JP2009215132A - Spherical particle, resin composition containing it, its producing method, filler being aggregation of the spherical particle and semiconductor resin sealing agent containing the filler - Google Patents

Spherical particle, resin composition containing it, its producing method, filler being aggregation of the spherical particle and semiconductor resin sealing agent containing the filler Download PDF

Info

Publication number
JP2009215132A
JP2009215132A JP2008062518A JP2008062518A JP2009215132A JP 2009215132 A JP2009215132 A JP 2009215132A JP 2008062518 A JP2008062518 A JP 2008062518A JP 2008062518 A JP2008062518 A JP 2008062518A JP 2009215132 A JP2009215132 A JP 2009215132A
Authority
JP
Japan
Prior art keywords
spherical
filler
spherical particles
magnesium oxide
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008062518A
Other languages
Japanese (ja)
Inventor
Hideki Otsubo
英樹 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2008062518A priority Critical patent/JP2009215132A/en
Publication of JP2009215132A publication Critical patent/JP2009215132A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spherical particle which has precise and superior sphericity although the content of magnesium oxide with high thermal conductivity is large and which can be highly filled in a sealing resin, a resin composition containing it, its producing method, a filler being the aggregation of the spherical particle and a semiconductor resin sealing agent containing the filler. <P>SOLUTION: The spherical particle shows a eutectic structure being constituted of a phase consisting of magnesium oxide and a phase consisting of MgAl<SB>2</SB>O<SB>4</SB>and has a ratio of a major side to a minor side of 1.0-1.15 in average. In the producing method of the spherical particle being described in claim 1 or 2 and having a step to spherically solidify a molten particle consisting of Mg, Al and O by cooling, the molten particle is characterized by that the weight ratio of magnesium oxide to aluminum oxide when melting raw materials is regulated so as to be 43:57-57:43. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、酸化マグネシウムとMgAlから構成される球状粒子、それを含む樹脂組成物及びその製造方法、並びにその球状粒子の集合物であるフィラー及びそれを含む半導体樹脂封止剤に関する。 The present invention relates to spherical particles composed of magnesium oxide and MgAl 2 O 4 , a resin composition including the same, a method for producing the same, a filler that is an aggregate of the spherical particles, and a semiconductor resin encapsulant including the same.

従来から、半導体樹脂封止剤等の放熱フィラーとしては、球形度が良好で高充填が容易であり、また低価格であることから、球状非晶質シリカが多用されている。しかしながら、近年、半導体デバイスの高集積化、ハイパワー化等に伴い、半導体デバイスからの発熱量が増大し、当該用途等においては、より高熱伝導な球状の放熱フィラーが求められるようになり、そのため、高熱伝導な球状アルミナが多用されている。   Conventionally, as a heat radiation filler such as a semiconductor resin encapsulant, spherical amorphous silica has been frequently used because of its good sphericity, easy high filling, and low cost. However, in recent years, with higher integration and higher power of semiconductor devices, the amount of heat generated from the semiconductor devices has increased, and in such applications, spherical heat-dissipating fillers with higher thermal conductivity have been demanded. Highly thermal conductive spherical alumina is often used.

球状アルミナは、球状非晶質シリカに比して一桁大きな熱伝導率を有するものの、球形度、緻密性の点において、球状非晶質シリカに劣り、アルミナが本質的に有する高熱伝導性を十分発揮していない。球状アルミナは、一般に球状非晶質シリカと同様に溶融による球状化プロセスを経て製造されるが、球状非晶質シリカが凝固の際に融液の原子構造がほぼ維持されるために、凝固収縮が極めて小さく真球状になりやすいのに対して、球状アルミナの場合、低密度な融液から高密度な結晶質アルミナへの凝固であるために、凝固収縮が大きく、それによる欠陥の生成が避けられない。そのため、球状アルミナは、球としての形状性及び緻密性は球状非晶質シリカに大きく劣り、放熱フィラーとして用いる場合の充填性が悪くなってしまう。また、アルミナは、高硬度であるために、樹脂成形用の金型を著しく損耗させるという欠点がある。   Although spherical alumina has a thermal conductivity that is an order of magnitude greater than that of spherical amorphous silica, it is inferior to spherical amorphous silica in terms of sphericity and compactness, and has the high thermal conductivity inherent to alumina. It is not fully demonstrated. Spherical alumina is generally manufactured through a spheroidizing process similar to spherical amorphous silica, but the solid structure shrinks because the amorphous structure of the melt is almost maintained during the solidification of spherical amorphous silica. Is extremely small and tends to be spherical, whereas in the case of spherical alumina, solidification shrinkage is large due to solidification from a low-density melt to high-density crystalline alumina, thereby avoiding the generation of defects. I can't. For this reason, spherical alumina is greatly inferior to spherical amorphous silica in shape and density as a sphere, and the filling property when used as a heat radiation filler is deteriorated. In addition, since alumina has a high hardness, it has a drawback that the mold for resin molding is significantly worn out.

