉末又は疎水性フュームドシリカ微粉末が用いられるが、本発明では特に疎水性フュームドシリカ微粉末を用いるのが好ましい。かかるシリカ微粉末は市販されているものであり、たとえば、日本アエロジル株式会社製「AEROSIL 90」、「AEROSIL 130」、「AEROSIL 150」、「AEROSIL 200」、「AEROSIL 300」といった親水性フュームドシリカ微粉末、「AEROSIL R104」、「AEROSIL R106」、「AEROSIL R202」、「AEROSIL R805」、「AEROSIL RX200」、「AEROSIL RX300」、「AEROSIL R972」、「AEROSIL R974」、「AEROSIL R976」、「AEROSIL R7200」、「AEROSIL R8200」、「AEROSIL R9200」といった疎水性フュームドシリカ微粉末が用いられる。また、シリカ微粉末として、フュームドシリカとフュームド酸化アルミニウムを混合させた微粉末である「AEROSIL COK84」も用いることができる。   As the fine silica powder, conventionally known fine powders made of silicon dioxide can be used. Generally, fine powder made of silicon dioxide having a primary particle diameter of about 7 to 40 nm is used. When the primary particle diameter exceeds 40 nm, the diameter of the pores formed in the microporous film increases, and the water pressure resistance tends to decrease. In the present invention, fumed silica fine powder is preferably used as the fine silica powder, which is composed of amorphous glassy spherical primary particles having no pores. Specifically, hydrophilic fumed silica fine powder or hydrophobic fumed silica fine powder is used. In the present invention, it is particularly preferable to use hydrophobic fumed silica fine powder. Such silica fine powder is commercially available, for example, hydrophilic fumed silica such as “AEROSIL 90”, “AEROSIL 130”, “AEROSIL 150”, “AEROSIL 200”, “AEROSIL 300” manufactured by Nippon Aerosil Co., Ltd. Fine powder, “AEROSIL R104”, “AEROSIL R106”, “AEROSIL R202”, “AEROSIL R805”, “AEROSIL RX200”, “AEROSIL RX300”, “AEROSIL R972”, “AEROSIL R974”, “AEROSIL R976”, “AEROSIL” Hydrophobic fumed silica fine powders such as “R7200”, “AEROSIL R8200”, and “AEROSIL R9200” are used. Further, “AEROSIL COK84”, which is a fine powder obtained by mixing fumed silica and fumed aluminum oxide, can be used as the fine silica powder.

シリカ微粉末は、微多孔膜形成用樹脂組成物の固形分中において、3〜45質量%含有されている。好ましくは10〜45質量%であり、より好ましくは15〜45質量%である。シリカ微粉末の含有量が3質量%未満になると、形成された微多孔膜中の孔径が大きくなり、耐水圧が低下すると共に洗濯耐久性も低下するので、好ましくない。また、シリカ微粉末の含有量が45質量%を超えると、形成された微多孔膜が脆くなり、耐水圧が低下すると共に洗濯耐久性も低下するので、好ましくない。シリカ微粉末は微多孔膜形成用樹脂組成物中に比較的多量に含有されているが、均一に分散した状態で含有されているのが好ましい。シリカ微粉末を均一に分散するためには、予め、3本ロールミル機、ニーダー機又はサンドミル機等の混合機を用いて、ポリウレタン樹脂と混合しておき、その後、微多孔膜形成用樹脂組成物を調製するのが好ましい。   Silica fine powder is contained in an amount of 3 to 45% by mass in the solid content of the resin composition for forming a microporous film. Preferably it is 10-45 mass%, More preferably, it is 15-45 mass%. When the content of the silica fine powder is less than 3% by mass, the pore diameter in the formed microporous membrane is increased, and the water pressure is lowered and the washing durability is also lowered. On the other hand, when the content of the silica fine powder exceeds 45% by mass, the formed microporous membrane becomes brittle, the water pressure resistance is lowered and the washing durability is also lowered. Silica fine powder is contained in a relatively large amount in the resin composition for forming a microporous film, but is preferably contained in a uniformly dispersed state. In order to uniformly disperse the silica fine powder, it is previously mixed with a polyurethane resin by using a mixer such as a three-roll mill machine, a kneader machine or a sand mill machine, and then a resin composition for forming a microporous film. Is preferably prepared.

フッ素系撥水剤としては、従来公知のものが用いられる。本発明において、フッ素系撥水剤を使用するのは、フッ素系界面活性剤と混合しやすく、調製しやすく且つ塗布しやすい微多孔膜形成用樹脂組成物を得ることができるからである。本発明においては、フッ素系撥水剤の中でも、そこにパーフルオロオクタン酸が残留していたり或いはそこから経時的にパーフルオロオクタン酸が生成しにくいものを用いるのが好ましい。この理由は、パーフルオロオクタン酸は難分解性で、環境に残留する性質があるため、地球環境に好ましくないからである。かかるフッ素系撥水剤は、側鎖に炭素数1〜6のパーフルオロアルキル基を有するアクリレート化合物を重合して得られたものである。具体的には、旭硝子株式会社製「アサヒガード AG−E061」、ダイキン工業株式会社製「ユニダイン TG−5521」、日華化学株式会社製「NKガード SCH−02」、クラリアントジャパン株式会社製「NUVA N2114 LIQ」等が挙げられる。   A conventionally well-known thing is used as a fluorine-type water repellent. In the present invention, the fluorine-based water repellent is used because it is possible to obtain a resin composition for forming a microporous film that is easy to mix with a fluorine-based surfactant, easy to prepare, and easy to apply. In the present invention, among the fluorine-based water repellents, it is preferable to use those in which perfluorooctanoic acid remains or from which perfluorooctanoic acid is difficult to be formed over time. This is because perfluorooctanoic acid is difficult to decompose and remains in the environment, which is undesirable for the global environment. Such a fluorine-based water repellent is obtained by polymerizing an acrylate compound having a C 1-6 perfluoroalkyl group in the side chain. Specifically, “Asahi Guard AG-E061” manufactured by Asahi Glass Co., Ltd., “Unidyne TG-5521” manufactured by Daikin Industries, Ltd., “NK Guard SCH-02” manufactured by Nikka Chemical Co., Ltd., “NUVA manufactured by Clariant Japan Co., Ltd. N2114 LIQ "and the like.

フッ素系撥水剤は、微多孔膜形成用樹脂組成物の固形分中において、1〜9質量%含有されている。フッ素系撥水剤の含有量が1質量%未満であると、洗濯を繰り返したとき、微多孔膜中の微孔に洗剤が吸着しやすくなるので、好ましくない。すなわち、微孔に洗剤が吸着していると、水を呼び込みやすくなり、洗濯耐久性(耐水圧の洗濯耐久性)が低下するので、好ましくない。また、フッ素系撥水剤の含有量が9質量%を超えると、微多孔膜形成用樹脂組成物の安定性が悪くなり、塗布しにくくなって、均一な微多孔膜が形成しにくくなる。この結果、微多孔膜に班が生じ、耐水圧及び洗濯耐久性共に低下するので、好ましくない。   The fluorine-based water repellent is contained in an amount of 1 to 9% by mass in the solid content of the resin composition for forming a microporous film. When the content of the fluorine-based water repellent is less than 1% by mass, the detergent is easily adsorbed into the micropores in the microporous membrane when washing is repeated, which is not preferable. That is, if the detergent is adsorbed in the micropores, it is not preferable because water is easily attracted and washing durability (washing durability of water pressure resistance) is lowered. Moreover, when content of a fluorine-type water repellent exceeds 9 mass%, stability of the resin composition for microporous film formation will worsen, it will become difficult to apply | coat, and it will become difficult to form a uniform microporous film. As a result, spots are formed in the microporous membrane, and both the water pressure resistance and the washing durability are deteriorated.

油溶性のフッ素系界面活性剤としては、パーフルオロアルキル基よりなる疎水基と、ポリオキシアルキレン基、スルホン酸基又はカルボン酸基等の親水基とを有し、界面活性能のあるものが採用される。ここで、油溶性とは、トルエンに対して50質量%以上溶解又は相溶するという意味である。すなわち、トルエン100質量部に対してフッ素系界面活性剤50質量部を混合攪拌したとき、1時間経過後においても、相分離を起こさないということである。本発明において、油溶性のフッ素系界面活性剤を用いる理由は、微多孔膜形成用樹脂組成物の溶媒が有機溶媒であることから、ここにフッ素系界面活性剤を均一に溶解又は分散させるためである。そして、フッ素系界面活性剤の界面活性能により、フッ素系撥水剤を均一に微多孔膜中に存在させるためである。油溶性のフッ素系界面活性剤としては、AGCセイミケミカル株式会社製「SURFLON S−651」 、「SURFLON S−611」 、「SURFLON S−386」 及び「SURFLON S−243」等が用いられる。   As the oil-soluble fluorosurfactant, a surfactant having a hydrophobic group composed of a perfluoroalkyl group and a hydrophilic group such as a polyoxyalkylene group, a sulfonic acid group or a carboxylic acid group and having a surfactant activity is adopted. Is done. Here, oil-soluble means that 50% by mass or more dissolves or is compatible with toluene. That is, when 50 parts by mass of a fluorosurfactant is mixed and stirred with respect to 100 parts by mass of toluene, phase separation does not occur even after 1 hour. In the present invention, the reason why the oil-soluble fluorosurfactant is used is that the solvent of the microporous film-forming resin composition is an organic solvent, so that the fluorosurfactant is uniformly dissolved or dispersed therein. It is. This is because the fluorine-based water repellent is uniformly present in the microporous film by the surface activity of the fluorine-based surfactant. As the oil-soluble fluorosurfactant, “SURFLON S-651”, “SURFLON S-611”, “SURFLON S-386”, “SURFLON S-243” and the like manufactured by AGC Seimi Chemical Co., Ltd. are used.

また、本発明においては、油溶性で且つ水溶性のフッ素界面活性剤を用いるのが、特に好ましい。微多孔膜形成用樹脂組成物中には水も存在しているため、フッ素系界面活性剤が油溶性で且つ水溶性である方が、微多孔膜形成用樹脂組成物中により均一に溶解又は分散するからである。ここで、水溶性とは、油溶性の場合と同様に、水に対して50質量%以上溶解又は相溶するという意味である。すなわち、水100質量部に対してフッ素系界面活性剤50質量部を混合攪拌したとき、1時間経過後においても、相分離を起こさないということである。油溶性且つ水溶性のフッ素系界面活性剤としては、AGCセイミケミカル株式会社製「SURFLON S−386」 や「SURFLON S−243」 等が用いられる。   In the present invention, it is particularly preferable to use an oil-soluble and water-soluble fluorine surfactant. Since water is also present in the microporous film-forming resin composition, the fluorosurfactant is more soluble or even more soluble in the microporous film-forming resin composition if it is oil-soluble and water-soluble. This is because they are dispersed. Here, the term “water-soluble” means that 50% by mass or more dissolves or is compatible with water, as in the case of oil solubility. That is, when 50 parts by mass of a fluorosurfactant is mixed and stirred with respect to 100 parts by mass of water, phase separation does not occur even after 1 hour. Examples of the oil-soluble and water-soluble fluorosurfactant include “SURFLON S-386” and “SURFLON S-243” manufactured by AGC Seimi Chemical Co., Ltd.

なお、本発明においては、水溶性であるが油溶性ではないフッ素系界面活性剤や、水溶性でも油溶性でもないフッ素系界面活性剤は使用することができない。たとえば、前者のフッ素系界面活性剤としては、AGCセイミケミカル株式会社製「SURFLON S−241」 、「SURFLON S−221」 、「SURFLON S−211」 等が存在するが、このようなフッ素系界面活性剤は使用できない。また、後者のフッ素系界面活性剤としては、AGCセイミケミカル株式会社製「SURFLON S−420」 等が存在するが、このようなフッ素系界面活性剤も使用できない。   In the present invention, a fluorine-based surfactant that is water-soluble but not oil-soluble, or a fluorine-based surfactant that is neither water-soluble nor oil-soluble can be used. For example, as the former fluorosurfactant, “SURFLON S-241”, “SURFLON S-221”, “SURFLON S-211”, etc., manufactured by AGC Seimi Chemical Co., Ltd. exist. Activators cannot be used. In addition, as the latter fluorosurfactant, there is “SURFLON S-420” manufactured by AGC Seimi Chemical Co., Ltd., but such a fluorosurfactant cannot be used.

本発明で用いるフッ素系界面活性剤の化学構造の代表例は、疎水基として炭素数1〜6のパーフルオロアルキル基を持ち、親水基としてポリオキシエチレン基又はポリオキシプロピレン基等のポリオキシアルキレン基を持つものである。たとえば、側鎖に炭素数1〜6のパーフルオロアルキル基と共にポリオキシエチレン基又はポリオキシプロピレン基を持つアクリレート化合物を重合させたオリゴマーが用いられる。また、ポリオキシエチレン基又はポリオキシプロピレン基を持つ化合物に、炭素数1〜6のパーフルオロアルキル基を側鎖に持つアクリレート化合物を重合させたオリゴマーを付加させたものが用いられる。ここで、疎水基として、炭素数1〜6のパーフルオロアルキル基が用いられる理由は、フッ素系撥水剤の説明中でも述べたのと同様である。すなわち、地球環境に悪影響を与えるパーフルオロオクタン酸がフッ素系界面活性剤中に残留していたり或いはフッ素系界面活性剤から経時的に生成しにくいからである。   Typical examples of the chemical structure of the fluorosurfactant used in the present invention include a perfluoroalkyl group having 1 to 6 carbon atoms as a hydrophobic group and a polyoxyalkylene such as a polyoxyethylene group or a polyoxypropylene group as a hydrophilic group. It has a group. For example, an oligomer obtained by polymerizing an acrylate compound having a polyoxyethylene group or a polyoxypropylene group together with a perfluoroalkyl group having 1 to 6 carbon atoms in the side chain is used. Moreover, what added the oligomer which superposed | polymerized the acrylate compound which has a C1-C6 perfluoroalkyl group in a side chain to the compound which has a polyoxyethylene group or a polyoxypropylene group is used. Here, the reason why the perfluoroalkyl group having 1 to 6 carbon atoms is used as the hydrophobic group is the same as described in the explanation of the fluorine-based water repellent. That is, it is because perfluorooctanoic acid that has an adverse effect on the global environment remains in the fluorosurfactant or is hardly generated from the fluorosurfactant over time.

油溶性のフッ素系界面活性剤は、微多孔膜形成用樹脂組成物の固形分中において、0.1〜2質量%含有されている。フッ素系界面活性剤の含有量が0.1質量%未満であると、微多孔膜形成用樹脂組成物の安定性や塗布性が悪くなり、形成される微多孔膜の耐水圧が低下すると共に洗濯耐久性も低下するので、好ましくない。また、フッ素系界面活性剤の含有量が2質量%を超えると、形成される微多孔膜の撥水性が低下し、耐水圧が低下すると共に洗濯耐久性も低下するので、好ましくない。   The oil-soluble fluorosurfactant is contained in an amount of 0.1 to 2% by mass in the solid content of the resin composition for forming a microporous film. When the content of the fluorosurfactant is less than 0.1% by mass, the stability and coating properties of the resin composition for forming a microporous film are deteriorated, and the water pressure resistance of the formed microporous film is reduced. Since washing durability also falls, it is not preferable. On the other hand, when the content of the fluorosurfactant exceeds 2% by mass, the water repellency of the formed microporous film is lowered, the water pressure resistance is lowered, and the washing durability is also lowered.

微多孔膜形成用樹脂組成物中には、前記したポリウレタン樹脂、シリカ微粉末、フッ素系撥水剤及び油溶性のフッ素系界面活性剤の他に、第三成分として架橋性イソシアネート化合物が含有されているのが好ましい。これは、微多孔膜を形成するポリウレタン樹脂を架橋させ、微多孔膜の強度の向上や、微多孔膜と布帛本体の接着力の向上を図るためである。架橋性イソシアネート化合物は、微多孔膜形成用樹脂組成物の固形分中に1〜10質量%程度含有させるのが好ましい。架橋性イソシアネート化合物の含有量が1質量%未満であると、微多孔膜の強度向上や、微多孔膜と布帛本体の接着力向上が図りにくくなる。また、架橋性イソシアネート化合物の含有量が10質量%を超えると、微多孔膜の風合いが硬くなる傾向が生じる。   The resin composition for forming a microporous film contains a crosslinkable isocyanate compound as a third component in addition to the polyurethane resin, silica fine powder, fluorine-based water repellent and oil-soluble fluorine-based surfactant. It is preferable. This is because the polyurethane resin forming the microporous membrane is crosslinked to improve the strength of the microporous membrane and to improve the adhesion between the microporous membrane and the fabric body. The crosslinkable isocyanate compound is preferably contained in an amount of about 1 to 10% by mass in the solid content of the resin composition for forming a microporous film. When the content of the crosslinkable isocyanate compound is less than 1% by mass, it is difficult to improve the strength of the microporous membrane and to improve the adhesion between the microporous membrane and the fabric body. Moreover, when content of a crosslinkable isocyanate compound exceeds 10 mass%, the tendency for the texture of a microporous film to become hard will arise.

架橋性イソシアネート化合物としては、トリレン2,4−ジイソシアネート、ジフェニルメタンジイソシアネート、イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート等が用いられる。また、これらのジイソシアネート類3モルと、活性水素を含有する化合物1モルとの付加反応によって得られるトリイソシアネート類も用いられる。なお、活性水素を含有する化合物としては、たとえば、トリメチロールプロパン、グリセリン等を用いることができる。架橋性イソシアネート化合物のうち、特にブロックイソシアネートを用いると、微多孔膜形成用樹脂組成物の安定性及びポットライフの点で有利である。ブロックイソシアネートとしては、熱処理によって解離するタイプが好ましく、具体的には、フェノール、ラクタム、メチルケトオキシム等で付加ブロック体を形成させたものが好適である。   As the crosslinkable isocyanate compound, tolylene 2,4-diisocyanate, diphenylmethane diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, or the like is used. Triisocyanates obtained by addition reaction of 3 mol of these diisocyanates with 1 mol of a compound containing active hydrogen are also used. In addition, as a compound containing active hydrogen, a trimethylol propane, glycerol, etc. can be used, for example. Of the crosslinkable isocyanate compounds, the use of blocked isocyanate is particularly advantageous in terms of stability and pot life of the resin composition for forming a microporous film. As the blocked isocyanate, a type that dissociates by heat treatment is preferable, and specifically, those obtained by forming an additional block with phenol, lactam, methyl ketoxime, or the like are preferable.