一方、酸化マグネシウムは、実用的な酸化物セラミックスの中においては最も熱伝導率が大きく、絶縁性も良好で、比較的低硬度であることから、放熱フィラーへの適用材料として期待されている。しかしながら、酸化マグネシウムは、高融点における溶融による緻密球状化が困難であるため、アルミナ以上に高充填可能な放熱フィラーの製造が困難であり、また表面積を小さくすることができないために、酸化マグネシウムの欠点である耐水性の悪さを回避することも困難である。以上のような理由から、酸化マグネシウムは、半導体樹脂封止剤等の放熱フィラーとして工業的に広く適用されるには至っていない。   Magnesium oxide, on the other hand, has the highest thermal conductivity among practical oxide ceramics, has good insulating properties, and is relatively low in hardness. However, since magnesium oxide is difficult to form into a dense sphere by melting at a high melting point, it is difficult to produce a heat dissipating filler that can be filled more than alumina, and the surface area cannot be reduced. It is also difficult to avoid the disadvantage of poor water resistance. For the reasons described above, magnesium oxide has not been widely applied industrially as a heat dissipating filler for semiconductor resin sealants and the like.

以上の観点から、酸化マグネシウムの球状化と耐水性について改善が施されている(特許文献1及び2参照)。特許文献1には、酸化マグネシウム粉末に対し、アルミナ及び/又はシリカ粒子を添加し、これをスプレードライヤーを用いて粒状化して球形顆粒物を得た後、かかる粒状化状態を崩すことなく、当該造粒物の少なくとも一部を溶融し、次いでこれを急速に冷却することによって、酸化マグネシウム系物質を製造することが開示されている。一方、特許文献2には、複酸化物により被覆され、かつ、平均形状係数が1.25以下であることを特徴とする球状被覆酸化マグネシウム粉末、及び酸化マグネシウム粉末の表面に融点が2773K以下の複酸化物を形成する元素の化合物を存在させ、高温中で溶融させることによって、被覆酸化マグネシウム粉末を製造することが開示されている。
特許第2590491号公報 国際公開WO2005/033215号公報
From the above viewpoints, improvements have been made in the spheroidization and water resistance of magnesium oxide (see Patent Documents 1 and 2). In Patent Document 1, alumina particles and / or silica particles are added to a magnesium oxide powder and granulated using a spray dryer to obtain a spherical granule. It has been disclosed to produce a magnesium oxide based material by melting at least a portion of the granulate and then rapidly cooling it. On the other hand, Patent Document 2 discloses a spherical coated magnesium oxide powder that is coated with a double oxide and has an average shape factor of 1.25 or less, and a melting point of 2773 K or less on the surface of the magnesium oxide powder. It is disclosed that a coated magnesium oxide powder is produced by the presence of a compound of an element forming a double oxide and melting at a high temperature.
Japanese Patent No. 2590491 International Publication WO2005 / 033215

しかしながら、特許文献1に記載の製造方法においては、アルミナ及びシリカ粒子とそれと接する酸化マグネシウム粉末の一部を溶融させて、すなわちアルミナ及びシリカ粒子を融剤として使用して酸化マグネシウム系物質を得ようとしているので、緻密で球形状が良好な球状酸化マグネシウム系粒子が得られるとは考えられない。したがって、特許文献1に記載の製造方法によって製造された酸化マグネシウム系物質によっては、封止樹脂への実質的な充填性を向上させることはできず、封止剤の熱伝導率を向上させることは困難であると考えられる。   However, in the production method described in Patent Document 1, the alumina and silica particles and a part of the magnesium oxide powder in contact therewith are melted, that is, the magnesium oxide material is obtained using the alumina and silica particles as a flux. Therefore, it is unlikely that spherical magnesium oxide-based particles having a fine and good spherical shape can be obtained. Therefore, depending on the magnesium oxide-based material manufactured by the manufacturing method described in Patent Document 1, the substantial filling property to the sealing resin cannot be improved, and the thermal conductivity of the sealing agent is improved. Is considered difficult.