さらに、第三成分としては、ポリウレタン樹脂以外の樹脂が少量、たとえば固形分中に20質量%以下程度含有されていてもよい。かかる樹脂としては、たとえば、ポリアクリル酸、ポリ塩化ビニル、ポリスチレン、ポリブタジエン、ポリアミノ酸、ポリカーボネート等の重合体又は共重合体が用いられる。また、これらの重合体又は共重合体をフッ素やシリコン等で変成したものも用いられる。その他にも、第三成分として、顔料、フィラーなどの各種添加剤、抗菌剤、消臭剤、難燃剤等の各種機能材を含有させてもよい。   Furthermore, as the third component, a resin other than the polyurethane resin may be contained in a small amount, for example, about 20% by mass or less in the solid content. Examples of such a resin include polymers or copolymers such as polyacrylic acid, polyvinyl chloride, polystyrene, polybutadiene, polyamino acid, and polycarbonate. Also, those obtained by modifying these polymers or copolymers with fluorine, silicon or the like can be used. In addition, various functional materials such as various additives such as pigments and fillers, antibacterial agents, deodorants, and flame retardants may be contained as the third component.

微多孔膜形成用樹脂組成物中には、ポリウレタン樹脂、シリカ微粉末、フッ素系撥水剤及び油溶性のフッ素系界面活性剤を均一に溶解又は分散させるために、公知の有機溶媒が用いられる。特に、ポリウレタン樹脂に対する親溶媒であるN,N−ジメチルホルムアミドを用いるのが好ましい。有機溶媒の含有量も、従来公知の割合であって、概ね70〜85質量%程度である。   In the resin composition for forming a microporous film, a known organic solvent is used to uniformly dissolve or disperse the polyurethane resin, silica fine powder, fluorine-based water repellent and oil-soluble fluorine-based surfactant. . In particular, it is preferable to use N, N-dimethylformamide, which is a parent solvent for polyurethane resins. The content of the organic solvent is also a conventionally known ratio and is about 70 to 85% by mass.

布帛本体の片面に、コンマコーターやナイフコーター等の公知の手段で微多孔膜形成用樹脂組成物を塗布した後、湿式凝固液に浸漬させることにより、微多孔膜が形成される。湿式凝固液としては、水又はN,N−ジメチルホルムアミドを5〜30質量%含有する水溶液が用いられる。凝固液の温度は5〜35℃程度が好ましく、凝固時間は30秒〜5分間程度である。湿式凝固液にて微多孔膜形成用樹脂組成物を凝固させ、微多孔膜を得た後、N,N−ジメチルホルムアミドを除去するため、35〜80℃の温度下で1〜10分間湯洗する。そして、湯洗後、50〜150℃の温度下で1〜10分間乾燥することにより、微多孔膜が形成された透湿防水性布帛が得られるのである。微多孔膜の厚さは適宜設定しうる事項であるが、一般的には10〜50μm程度である。微多孔膜の厚さが薄くなると、耐水圧が低下する傾向があり、厚くなると風合いが低下する傾向が生じる。   A microporous film is formed by applying the resin composition for forming a microporous film on one side of the fabric main body by a known means such as a comma coater or a knife coater and then immersing it in a wet coagulation liquid. As the wet coagulation liquid, water or an aqueous solution containing 5 to 30% by mass of N, N-dimethylformamide is used. The temperature of the coagulation liquid is preferably about 5 to 35 ° C., and the coagulation time is about 30 seconds to 5 minutes. The resin composition for forming a microporous film is coagulated with a wet coagulation liquid to obtain a microporous film, and then washed with hot water at a temperature of 35 to 80 ° C. for 1 to 10 minutes in order to remove N, N-dimethylformamide. To do. And after water washing, the moisture-permeable waterproof fabric in which the microporous film was formed is obtained by drying for 1 to 10 minutes at the temperature of 50-150 degreeC. The thickness of the microporous membrane is a matter that can be appropriately set, but is generally about 10 to 50 μm. When the thickness of the microporous membrane is reduced, the water pressure resistance tends to decrease, and when the thickness is increased, the texture tends to decrease.

本発明においては、微多孔膜の表面に更に無孔膜を積層しても差し支えない。もちろん、無孔膜としては透湿性の無孔膜を採用するのであるが、無孔膜を積層すると、耐水圧が更に向上する。無孔膜としては、微多孔膜がポリウレタン樹脂を主体とするものであるから、微多孔膜との接着性が良好なポリウレタン樹脂膜を用いるのが好ましい。無孔膜を形成するには、無孔膜形成用樹脂組成物を微多孔膜表面に塗布して乾燥すればよい。また、離型紙等の離型基材表面に無孔膜形成用樹脂組成物を塗布して乾燥し、無孔膜を得た後、これを微多孔膜表面に積層貼合してもよい。無孔膜形成用樹脂組成物としては、一般的に、ポリウレタン樹脂を有機溶媒に溶解させたものを用いる。有機溶媒としては、微多孔質膜表面に直接に無孔膜形成用樹脂組成物を塗布する場合は、N,N−ジメチルホルムアミドの含有率が少ない、或いはこれを全く含まないものを用いる方が好ましい。なぜなら、N,N−ジメチルホルムアミドは、ポリウレタン樹脂の親溶媒に当たるので、有機溶媒中にこれが多く含まれていると、微多孔膜の表層が侵蝕される恐れがあるからである。なお、離型基材表面に無孔膜形成用樹脂組成物を塗布して、一旦無孔膜を形成した後、微多孔質膜と熱圧着或いは接着剤にて貼合する方法を採用する場合には、有機溶媒中のN,N−ジメチルホルムアミドの含有率にこだわる必要はなく、乾燥性や圧着性等を考慮して行えばよい。   In the present invention, a nonporous film may be further laminated on the surface of the microporous film. Of course, a moisture-permeable non-porous film is adopted as the non-porous film. However, when the non-porous film is laminated, the water pressure resistance is further improved. As the non-porous film, since the microporous film is mainly composed of a polyurethane resin, it is preferable to use a polyurethane resin film having good adhesion to the microporous film. In order to form the nonporous film, the resin composition for forming a nonporous film may be applied to the surface of the microporous film and dried. Moreover, after apply | coating the resin composition for nonporous film formation to surface of mold release base materials, such as a release paper, and drying and obtaining a nonporous film, this may be laminated | stacked on the microporous film surface. As the resin composition for forming a nonporous film, generally, a polyurethane resin dissolved in an organic solvent is used. As the organic solvent, when the nonporous film-forming resin composition is directly applied to the surface of the microporous film, it is preferable to use a solvent having a low content of N, N-dimethylformamide or not containing it at all. preferable. This is because N, N-dimethylformamide hits the parent solvent of the polyurethane resin, and if the organic solvent is contained in a large amount, the surface layer of the microporous film may be eroded. In the case of adopting a method in which a nonporous film-forming resin composition is applied to the surface of the release substrate, and once the nonporous film is formed, it is bonded to the microporous film by thermocompression bonding or an adhesive. In this case, it is not necessary to pay attention to the content of N, N-dimethylformamide in the organic solvent, and it may be carried out in consideration of drying property, pressure bonding property, and the like.

無孔膜形成用樹脂組成物の粘度は、塗布しやすいように、100〜10000mPa・s(25℃)程度が好ましい。また、無孔膜形成用樹脂組成物の固形分含有量は、10〜30質量%程度であるのが好ましい。無孔膜形成用樹脂組成物を塗布して無孔膜を形成する手段としては、従来公知の方法を採用すればよい。たとえば、ナイフコーター、コンマコーター、リバースコーター又は高メッシュ・低深度のグラビアロールを用いて、無孔膜形成用樹脂組成物を微多孔膜表面又は離型基材表面に塗布した後、乾燥して無孔膜を形成すればよい。   The viscosity of the nonporous film-forming resin composition is preferably about 100 to 10,000 mPa · s (25 ° C.) so that it can be easily applied. Moreover, it is preferable that solid content of the resin composition for non-porous film formation is about 10-30 mass%. A conventionally known method may be employed as a means for forming the nonporous film by applying the nonporous film forming resin composition. For example, using a knife coater, comma coater, reverse coater or high mesh / low depth gravure roll, the resin composition for nonporous film formation is applied to the surface of the microporous film or the release substrate, and then dried. A nonporous film may be formed.

無孔膜の厚さは、0.5〜12μm程度が好ましい。無孔膜の厚さが0.5μm未満であると、目的とする耐水圧の向上が不十分となる傾向が生じる。無孔膜の厚さが12μmを超えると、無孔膜自体の透湿度にもよるが、一般的に透湿度が低下する。   The thickness of the nonporous film is preferably about 0.5 to 12 μm. When the thickness of the non-porous film is less than 0.5 μm, there is a tendency that the intended improvement in water pressure resistance is insufficient. When the thickness of the nonporous film exceeds 12 μm, the moisture permeability generally decreases although it depends on the moisture permeability of the nonporous film itself.

本発明に係る透湿防水性布帛の微多孔膜表面又は無孔膜表面に、所定の柄が印刷されていてもよい。柄を印刷するには、柄印刷用組成物を微多孔膜表面又は無孔膜表面に、グラビアロール、ロータリースクリーン又はフラットスクリーン等を用いて所定の柄で塗布し乾燥すればよい。柄印刷用組成物は、基本的には、樹脂とこれを溶解させるための有機溶媒とが含有されてなるものである。また、樹脂を硬化させるための樹脂硬化剤が含有されていてもよい。樹脂としては、ポリウレタン系樹脂、アクリル系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂、ポリオレフィン系樹脂、エチレン・酢酸ビニル樹脂等が単独で又は混合して用いられる。特に、微多孔膜はポリウレタン樹脂を主体とするものであり、無孔膜も多くの場合ポリウレタン樹脂を主体とするものであるから、微多孔膜又は無孔膜との接着性の観点から、ポリウレタン系樹脂を採用するのが好ましい。   A predetermined pattern may be printed on the surface of the microporous membrane or the nonporous membrane of the moisture-permeable and waterproof fabric according to the present invention. In order to print the pattern, the pattern printing composition may be applied to the surface of the microporous film or the nonporous film with a predetermined pattern using a gravure roll, a rotary screen, a flat screen or the like, and dried. The pattern printing composition basically includes a resin and an organic solvent for dissolving the resin. Further, a resin curing agent for curing the resin may be contained. As the resin, a polyurethane resin, an acrylic resin, a polyester resin, a vinyl chloride resin, a polyolefin resin, an ethylene / vinyl acetate resin, or the like may be used alone or in combination. In particular, the microporous membrane is mainly composed of a polyurethane resin, and the non-porous membrane is also mainly composed of a polyurethane resin. Therefore, from the viewpoint of adhesion to the microporous membrane or the non-porous membrane, polyurethane is used. It is preferable to employ a base resin.

柄印刷用組成物中には、樹脂と有機溶媒の他に、以下のような第三成分が含有されていてもよい。たとえば、柄の耐摩耗性の向上を図るため磨耗向上剤或いは柄の滑り性を向上させるため滑剤を含有させておいてもよい。摩耗向上剤或いは滑剤としては、ポリジメチルシロキサン等のシリコン系化合物、摺動剤等で用いられているL−リジンと有機酸の反応生成物であるNe −ラウロイル−L−リジン等の平板状粉体、湿式法(沈降法、ゲル法)による微多孔性の非晶質シリカ(二酸化珪素)微粉末が用いられる。また、その他の耐熱性有機フィラー微粉末や無機フィラー微粉末等が用いられる。さらに、透湿防水性布帛の増量を図るための充填剤、柄に所望の色彩や模様を与えるためのパール顔料等の顔料或いは染料、透湿防水性布帛に抗菌機能を与えるための抗菌剤、透湿防水性布帛の消臭効果を与えるための消臭剤等が、第三成分として含有されていてもよい。柄印刷用組成物の粘度は、印刷条件や柄によって適宜決定しうる事項であり、一般的には100〜10000mPa・s(25℃)の範囲で選択される。   The pattern printing composition may contain the following third component in addition to the resin and the organic solvent. For example, a wear improver for improving the wear resistance of the handle or a lubricant for improving the slipperiness of the handle may be contained. As a wear improver or lubricant, a flat powder such as Ne-lauroyl-L-lysine, which is a reaction product of L-lysine and organic acid used in silicon compounds such as polydimethylsiloxane and sliding agents, etc. And microporous amorphous silica (silicon dioxide) fine powder by a wet method (precipitation method, gel method) is used. Further, other heat-resistant organic filler fine powder, inorganic filler fine powder, and the like are used. Furthermore, a filler for increasing the moisture permeable waterproof fabric, a pigment or dye such as a pearl pigment for giving a desired color or pattern to the handle, an antibacterial agent for giving an antibacterial function to the moisture permeable waterproof fabric, A deodorizing agent or the like for giving a deodorizing effect of the moisture permeable waterproof fabric may be contained as a third component. The viscosity of the pattern printing composition is a matter that can be appropriately determined depending on the printing conditions and pattern, and is generally selected in the range of 100 to 10,000 mPa · s (25 ° C.).

所定の柄としては、どのようなもので採用しうる。たとえば、ドット状、格子状、線状、斜線型、市松模様、ピラミッド型、亀甲柄、ある特定のネームや商標柄或いはランダム状柄等が採用され、これらは意匠性を発揮しやすい柄であり、好ましいものである。所定柄の占有面積は、透湿防水性布帛の透湿度に悪影響を及ぼさない範囲であれば任意である。一般的には、2〜50%程度の範囲である。2%未満では、たとえ細線柄を主体としても意匠性の発揮が困難となりやすく、また、占有面積が50%超えると布帛の透湿性能に影響を生じやすいので好ましくない。所定柄の厚さは、0. 5〜10μm程度でよい。柄の厚さが0. 5μm未満では見栄え感やコントラスト感が劣り、意匠性が乏しくなる傾向となる。また、柄の厚さが10μmを超えると、柄自体が摩耗脱落しやすくなり、耐久性に難点を生じやすい傾向となる。   Any predetermined pattern can be used. For example, dot, lattice, linear, diagonal, checkered, pyramid, turtle shell, specific name, trademark pattern, or random pattern, etc. are used, and these patterns are easy to exhibit design. Is preferable. The area occupied by the predetermined pattern is arbitrary as long as it does not adversely affect the moisture permeability of the moisture-permeable and waterproof fabric. Generally, it is about 2 to 50% of range. If it is less than 2%, it is difficult to exhibit the design properties even if it is mainly composed of a fine line pattern, and if the occupied area exceeds 50%, the moisture permeability of the fabric is likely to be affected. The thickness of the predetermined pattern may be about 0.5 to 10 μm. If the thickness of the handle is less than 0.5 μm, the appearance and the contrast are inferior and the design property tends to be poor. On the other hand, when the thickness of the handle exceeds 10 μm, the handle itself tends to be worn off and tends to cause difficulty in durability.

また、本発明では、縫製の簡略化や着用多汗時のべたつき防止等の観点から、布帛本体を表地として、微多孔膜表面或いは無孔膜表面に接着剤を用いて、裏地を貼合してもよい。すなわち、微多孔膜或いは無孔膜と裏地とを接着剤を介して貼合してもよい。このようにして得られた透湿防水性布帛は、布帛本体/微多孔膜/接着剤/裏地、或いは布帛本体/微多孔膜/無孔膜/接着剤/裏地の順で積層された形態となっている。   Further, in the present invention, from the viewpoint of simplification of sewing and prevention of stickiness when wearing a lot of sweat, the fabric body is used as a surface material, and an adhesive is used on the surface of the microporous membrane or the nonporous membrane to bond the backing. May be. That is, a microporous film or a nonporous film and a backing may be bonded via an adhesive. The moisture-permeable and waterproof fabric thus obtained has a form in which the fabric body / microporous membrane / adhesive / lining, or the fabric body / microporous membrane / nonporous membrane / adhesive / lining are laminated in this order. It has become.

裏地としては、布帛本体と同様のものが用いられる。特に、コスト、風合い、軽量性及びシームテープ接着性等から鑑みて、繊度が15〜78デシテックスのポリアミド系合成繊維やポリエステル系合成繊維、或いは前記と同繊度クラスのポリアミド系合成繊維/木綿やポリエステル系合成繊維/木綿の混合繊維よりなる織編物、不織布などが好ましい。その中でも、繊度が15〜44デシテックスのポリアミド系長繊維或いはポリエステル系長繊維よりなる編織物又は不織布が、縫製部へのシームテープ接着の容易さやシーリング部分の防水性能、並びにそれらの耐久性が有利となるので、より好ましい。なお、シームテープとは、縫製品の縫い目に防水の目的で貼合する接着テープのことである。   As the lining, the same material as that of the fabric body is used. In particular, in view of cost, texture, lightness, seam tape adhesion, etc., a polyamide synthetic fiber or polyester synthetic fiber having a fineness of 15 to 78 dtex, or a polyamide synthetic fiber / cotton or polyester of the same fineness class as described above A woven or knitted fabric or nonwoven fabric made of a mixed fiber of a synthetic fiber / cotton is preferred. Among them, a knitted fabric or non-woven fabric made of polyamide long fibers or polyester long fibers having a fineness of 15 to 44 dtex is advantageous in terms of ease of seam tape adhesion to the sewing portion, waterproof performance of the sealing portion, and durability thereof. Therefore, it is more preferable. The seam tape is an adhesive tape that is bonded to the seam of the sewing product for the purpose of waterproofing.

裏地を貼合するための接着剤としては、従来公知のものを採用すればよい。たとえば、天然ゴム、ニトリルゴム系やクロロプレンゴム系等の合成ゴム、酢酸ビニル系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、エチレン−酢酸ビニル共重合樹脂、ポリウレタン系樹脂等が単独で又は混合して用いられる。接着剤の種類としては、接着耐久性の観点から、硬化型接着剤を用いるのが好ましい。硬化型接着剤は、水酸基、イソシアネート基、アミノ基又はカルボキシル基等の反応基を持ついわゆる架橋性を有したポリウレタン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリエチレン−酢酸ビニル共重合体樹脂等が自己架橋するか、或いはイソシアネート系化合物又はエポキシ系化合物等の架橋剤と架橋して、硬化するものである。これらの中でも、ポリウレタン系樹脂が柔軟性に富み、かつ透湿性にも優れているので好ましい。   What is necessary is just to employ | adopt a conventionally well-known thing as an adhesive agent for bonding a lining. For example, natural rubber, synthetic rubber such as nitrile rubber or chloroprene rubber, vinyl acetate resin, acrylic resin, polyamide resin, polyester resin, ethylene-vinyl acetate copolymer resin, polyurethane resin, etc. alone or Used as a mixture. As the type of adhesive, it is preferable to use a curable adhesive from the viewpoint of adhesion durability. Curing adhesives include so-called crosslinkable polyurethane resins, polyester resins, polyamide resins, polyethylene-vinyl acetate copolymer resins having reactive groups such as hydroxyl groups, isocyanate groups, amino groups or carboxyl groups. It is self-crosslinked or is cured by crosslinking with a crosslinking agent such as an isocyanate compound or an epoxy compound. Among these, polyurethane-based resins are preferable because they are rich in flexibility and excellent in moisture permeability.

また、接着剤の性状は、エマルジョン型、溶剤型或いはホットメルト型等のいずれであってもよい。エマルジョン型又は溶剤型の接着剤の場合は、粘度を500〜5000mPa・s程度として、グラビアロールやコンマコーター等の塗布手段で、微多孔膜表面、無孔膜表面又は裏地表面に、全面に又は部分的に塗布する。塗布後、微多孔膜又は無孔膜と裏地とをラミネート機で圧着又は熱圧着して貼合すればよい。また、ホットメルト型の接着剤の場合は、80〜180℃程度の温度をホットメルト型接着剤に与えて、溶融させた後、微多孔膜表面、無孔膜表面又は裏地表面に、全面に又は部分的に塗布する。そして、必要により冷却しながら、ラミネート機で微多孔膜又は無孔膜と裏地とを圧着して貼合すればよい。   Further, the properties of the adhesive may be any of an emulsion type, a solvent type and a hot melt type. In the case of an emulsion-type or solvent-type adhesive, the viscosity is about 500 to 5000 mPa · s, and it is applied to the entire surface of the microporous film surface, non-porous film surface or lining surface by a coating means such as a gravure roll or a comma coater, or Apply partially. After coating, the microporous film or nonporous film and the backing may be bonded by pressure bonding or thermocompression bonding with a laminating machine. In the case of a hot-melt type adhesive, a temperature of about 80 to 180 ° C. is applied to the hot-melt type adhesive and melted, and then the entire surface is applied to the surface of the microporous film, the nonporous film or the backing surface. Or apply partially. And what is necessary is just to carry out the pressure bonding of a microporous film or a non-porous film | membrane, and a backing with a laminating machine, cooling as needed.

接着剤は、前記したように、微多孔膜等の表面に全面に又は部分的に適用される。透湿性能や風合いの観点からは、部分的に適用するのが好ましい。たとえば、点状、線状、市松模様、亀甲模様等の形態で、微多孔膜等の表面全体に亙って均一に適用するのが好ましい。接着剤の占有面積は、10〜80%程度が好ましい。接着剤の占有面積が10%未満では、接着剤の膜厚を厚くしても接着力が不十分となって、裏地が剥離しやすくなる傾向が生じる。また、接着剤の占有面積が80%を超えると、接着力は十分となりやすいが、特に透湿性能が低下する恐れが生じる。しかしながら、接着剤として透湿性のあるポリウレタン系接着剤を使用すれば、接着剤の占有面積が80%を超えても、差し支えない。適用した接着剤の厚さは、接着剤の占有面積や裏地の凹凸性やスパン感などにも依るが、5〜100μm程度でよい。接着剤の厚さが5μm未満では、裏地との接着力が不十分となる傾向が生じる。接着剤の厚さが100μmを超えると、透湿防水性布帛の透湿性能が低下したり、風合いが硬化したりする傾向となる。   As described above, the adhesive is applied to the entire surface or a part of the surface of the microporous film or the like. It is preferable to apply partially from the viewpoint of moisture permeability and texture. For example, it is preferably applied uniformly over the entire surface of the microporous membrane or the like in the form of a dot, line, checkered pattern, turtle shell pattern or the like. The area occupied by the adhesive is preferably about 10 to 80%. When the area occupied by the adhesive is less than 10%, the adhesive force becomes insufficient even if the thickness of the adhesive is increased, and the lining tends to be easily peeled off. In addition, when the area occupied by the adhesive exceeds 80%, the adhesive force tends to be sufficient, but the moisture permeation performance may be lowered. However, if a moisture-permeable polyurethane adhesive is used as the adhesive, the occupied area of the adhesive may exceed 80%. The thickness of the applied adhesive may be about 5 to 100 μm, although it depends on the area occupied by the adhesive, the unevenness of the lining and the span feeling. If the thickness of the adhesive is less than 5 μm, the adhesive strength with the backing tends to be insufficient. If the thickness of the adhesive exceeds 100 μm, the moisture-permeable performance of the moisture-permeable and waterproof fabric tends to decrease, or the texture tends to harden.

以上の説明したように、本発明に係る透湿防水性布帛は、布帛本体/微多孔膜、布帛本体/微多孔膜/無孔膜、布帛本体/微多孔膜/柄印刷、布帛本体/微多孔膜/無孔膜/柄印刷、布帛本体/微多孔膜/接着剤/裏地及び布帛本体/微多孔膜/無孔膜/接着剤/裏地の順で積層された各種のものがある。かかる透湿防水性布帛に、さらに耐水圧を向上させるため、撥水加工を施してもよい。撥水加工の方法は、目潰し加工を行うことは少ないが、基本的には、布帛本体を撥水加工する方法と同様にして行うことができる。   As described above, the moisture-permeable and waterproof fabric according to the present invention includes the fabric body / microporous membrane, the fabric body / microporous membrane / nonporous membrane, the fabric body / microporous membrane / pattern printing, and the fabric body / fine fabric. There are various types of layers laminated in the order of porous membrane / nonporous membrane / pattern printing, fabric body / microporous membrane / adhesive / lining and fabric body / microporous membrane / nonporous membrane / adhesive / lining. In order to further improve the water pressure resistance, the moisture permeable waterproof fabric may be subjected to water repellent finishing. The method of water repellent finishing is rarely performed by crushing, but can basically be performed in the same manner as the method of water repellent finishing of the fabric body.

本発明にかかる透湿防水性布帛は、耐水圧、透湿性及び洗濯耐久性に優れており、スポーツ衣料や防寒衣料等の各種衣料の素材としてはもちろん、テント等の登山用具等の素材としても使用しうるものである。さらに、透湿防水性の必要な各種製品の素材としても、使用しうるものである。   The moisture-permeable and waterproof fabric according to the present invention is excellent in water pressure resistance, moisture permeability and washing durability, and can be used not only as a material for various clothing such as sports clothing and cold clothing, but also as a material for mountaineering equipment such as tents. It can be used. Furthermore, it can be used as a material for various products that require moisture permeability and waterproofness.

本発明に係る透湿防水性布帛は、布帛本体の片面に、ポリウレタン樹脂を主体とする微多孔膜が積層されてなるものであって、微多孔膜が、シリカ微粉末3〜45質量%、フッ素系撥水剤1〜9質量%及び油溶性のフッ素系界面活性剤0.1〜2質量%が含有されてなる微多孔膜形成用樹脂組成物を用いて形成されたものである。このため、シリカ微粉末の存在により、孔径の小さな微孔が多数形成されると共に、フッ素系撥水剤と油溶性のフッ素系界面活性剤を併用しているため、微孔の細部までもフッ素系撥水剤が均一に付与される。また、透湿防水性布帛に洗濯を繰り返すと、洗剤が微孔に残留してゆくが、油溶性のフッ素系界面活性剤は、その作用は定かではないが、この洗剤を水洗によって脱離しやすくする。したがって、本発明に係る透湿防水性布帛は、当初の耐水圧及び透湿度にも優れているが、洗濯を繰り返しても当初の耐水圧が低下しにくく、洗濯耐久性に優れるという効果を奏する。   The moisture-permeable and waterproof fabric according to the present invention is formed by laminating a microporous film mainly composed of a polyurethane resin on one side of the fabric body, and the microporous film has a silica fine powder content of 3 to 45% by mass, It is formed using a resin composition for forming a microporous film comprising 1 to 9% by mass of a fluorine-based water repellent and 0.1 to 2% by mass of an oil-soluble fluorine-based surfactant. For this reason, due to the presence of fine silica powder, a large number of micropores with small pore diameters are formed, and since a fluorine-based water repellent and an oil-soluble fluorine-based surfactant are used in combination, even the fine pore details can be fluorinated. A water-repellent agent is uniformly applied. In addition, when washing is repeated on a moisture-permeable and waterproof fabric, the detergent remains in the micropores, but the action of the oil-soluble fluorosurfactant is not clear, but it is easy to remove this detergent by washing with water. To do. Therefore, the moisture-permeable and waterproof fabric according to the present invention is excellent in the initial water pressure resistance and moisture permeability, but has an effect that the initial water pressure pressure is hardly lowered even after repeated washing, and is excellent in washing durability. .

以下、本発明を実施例に基づいて説明するが、本発明は実施例に限定されるものではない。本発明は、微多孔膜形成用樹脂組成物中に、シリカ微粉末、フッ素系撥水剤及び油溶性のフッ素系界面活性剤を所定量含有させて微多孔膜を形成すると、洗濯耐久性に優れた透湿防水性布帛が得られるとの知見に基づくものとして、解釈されるべきである。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to an Example. According to the present invention, when a microporous film is formed by adding a predetermined amount of silica fine powder, a fluorine-based water repellent and an oil-soluble fluorine-based surfactant in a resin composition for forming a microporous film, the durability to washing is improved. It should be interpreted as being based on the knowledge that an excellent moisture-permeable and waterproof fabric can be obtained.

実施例1
[布帛本体の準備]
経糸、緯糸の双方に、ナイロン6マルチフィラメント78dtex/68fを用いて、経糸密度115本/2.54cm、緯糸密度95本/2.54cmの平組織織物を製織した。得られた平組織織物を精練した後、酸性染料(日本化薬株式会社製「Kayanol Blue N2G」)1.0%omfを用いて染色して、染色織物を得た。その後、染色織物へフッ素系撥水剤エマルジョン(旭硝子株式会社製「アサヒガード GS10」)の5%水分散液をパディング法(ピックアップ率40%)にて付与した後、乾燥し、その後170℃×40秒の熱処理を行った。続いて、一本が鏡面ロールである一対のカレンダーロールを用いて、温度170℃、圧力300kPa、速度30m/分の条件でカレンダー加工して、布帛本体を得た。
Example 1
[Preparation of fabric body]
A plain structure woven fabric having a warp density of 115 / 2.54 cm and a weft density of 95 / 2.54 cm was woven using nylon 6 multifilament 78 dtex / 68f for both the warp and the weft. The obtained plain tissue fabric was scoured and then dyed with 1.0% omf of an acid dye (“Kayanol Blue N2G” manufactured by Nippon Kayaku Co., Ltd.) to obtain a dyed fabric. Thereafter, a 5% aqueous dispersion of a fluorine-based water repellent emulsion ("Asahi Guard GS10" manufactured by Asahi Glass Co., Ltd.) was applied to the dyed fabric by the padding method (pickup rate 40%), dried, and then 170 ° C x A 40 second heat treatment was performed. Subsequently, a pair of calender rolls, one of which is a mirror roll, was calendered under conditions of a temperature of 170 ° C., a pressure of 300 kPa, and a speed of 30 m / min to obtain a fabric body.

[微多孔膜形成用樹脂組成物の調製]
まず、N,N−ジメチルホルムアミドを溶媒とするエステル型ポリウレタン樹脂溶液(セイコー化成株式会社製「ラックスキン 1740−29B」、固形分28質量%)30質量部、シリカ微粉末である疎水性フュームドシリカ(日本アエロジル株式会社製「AEROSIL R−972」、一次粒子径16nm、N,N−ジメチルホルムアミドの吸着量260mL/100g)10質量部及びN,N−ジメチルホルムアミド10質量部を混合して粗練り後、3本ロールミル機を用いて均一練りを行い、無色透明の樹脂溶液A50質量部を準備した。
[Preparation of resin composition for forming microporous film]
First, 30 parts by mass of an ester type polyurethane resin solution (“Lackskin 1740-29B” manufactured by Seiko Kasei Co., Ltd., solid content 28% by mass) using N, N-dimethylformamide as a solvent, hydrophobic fumed that is a fine silica powder 10 parts by mass of silica (“AEROSIL R-972” manufactured by Nippon Aerosil Co., Ltd., primary particle size 16 nm, N, N-dimethylformamide adsorption amount 260 mL / 100 g) and 10 parts by mass of N, N-dimethylformamide After kneading, uniform kneading was performed using a three-roll mill to prepare 50 parts by weight of a colorless and transparent resin solution A.

次に、油溶性且つ水溶性のフッ素系界面活性剤(AGCセイミケミカル株式会社製「SURFLON S- 386」)0.2質量部を、N,N−ジメチルホルムアミド40質量部に相溶させた後、フッ素系撥水剤エマルジョン(旭硝子株式会社製「アサヒガード AG710」、固形分19質量%)5質量部を混合分散させて、樹脂溶液B45.2質量部を準備した。   Next, 0.2 parts by mass of an oil-soluble and water-soluble fluorosurfactant (“SURFLON S-386” manufactured by AGC Seimi Chemical Co., Ltd.) is dissolved in 40 parts by mass of N, N-dimethylformamide. 5 parts by mass of a fluorine-based water repellent emulsion (“Asahi Guard AG710” manufactured by Asahi Glass Co., Ltd., solid content: 19% by mass) was mixed and dispersed to prepare 45.2 parts by mass of a resin solution B.

そして、樹脂溶液A50質量部と、樹脂溶液B45.2質量部と、N,N−ジメチルホルムアミドを溶媒とするエステル型ポリウレタン樹脂溶液(セイコー化成株式会社製「ラックスキン 1740−29B」、固形分28質量%)50質量部と、架橋性イソシアネート化合物(大日精化工業株式会社製「レザミンX」)2質量部とを混合し、真空脱泡しながらディスパー型攪拌機を用い、攪拌調液して、微多孔膜形成用樹脂組成物を調製した。この微多孔膜形成用樹脂組成物は、固形分濃度が24質量%であり、粘度が10000mPa・s/25℃であった。したがって、固形分中、シリカ微粉末(疎水性フュームドシリカ)は28質量%含有されており、フッ素系撥水剤は3質量%含有されており、フッ素系界面活性剤は0.6質量%含有されていることになる。   Then, 50 parts by mass of the resin solution A, 45.2 parts by mass of the resin solution B, and an ester-type polyurethane resin solution using “N, N-dimethylformamide” as a solvent (“Lack Skin 1740-29B” manufactured by Seiko Kasei Co., Ltd.), solid content 28 (Mass%) 50 parts by mass and 2 parts by mass of a crosslinkable isocyanate compound ("Rezamin X" manufactured by Dainichi Seika Kogyo Co., Ltd.) are mixed with stirring using a disper type stirrer while vacuum degassing, A resin composition for forming a microporous film was prepared. This resin composition for forming a microporous film had a solid content concentration of 24% by mass and a viscosity of 10,000 mPa · s / 25 ° C. Accordingly, in the solid content, 28% by mass of silica fine powder (hydrophobic fumed silica) is contained, 3% by mass of the fluorine-based water repellent is contained, and 0.6% by mass of the fluorine-based surfactant is contained. It will be contained.

[透湿防水性布帛の製造]
布帛本体の鏡面ロールが当接した面に、微多孔膜形成用樹脂組成物をコンマコーターにて塗布量90g/m2で塗布した。その後、濃度15質量%のN,N−ジメチルホルムアミド水溶液(20℃)からなる凝固浴に2分間浸漬することで、ポリウレタン樹脂を凝固させた。そして、50℃で5分間の湯洗を行い、布帛をマングルで絞り、続いて、130℃で2分間の乾燥を行い、ポリウレタン樹脂を主体とする微多孔膜を形成した。その後、170℃で1分間のセット加工を行って、透湿防水性布帛を得た。なお、得られた微多孔膜の厚さは約25μmであり、全体に亙って1μm以下の孔径を主体とする微孔が多数形成されていた。
[Manufacture of moisture-permeable and waterproof fabrics]
A resin composition for forming a microporous film was applied to the surface of the fabric main body with which the mirror roll contacted with a comma coater at an application amount of 90 g / m 2 . Thereafter, the polyurethane resin was coagulated by immersing in a coagulation bath made of an aqueous N, N-dimethylformamide solution (20 ° C.) having a concentration of 15% by mass for 2 minutes. Then, washing with hot water at 50 ° C. for 5 minutes was performed, and the fabric was squeezed with mangle, followed by drying at 130 ° C. for 2 minutes to form a microporous film mainly composed of polyurethane resin. Then, the set process for 1 minute was performed at 170 degreeC, and the moisture-permeable waterproof fabric was obtained. The thickness of the obtained microporous membrane was about 25 μm, and many micropores mainly having a pore diameter of 1 μm or less were formed throughout.

実施例2
[布帛本体の準備]
経糸としてポリエステルフィラメント140dtex/68f、緯糸としてポリエステルマルチフィラメント166dtex/288fを用いて、経糸密度86本/2.54cm、緯糸密度76本/2.54cmの平組織織物を製織した。得られた平組織織物を精練した後、分散染料(日本化薬(株)製「Dianix Blue UN- SE」)1.0%omfを用いて染色して、染色織物を得た。その後は、実施例1と同様の方法で布帛本体を得た。
Example 2
[Preparation of fabric body]
A plain fabric with a warp density of 86 yarns / 2.54 cm and a weft density of 76 yarns / 2.54 cm was woven using polyester filament 140 dtex / 68f as the warp yarn and polyester multifilament 166 dtex / 288f as the weft yarn. The obtained plain fabric was scoured and then dyed with 1.0% omf of a disperse dye (“Dianix Blue UN-SE” manufactured by Nippon Kayaku Co., Ltd.) to obtain a dyed fabric. Thereafter, a fabric body was obtained in the same manner as in Example 1.