また、前記特許文献2に記載の製造方法においては、球状化前の酸化マグネシウムに、電融法、焼結法により製造された粉末を用いることで、得られる球状粉末内部における緻密性を向上させることは可能であるものの、球状被覆酸化マグネシウム粉末の球形度は、球状化前の酸化マグネシウム粉末の球形度に大きく依存すると思われ、当該粉末が粉砕プロセスを経て得られている限り、すべての球状被覆酸化マグネシウム粉末の球形度を高めることは困難であると思われる。   In addition, in the production method described in Patent Document 2, the density inside the obtained spherical powder is improved by using a powder produced by electrofusion or sintering for magnesium oxide before spheroidization. It is possible, however, that the sphericity of the spherical coated magnesium oxide powder appears to depend greatly on the sphericity of the magnesium oxide powder before spheronization, so long as the powder is obtained through a grinding process, It seems difficult to increase the sphericity of the coated magnesium oxide powder.

そこで、本発明は、高熱伝導な酸化マグネシウムを多く含有しながら、緻密で球形度が良好で、封止樹脂への高充填が可能な球状粒子、それを含む樹脂組成物及びその製造方法、並びにその球状粒子の集合物であるフィラー及びそれを含む半導体樹脂封止剤を提供することを目的とする。   Accordingly, the present invention provides a spherical particle that contains a large amount of highly thermally conductive magnesium oxide, has a fine and excellent sphericity, and can be highly filled into a sealing resin, a resin composition containing the same, and a method for producing the same, and It aims at providing the filler which is the aggregate | assembly of the spherical particle, and the semiconductor resin sealing agent containing it.

以上の目的を達成するため、本発明者らは、鋭意研究を重ねた結果、球状粒子を酸化マグネシウムからなる相とMgAlからなる相から構成される共晶組織とすることによって、高熱伝導な酸化マグネシウムを多く含有しながら、緻密で球形度を良好とし、封止樹脂への高充填を可能とすることを見出した。すなわち、本発明は、酸化マグネシウムからなる相とMgAlからなる相から構成される共晶組織を呈する球状粒子である。また、本発明は、その球状粒子を含む樹脂組成物であり、さらに、Mg、Al及びOを主成分とする溶融粒子を冷却することによって球状に凝固させる工程を有する球状粒子の製造方法であって、前記溶融粒子は、その原材料が溶融した際の酸化マグネシウムと酸化アルミニウムとしての重量比が43:57〜57:43となるように調整されていることを特徴とする。またさらに、本発明は、その球状粒子の集合体であり、平均粒径が5〜500μmであるフィラーであり、そのフィラーと樹脂を含む半導体樹脂封止剤である。 In order to achieve the above object, the present inventors have conducted extensive research, and as a result, the spherical particles have a high heat resistance by forming a eutectic structure composed of a phase composed of magnesium oxide and a phase composed of MgAl 2 O 4. It has been found that while containing a large amount of conductive magnesium oxide, it is dense and has good sphericity, and can be highly filled into a sealing resin. That is, the present invention is a spherical particle exhibiting a eutectic structure composed of a phase composed of magnesium oxide and a phase composed of MgAl 2 O 4 . The present invention is also a resin composition containing the spherical particles, and further includes a method for producing spherical particles having a step of solidifying into spherical shapes by cooling molten particles mainly composed of Mg, Al, and O. The molten particles are adjusted so that the weight ratio of magnesium oxide to aluminum oxide when the raw material is melted is 43:57 to 57:43. Furthermore, the present invention is an aggregate of spherical particles, a filler having an average particle size of 5 to 500 μm, and a semiconductor resin encapsulant containing the filler and a resin.

本発明に係る球状粒子は、高熱伝導性を示し、緻密性、高球形度を併せ持ち、半導体樹脂封止剤のフィラー等、絶縁性の放熱フィラーとして好適に用いられる。すなわち、本発明は、前記球状粒子の集合体であり、平均粒径が5〜500μmであることを特徴とするフィラーであり、またそのフィラーと樹脂を含む半導体樹脂封止剤である。   The spherical particles according to the present invention exhibit high thermal conductivity, have both high density and high sphericity, and are suitably used as insulating heat-dissipating fillers such as fillers for semiconductor resin sealants. That is, the present invention is an aggregate of the spherical particles, a filler having an average particle diameter of 5 to 500 μm, and a semiconductor resin encapsulant containing the filler and a resin.

以上のように、本発明によれば、高熱伝導な酸化マグネシウムを多く含有しながら、緻密で球形度が良好で、封止樹脂への高充填が可能な球状粒子、それを含む樹脂組成物及びその製造方法、並びにその球状粒子の集合物であるフィラー及びそれを含む半導体樹脂封止剤を提供することができる。   As described above, according to the present invention, spherical particles that are dense and have a good sphericity and can be highly filled into a sealing resin while containing a large amount of highly heat-conductive magnesium oxide, a resin composition containing the spherical particles, and The manufacturing method, the filler which is the aggregate | assembly of the spherical particle, and the semiconductor resin sealing agent containing it can be provided.

本発明に係る球状粒子において、共晶組織とは、一つの液相(融液)が、冷却中に共晶温度において、分離して異なる複数の固相が晶出する反応、すなわち共晶反応によって生成する組織であり、層状、繊維又は棒状、又はそれに類する形状の規則性のある組織である。   In the spherical particles according to the present invention, the eutectic structure is a reaction in which one liquid phase (melt) separates at a eutectic temperature during cooling and a plurality of different solid phases crystallize, that is, an eutectic reaction. It is a structure | tissue which is produced | generated by layered structure, and is a structure | tissue with the regularity of the shape of a layer form, a fiber or rod shape, or the like.

溶融凝固プロセスを経て製造される結晶質の球状粒子は、一般に結晶粒の集合組織を呈しており、多数の粒界の存在が実質的な熱伝導率を低下せしめ、物質固有の熱伝導率を得ることが困難である。これに対し、共晶組織は、構成相の連続性が高く、また、構成相間も整合性が良好な界面が形成されており、物質固有の熱伝導率が発揮されやすい。   The crystalline spherical particles produced through the melt-solidification process generally have a grain texture, and the existence of a large number of grain boundaries lowers the substantial thermal conductivity, thus reducing the intrinsic thermal conductivity of the substance. It is difficult to obtain. On the other hand, the eutectic structure has high continuity of constituent phases, and an interface having good consistency between the constituent phases is formed, and the thermal conductivity inherent to the substance is easily exhibited.

共晶温度は、一般的に、晶出する各固相の融点より低く、共晶反応を用いれば、所望の相の融点より低い温度のプロセスで相を晶出させることが可能になる。例えば、一般に酸化マグネシウムは、2824℃の高い融点を持つため、化学炎への投入による溶融は困難であるが、共晶反応又は共晶組成に近い組成での溶融凝固反応によれば、化学炎への投入による酸化マグネシウム相の晶出が可能になる。共晶組成の融液は、一般に、凝固温度が極めて低く、粘度が低く流動性が良く、また凝固収縮が小さいので、結晶質物への凝固であっても、他の組成の結晶質物への凝固に比べて球形状が良好な球状粒子を得やすい。また、共晶組成から組成比が大きく異ならない組成においても、共晶組成の融液及びその凝固と同様の特徴を有する。   The eutectic temperature is generally lower than the melting point of each solid phase to be crystallized, and if a eutectic reaction is used, the phase can be crystallized by a process at a temperature lower than the melting point of the desired phase. For example, in general, magnesium oxide has a high melting point of 2824 ° C., so that it is difficult to melt by adding it to a chemical flame. However, according to a melt solidification reaction with a composition close to a eutectic reaction or a eutectic composition, It becomes possible to crystallize the magnesium oxide phase by adding it to the. Eutectic melts generally have a very low solidification temperature, low viscosity, good flowability, and low solidification shrinkage, so that solidification into crystalline materials of other compositions is possible even when solidifying into crystalline materials. It is easy to obtain spherical particles having a good spherical shape compared to. Further, a composition whose composition ratio does not greatly differ from the eutectic composition has the same characteristics as the eutectic composition melt and its solidification.

本発明に係る球状粒子は、長辺と短辺の比が平均で1.0〜1.15であることが好ましく、1.0〜1.12であることがさらに好ましい。球状粒子の長辺と短辺の比がこの範囲にあれば封止樹脂への充填性、成形性が特に優れたものとなるからである。このような範囲の球状粒子は、冷媒による急冷が凝固前の粒子同士の接触を抑制することができるので、後述する球状の溶融粒子を冷媒に投入して急冷することによって容易に得ることができる。本発明に係る球状粒子において、Mg、Al及びOを主成分とするとは、Mg、Al及びOの共晶組成化を妨げない範囲でMg、Al及びO以外の他の成分を微量に含ませても良いという趣旨であり、例えばMg、Al及びOが95重量%以上であることを意味する。また、長辺とは、球状粒子の最も長い直径をいい、短辺とは、球状粒子の最も短い直径をいう。長辺と短辺の比の測定は、例えばレーザ顕微鏡を用いて行うことができる。本発明に係る球状粒子においては、レーザ顕微鏡を用いて、50個の球状粒子の測定を行い、その平均値を算出したものである。   The spherical particles according to the present invention preferably have an average ratio of the long side to the short side of 1.0 to 1.15, and more preferably 1.0 to 1.12. This is because if the ratio of the long side to the short side of the spherical particles is within this range, the filling property and moldability into the sealing resin are particularly excellent. Spherical particles in such a range can be easily obtained by rapidly cooling by introducing spherical molten particles, which will be described later, into the refrigerant because rapid cooling with the refrigerant can suppress contact between particles before solidification. . In the spherical particles according to the present invention, “Mg, Al and O are the main components” means that other components other than Mg, Al and O are contained in a trace amount within a range not hindering the eutectic composition of Mg, Al and O. For example, it means that Mg, Al and O are 95% by weight or more. Further, the long side means the longest diameter of the spherical particles, and the short side means the shortest diameter of the spherical particles. The ratio of the long side to the short side can be measured using, for example, a laser microscope. The spherical particles according to the present invention are obtained by measuring 50 spherical particles using a laser microscope and calculating an average value thereof.