実施例1と同一の方法で[微多孔膜形成用樹脂組成物の調製]を行った。そして、微多孔膜形成用樹脂組成物の塗布量を110g/m2とした他は、実施例1と同一の方法で[透湿防水性布帛の製造]を行い。透湿防水性布帛を得た。得られた微多孔膜の厚さは約30〜32μmであり、全体に亙って1μm以下の孔径を主体とする微孔が多数形成されていた。 [Preparation of resin composition for forming microporous film] was carried out in the same manner as in Example 1. Then, [Production of moisture-permeable and waterproof fabric] was performed in the same manner as in Example 1 except that the coating amount of the resin composition for forming a microporous film was 110 g / m 2 . A moisture permeable waterproof fabric was obtained. The thickness of the obtained microporous membrane was about 30 to 32 μm, and many micropores mainly having a pore diameter of 1 μm or less were formed throughout.

実施例3
[無孔膜形成用樹脂組成物の調製]
下記に示す無孔膜形成用樹脂組成物Aを調製した。この無孔膜形成用樹脂組成物Aは、固形分が17質量%であり、粘度が3500mPa・s/25℃であった。なお、無孔膜形成用樹脂組成物Aの溶媒中に、N,N−ジメチルホルムアミドは殆ど含有されておらず、その含有率は1質量%未満であった。
[無孔膜形成用樹脂組成物A]
無黄変型ポリウレタン樹脂 50質量部
(セイコー化成株式会社製「ラックスキン U2524」、固形分25質量%)
前記ポリウレタン樹脂用マット剤 50質量部
(セイコー化成株式会社製「ラックスキン U2525M」、固形分20質量%)
イソプロピルアルコール 15質量部
トルエン 15質量部
Example 3
[Preparation of non-porous film-forming resin composition]
A nonporous film forming resin composition A shown below was prepared. This non-porous film-forming resin composition A had a solid content of 17% by mass and a viscosity of 3500 mPa · s / 25 ° C. In addition, the solvent of the resin composition A for nonporous film formation contained almost no N, N-dimethylformamide, and its content was less than 1% by mass.
[Resin Composition A for Nonporous Film Formation]
Non-yellowing polyurethane resin 50 parts by mass (“Lackskin U2524” manufactured by Seiko Chemical Co., Ltd., solid content 25% by mass)
50 parts by mass of the matting agent for polyurethane resin (“Lackskin U2525M” manufactured by Seiko Chemical Co., Ltd., solid content 20% by mass)
Isopropyl alcohol 15 parts by mass Toluene 15 parts by mass

実施例2と同一の方法で透湿防水性布帛の製造を行い、ポリウレタン樹脂を主体とする微多孔膜を形成後、セット加工前に、上記無孔膜形成用樹脂組成物Aを微多孔膜表面にナイフコーターにて塗布量30g/m2で塗布した。そして、120℃で2分間の乾燥により約5μm厚の無孔膜を形成し、引き続き、170℃で1 分間のセット加工を行い、透湿防水性布帛を得た。 A moisture-permeable and waterproof fabric is produced by the same method as in Example 2, and after forming a microporous film mainly composed of polyurethane resin, before the set processing, the nonporous film-forming resin composition A is microporous film. The surface was coated with a knife coater at a coating amount of 30 g / m 2 . Then, a non-porous film having a thickness of about 5 μm was formed by drying at 120 ° C. for 2 minutes, and subsequently, set processing was performed at 170 ° C. for 1 minute to obtain a moisture-permeable and waterproof fabric.

実施例4
[無孔膜形成用樹脂組成物の調製]
下記に示す無孔膜形成用樹脂組成物Bを調製した。この無孔膜形成用樹脂組成物Bは、固形分が16質量%であり、粘度が3500mPa・s/25℃であった。なお、無孔膜形成用樹脂組成物Bの溶媒中に、N,N−ジメチルホルムアミドは殆ど含有されておらず、その含有率は1質量%未満であった。
[無孔膜形成用樹脂組成物B]
無黄変型ポリウレタン樹脂 50質量部
(セイコー化成株式会社製「ラックスキン U2524」、固形分25質量%)
前記ポリウレタン樹脂用マット剤 50質量部
(セイコー化成株式会社製「ラックスキン U2525M」、固形分20質量%)
イソプロピルアルコール 20質量部
トルエン 20質量部
Example 4
[Preparation of non-porous film-forming resin composition]
A nonporous film forming resin composition B shown below was prepared. This non-porous film-forming resin composition B had a solid content of 16% by mass and a viscosity of 3500 mPa · s / 25 ° C. In addition, the solvent of the resin composition B for nonporous film formation contained almost no N, N-dimethylformamide, and the content thereof was less than 1% by mass.
[Resin Composition B for Nonporous Film Formation]
Non-yellowing polyurethane resin 50 parts by mass (“Lackskin U2524” manufactured by Seiko Chemical Co., Ltd., solid content 25% by mass)
50 parts by mass of the matting agent for polyurethane resin (“Lackskin U2525M” manufactured by Seiko Chemical Co., Ltd., solid content 20% by mass)
Isopropyl alcohol 20 parts by mass Toluene 20 parts by mass

実施例1と同一の方法で透湿防水性布帛の製造を行い、ポリウレタン樹脂を主体とする微多孔膜を形成後、セット加工前に、上記無孔膜形成用樹脂組成物Bを微多孔膜表面にナイフコーターにて、固形分の塗布量が5g/m2となるように塗布した。そして、120℃で2分間の乾燥により約1μm厚の無孔膜を形成し、引き続き、170℃で1 分間のセット加工を行い、透湿防水性布帛を得た。 A moisture-permeable and waterproof fabric is produced by the same method as in Example 1, and after forming a microporous film mainly composed of polyurethane resin, before the set processing, the nonporous film-forming resin composition B is applied to the microporous film. The surface was coated with a knife coater so that the solid content was 5 g / m 2 . Then, a non-porous film having a thickness of about 1 μm was formed by drying at 120 ° C. for 2 minutes, and subsequently, setting processing was performed at 170 ° C. for 1 minute to obtain a moisture-permeable waterproof fabric.

実施例5
[無孔膜形成用樹脂組成物の調製]
下記に示す無孔膜形成用樹脂組成物Cを調製した。この無孔膜形成用樹脂組成物Cは、固形分が18質量%であり、粘度が3000mPa・s/25℃であった。
[無孔膜形成用樹脂組成物C]
エーテル系ポリウレタン樹脂 100質量部
(大日精化工業株式会社(株)製「ハイムレン Y−611−124」、固形分25質量%)
N,N−ジメチルホルムアミド 40質量部
Example 5
[Preparation of non-porous film-forming resin composition]
The following non-porous film-forming resin composition C was prepared. This non-porous film-forming resin composition C had a solid content of 18% by mass and a viscosity of 3000 mPa · s / 25 ° C.
[Non-porous film forming resin composition C]
100 parts by mass of an ether-based polyurethane resin ("Haimuren Y-611-124" manufactured by Dainichi Seika Kogyo Co., Ltd., solid content 25% by mass)
N, N-dimethylformamide 40 parts by mass

[無孔膜の形成]
離型紙(リンテック株式会社製「130TPD」)の離型面に、上記無孔膜形成用樹脂組成物Cをコンマコーターにて塗布量55g/m2で塗布した。そして、120℃で2分間の乾燥により約10μm厚の無孔膜を形成した。
[Formation of non-porous film]
The nonporous film-forming resin composition C was applied to a release surface of a release paper (“130TPD” manufactured by Lintec Corporation) with a comma coater at an application amount of 55 g / m 2 . Then, a non-porous film having a thickness of about 10 μm was formed by drying at 120 ° C. for 2 minutes.

実施例2と同一の方法で透湿防水性布帛の製造を行い、ポリウレタン樹脂を主体とする微多孔膜を形成後、セット加工前に、上記[無孔膜の形成]で得られた無孔膜を速やかに、微多孔膜と積層した。そして、圧力400kPa、温度120℃にて熱圧着後、離型紙を剥離した後、170℃で1 分間のセット加工を行い、透湿防水性布帛を得た。   The moisture-permeable and waterproof fabric was produced by the same method as in Example 2, and after forming a microporous film mainly composed of polyurethane resin, before the set processing, the non-porous obtained in the above [Formation of non-porous film] The membrane was quickly laminated with the microporous membrane. Then, after thermocompression bonding at a pressure of 400 kPa and a temperature of 120 ° C., the release paper was peeled off, and then set at 170 ° C. for 1 minute to obtain a moisture-permeable and waterproof fabric.

実施例6
[柄印刷用組成物の調製]
下記に示す柄印刷用組成物Aを調製した。この柄印刷用組成物Aの粘度は100mPa・s/25℃であった。
[柄印刷用組成物A]
ポリウレタン系グラビアインキ 100質量部
(サカタインクス(株)製、XGL−010 グレー)
グラビアインキ用硬化剤 3質量部
トルエン/メチルエチルケトン(1/1) 50重量部
Example 6
[Preparation of pattern printing composition]
The pattern printing composition A shown below was prepared. The viscosity of the pattern printing composition A was 100 mPa · s / 25 ° C.
[Composition A for pattern printing]
100 parts by mass of polyurethane gravure ink (Sakata Inx Co., Ltd., XGL-010 Gray)
Curing agent for gravure ink 3 parts by weight Toluene / methyl ethyl ketone (1/1) 50 parts by weight

実施例1と同一の方法で透湿防水性布帛の製造を行い、ポリウレタン樹脂を主体とする微多孔膜を形成後、セット加工前に、上記[柄印刷用組成物A]を、格子柄が彫刻されたグラビアロール(深度;38μm、格子占有面積:45%)を用いて、微多孔膜表面に塗布量6g/ m2にて印刷を行った。その後、120℃で30秒間乾燥し、格子柄を形成した。引き続き、170℃で1 分間のセット加工を行い、格子柄を表面に持つ透湿防水性布帛を得た。 A moisture-permeable and waterproof fabric is produced by the same method as in Example 1, and after forming a microporous film mainly composed of a polyurethane resin, before the set processing, the above-mentioned [pattern printing composition A] Using an engraved gravure roll (depth: 38 μm, lattice occupation area: 45%), printing was performed on the surface of the microporous film at a coating amount of 6 g / m 2 . Then, it dried at 120 degreeC for 30 second, and formed the lattice pattern. Subsequently, set processing was performed at 170 ° C. for 1 minute to obtain a moisture-permeable and waterproof fabric having a lattice pattern on the surface.

実施例7
実施例4と同一の方法で透湿防水性布帛の製造を行い、無孔膜を形成した後、セット加工前に、上記[柄印刷用組成物A]を、格子柄が彫刻されたグラビアロール(深度;38μm、格子占有面積:45%)を用いて、無孔膜表面に塗布量6g/ m2にて印刷を行った。その後、120℃で30秒間乾燥し、格子柄を形成した。引き続き、170℃で1 分間のセット加工を行い、格子柄を表面に持つ透湿防水性布帛を得た。
Example 7
A gravure roll having a lattice pattern engraved on the above-mentioned [pattern printing composition A] after producing a moisture-permeable and waterproof fabric by the same method as in Example 4, forming a nonporous film, and before setting processing Using (depth: 38 μm, lattice occupation area: 45%), printing was performed on the surface of the nonporous film at a coating amount of 6 g / m 2 . Then, it dried at 120 degreeC for 30 second, and formed the lattice pattern. Subsequently, set processing was performed at 170 ° C. for 1 minute to obtain a moisture-permeable and waterproof fabric having a lattice pattern on the surface.

実施例8
[裏地の準備]
ナイロンフィラメント22デシテックス/7 フィラメントを用いて、28ゲージのトリコット地を編成し、通常の方法により、精練を行い、裏地を準備した。
Example 8
[Preparing the lining]
Using a nylon filament 22 dtex / 7 filament, a 28-gauge tricot fabric was knitted and scoured by a conventional method to prepare a lining.

実施例2と同一の方法で透湿防水性布帛を得た。この透湿防水性布帛の微多孔膜表面に、ドット柄が彫刻されたグラビアロール(20メッシュ)を用いて、湿気硬化型ポリウレタン樹脂系ホットメルト接着剤(三井武田ケミカル株式会社製「タケメルト MA3229」)を塗布量10g/ m2にて塗布した。そして、塗布面に前記裏地を積層し、圧力300kPaで圧着した。以上の方法で、裏地が貼合された透湿防水性布帛を得た。 A moisture permeable waterproof fabric was obtained in the same manner as in Example 2. Using a gravure roll (20 mesh) engraved with a dot pattern on the surface of this moisture-permeable and waterproof fabric, a moisture-curable polyurethane resin hot melt adhesive (“Takemelt MA3229” manufactured by Mitsui Takeda Chemical Co., Ltd.) ) Was applied at a coating amount of 10 g / m 2 . And the said lining was laminated | stacked on the application surface, and it crimped | bonded by the pressure of 300 kPa. By the above method, the moisture-permeable waterproof fabric with which the lining was bonded was obtained.

実施例9
実施例3と同一の方法で透湿防水性布帛を得た。この透湿防水性布帛の無孔膜表面に、ドット柄が彫刻されたグラビアロール(20メッシュ)を用いて、湿気硬化型ポリウレタン樹脂系ホットメルト接着剤(三井武田ケミカル株式会社製「タケメルト MA3229」)を塗布量10g/ m2にて塗布した。そして、塗布面に前記裏地を積層し、圧力300kPaで圧着した。以上の方法で、裏地が貼合された透湿防水性布帛を得た。
Example 9
A moisture-permeable and waterproof fabric was obtained in the same manner as in Example 3. Using a gravure roll (20 mesh) engraved with a dot pattern on the non-porous membrane surface of this moisture-permeable waterproof fabric, a moisture-curable polyurethane resin hot melt adhesive ("Takemelt MA3229" manufactured by Mitsui Takeda Chemical Co., Ltd.) ) Was applied at a coating amount of 10 g / m 2 . And the said lining was laminated | stacked on the application surface, and it crimped | bonded by the pressure of 300 kPa. By the above method, the moisture-permeable waterproof fabric with which the lining was bonded was obtained.

実施例10
[布帛本体の準備]
フッ素系撥水剤エマルジョン(旭硝子株式会社製「アサヒガード GS10」)に代えて、フッ素系撥水剤エマルジョン(日華化学式会社製「NKガード SCH−02」、固形分20質量%)を用いる他は、実施例1と同一の方法により、布帛本体を準備した。
Example 10
[Preparation of fabric body]
Other than using a fluorine-based water repellent emulsion ("Asahi Guard GS10" manufactured by Asahi Glass Co., Ltd.), a fluorine-based water repellent emulsion ("NK Guard SCH-02" manufactured by Nikka Chemical Co., Ltd., solid content 20% by mass) is used. Prepared a fabric body by the same method as in Example 1.

[微多孔膜形成用樹脂組成物の調製]
フッ素系撥水剤エマルジョン(旭硝子株式会社製「アサヒガード AG710」、固形分19質量%)に代えて、フッ素系撥水剤エマルジョン(クラリアントジャパン株式会社製「NUVA N2114 LIQ」、固形分31質量%)を用いる他は、実施例1と同一の方法により、微多孔膜形成用樹脂組成物を調製した。この微多孔膜形成用樹脂組成物は、固形分濃度が24質量%であり、粘度が10000mPa・s/25℃であった。したがって、固形分中、シリカ微粉末(疎水性フュームドシリカ)は28質量%含有されており、フッ素系撥水剤は4質量%含有されており、フッ素系界面活性剤は0.6質量%含有されていることになる。
[Preparation of resin composition for forming microporous film]
Instead of fluorine-based water repellent emulsion ("Asahi Guard AG710" manufactured by Asahi Glass Co., Ltd., solid content: 19% by mass), fluorine-based water repellent emulsion ("NUVA N2114 LIQ" manufactured by Clariant Japan Co., Ltd., solid content: 31% by mass) The resin composition for forming a microporous film was prepared by the same method as in Example 1, except that This resin composition for forming a microporous film had a solid content concentration of 24% by mass and a viscosity of 10,000 mPa · s / 25 ° C. Therefore, in the solid content, the silica fine powder (hydrophobic fumed silica) is contained by 28% by mass, the fluorine-based water repellent is contained by 4% by mass, and the fluorine-based surfactant is 0.6% by mass. It will be contained.

[透湿防水性布帛の製造]
実施例1と同一の方法で透湿防水性布帛を得た。得られた微多孔膜の厚さは約27〜29μmであった。
[Manufacture of moisture-permeable and waterproof fabrics]
A moisture-permeable and waterproof fabric was obtained in the same manner as in Example 1. The thickness of the obtained microporous film was about 27 to 29 μm.

比較例1
[布帛本体の準備]
実施例1と同一の方法で布帛本体を準備した。
Comparative Example 1
[Preparation of fabric body]
A fabric body was prepared in the same manner as in Example 1.

[微多孔膜形成用樹脂組成物の調製]
実施例1で準備した無色透明の樹脂溶液A100質量部を準備した。次に、油溶性且つ水溶性のフッ素系界面活性剤(AGCセイミケミカル株式会社製「SURFLON S- 386」)0.2質量部を、N,N−ジメチルホルムアミド60質量部に相溶させた後、フッ素系撥水剤エマルジョン(旭硝子株式会社製「アサヒガード AG710」、固形分19質量%)5質量部を混合分散させて、樹脂溶液C65.2質量部を準備した。そして、樹脂溶液A100質量部と、樹脂溶液C65.2質量部と、架橋性イソシアネート化合物(大日精化工業株式会社製「レザミンX」)2質量部とを混合し、真空脱泡しながらディスパー型攪拌機を用い、攪拌調液して、微多孔膜形成用樹脂組成物を調製した。この微多孔膜形成用樹脂組成物は、固形分濃度が24質量%であり、粘度が7000mPa・s/25℃であった。したがって、固形分中、シリカ微粉末(疎水性フュームドシリカ)は50質量%含有されており、フッ素系撥水剤は3質量%含有されており、フッ素系界面活性剤は0.5質量%含有されていることになる。
[Preparation of resin composition for forming microporous film]
100 parts by weight of the colorless and transparent resin solution A prepared in Example 1 was prepared. Next, 0.2 parts by mass of an oil-soluble and water-soluble fluorosurfactant (“SURFLON S-386” manufactured by AGC Seimi Chemical Co., Ltd.) is dissolved in 60 parts by mass of N, N-dimethylformamide. 5 parts by mass of a fluorine-based water repellent emulsion (“Asahi Guard AG710” manufactured by Asahi Glass Co., Ltd., solid content: 19% by mass) was mixed and dispersed to prepare 65.2 parts by mass of a resin solution C. Then, 100 parts by mass of the resin solution A, 65.2 parts by mass of the resin solution C, and 2 parts by mass of a crosslinkable isocyanate compound (“Resamine X” manufactured by Dainichi Seika Kogyo Co., Ltd.) are mixed, and a disper type is obtained while vacuum degassing. Using a stirrer, stirring and liquid preparation were performed to prepare a resin composition for forming a microporous film. This resin composition for forming a microporous film had a solid content concentration of 24% by mass and a viscosity of 7000 mPa · s / 25 ° C. Accordingly, in the solid content, 50% by mass of silica fine powder (hydrophobic fumed silica) is contained, 3% by mass of the fluorine-based water repellent is contained, and 0.5% by mass of the fluorine-based surfactant is contained. It will be contained.