本発明に係る球状粒子は、平均粒径が5〜500μmであることが好ましく、5〜200μmであることがさらに好ましい。球状粒子の平均粒径が5μm未満であると表面積が大きくなり、耐水性に問題が生じる可能性があり、球状粒子の平均粒径が500μmより大きくなると、半導体封止樹脂等への充填性が悪くなるからである。平均粒径の調整は、篩による分級によって行うことができる。   The spherical particles according to the present invention preferably have an average particle size of 5 to 500 μm, and more preferably 5 to 200 μm. If the average particle size of the spherical particles is less than 5 μm, the surface area becomes large, which may cause a problem in water resistance. If the average particle size of the spherical particles is larger than 500 μm, the filling property to the semiconductor sealing resin or the like is increased. Because it gets worse. Adjustment of the average particle diameter can be performed by classification with a sieve.

本発明に係る球状粒子の製造方法は、上述のようにMg、Al及びOを主成分とする溶融粒子を冷却することによって球状に凝固させる工程を有するが、Mg、Al及びOを主成分とする溶融粒子とは、共晶球状粒子の構成成分が溶融状態を保った状態で球状化されたものである。このような溶融粒子は、例えば、フレーム法、アトマイズ法及びスピンディスク法によって得ることができ、特にフレーム法によることが好ましい。フレーム法は、一粒一粒が構成成分からなる粒子を融点以上の温度の高温域を通過させる方法であり、例えば、組成調製された粒子を化学炎又は熱プラズマ中に投入し溶融させ溶融状態の球状粒子を得る方法である。アトマイズ法は、坩堝等の中で構成成分からなる原料を溶融させて坩堝に開けられた吐出口より融液を噴出させる方法であり、スピンディスク法は、高速で回転するディスク上に融液を溶融状態を保った状態で衝突させる方法である。   The method for producing spherical particles according to the present invention includes a step of solidifying spherically by cooling the molten particles mainly composed of Mg, Al and O as described above. The molten particles to be formed are those in which the constituents of the eutectic spherical particles are spheroidized in a molten state. Such molten particles can be obtained, for example, by a flame method, an atomizing method, and a spin disk method, and particularly preferably by a flame method. The flame method is a method in which particles each consisting of a constituent component are passed through a high temperature region having a temperature equal to or higher than the melting point. For example, the prepared particles are put into a chemical flame or thermal plasma to be melted and melted. It is the method of obtaining the spherical particle of this. The atomization method is a method in which a raw material composed of constituent components is melted in a crucible or the like, and a melt is ejected from a discharge port opened in the crucible. The spin disk method is a method in which a melt is applied to a disk that rotates at high speed. It is the method of making it collide in the state which maintained the molten state.

フレーム法は、スプレードライヤー等により粉末状の原料を造粒した粒子、及び原料を焼結又は溶融凝固させたバルク材料を粉砕し、所望の粒度分布になるように、調整した粒子等を用いることができ、その粒子をその凝集を抑制しながら化学炎又は熱プラズマ中に投入し、化学炎又は熱プラズマ中で溶融させることによって行われる。   In the flame method, particles prepared by granulating powdery raw materials with a spray dryer, etc., and bulk materials obtained by sintering or melting and solidifying the raw materials are pulverized to use particles adjusted so as to obtain a desired particle size distribution. It is performed by putting the particles into a chemical flame or thermal plasma while suppressing the aggregation and melting them in the chemical flame or thermal plasma.

また、フレーム法は、原料のコロイド液や有機金属重合体等の所望の組成比の元素を含む液状の前駆物質などを用いることができ、その液状原料を、ノズル等を用いて化学炎又は熱プラズマ中に噴霧し、化学炎又は熱プラズマ中で溶剤又は分散媒を蒸発させた上で溶融させることによって行われる。ノズルと化学炎又は熱プラズマの間に低温の加熱域を設け、液状原料中の溶剤又は分散媒を蒸発させた上で、化学炎又は熱プラズマ中に投入することもできる。   In the flame method, a liquid precursor containing an element having a desired composition ratio such as a raw material colloidal liquid or an organometallic polymer can be used. It is carried out by spraying into plasma and evaporating the solvent or dispersion medium in a chemical flame or thermal plasma and then melting it. It is also possible to provide a low-temperature heating zone between the nozzle and the chemical flame or thermal plasma and evaporate the solvent or dispersion medium in the liquid raw material, and then put it into the chemical flame or thermal plasma.

フレーム法において、化学炎の発生源としては、2400℃以上の高温が得られれば良く、例えば、酸素−アセチレンの混合ガスや、それに水素を加えた混合ガス等が高温を得やすいことから好適に用いられる。また、熱プラズマの発生源としては、酸素、窒素、アルゴン、炭酸ガス及びこれらの混合ガス、並びに水が用いられ、ガスが用いられる場合、誘導結合方式のプラズマ装置が用いられるが、水が用いられることが好ましい。   In the flame method, it is only necessary to obtain a high temperature of 2400 ° C. or higher as a generation source of the chemical flame. Used. In addition, oxygen, nitrogen, argon, carbon dioxide gas and mixed gas thereof, and water are used as a source of thermal plasma. When gas is used, an inductively coupled plasma apparatus is used, but water is used. It is preferred that

アトマイズ法又はスピンディスク法の場合、原料としては、粉体、成形体、焼結体及び凝固体のいずれでも良く、また、これらの二つ以上が組み合わせたものでも良い。これら原料をその融点より高い融点を有する坩堝、例えば、Mo、W、Ta、Ir、Pt製等の坩堝、又は水などによって冷却が施されたCu製の坩堝等に収容した後、溶融させる。溶融方法は、原料をその融点以上の温度に加熱することが可能な方法であれば、いかなる方法でも良く、例えば、高周波、プラズマ、レーザ、電子ビーム、光又は赤外線等を用いることができる。原料の溶融は、原料が蒸発又は分解せず、且つ坩堝が著しく消耗しない雰囲気で行われることが好ましい。大気中、不活性ガス中、真空中等、原料と用いられる坩堝の材質に応じて、最適な雰囲気が選択される。   In the case of the atomizing method or the spin disk method, the raw material may be any of powder, a molded body, a sintered body, and a solidified body, or a combination of two or more of these. These raw materials are accommodated in a crucible having a melting point higher than the melting point thereof, for example, a crucible made of Mo, W, Ta, Ir, Pt or the like, or a Cu crucible cooled by water or the like and then melted. The melting method may be any method as long as the raw material can be heated to a temperature equal to or higher than its melting point, and for example, high frequency, plasma, laser, electron beam, light, or infrared can be used. The raw material is preferably melted in an atmosphere in which the raw material is not evaporated or decomposed and the crucible is not significantly consumed. An optimum atmosphere is selected depending on the raw material and the material of the crucible used, such as in the air, in an inert gas, or in a vacuum.

アトマイズ法は、ガス圧等を用いて坩堝底部等にあけられた細孔より融液を噴出させることによって球状の溶融粒子を形成することができる。スピンディスク法は、坩堝を傾転させる、アトマイズ法の場合と同様にガス圧等を用いて坩堝底部等にあけられた細孔より融液を噴出させるなどによって、回転するディスクに融液を衝突させて、球状の溶融粒子を形成することができる。   In the atomization method, spherical molten particles can be formed by ejecting a melt from pores opened in a crucible bottom or the like using gas pressure or the like. The spin disk method tilts the crucible, and in the same way as in the atomizing method, the melt collides with the rotating disk by, for example, jetting the melt from the pores opened at the bottom of the crucible using gas pressure etc. And spherical molten particles can be formed.