[透湿防水性布帛の製造]
実施例1と同一の方法で透湿防水性布帛を得た。得られた微多孔膜の厚さは約30μmであり、全体に亙って1μm以下の孔径を主体とする微孔が多数形成されていた。
[Manufacture of moisture-permeable and waterproof fabrics]
A moisture-permeable and waterproof fabric was obtained in the same manner as in Example 1. The thickness of the obtained microporous membrane was about 30 μm, and many micropores mainly having a pore diameter of 1 μm or less were formed throughout.

比較例2
[布帛本体の準備]
実施例1と同一の方法で布帛本体を準備した。
Comparative Example 2
[Preparation of fabric body]
A fabric body was prepared in the same manner as in Example 1.

[微多孔膜形成用樹脂組成物の調製]
実施例1と同一の方法で無色透明の樹脂溶液A50質量部を準備した。次に、油溶性且つ水溶性のフッ素系界面活性剤(AGCセイミケミカル株式会社製「SURFLON S−386」)0.2質量部を、N,N−ジメチルホルムアミド40質量部に相溶させて、界面活性剤溶液A40.2質量部を準備した。この界面活性剤溶液Aは、実施例1で用いた樹脂溶液Bと異なり、フッ素系撥水剤エマルジョンが含有されていないものである。そして、樹脂溶液A50質量部と、樹脂溶液B40.2質量部と、N,N−ジメチルホルムアミドを溶媒とするエステル型ポリウレタン樹脂溶液(セイコー化成株式会社製「ラックスキン 1740−29B」、固形分28質量%)50質量部と、架橋性イソシアネート化合物(大日精化工業株式会社製「レザミンX」)2質量部とを混合し、真空脱泡しながらディスパー型攪拌機を用い、攪拌調液して、微多孔膜形成用樹脂組成物を調製した。この微多孔膜形成用樹脂組成物は、固形分濃度が24質量%であり、粘度が10000mPa・s/25℃であった。したがって、固形分中、シリカ微粉末(疎水性フュームドシリカ)は29質量%含有されており、フッ素系界面活性剤は0.6質量%含有されており、フッ素系撥水剤は含有されていないものである。
[Preparation of resin composition for forming microporous film]
In the same manner as in Example 1, 50 parts by mass of a colorless and transparent resin solution A was prepared. Next, 0.2 part by mass of an oil-soluble and water-soluble fluorosurfactant (“SURFLON S-386” manufactured by AGC Seimi Chemical Co., Ltd.) is dissolved in 40 parts by mass of N, N-dimethylformamide, A surfactant solution A (40.2 parts by mass) was prepared. Unlike the resin solution B used in Example 1, this surfactant solution A does not contain a fluorine-based water repellent emulsion. Then, 50 parts by mass of the resin solution A, 40.2 parts by mass of the resin solution B, and an ester-type polyurethane resin solution using “N, N-dimethylformamide” as a solvent (“Lackskin 1740-29B” manufactured by Seiko Kasei Co., Ltd.), solid content 28 (Mass%) 50 parts by mass and 2 parts by mass of a crosslinkable isocyanate compound ("Rezamin X" manufactured by Dainichi Seika Kogyo Co., Ltd.) are mixed with stirring using a disper type stirrer while vacuum degassing, A resin composition for forming a microporous film was prepared. This resin composition for forming a microporous film had a solid content concentration of 24% by mass and a viscosity of 10,000 mPa · s / 25 ° C. Therefore, in the solid content, 29% by mass of silica fine powder (hydrophobic fumed silica) is contained, 0.6% by mass of the fluorosurfactant is contained, and the fluorine-based water repellent is contained. There is nothing.

[透湿防水性布帛の製造]
実施例1と同一の方法で透湿防水性布帛を得た。得られた微多孔膜の厚さは約24〜26μmであり、全体に亙って1μm以下の孔径を主体とする微孔が多数形成されていた。
[Manufacture of moisture-permeable and waterproof fabrics]
A moisture-permeable and waterproof fabric was obtained in the same manner as in Example 1. The thickness of the obtained microporous membrane was about 24 to 26 μm, and many micropores mainly having a pore diameter of 1 μm or less were formed throughout.

比較例3
[布帛本体の準備]
実施例1と同一の方法で布帛本体を準備した。
Comparative Example 3
[Preparation of fabric body]
A fabric body was prepared in the same manner as in Example 1.

[微多孔膜形成用樹脂組成物の調製]
実施例1と同一の方法で、無色透明の樹脂溶液A50質量部を準備した。次に、油溶性且つ水溶性のフッ素系界面活性剤(AGCセイミケミカル株式会社製「SURFLON S−386」)0.2質量部を、N,N−ジメチルホルムアミド40質量部に相溶させた後、フッ素系撥水剤エマルジョン(旭硝子株式会社製「アサヒガード AG710」、固形分19質量%)20質量部を混合分散させて、樹脂溶液D60.2質量部を準備した。そして、樹脂溶液A50質量部と、樹脂溶液D60.2質量部と、N,N−ジメチルホルムアミドを溶媒とするエステル型ポリウレタン樹脂溶液(セイコー化成株式会社製「ラックスキン 1740−29B」、固形分28質量%)50質量部と、架橋性イソシアネート化合物(大日精化工業株式会社製「レザミンX」)2質量部とを混合し、真空脱泡しながらディスパー型攪拌機を用い、攪拌調液して、微多孔膜形成用樹脂組成物を調製した。この微多孔膜形成用樹脂組成物は、固形分濃度が24質量%であり、粘度が10000mPa・s/25℃であった。したがって、固形分中、シリカ微粉末(疎水性フュームドシリカ)は26質量%含有されており、フッ素系撥水剤は10質量%含有されており、フッ素系界面活性剤は0.5質量%含有されていることになる。
[Preparation of resin composition for forming microporous film]
In the same manner as in Example 1, 50 parts by mass of a colorless and transparent resin solution A was prepared. Next, 0.2 parts by mass of an oil-soluble and water-soluble fluorosurfactant (“SURFLON S-386” manufactured by AGC Seimi Chemical Co., Ltd.) is dissolved in 40 parts by mass of N, N-dimethylformamide. Then, 20 parts by mass of a fluorine-based water repellent emulsion (“Asahi Guard AG710” manufactured by Asahi Glass Co., Ltd., solid content: 19% by mass) was mixed and dispersed to prepare 60.2 parts by mass of a resin solution D. Then, 50 parts by mass of the resin solution A, 60.2 parts by mass of the resin solution D, and an ester-type polyurethane resin solution using “N, N-dimethylformamide” as a solvent (“Lackskin 1740-29B” manufactured by Seiko Kasei Co., Ltd.), solid content 28 (Mass%) 50 parts by mass and 2 parts by mass of a crosslinkable isocyanate compound ("Rezamin X" manufactured by Dainichi Seika Kogyo Co., Ltd.) are mixed with stirring using a disper type stirrer while vacuum degassing, A resin composition for forming a microporous film was prepared. This resin composition for forming a microporous film had a solid content concentration of 24% by mass and a viscosity of 10,000 mPa · s / 25 ° C. Therefore, in the solid content, the silica fine powder (hydrophobic fumed silica) is contained by 26% by mass, the fluorine-based water repellent is contained by 10% by mass, and the fluorine-based surfactant is 0.5% by mass. It will be contained.

[透湿防水性布帛の製造]
実施例1と同一の方法で透湿防水性布帛を得た。得られた微多孔膜の厚さは約24〜26μmであり、全体に亙って1μm以下の孔径を主体とする微孔が多数形成されていた。
[Manufacture of moisture-permeable and waterproof fabrics]
A moisture-permeable and waterproof fabric was obtained in the same manner as in Example 1. The thickness of the obtained microporous membrane was about 24 to 26 μm, and many micropores mainly having a pore diameter of 1 μm or less were formed throughout.

比較例4
[布帛本体の準備]
実施例1と同一の方法で布帛本体を準備した。
Comparative Example 4
[Preparation of fabric body]
A fabric body was prepared in the same manner as in Example 1.

[微多孔膜形成用樹脂組成物の調製]
実施例1と同一の方法で無色透明の樹脂溶液A50質量部を準備した。次に、油溶性且つ水溶性のフッ素系界面活性剤を使用せずに、N,N−ジメチルホルムアミド40質量部に、フッ素系撥水剤エマルジョン(旭硝子株式会社製「アサヒガード AG710」、固形分19質量%)5質量部を混合分散させて、樹脂溶液B45質量部を準備した。そして、樹脂溶液A50質量部と、樹脂溶液B45質量部と、N,N−ジメチルホルムアミドを溶媒とするエステル型ポリウレタン樹脂溶液(セイコー化成株式会社製「ラックスキン 1740−29B」、固形分28質量%)50質量部と、架橋性イソシアネート化合物(大日精化工業株式会社製「レザミンX」)2質量部とを混合し、真空脱泡しながらディスパー型攪拌機を用い、攪拌調液して、微多孔膜形成用樹脂組成物を調製した。この微多孔膜形成用樹脂組成物は、固形分濃度が24質量%であり、粘度が10000mPa・s/25℃であった。したがって、固形分中、シリカ微粉末(疎水性フュームドシリカ)は28質量%含有されており、フッ素系撥水剤は3質量%含有されており、フッ素系界面活性剤は含有されていないものである。
[Preparation of resin composition for forming microporous film]
In the same manner as in Example 1, 50 parts by mass of a colorless and transparent resin solution A was prepared. Next, without using an oil-soluble and water-soluble fluorine-based surfactant, 40 parts by mass of N, N-dimethylformamide was added to a fluorine-based water repellent emulsion (“Asahi Guard AG710” manufactured by Asahi Glass Co., Ltd.) 19 mass%) 5 mass parts was mixed and dispersed, and 45 mass parts of resin solution B was prepared. Then, 50 parts by mass of the resin solution A, 45 parts by mass of the resin solution B, and an ester-type polyurethane resin solution using “N, N-dimethylformamide” as a solvent (“Lackskin 1740-29B” manufactured by Seiko Kasei Co., Ltd., solid content 28% by mass) ) 50 parts by mass and 2 parts by mass of a crosslinkable isocyanate compound (“Rezamin X” manufactured by Dainichi Seika Kogyo Co., Ltd.) are mixed with stirring using a disper type stirrer while vacuum degassing, and microporous. A resin composition for film formation was prepared. This resin composition for forming a microporous film had a solid content concentration of 24% by mass and a viscosity of 10,000 mPa · s / 25 ° C. Therefore, in the solid content, 28% by mass of silica fine powder (hydrophobic fumed silica) is contained, 3% by mass of fluorine-based water repellent is contained, and no fluorine-based surfactant is contained. It is.

[透湿防水性布帛の製造]
実施例1と同一の方法で透湿防水性布帛を得た。得られた微多孔膜の厚さは約24〜26μmであり、全体に亙って1μm以下の孔径を主体とする微孔が多数形成されていた。
[Manufacture of moisture-permeable and waterproof fabrics]
A moisture-permeable and waterproof fabric was obtained in the same manner as in Example 1. The thickness of the obtained microporous membrane was about 24 to 26 μm, and many micropores mainly having a pore diameter of 1 μm or less were formed throughout.

比較例5
[布帛本体の準備]
実施例1と同一の方法で布帛本体を準備した。
Comparative Example 5
[Preparation of fabric body]
A fabric body was prepared in the same manner as in Example 1.

[微多孔膜形成用樹脂組成物の調製]
実施例1と同一の方法で無色透明の樹脂溶液A50質量部を準備した。次に、油溶性且つ水溶性のフッ素系界面活性剤(AGCセイミケミカル株式会社製「SURFLON S−386」)1質量部を、N,N−ジメチルホルムアミド40質量部に相溶させた後、フッ素系撥水剤エマルジョン(旭硝子株式会社製「アサヒガード AG710」、固形分19質量%)5質量部を混合分散させて、樹脂溶液E46質量部を準備した。
[Preparation of resin composition for forming microporous film]
In the same manner as in Example 1, 50 parts by mass of a colorless and transparent resin solution A was prepared. Next, 1 part by mass of an oil-soluble and water-soluble fluorosurfactant (“SURFLON S-386” manufactured by AGC Seimi Chemical Co., Ltd.) was dissolved in 40 parts by mass of N, N-dimethylformamide, and then fluorine. 5 parts by mass of a water-based water repellent emulsion (Asahi Guard AG710, manufactured by Asahi Glass Co., Ltd., solid content: 19% by mass) was mixed and dispersed to prepare 46 parts by mass of a resin solution E.

そして、樹脂溶液A50質量部と、樹脂溶液E46質量部と、N,N−ジメチルホルムアミドを溶媒とするエステル型ポリウレタン樹脂溶液(セイコー化成株式会社製「ラックスキン 1740−29B」、固形分28質量%)50質量部と、架橋性イソシアネート化合物(大日精化工業株式会社製「レザミンX」)2質量部とを混合し、真空脱泡しながらディスパー型攪拌機を用い、攪拌調液して、微多孔膜形成用樹脂組成物を調製した。この微多孔膜形成用樹脂組成物は、固形分濃度が25質量%であり、粘度が10000mPa・s/25℃であった。したがって、固形分中、シリカ微粉末(疎水性フュームドシリカ)は27質量%含有されており、フッ素系撥水剤は3質量%含有されており、フッ素系界面活性剤は3質量%含有されていることになる。   Then, 50 parts by mass of the resin solution A, 46 parts by mass of the resin solution E, and an ester-type polyurethane resin solution using “N, N-dimethylformamide” as a solvent (“Lackskin 1740-29B” manufactured by Seiko Kasei Co., Ltd., solid content: 28% by mass ) 50 parts by mass and 2 parts by mass of a crosslinkable isocyanate compound (“Rezamin X” manufactured by Dainichi Seika Kogyo Co., Ltd.) are mixed with stirring using a disper type stirrer while vacuum degassing, and microporous. A resin composition for film formation was prepared. This resin composition for forming a microporous film had a solid content concentration of 25% by mass and a viscosity of 10,000 mPa · s / 25 ° C. Therefore, in the solid content, silica fine powder (hydrophobic fumed silica) is contained by 27% by mass, fluorine-based water repellent is contained by 3% by mass, and fluorine-based surfactant is contained by 3% by mass. Will be.

[透湿防水性布帛の製造]
実施例1と同一の方法で透湿防水性布帛を得た。得られた微多孔膜の厚さは約24〜26μmであり、全体に亙って1μm以下の孔径を主体とする微孔が多数形成されていた。
[Manufacture of moisture-permeable and waterproof fabrics]
A moisture-permeable and waterproof fabric was obtained in the same manner as in Example 1. The thickness of the obtained microporous membrane was about 24 to 26 μm, and many micropores mainly having a pore diameter of 1 μm or less were formed throughout.

実施例1〜10及び比較例1〜5で得られた透湿防水性布帛に関して、耐水圧、洗濯耐久性及び透湿度を、以下の方法で測定した。そして、その結果を表1に示した。
(1)耐水圧(kPa)
JIS L−1092(高水圧法)に準じて測定した。
(2)洗濯耐久性(%)
JIS L−0217(103法)に準じた洗濯を100回繰り返した後の透湿防水性布帛の耐水圧(B)を測定し、下記式に準じて洗濯前の耐水圧(A)に対する洗濯後の耐水圧(B)の保持率を算出し、この値を透湿防水性布帛の洗濯耐久性(%)とした。
洗濯耐久性(%)=(B/A)×100
(3)透湿度(g/m2・24hrs)
JIS L−1099 A−1法(塩化カルシウム法)に準じて測定した。
With respect to the moisture-permeable and waterproof fabrics obtained in Examples 1 to 10 and Comparative Examples 1 to 5, water resistance, washing durability and moisture permeability were measured by the following methods. The results are shown in Table 1.
(1) Water pressure resistance (kPa)
It measured according to JIS L-1092 (high water pressure method).
(2) Washing durability (%)
After the washing according to JIS L-0217 (Method 103) was repeated 100 times, the water pressure resistance (B) of the moisture permeable waterproof fabric was measured, and after washing against the water pressure resistance (A) before washing according to the following formula The water pressure resistance (B) retention rate was calculated, and this value was defined as the washing durability (%) of the moisture-permeable and waterproof fabric.
Washing durability (%) = (B / A) × 100
(3) Moisture permeability (g / m 2 · 24 hrs)
It measured according to JIS L-1099 A-1 method (calcium chloride method).

[表1]
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
耐 水 圧
━━━━━━━━━━━━━━
洗濯前 100回洗濯後 洗濯耐久性 透湿度
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
実施例1 192 136 71 11892
実施例2 251 188 75 10875
実施例3 405 328 81 8092
実施例4 250 190 76 10638
実施例5 580 540 93 8400
実施例6 198 152 77 10532
実施例7 258 203 79 9854
実施例8 268 214 80 9240
実施例9 435 360 83 7430
実施例10 208 158 76 11876
───────────────────────────────────
比較例1 157 54 34 11902
比較例2 181 80 44 11534
比較例3 120 67 56 11988
比較例4 115 48 42 11620
比較例5 98 39 40 17783
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
[Table 1]
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Water pressure
━━━━━━━━━━━━━━
Before washing After washing 100 times Washing durability Moisture permeability ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Example 1 192 136 71 11892
Example 2 251 188 75 10875
Example 3 405 328 81 8092
Example 4 250 190 76 10638
Example 5 580 540 93 8400
Example 6 198 152 77 10532
Example 7 258 203 79 9854
Example 8 268 214 80 9240
Example 9 435 360 83 7430
Example 10 208 158 76 11876
───────────────────────────────────
Comparative Example 1 157 54 34 11902
Comparative Example 2 181 80 44 11534
Comparative Example 3 120 67 56 11988
Comparative Example 4 115 48 42 11620
Comparative Example 5 98 39 40 17783
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

実施例1〜10と比較例1〜5とを対比すると、実施例に係る透湿防水性布帛は、比較例に係るものに比べて、いずれも耐水圧が高く、洗濯耐久性も良好であることが分かる。この理由は、以下のとおりであると考えられる。比較例1に係る方法で得られた透湿防水性布帛は、シリカ微粉末の使用量が多すぎるため、形成された微多孔膜が脆くなり、このため、耐水圧が低く、洗濯耐久性に劣る。比較例2に係る方法で得られた透湿防水性布帛は、微多孔膜中にフッ素系撥水剤が含有されていないため、耐水圧が低く、洗濯耐久性に劣る。比較例3に係る方法で得られた透湿防水性布帛は、微多孔膜形成用樹脂組成物中に含有されているフッ素系撥水剤の量が多すぎるため、微多孔膜形成時に班が生じる。この結果、微多孔膜が均一に形成されないので、耐水圧が低く、洗濯耐久性に劣る。比較例4に係る方法で得られた透湿防水性布帛は、微多孔膜中に油溶性のフッ素系界面活性剤が含有されていないので、耐水圧が低く、洗濯耐久性に劣る。比較例5に係る方法で得られた透湿防水性布帛は、微多孔膜中に含有されている油溶性のフッ素系界面活性剤の量が多すぎるため、耐水圧が低く、洗濯耐久性に劣る。すなわち、微多孔膜に所定量のシリカ微粉末とフッ素系撥水剤と油溶性のフッ素系界面活性剤が存在すると、高耐水圧のものが得られると共に、洗濯耐久性が向上するのである。   When Examples 1 to 10 and Comparative Examples 1 to 5 are compared, the moisture-permeable and waterproof fabrics according to the examples have higher water pressure resistance and better washing durability than those according to the comparative examples. I understand that. The reason for this is considered as follows. The moisture permeable waterproof fabric obtained by the method according to Comparative Example 1 uses too much silica fine powder, so that the formed microporous membrane becomes brittle, and therefore, the water pressure resistance is low and the washing durability is improved. Inferior. The moisture-permeable and waterproof fabric obtained by the method according to Comparative Example 2 does not contain a fluorine-based water repellent in the microporous membrane, and therefore has a low water pressure resistance and poor washing durability. The moisture-permeable and waterproof fabric obtained by the method according to Comparative Example 3 has too much fluorine-based water repellent contained in the resin composition for forming a microporous film, so that there is no problem when the microporous film is formed. Arise. As a result, since the microporous film is not formed uniformly, the water pressure resistance is low and the washing durability is poor. The moisture-permeable and waterproof fabric obtained by the method according to Comparative Example 4 does not contain an oil-soluble fluorosurfactant in the microporous membrane, so that the water pressure resistance is low and the washing durability is poor. The moisture-permeable and waterproof fabric obtained by the method according to Comparative Example 5 has a low water pressure resistance and a high washing durability because the amount of the oil-soluble fluorosurfactant contained in the microporous membrane is too large. Inferior. That is, when a predetermined amount of fine silica powder, a fluorine-based water repellent, and an oil-soluble fluorine-based surfactant are present in the microporous membrane, a high water pressure resistance can be obtained and the washing durability is improved.

実施例11
[布帛本体の準備]
フッ素系撥水剤エマルジョン(旭硝子株式会社製「アサヒガード GS10」)の5%水分散液に代えて、下記処方1の水分散液を使用する他は、実施例1と同一の方法で布帛本体を得た。
〈処方1〉
フッ素系撥水剤エマルジョン 50質量部
(日華化学株式会社製「NKガード SCH−02」、固形分20質量%)
ブロックタイプイソシアネート 10質量部
(明成化学工業株式会社製「メイカネート WEB」)
イソプロピルアルコール 20質量部
水 920質量部
Example 11
[Preparation of fabric body]
The fabric main body was the same as in Example 1 except that a 5% aqueous dispersion of a fluorine-based water repellent emulsion ("Asahi Guard GS10" manufactured by Asahi Glass Co., Ltd.) was used instead of an aqueous dispersion of the following formulation 1. Got.
<Prescription 1>
Fluorine-based water repellent emulsion 50 parts by mass (“NK Guard SCH-02” manufactured by Nikka Chemical Co., Ltd., solid content 20% by mass)
Block-type isocyanate 10 parts by mass (“Meikanate WEB” manufactured by Meisei Chemical Co., Ltd.)
Isopropyl alcohol 20 parts by weight Water 920 parts by weight

[微多孔膜形成用樹脂組成物の調製]
まず、油溶性且つ水溶性のフッ素系界面活性剤(AGCセイミケミカル株式会社製「SURFLON S−386」)0.15質量部を、N,N−ジメチルホルムアミド35質量部に相溶させた後、フッ素系撥水剤エマルジョン(クラリアントジャパン株式会社製「NUVA N2114 LIQ」、固形分31質量%)6質量部を混合分散させた。
その後、この混合分散液に、エステル型ポリウレタン樹脂溶液(セイコー化成株式会社製「ラックスキン UJ8517」、固形分25質量%)100質量部と、シリカ微粉末であるフュームドシリカを含むポリウレタン樹脂溶液(セイコー化成株式会社製「ラックスキン UJ8518M」、総固形分20質量%、総固形分中のシリカ微粉末含有量60質量%。なお、このシリカ微粉末はフュームドシリカである。)35質量部及び架橋性イソシアネート化合物(日本ポリウレタン工業株式会社製「コロネートHX」)1質量部を混合し、真空脱泡しながらディスパー型攪拌機を用い、攪拌調液して、微多孔膜形成用樹脂組成物を調製した。この微多孔膜形成用樹脂組成物は、固形分濃度が20質量%であり、粘度が10000mPa・s/25℃であった。したがって、固形分中、シリカ微粉末(フュームドシリカ)は12質量%含有されており、フッ素系撥水剤は5質量%含有されており、フッ素系界面活性剤は0.4質量%含有されていることになる。
[Preparation of resin composition for forming microporous film]
First, 0.15 parts by mass of an oil-soluble and water-soluble fluorine-based surfactant (“SURFLON S-386” manufactured by AGC Seimi Chemical Co., Ltd.) was dissolved in 35 parts by mass of N, N-dimethylformamide, 6 parts by mass of a fluorine-based water repellent emulsion (“NUVA N2114 LIQ” manufactured by Clariant Japan Co., Ltd., solid content: 31% by mass) was mixed and dispersed.
Thereafter, a polyurethane resin solution containing 100 parts by mass of an ester type polyurethane resin solution (“Lackskin UJ8517” manufactured by Seiko Kasei Co., Ltd., solid content: 25% by mass) and fumed silica which is a fine silica powder is added to this mixed dispersion. “Lackskin UJ8518M” manufactured by Seiko Kasei Co., Ltd., total solid content 20 mass%, silica fine powder content 60 mass% in total solid content (this silica fine powder is fumed silica) 35 mass parts and A resin composition for forming a microporous film is prepared by mixing 1 part by mass of a crosslinkable isocyanate compound (“Coronate HX” manufactured by Nippon Polyurethane Industry Co., Ltd.) and mixing with a disperser stirrer while vacuum degassing. did. This resin composition for forming a microporous film had a solid content concentration of 20% by mass and a viscosity of 10,000 mPa · s / 25 ° C. Therefore, in the solid content, 12% by mass of silica fine powder (fumed silica) is contained, 5% by mass of fluorinated water repellent is contained, and 0.4% by mass of fluorinated surfactant is contained. Will be.

[透湿防水性布帛の製造]
布帛本体の鏡面ロールが当接した面に、微多孔膜形成用樹脂組成物をコンマコーターにて塗布量100g/m2で塗布した。その後、濃度10質量%のN,N−ジメチルホルムアミド水溶液(20℃)の凝固浴に2分間浸漬することで、ポリウレタン樹脂を凝固させた。そして、50℃で5分間の湯洗を行い、布帛をマングルで絞り、続いて、130℃で2分間の乾燥を行い、ポリウレタン樹脂を主体とする微多孔膜を形成した。その後、170℃で1 分間のセット加工を行って、透湿防水性布帛を得た。なお、得られた微多孔膜の厚さは約60μmであり、全体に亙って1μm以下の孔径を主体とする微孔が多数形成されていた。そして、微孔に比べてその数が少ないが、付随的に10〜40μm程度の孔が形成されていた。
[Manufacture of moisture-permeable and waterproof fabrics]
A resin composition for forming a microporous film was applied to the surface of the fabric body on which the mirror roll contacted with a comma coater at an application amount of 100 g / m 2 . Thereafter, the polyurethane resin was coagulated by immersing it in a coagulation bath of a 10% by mass N, N-dimethylformamide aqueous solution (20 ° C.) for 2 minutes. Then, washing with hot water at 50 ° C. for 5 minutes was performed, and the fabric was squeezed with mangle, followed by drying at 130 ° C. for 2 minutes to form a microporous film mainly composed of polyurethane resin. Thereafter, a set processing was performed at 170 ° C. for 1 minute to obtain a moisture-permeable and waterproof fabric. The thickness of the obtained microporous membrane was about 60 μm, and many micropores mainly having a pore diameter of 1 μm or less were formed throughout. And although the number is small compared with a micropore, the hole of about 10-40 micrometers was incidentally formed.

実施例12
[無孔膜形成用樹脂組成物の調製]
まず、油溶性且つ水溶性のフッ素系界面活性剤(AGCセイミケミカル株式会社製「SURFLON S−386」)0.25質量部を、トルエン5質量部に相溶させた界面活性剤溶液B5.25質量部と、フッ素系撥水剤エマルジョン(クラリアントジャパン株式会社製「NUVA N2114 LIQ」、固形分31質量%)5質量部を、イソプロピルアルコール15質量部に混合した混合液20質量部とを混合分散させた。
その後、この混合分散液に、無黄変型ポリウレタン樹脂(セイコー化成株式会社製「ラックスキン U2524」、固形分25質量%)50質量部及び前記ポリウレタン樹脂用マット剤(セイコー化成株式会社製「ラックスキン U2525M」、固形分20質量%)50質量部を混合して、無孔膜形成用樹脂組成物Dを調製した。この無孔膜形成用樹脂組成物Dは、固形分が19重量%であり、粘度が4000mPa・s/25℃であった。なお、無孔膜形成用樹脂組成物Dの溶媒中に、N,N−ジメチルホルムアミドは殆ど含有されておらず、その含有率は1質量%未満であった。
Example 12
[Preparation of non-porous film-forming resin composition]
First, a surfactant solution B5.25 in which 0.25 parts by mass of an oil-soluble and water-soluble fluorosurfactant (“SURFLON S-386” manufactured by AGC Seimi Chemical Co., Ltd.) is dissolved in 5 parts by mass of toluene. Mixing and dispersing 20 parts by mass of a mixed liquid prepared by mixing 5 parts by mass of fluorinated water repellent emulsion (“NUVA N2114 LIQ” manufactured by Clariant Japan Co., Ltd., solid content: 31% by mass) with 15 parts by mass of isopropyl alcohol. I let you.
Thereafter, 50 parts by mass of a non-yellowing polyurethane resin (“Lack Skin U2524” manufactured by Seiko Kasei Co., Ltd., solid content: 25% by mass) and a matting agent for polyurethane resin (“Lack Skin manufactured by Seiko Chemical Co., Ltd.) were added to this mixed dispersion. A resin composition D for forming a nonporous film was prepared by mixing 50 parts by mass (U2525M ”, solid content 20% by mass). This non-porous film-forming resin composition D had a solid content of 19% by weight and a viscosity of 4000 mPa · s / 25 ° C. In addition, N, N-dimethylformamide was hardly contained in the solvent of the resin composition D for nonporous film formation, and the content rate was less than 1 mass%.

実施例11と同一の方法で透湿防水性布帛の製造を行い、ポリウレタン樹脂を主体とする微多孔膜を形成後、セット加工前に、上記無孔膜形成用樹脂組成物Dを微多孔膜表面にナイフコーターにて塗布量30g/m2で塗布した。そして、130℃で1分間の乾燥により約5μm厚の無孔膜を形成し、引き続き、170℃で1 分間のセット加工を行い、透湿防水性布帛を得た。 A moisture-permeable and waterproof fabric was produced by the same method as in Example 11, and after forming a microporous membrane mainly composed of polyurethane resin, before the set processing, the nonporous membrane-forming resin composition D was applied to the microporous membrane. The surface was coated with a knife coater at a coating amount of 30 g / m 2 . Then, a non-porous film having a thickness of about 5 μm was formed by drying at 130 ° C. for 1 minute, and subsequently set at 170 ° C. for 1 minute to obtain a moisture-permeable and waterproof fabric.

実施例13
[無孔膜形成用樹脂組成物の調製]
トルエン5質量部とイソプロピルアルコール15質量部とが混合された混合溶媒20質量部に、無黄変型ポリウレタン樹脂(セイコー化成株式会社製「ラックスキン U2524」、固形分25質量%)50質量部及び前記ポリウレタン樹脂用マット剤(セイコー化成株式会社製「ラックスキン U2525M」、固形分20質量%)50質量部を混合して、無孔膜形成用樹脂組成物Eを調製した。この無孔膜形成用樹脂組成物Eは、固形分が19重量%であり、粘度が4000mPa・s/25℃であった。なお、無孔膜形成用樹脂組成物Eの溶媒中に、N,N−ジメチルホルムアミドは殆ど含有されておらず、その含有率は1質量%未満であった。
Example 13
[Preparation of non-porous film-forming resin composition]
To 20 parts by mass of a mixed solvent in which 5 parts by mass of toluene and 15 parts by mass of isopropyl alcohol are mixed, 50 parts by mass of a non-yellowing polyurethane resin (“Lackskin U2524” manufactured by Seiko Kasei Co., Ltd., solid content 25% by mass) and 50 parts by mass of a matting agent for polyurethane resin (“Lack Skin U2525M” manufactured by Seiko Kasei Co., Ltd., solid content: 20% by mass) was mixed to prepare a resin composition E for forming a nonporous film. This non-porous film-forming resin composition E had a solid content of 19% by weight and a viscosity of 4000 mPa · s / 25 ° C. In addition, N, N-dimethylformamide was hardly contained in the solvent of the resin composition E for nonporous film formation, and the content rate was less than 1 mass%.

実施例11と同一の方法で透湿防水性布帛の製造を行い、ポリウレタン樹脂を主体とする微多孔膜を形成後、セット加工前に、上記無孔膜形成用樹脂組成物Dを微多孔膜表面にナイフコーターにて塗布量30g/m2で塗布した。そして、130℃で1分間の乾燥により約5μm厚の無孔膜を形成し、引き続き、170℃で1 分間のセット加工を行い、透湿防水性布帛を得た。 A moisture-permeable and waterproof fabric was produced by the same method as in Example 11, and after forming a microporous membrane mainly composed of polyurethane resin, before the set processing, the nonporous membrane-forming resin composition D was applied to the microporous membrane. The surface was coated with a knife coater at a coating amount of 30 g / m 2 . Then, a non-porous film having a thickness of about 5 μm was formed by drying at 130 ° C. for 1 minute, and subsequently set at 170 ° C. for 1 minute to obtain a moisture-permeable and waterproof fabric.

実施例14
実施例6で用いたのと同一の柄印刷用組成物Aを準備した。そして、実施例11と同一の方法で透湿防水性布帛の製造を行い、ポリウレタン樹脂を主体とする微多孔膜を形成後、セット加工前に、前記柄印刷用組成物Aを格子柄が彫刻されたグラビアロール(深度;38μm、格子占有面積:45%)を用いて、微多孔膜表面に塗布量6g/ m2にて印刷を行った。その後、120℃で30秒間乾燥し、格子柄を形成した。引き続き、170℃で1分間のセット加工を行い、格子柄を表面に持つ透湿防水性布帛を得た。
Example 14
The same pattern printing composition A as used in Example 6 was prepared. Then, a moisture-permeable and waterproof fabric was produced by the same method as in Example 11, and after forming a microporous film mainly composed of polyurethane resin, before the set processing, the pattern printing composition A was engraved with a lattice pattern. Printing was performed on the surface of the microporous film at a coating amount of 6 g / m 2 using the obtained gravure roll (depth: 38 μm, lattice occupation area: 45%). Then, it dried at 120 degreeC for 30 second, and formed the lattice pattern. Subsequently, set processing was performed at 170 ° C. for 1 minute to obtain a moisture-permeable and waterproof fabric having a lattice pattern on the surface.

実施例15
実施例8で用いたのと同一の裏地を準備した。そして、実施例11と同一の方法で透湿防水性布帛を得た。この透湿防水性布帛の微多孔膜表面に、ドット柄が彫刻されたグラビアロール(20メッシュ)を用いて、湿気硬化型ポリウレタン樹脂系ホットメルト接着剤(三井武田ケミカル株式会社製「タケメルト MA3229」)を塗布量10g/ m2にて塗布した。そして、塗布面に前記裏地を積層し、圧力300kPaで圧着した。以上の方法で、裏地が貼合された透湿防水性布帛を得た。
Example 15
The same lining used in Example 8 was prepared. And the moisture-permeable waterproof fabric was obtained by the same method as Example 11. Using a gravure roll (20 mesh) engraved with a dot pattern on the surface of this moisture-permeable and waterproof fabric, a moisture-curable polyurethane resin hot melt adhesive (“Takemelt MA3229” manufactured by Mitsui Takeda Chemical Co., Ltd.) ) Was applied at a coating amount of 10 g / m 2 . And the said lining was laminated | stacked on the application surface, and it crimped | bonded by the pressure of 300 kPa. By the above method, the moisture-permeable waterproof fabric with which the lining was bonded was obtained.

比較例11
[布帛本体の準備]
実施例11と同一の方法で布帛本体を準備した。
Comparative Example 11
[Preparation of fabric body]
A fabric body was prepared in the same manner as in Example 11.