本発明に係る球状粒子の製造方法は、以上のように形成された溶融粒子を冷却することによって球状に凝固させることによって球状粒子を得ることができるが、酸化マグネシウムからなる相とMgAlからなる相から構成される共晶組織を呈する球状粒子を得るためには、溶融前の原料の構成成分の割合を調整する必要がある。凝固直前の溶融粒子が共晶組成となるように原料の構成成分の割合を調整する必要があるが、球形状及び熱伝導率が良好な球状粒子を得るためには、必ずしも共晶点と呼ばれる特定の組成である必要はない。例えば、その原材料が溶融した際の酸化マグネシウムと酸化アルミニウムとしての重量比が43:57〜57:43となるように調整されていることが必要である。このような原料の組成比にすることによって、均一な共晶組織が形成され易く、良好な球形状を有する球状粒子を得ることができる。溶融前の原料としては、一般的には、酸化マグネシウム及び酸化アルミニウムが用いられるが、溶融した際に酸化物になるものであれば良く、水酸化物、炭酸塩等を用いても良い。 In the method for producing spherical particles according to the present invention, spherical particles can be obtained by solidifying into spherical shapes by cooling the molten particles formed as described above, but a phase composed of magnesium oxide and MgAl 2 O 4 In order to obtain spherical particles exhibiting a eutectic structure composed of phases consisting of the above, it is necessary to adjust the proportion of the constituent components of the raw material before melting. Although it is necessary to adjust the ratio of the constituent components of the raw material so that the molten particles immediately before solidification have a eutectic composition, in order to obtain spherical particles having a good spherical shape and thermal conductivity, they are not necessarily called eutectic points. It need not be a specific composition. For example, it is necessary that the weight ratio of magnesium oxide to aluminum oxide when the raw material is melted is adjusted to be 43:57 to 57:43. By setting the composition ratio of such raw materials, a uniform eutectic structure is easily formed, and spherical particles having a good spherical shape can be obtained. As the raw material before melting, magnesium oxide and aluminum oxide are generally used. However, any material can be used as long as it becomes an oxide when melted, and hydroxide, carbonate, or the like may be used.

冷却工程は、例えば、球状の溶融粒子を冷媒に投入して急冷することによって行うことができる。冷媒による急冷を用いることによって、凝固前の粒子同士の接触を抑制し、良好な球形状を作ることができる。上述した本発明に係る球状粒子の製造方法における原料の構成成分の割合であれば、球状の溶融粒子についての冷媒による冷却によって共晶組織を呈する球状粒子を得ることができる。冷媒としては、非可燃性の媒体が好ましく、例えば、ヘリウムガス、水、液体窒素、液体アルゴン等を用いることができる。   The cooling step can be performed, for example, by putting spherical molten particles into a refrigerant and quenching. By using quenching with a refrigerant, it is possible to suppress contact between particles before solidification and to form a good spherical shape. If it is the ratio of the component of the raw material in the manufacturing method of the spherical particle which concerns on this invention mentioned above, the spherical particle which exhibits a eutectic structure by cooling with the refrigerant | coolant about a spherical molten particle can be obtained. As the refrigerant, a non-flammable medium is preferable, and for example, helium gas, water, liquid nitrogen, liquid argon, or the like can be used.

本発明に係る球状粒子は、球形状が良好なため、極めて流動性が良く、樹脂に充填する際に極めて良好な成形性を示す。得られた球状粒子は、所望の充填率が得られるよう分級された後、必要に応じて表面処理が施されて更に充填率を向上させることができる。表面処理剤としては、一般にシラン系カップリング剤が用いられるが、他にチタネート系及びアルミネート系カップリング剤を用いることもできる。   Since the spherical particles according to the present invention have a good spherical shape, they have extremely good fluidity and exhibit very good moldability when filled into a resin. The obtained spherical particles are classified so as to obtain a desired filling rate, and then subjected to a surface treatment as necessary to further improve the filling rate. As the surface treatment agent, a silane coupling agent is generally used, but titanate and aluminate coupling agents can also be used.

本発明に係る樹脂組成物は、エポキシ樹脂、シリコーン樹脂、及びポリイミド樹脂等の樹脂原料に上述した球状粒子が充填されていることが好ましく、またシリコーンゴム等に充填されても良い。また、本発明に係る樹脂組成物は、成形時、必要に応じて硬化剤、硬化促進剤等が添加される。   In the resin composition according to the present invention, the above-described spherical particles are preferably filled in a resin raw material such as an epoxy resin, a silicone resin, and a polyimide resin, or may be filled in a silicone rubber or the like. Moreover, the resin composition which concerns on this invention is added with a hardening | curing agent, a hardening accelerator, etc. as needed at the time of shaping | molding.