[微多孔膜形成用樹脂組成物の調製]
油溶性且つ水溶性のフッ素系界面活性剤を使用せずに、N,N−ジメチルホルムアミド35質量部にフッ素系撥水剤エマルジョン(クラリアントジャパン株式会社製「NUVA N2114 LIQ」、固形分31質量%)6質量部を混合分散させた。
その後、この混合分散液に、エステル型ポリウレタン樹脂溶液(セイコー化成株式会社製「ラックスキン UJ8517」、固形分25質量%)100質量部と、シリカ微粉末であるフュームドシリカを含むポリウレタン樹脂溶液(セイコー化成株式会社製「ラックスキン UJ8518M」、総固形分20質量%、総固形分中のシリカ微粉末含有量60質量%。なお、このシリカ微粉末はフュームドシリカである。)35質量部及び架橋性イソシアネート化合物(日本ポリウレタン工業株式会社製「コロネートHX」)1質量部を混合し、真空脱泡しながらディスパー型攪拌機を用い、攪拌調液して、微多孔膜形成用樹脂組成物を調製した。この微多孔膜形成用樹脂組成物は、固形分濃度が20質量%であり、粘度が10000mPa・s/25℃であった。したがって、固形分中、シリカ微粉末(フュームドシリカ)は12質量%含有されており、フッ素系撥水剤は5質量%含有されており、フッ素系界面活性剤は含有されていないものである。
[Preparation of resin composition for forming microporous film]
Without using an oil-soluble and water-soluble fluorosurfactant, N, N-dimethylformamide in 35 parts by mass of a fluorine-based water repellent emulsion (“NUVA N2114 LIQ” manufactured by Clariant Japan Co., Ltd., solid content: 31% by mass 6 parts by mass were mixed and dispersed.
Thereafter, a polyurethane resin solution containing 100 parts by mass of an ester type polyurethane resin solution (“Lackskin UJ8517” manufactured by Seiko Kasei Co., Ltd., solid content: 25% by mass) and fumed silica which is a fine silica powder is added to this mixed dispersion. “Lackskin UJ8518M” manufactured by Seiko Kasei Co., Ltd., total solid content 20 mass%, silica fine powder content 60 mass% in total solid content (this silica fine powder is fumed silica) 35 mass parts and A resin composition for forming a microporous film is prepared by mixing 1 part by mass of a crosslinkable isocyanate compound (“Coronate HX” manufactured by Nippon Polyurethane Industry Co., Ltd.) and mixing with a disperser stirrer while vacuum degassing. did. This resin composition for forming a microporous film had a solid content concentration of 20% by mass and a viscosity of 10,000 mPa · s / 25 ° C. Therefore, in the solid content, 12% by mass of silica fine powder (fumed silica) is contained, 5% by mass of the fluorinated water repellent is contained, and no fluorinated surfactant is contained. .

[透湿防水性布帛の製造]
実施例11と同一の方法で透湿防水性布帛を得た。得られた微多孔膜の厚さは約60μmであり、全体に亙って1μm以下の孔径を主体とする微孔が多数形成されていた。そして、微孔に比べてその数が少ないが、付随的に10〜40μm程度の孔が形成されていた。
[Manufacture of moisture-permeable and waterproof fabrics]
A moisture-permeable and waterproof fabric was obtained in the same manner as in Example 11. The thickness of the obtained microporous film was about 60 μm, and many micropores mainly having a pore diameter of 1 μm or less were formed throughout. And although the number is small compared with a micropore, the hole of about 10-40 micrometers was incidentally formed.

比較例12
[布帛本体の準備]
実施例11と同一の方法で布帛本体を準備した。
Comparative Example 12
[Preparation of fabric body]
A fabric body was prepared in the same manner as in Example 11.

[微多孔膜形成用樹脂組成物の調製]
まず、油溶性且つ水溶性のフッ素系界面活性剤(AGCセイミケミカル株式会社製「SURFLON S−386」)0.15質量部を、N,N−ジメチルホルムアミド35質量部に相溶させた界面活性剤溶液C35.15質量部を得た。
その後、この界面活性剤溶液Cに、エステル型ポリウレタン樹脂溶液(セイコー化成株式会社製「ラックスキン UJ8517」、固形分25質量%)100質量部と、シリカ微粉末であるフュームドシリカを含むポリウレタン樹脂溶液(セイコー化成株式会社製「ラックスキン UJ8518M」、総固形分20質量%、総固形分中のシリカ微粉末含有量60質量%。なお、このシリカ微粉末はフュームドシリカである。)35質量部及び架橋性イソシアネート化合物(日本ポリウレタン工業株式会社製「コロネートHX」)1質量部を混合し、真空脱泡しながらディスパー型攪拌機を用い、攪拌調液して、微多孔膜形成用樹脂組成物を調製した。この微多孔膜形成用樹脂組成物は、固形分濃度が19質量%であり、粘度が10000mPa・s/25℃であった。したがって、固形分中、シリカ微粉末(フュームドシリカ)は12質量%含有されており、フッ素系撥水剤は含有されておらず、フッ素系界面活性剤は0.5質量%含有されていることになる。
[Preparation of resin composition for forming microporous film]
First, a surface activity in which 0.15 parts by mass of an oil-soluble and water-soluble fluorosurfactant (“SURFLON S-386” manufactured by AGC Seimi Chemical Co., Ltd.) was dissolved in 35 parts by mass of N, N-dimethylformamide. The agent solution C35.15 mass parts was obtained.
Thereafter, a polyurethane resin containing 100 parts by mass of an ester type polyurethane resin solution (“Lackskin UJ8517” manufactured by Seiko Kasei Co., Ltd., solid content: 25% by mass) and fumed silica which is a fine silica powder is added to the surfactant solution C. Solution (“Lackskin UJ8518M” manufactured by Seiko Kasei Co., Ltd., total solid content 20 mass%, silica fine powder content 60 mass% in total solid content. This silica fine powder is fumed silica) 35 mass And 1 part by mass of a crosslinkable isocyanate compound (“Coronate HX” manufactured by Nippon Polyurethane Industry Co., Ltd.) were mixed with stirring using a disper-type stirrer while vacuum degassing, to form a resin composition for forming a microporous film Was prepared. This resin composition for forming a microporous film had a solid content concentration of 19% by mass and a viscosity of 10,000 mPa · s / 25 ° C. Therefore, in the solid content, 12% by mass of silica fine powder (fumed silica) is contained, no fluorinated water repellent is contained, and 0.5% by mass of fluorinated surfactant is contained. It will be.

[透湿防水性布帛の製造]
実施例11と同一の方法で透湿防水性布帛を得た。得られた微多孔膜の厚さは約60μmであり、全体に亙って1μm以下の孔径を主体とする微孔が多数形成されていた。そして、微孔に比べてその数が少ないが、付随的に10〜40μm程度の孔が形成されていた。
[Manufacture of moisture-permeable and waterproof fabrics]
A moisture-permeable and waterproof fabric was obtained in the same manner as in Example 11. The thickness of the obtained microporous film was about 60 μm, and many micropores mainly having a pore diameter of 1 μm or less were formed throughout. And although the number is small compared with a micropore, the hole of about 10-40 micrometers was incidentally formed.

比較例13
[布帛本体の準備]
実施例11と同一の方法で布帛本体を準備した。
Comparative Example 13
[Preparation of fabric body]
A fabric body was prepared in the same manner as in Example 11.

[微多孔膜形成用樹脂組成物の調製]
N,N−ジメチルホルムアミド35質量部に、エステル型ポリウレタン樹脂溶液(セイコー化成株式会社製「ラックスキン UJ8517」、固形分25質量%)100質量部と、シリカ微粉末であるフュームドシリカを含むポリウレタン樹脂溶液(セイコー化成株式会社製「ラックスキン UJ8518M」、総固形分20質量%、総固形分中のシリカ微粉末含有量60質量%。なお、このシリカ微粉末はフュームドシリカである。)35質量部及び架橋性イソシアネート化合物(日本ポリウレタン工業株式会社製「コロネートHX」)1質量部を混合し、真空脱泡しながらディスパー型攪拌機を用い、攪拌調液して、微多孔膜形成用樹脂組成物を調製した。この微多孔膜形成用樹脂組成物は、固形分濃度が19質量%であり、粘度が10000mPa・s/25℃であった。したがって、固形分中、シリカ微粉末(フュームドシリカ)は12質量%含有されており、フッ素系撥水剤及びフッ素系界面活性剤は含有されていない。
[Preparation of resin composition for forming microporous film]
Polyurethane containing 35 parts by mass of N, N-dimethylformamide, 100 parts by mass of an ester type polyurethane resin solution (“Lackskin UJ8517” manufactured by Seiko Kasei Co., Ltd., solid content: 25% by mass) and fumed silica which is a fine silica powder Resin solution (“Lackskin UJ8518M” manufactured by Seiko Kasei Co., Ltd., total solid content 20 mass%, silica fine powder content 60 mass% in total solid content. This silica fine powder is fumed silica) 35 A resin composition for forming a microporous film is prepared by mixing 1 part by mass of a mass part and a crosslinkable isocyanate compound (“Coronate HX” manufactured by Nippon Polyurethane Industry Co., Ltd.), stirring and adjusting with a disper-type stirrer while vacuum degassing A product was prepared. This resin composition for forming a microporous film had a solid content concentration of 19% by mass and a viscosity of 10,000 mPa · s / 25 ° C. Therefore, 12 mass% of silica fine powder (fumed silica) is contained in the solid content, and neither the fluorine-based water repellent nor the fluorine-based surfactant is contained.

[透湿防水性布帛の製造]
実施例11と同一の方法で透湿防水性布帛を得た。得られた微多孔膜の厚さは約60μmであり、全体に亙って1μm以下の孔径を主体とする微孔が多数形成されていた。そして、微孔に比べてその数が少ないが、付随的に10〜40μm程度の孔が形成されていた。
[Manufacture of moisture-permeable and waterproof fabrics]
A moisture-permeable and waterproof fabric was obtained in the same manner as in Example 11. The thickness of the obtained microporous film was about 60 μm, and many micropores mainly having a pore diameter of 1 μm or less were formed throughout. And although the number is small compared with a micropore, the hole of about 10-40 micrometers was incidentally formed.

実施例11〜15及び比較例11〜13で得られた透湿防水性布帛に関して、耐水圧、洗濯耐久性及び透湿度を、実施例1〜10及び比較例1〜5で採用した方法と同一の方法で測定した。その結果を表2に示した。   About the moisture-permeable waterproof fabric obtained in Examples 11-15 and Comparative Examples 11-13, the water pressure resistance, washing durability, and moisture permeability are the same as those employed in Examples 1-10 and Comparative Examples 1-5. It measured by the method of. The results are shown in Table 2.

[表2]
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
耐 水 圧
━━━━━━━━━━━━━━
洗濯前 100回洗濯後 洗濯耐久性 透湿度
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
実施例11 145 95 66 9989
実施例12 238 186 78 7266
実施例13 229 165 72 7028
実施例14 157 118 75 8990
実施例15 170 136 80 9190
───────────────────────────────────
比較例11 115 69 60 9893
比較例12 93 33 35 9436
比較例13 136 54 40 9275
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
[Table 2]
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Water pressure
━━━━━━━━━━━━━━
Before washing After washing 100 times Washing durability Moisture permeability ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Example 11 145 95 66 9989
Example 12 238 186 78 7266
Example 13 229 165 72 7028
Example 14 157 118 75 8990
Example 15 170 136 80 9190
───────────────────────────────────
Comparative Example 11 115 69 60 9893
Comparative Example 12 93 33 35 9436
Comparative Example 13 136 54 40 9275
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

実施例11〜15と比較例11〜13とを対比すると、実施例に係る透湿防水性布帛は、比較例に係るものに比べて、いずれも耐水圧が高く、洗濯耐久性も良好であることが分かる。この理由は、以下のとおりであると考えられる。比較例11に係る方法で得られた透湿防水性布帛は、微多孔膜中に油溶性のフッ素系界面活性剤が含有されていないので、耐水圧が低く、洗濯耐久性に劣る。比較例12に係る方法で得られた透湿防水性布帛は、微多孔膜中にフッ素系撥水剤が含有されていないため、耐水圧が低く、洗濯耐久性に劣る。比較例13に係る方法で得られた透湿防水性布帛は、微多孔膜中にフッ素系界面活性剤及びフッ素系撥水剤の両者が含有されていないため、耐水圧が低く、洗濯耐久性に劣る。なお、実施例11〜15と前記表1の比較例1〜5とを対比すると、耐水圧の絶対値は実施例11〜15の方が低くなっていることもあるが、これは使用するポリウレタン樹脂等の原料が相違するためである。注目すべきは洗濯耐久性であり、実施例1〜15に係る透湿防水性布帛は、いずれの比較例に係る透湿防水性布帛よりも洗濯耐久性に優れている。すなわち、微多孔膜に所定量のシリカ微粉末とフッ素系撥水剤と油溶性のフッ素系界面活性剤が存在すると、洗濯耐久性が向上するのである。   When Examples 11 to 15 and Comparative Examples 11 to 13 are compared, the moisture-permeable and waterproof fabric according to the Examples has a high water pressure resistance and good washing durability as compared with those according to the Comparative Examples. I understand that. The reason for this is considered as follows. Since the moisture-permeable and waterproof fabric obtained by the method according to Comparative Example 11 does not contain an oil-soluble fluorosurfactant in the microporous membrane, the water pressure resistance is low and the washing durability is poor. The moisture-permeable and waterproof fabric obtained by the method according to Comparative Example 12 does not contain a fluorine-based water repellent in the microporous membrane, and therefore has a low water pressure resistance and poor washing durability. The moisture-permeable and waterproof fabric obtained by the method according to Comparative Example 13 does not contain both a fluorine-based surfactant and a fluorine-based water repellent in the microporous membrane, and therefore has a low water pressure resistance and durability for washing. Inferior to In addition, when Examples 11 to 15 and Comparative Examples 1 to 5 in Table 1 are compared, the absolute value of the water pressure resistance may be lower in Examples 11 to 15, but this is the polyurethane used. This is because the raw materials such as resin are different. What should be noted is the durability to washing, and the moisture-permeable and waterproof fabric according to Examples 1 to 15 is superior to the moisture-permeable and waterproof fabric according to any of the comparative examples. That is, when a predetermined amount of fine silica powder, a fluorine-based water repellent, and an oil-soluble fluorine-based surfactant are present in the microporous membrane, the washing durability is improved.

実施例21
油溶性且つ水溶性のフッ素系界面活性剤(AGCセイミケミカル株式会社製「SURFLON S−386」)を0.2質量部用いるのに代えて、これを0.5質量部を用いて混合分散させる他は、実施例1と同一の方法により、防水透湿性布帛を得た。したがって、ここで使用した微多孔膜形成用樹脂組成物は、固形分濃度が24質量%であり、粘度が10000mPa・s/25℃であった。また、固形分中、シリカ微粉末(疎水性フュームドシリカ)は28質量%含有されており、フッ素系撥水剤は3質量%含有されており、フッ素系界面活性剤は1.4質量%含有されていることになる。
Example 21
Instead of using 0.2 part by mass of an oil-soluble and water-soluble fluorosurfactant (“SURFLON S-386” manufactured by AGC Seimi Chemical Co., Ltd.), 0.5 parts by mass is mixed and dispersed. Otherwise, a waterproof and moisture-permeable fabric was obtained by the same method as in Example 1. Therefore, the resin composition for forming a microporous film used here had a solid content concentration of 24% by mass and a viscosity of 10,000 mPa · s / 25 ° C. Further, in the solid content, 28% by mass of silica fine powder (hydrophobic fumed silica) is contained, 3% by mass of fluorinated water repellent is contained, and 1.4% by mass of fluorinated surfactant is contained. It will be contained.

実施例22
油溶性且つ水溶性のフッ素系界面活性剤(AGCセイミケミカル株式会社製「SURFLON S−386」)0.2質量部に代えて、油溶性のフッ素系界面活性剤(AGCセイミケミカル株式会社製「SURFLON S−611」。これは水溶性ではない。)0.2質量部を用いて混合分散させる他は、実施例1と同一の方法により、防水透湿性布帛を得た。したがって、ここで使用した微多孔膜形成用樹脂組成物は、固形分濃度が24質量%であり、粘度が10000mPa・s/25℃であった。また、固形分中、シリカ微粉末(疎水性フュームドシリカ)は28質量%含有されており、フッ素系撥水剤は3質量%含有されており、フッ素系界面活性剤は0.6質量%含有されていることになる。
Example 22
Instead of 0.2 parts by mass of an oil-soluble and water-soluble fluorosurfactant (“SURFLON S-386” manufactured by AGC Seimi Chemical Co., Ltd.), an oil-soluble fluorosurfactant (manufactured by AGC Seimi Chemical Co., Ltd. “ SURFLON S-611 "(This is not water-soluble.) A waterproof and moisture-permeable fabric was obtained in the same manner as in Example 1 except that 0.2 parts by mass was mixed and dispersed. Therefore, the resin composition for forming a microporous film used here had a solid content concentration of 24% by mass and a viscosity of 10,000 mPa · s / 25 ° C. Further, in the solid content, 28% by mass of silica fine powder (hydrophobic fumed silica) is contained, 3% by mass of fluorinated water repellent is contained, and 0.6% by mass of fluorinated surfactant is contained. It will be contained.

実施例23
油溶性且つ水溶性のフッ素系界面活性剤(AGCセイミケミカル株式会社製「SURFLON S−386」)0.2質量部に代えて、油溶性のフッ素系界面活性剤(AGCセイミケミカル株式会社製「SURFLON S−651」。これは水溶性ではない。)0.2質量部を用いて混合分散させる他は、実施例1と同一の方法により、防水透湿性布帛を得た。したがって、ここで使用した微多孔膜形成用樹脂組成物は、固形分濃度が24質量%であり、粘度が10000mPa・s/25℃であった。また、固形分中、シリカ微粉末(疎水性フュームドシリカ)は28質量%含有されており、フッ素系撥水剤は3質量%含有されており、フッ素系界面活性剤は0.6質量%含有されていることになる。
Example 23
Instead of 0.2 parts by mass of an oil-soluble and water-soluble fluorosurfactant (“SURFLON S-386” manufactured by AGC Seimi Chemical Co., Ltd.), an oil-soluble fluorosurfactant (manufactured by AGC Seimi Chemical Co., Ltd. “ SURFLON S-651 "(This is not water-soluble.) A waterproof and moisture-permeable fabric was obtained in the same manner as in Example 1 except that 0.2 parts by mass was mixed and dispersed. Therefore, the resin composition for forming a microporous film used here had a solid content concentration of 24% by mass and a viscosity of 10,000 mPa · s / 25 ° C. Further, in the solid content, 28% by mass of silica fine powder (hydrophobic fumed silica) is contained, 3% by mass of fluorinated water repellent is contained, and 0.6% by mass of fluorinated surfactant is contained. It will be contained.

実施例24
油溶性且つ水溶性のフッ素系界面活性剤(AGCセイミケミカル株式会社製「SURFLON S−386」)0.2質量部に代えて、油溶性且つ水溶性のフッ素系界面活性剤(AGCセイミケミカル株式会社製「SURFLON S−243」)0.2質量部を用いて混合分散させる他は、実施例1と同一の方法により、防水透湿性布帛を得た。したがって、ここで使用した微多孔膜形成用樹脂組成物は、固形分濃度が24質量%であり、粘度が10000mPa・s/25℃であった。また、固形分中、シリカ微粉末(疎水性フュームドシリカ)は28質量%含有されており、フッ素系撥水剤は3質量%含有されており、フッ素系界面活性剤は0.6質量%含有されていることになる。
Example 24
Oil-soluble and water-soluble fluorosurfactant ("SURFLON S-386" manufactured by AGC Seimi Chemical Co., Ltd.) instead of 0.2 parts by mass Oil-soluble and water-soluble fluorosurfactant (AGC Seimi Chemical Co., Ltd.) A waterproof and moisture-permeable fabric was obtained in the same manner as in Example 1 except that 0.2 part by mass of “SURFLON S-243” manufactured by the company was mixed and dispersed. Therefore, the resin composition for forming a microporous film used here had a solid content concentration of 24% by mass and a viscosity of 10,000 mPa · s / 25 ° C. Further, in the solid content, 28% by mass of silica fine powder (hydrophobic fumed silica) is contained, 3% by mass of fluorinated water repellent is contained, and 0.6% by mass of fluorinated surfactant is contained. It will be contained.

比較例21
油溶性且つ水溶性のフッ素系界面活性剤(AGCセイミケミカル株式会社製「SURFLON S−386」)0.2質量部に代えて、水溶性のフッ素系界面活性剤(AGCセイミケミカル株式会社製「SURFLON S−241」。固形分濃度30質量%。これは油溶性ではない。)0.6質量部を用いて混合分散させる他は、実施例1と同一の方法により、防水透湿性布帛を得た。したがって、ここで使用した微多孔膜形成用樹脂組成物は、固形分濃度が24質量%であり、粘度が10000mPa・s/25℃であった。また、固形分中、シリカ微粉末(疎水性フュームドシリカ)は28質量%含有されており、フッ素系撥水剤は3質量%含有されており、フッ素系界面活性剤は0.6質量%含有されていることになる。
Comparative Example 21
Instead of 0.2 parts by mass of an oil-soluble and water-soluble fluorosurfactant (“SURFLON S-386” manufactured by AGC Seimi Chemical Co., Ltd.), a water-soluble fluorosurfactant (manufactured by AGC Seimi Chemical Co., Ltd. “ SURFLON S-241 ". Solid content concentration of 30% by mass. This is not oil-soluble.) A waterproof and moisture-permeable fabric is obtained by the same method as in Example 1 except that 0.6 parts by mass is mixed and dispersed. It was. Therefore, the resin composition for forming a microporous film used here had a solid content concentration of 24% by mass and a viscosity of 10,000 mPa · s / 25 ° C. Further, in the solid content, 28% by mass of silica fine powder (hydrophobic fumed silica) is contained, 3% by mass of fluorinated water repellent is contained, and 0.6% by mass of fluorinated surfactant is contained. It will be contained.

比較例22
油溶性且つ水溶性のフッ素系界面活性剤(AGCセイミケミカル株式会社製「SURFLON S−386」)0.2質量部に代えて、水溶性のフッ素系界面活性剤(AGCセイミケミカル株式会社製「SURFLON S−241」。固形分濃度30質量%。これは油溶性ではない。)1.5質量部を用いて混合分散させる他は、実施例1と同一の方法により、防水透湿性布帛を得た。したがって、ここで使用した微多孔膜形成用樹脂組成物は、固形分濃度が24質量%であり、粘度が10000mPa・s/25℃であった。また、固形分中、シリカ微粉末(疎水性フュームドシリカ)は28質量%含有されており、フッ素系撥水剤は3質量%含有されており、フッ素系界面活性剤は1.4質量%含有されていることになる。
Comparative Example 22
Instead of 0.2 parts by mass of an oil-soluble and water-soluble fluorosurfactant (“SURFLON S-386” manufactured by AGC Seimi Chemical Co., Ltd.), a water-soluble fluorosurfactant (manufactured by AGC Seimi Chemical Co., Ltd. “ SURFLON S-241 ". Solid content concentration of 30% by mass. This is not oil-soluble.) A waterproof and moisture-permeable fabric is obtained by the same method as in Example 1 except that 1.5 parts by mass is mixed and dispersed. It was. Therefore, the resin composition for forming a microporous film used here had a solid content concentration of 24% by mass and a viscosity of 10,000 mPa · s / 25 ° C. Further, in the solid content, 28% by mass of silica fine powder (hydrophobic fumed silica) is contained, 3% by mass of fluorinated water repellent is contained, and 1.4% by mass of fluorinated surfactant is contained. It will be contained.

比較例23
油溶性且つ水溶性のフッ素系界面活性剤(AGCセイミケミカル株式会社製「SURFLON S−386」)0.2質量部に代えて、水溶性のフッ素系界面活性剤(AGCセイミケミカル株式会社製「SURFLON S−221」。固形分濃度30質量%。これは油溶性ではない。)0.6質量部を用いて混合分散させる他は、実施例1と同一の方法により、防水透湿性布帛を得た。したがって、ここで使用した微多孔膜形成用樹脂組成物は、固形分濃度が24質量%であり、粘度が10000mPa・s/25℃であった。また、固形分中、シリカ微粉末(疎水性フュームドシリカ)は28質量%含有されており、フッ素系撥水剤は3質量%含有されており、フッ素系界面活性剤は0.6質量%含有されていることになる。
Comparative Example 23
Instead of 0.2 parts by mass of an oil-soluble and water-soluble fluorosurfactant (“SURFLON S-386” manufactured by AGC Seimi Chemical Co., Ltd.), a water-soluble fluorosurfactant (manufactured by AGC Seimi Chemical Co., Ltd. “ SURFLON S-221 ". Solid content concentration of 30% by mass. This is not oil-soluble.) A waterproof and moisture-permeable fabric is obtained by the same method as in Example 1 except that 0.6 parts by mass is mixed and dispersed. It was. Therefore, the resin composition for forming a microporous film used here had a solid content concentration of 24% by mass and a viscosity of 10,000 mPa · s / 25 ° C. Further, in the solid content, 28% by mass of silica fine powder (hydrophobic fumed silica) is contained, 3% by mass of fluorinated water repellent is contained, and 0.6% by mass of fluorinated surfactant is contained. It will be contained.

実施例21〜24及び比較例21〜23で得られた透湿防水性布帛に関して、耐水圧、洗濯耐久性及び透湿度を、実施例1〜10及び比較例1〜5で採用した方法と同一の方法で測定した。その結果を表3に示した。   About the moisture-permeable waterproof fabric obtained in Examples 21-24 and Comparative Examples 21-23, the water pressure resistance, washing durability, and moisture permeability are the same as those employed in Examples 1-10 and Comparative Examples 1-5. It measured by the method of. The results are shown in Table 3.

[表3]
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
耐 水 圧
━━━━━━━━━━━━━━
洗濯前 100回洗濯後 洗濯耐久性 透湿度
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
実施例21 180 133 74 11824
実施例22 162 115 71 11790
実施例23 152 93 61 12707
実施例24 118 78 66 12129
───────────────────────────────────
比較例21 82 43 52 11391
比較例22 76 37 49 11832
比較例23 92 44 48 12206
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
[Table 3]
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Water pressure
━━━━━━━━━━━━━━
Before washing After washing 100 times Washing durability Moisture permeability ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Example 21 180 133 74 11824
Example 22 162 115 71 11790
Example 23 152 93 61 12707
Example 24 118 78 66 12129
───────────────────────────────────
Comparative Example 21 82 43 52 11391
Comparative Example 22 76 37 49 11832
Comparative Example 23 92 44 48 12206
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

実施例21〜34と比較例21〜23とを対比すると、実施例に係る透湿防水性布帛は、比較例に係るものに比べて、いずれも耐水圧が高く、洗濯耐久性も良好であることが分かる。この理由は、以下のとおりであると考えられる。比較例21〜23に係る方法で得られた透湿防水性布帛は、いずれも、微多孔膜中に油溶性のフッ素系界面活性剤が含有されておらず、水溶性のフッ素系界面活性剤が含有されているので、耐水圧が低く、洗濯耐久性に劣る。すなわち、微多孔膜中に、水溶性ではなく油溶性のフッ素系界面活性剤と、シリカ微粉末と、フッ素系撥水剤とが所定量存在していると、得られる透湿防水性布帛の洗濯耐久性が向上するのである。   When Examples 21 to 34 and Comparative Examples 21 to 23 are compared, the moisture-permeable waterproof fabric according to the Examples has a higher water pressure resistance and better washing durability than those according to the Comparative Examples. I understand that. The reason for this is considered as follows. All of the moisture-permeable and waterproof fabrics obtained by the methods according to Comparative Examples 21 to 23 do not contain an oil-soluble fluorosurfactant in the microporous membrane, and are water-soluble fluorosurfactants. Therefore, the water pressure resistance is low and the washing durability is poor. That is, when a predetermined amount of a fluorosurfactant that is not water-soluble but oil-soluble, silica fine powder, and fluorine-based water repellent is present in the microporous membrane, the resulting moisture-permeable and waterproof fabric is obtained. Washing durability is improved.

Claims (12)

布帛本体の片面に、ポリウレタン樹脂を主体とする微多孔膜が積層されてなる透湿防水性布帛において、前記微多孔膜には、シリカ微粉末3〜45質量%、フッ素系撥水剤1〜9質量%及び油溶性のフッ素系界面活性剤0.1〜2質量%が含有されていることを特徴とする透湿防水性布帛。   In a moisture-permeable waterproof fabric in which a microporous membrane mainly composed of a polyurethane resin is laminated on one side of the fabric body, the microporous membrane has a silica fine powder of 3 to 45 mass%, a fluorine-based water repellent 1 to 1 9% by mass and 0.1 to 2% by mass of an oil-soluble fluorosurfactant. フッ素系界面活性剤が油溶性且つ水溶性である請求項1記載の透湿防水性布帛。   The moisture-permeable and waterproof fabric according to claim 1, wherein the fluorosurfactant is oil-soluble and water-soluble. フッ素系界面活性剤は、炭素数1〜6のパーフルオロアルキル基よりなる疎水基と、ポリオキシエチレン基又はポリオキシプロピレン基よりなる親水基を有している請求項1記載の透湿防水性布帛。   The moisture permeable waterproof property according to claim 1, wherein the fluorosurfactant has a hydrophobic group composed of a perfluoroalkyl group having 1 to 6 carbon atoms and a hydrophilic group composed of a polyoxyethylene group or a polyoxypropylene group. Fabric. シリカ微粉末がフュームドシリカ微粉末である請求項1記載の透湿防水性布帛。   The moisture-permeable and waterproof fabric according to claim 1, wherein the silica fine powder is fumed silica fine powder. フッ素系撥水剤が、側鎖に炭素数1〜6のパーフルオロアルキル基を有するアクリレート化合物を重合して得られたものである請求項1記載の透湿防水性布帛。   The moisture-permeable and waterproof fabric according to claim 1, wherein the fluorine-based water repellent is obtained by polymerizing an acrylate compound having a perfluoroalkyl group having 1 to 6 carbon atoms in the side chain. 布帛本体が撥水加工されている請求項1記載の透湿防水性布帛。   The moisture-permeable waterproof fabric according to claim 1, wherein the fabric body is water-repellent. 微多孔膜表面に、所定柄が印刷されてなる請求項1記載の透湿防水性布帛。   The moisture-permeable and waterproof fabric according to claim 1, wherein a predetermined pattern is printed on the surface of the microporous membrane. 微多孔膜表面に、ポリウレタン樹脂を主体とする無孔膜が積層されてなる請求項1記載の透湿防水性布帛。   The moisture-permeable and waterproof fabric according to claim 1, wherein a non-porous film mainly comprising a polyurethane resin is laminated on the surface of the microporous film. 無孔膜表面に、所定柄が印刷されてなる請求項8記載の透湿防水性布帛。   The moisture-permeable and waterproof fabric according to claim 8, wherein a predetermined pattern is printed on the surface of the nonporous film. 微多孔膜と裏地とが、接着剤を介して貼合されてなる請求項1記載の透湿防水性布帛。   The moisture-permeable and waterproof fabric according to claim 1, wherein the microporous membrane and the backing are bonded via an adhesive. 無孔膜と裏地とが、接着剤を介して貼合されてなる請求項8記載の透湿防水性布帛。   The moisture-permeable and waterproof fabric according to claim 8, wherein the nonporous film and the backing are bonded via an adhesive. 布帛本体表面に、ポリウレタン樹脂を主体とし、シリカ微粉末15〜45質量%、フッ素系撥水剤1〜9質量%及び油溶性のフッ素系界面活性剤0.1〜2質量%を、N,N−ジメチルホルムアミドに溶解又は分散させてなる微多孔膜形成用樹脂組成物を塗布した後、N,N−ジメチルホルムアミドを5〜30質量%含有する水溶液に浸漬して、該微多孔膜形成用樹脂組成物を凝固させて微多孔膜を形成することを特徴とする透湿防水性布帛の製造方法。   On the surface of the fabric body, polyurethane resin is the main component, silica fine powder 15 to 45% by mass, fluorine-based water repellent 1 to 9% by mass, and oil-soluble fluorine-based surfactant 0.1 to 2% by mass, After applying a resin composition for forming a microporous film dissolved or dispersed in N-dimethylformamide, it is immersed in an aqueous solution containing 5 to 30% by mass of N, N-dimethylformamide to form the microporous film. A method for producing a moisture-permeable and waterproof fabric, comprising solidifying a resin composition to form a microporous membrane.
JP2009009387A 2009-01-19 2009-01-19 Moisture permeable waterproof fabric and method for producing the same Active JP5388597B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009009387A JP5388597B2 (en) 2009-01-19 2009-01-19 Moisture permeable waterproof fabric and method for producing the same
PCT/JP2010/050467 WO2010082648A1 (en) 2009-01-19 2010-01-18 Moisture-permeable and water-proof fabric and process for the production of same
EP10731317.3A EP2381031A4 (en) 2009-01-19 2010-01-18 Moisture-permeable and water-proof fabric and process for the production of same
US13/183,941 US20120070635A1 (en) 2009-01-19 2011-07-15 Waterproof and moisture-permeable fabric and a method for producing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009009387A JP5388597B2 (en) 2009-01-19 2009-01-19 Moisture permeable waterproof fabric and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010163728A JP2010163728A (en) 2010-07-29
JP5388597B2 true JP5388597B2 (en) 2014-01-15

Family

ID=42580104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009009387A Active JP5388597B2 (en) 2009-01-19 2009-01-19 Moisture permeable waterproof fabric and method for producing the same

Country Status (1)

Country Link
JP (1) JP5388597B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068808A (en) * 2009-09-28 2011-04-07 Unitika Trading Co Ltd Moisture permeation waterproofing film and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6084415B2 (en) * 2012-09-26 2017-02-22 ユニチカトレーディング株式会社 Medical breathable waterproof fabric

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162041A (en) * 1983-03-04 1984-09-12 アキレス株式会社 Manufacture of sheet-shaped article
JPS60154054A (en) * 1984-01-23 1985-08-13 ユニチカ株式会社 Moisture-permeable waterproof cloth and manufacture thereof
JPH01320006A (en) * 1988-06-23 1989-12-26 Toray Ind Inc Portable storing case for wet thing
JPH07166479A (en) * 1993-12-15 1995-06-27 Unitika Ltd Production of cloth having moisture-permeable water-proof coating
JP2853573B2 (en) * 1994-05-09 1999-02-03 アキレス株式会社 Water-repellent, waterproof and breathable nubuck synthetic leather
EP1533356A1 (en) * 2003-11-24 2005-05-25 3M Innovative Properties Company Fluorochemical composition for rendering substrates oil and/or water repellent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068808A (en) * 2009-09-28 2011-04-07 Unitika Trading Co Ltd Moisture permeation waterproofing film and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010163728A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
JP5506077B2 (en) Moisture permeable waterproof fabric and method for producing the same
WO2010082648A1 (en) Moisture-permeable and water-proof fabric and process for the production of same
JP5593011B2 (en) Moisture permeable waterproof membrane and manufacturing method thereof
JP4866091B2 (en) Highly foamed fabric with polyurethane microporous membrane and method for producing the same
JP5230286B2 (en) Moisture permeable waterproof fabric
JP5388597B2 (en) Moisture permeable waterproof fabric and method for producing the same
JP2010163729A (en) Moisture-permeable and water-proof fabric and process for the production of same
JP2005213411A (en) Porous structural body, its manufacturing method and leather-like structure
JP4783046B2 (en) Moisture permeable waterproof fabric and method for producing the same
JP4563041B2 (en) Porous structure manufacturing method, porous structure and leather-like structure
JP5548344B2 (en) Moisture permeable waterproof fabric
JP2009221630A (en) Breathable-waterproof fabric
JP2615288B2 (en) Moisture permeable waterproof coating fabric
JP2000280392A (en) Adhesive moisture permeable waterproof film and production thereof
JPH0860558A (en) Production of soft moisture-permeable waterproof fabric
JPH06108365A (en) Moisture-permeable water-proofing coating cloth and its production
JP2002129479A (en) Method for producing moisture-permeating waterproof coated cloth having soft feeling
JPH06280163A (en) Production of moisture-permeable waterproof coating cloth
JP2015224404A (en) Moisture-permeable waterproof fabric
JPH11227143A (en) Manufacture of soft and moisture-permeable waterproof cloth
JPH06272168A (en) Moisture-permeable and waterproof-coated fabric
JP2012201042A (en) Moisture permeable waterproof fabric
JPH10251976A (en) Moisture-permeable and waterproof coated fabric
JP2003306870A (en) Moisture-permeable watertight coated fabric with excellent tear strength
JPH06270343A (en) Production of humidity permeable waterproof coating fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131008

R150 Certificate of patent or registration of utility model

Ref document number: 5388597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250