本発明に係るフィラーは、本発明の酸化マグネシウムからなる相とMgAlからなる相から構成される共晶組織を呈する球状粒子の集合体であり、その平均粒径は5〜500μmの範囲であることが好ましい。この範囲未満の場合は、粒子の表面積が大きくなり耐水性に問題が生じる可能性があり、この範囲を越える場合は、半導体封止樹脂等への充填性が悪くなるからである。平均粒径の調整は、篩による乾式または湿式の分級によって容易に行うことができ、その用途に応じて適切な目の粗さの篩を選択して所望の粒度分布を有するフィラーを得ることができる。 The filler according to the present invention is an aggregate of spherical particles exhibiting a eutectic structure composed of the phase composed of magnesium oxide and the phase composed of MgAl 2 O 4 of the present invention, and the average particle diameter thereof is in the range of 5 to 500 μm. It is preferable that If it is less than this range, the surface area of the particles may be increased, which may cause a problem in water resistance. If it exceeds this range, the filling property to the semiconductor sealing resin or the like will be deteriorated. Adjustment of the average particle diameter can be easily performed by dry or wet classification using a sieve, and a filler having a desired particle size distribution can be obtained by selecting a sieve having an appropriate mesh size according to the application. it can.

本発明に係る半導体樹脂封止剤は、本発明に係るフィラーと樹脂から構成される前記樹脂組成物からなる。半導体樹脂封止剤とは、集積回路を外部の熱やゴミ、湿気、衝撃などから守る樹脂組成物であり、一定以上の電気的絶縁性、耐水性に加え、優れた成形性および放熱性(高熱伝導性)が要求される。本発明に係るフィラーは、球形状および熱伝導性が良好な球状粒子の集合体であり、流動性が良く成形性が良好で、充填率を高くすることが可能であるため、本発明に係るフィラー及び樹脂からなる半導体樹脂封止剤は、優れた熱伝導性を有し、特に発熱量が大きな高性能集積回路に好適に用いられる。   The semiconductor resin sealant according to the present invention is composed of the resin composition composed of the filler and the resin according to the present invention. A semiconductor resin sealant is a resin composition that protects integrated circuits from external heat, dust, moisture, impact, etc. In addition to a certain level of electrical insulation and water resistance, it has excellent moldability and heat dissipation ( High thermal conductivity) is required. The filler according to the present invention is an aggregate of spherical particles having a spherical shape and good thermal conductivity, has good fluidity and good moldability, and can increase the filling rate. A semiconductor resin encapsulant composed of a filler and a resin has excellent thermal conductivity, and is particularly suitable for a high performance integrated circuit having a large calorific value.

本発明に係る半導体樹脂封止剤は、樹脂が固形材である場合、圧縮成形法やトランスファ成形法等により成形される。圧縮成形法は、金型のキャビティ内で樹脂を溶融させ圧縮しフィラーを成形するように硬化させて、予めキャビティ内に設置された、基板上のICチップ、ダイパッド、ボンディングワイヤのすべて、及びリードフレームの一部を封止する方法であり、トランスファ成形法は、金型のキャビティ外のポットで樹脂を溶融させて、小さな穴を通して溶融樹脂およびフィラーをキャビティ内に送り、キャビティ内でフィラーを成形するように硬化させて、圧縮成形法と同様に各部品を封止する方法である。   When the resin is a solid material, the semiconductor resin encapsulant according to the present invention is molded by a compression molding method, a transfer molding method, or the like. In the compression molding method, the resin is melted and compressed in the cavity of the mold and cured so as to mold the filler, and all of the IC chip, die pad, bonding wire, and leads on the substrate previously set in the cavity. This is a method of sealing part of the frame. In the transfer molding method, the resin is melted in a pot outside the mold cavity, the molten resin and filler are sent into the cavity through a small hole, and the filler is molded in the cavity. This is a method of sealing each component in the same manner as the compression molding method.

また、本発明に係る半導体樹脂封止剤は、樹脂が液状封止材である場合、液状樹脂とフィラーを混合し、ディスペンサー等により必要な箇所に注入する、また塗布する等した後、必要に応じて脱溶媒を行い、次いでフィラーを成形するように硬化させて封止を行うことができる。   In addition, when the resin is a liquid encapsulant, the semiconductor resin encapsulant according to the present invention is necessary after mixing the liquid resin and filler, injecting into a required location with a dispenser or the like, or applying it. Accordingly, the solvent can be removed, and then the filler can be cured to form and sealed.

いずれの方法であっても、フィラーの含有率は60〜90重量%程度であることが好ましい。フィラーの含有率が、この範囲より少ないと、当該フィラーの良好な熱伝導性の効果が得にくく、またこの範囲より多いと、成形が困難になる。樹脂は、目的に応じて多様な種類から選択され、その硬化剤、硬化促進剤はそれに応じて選択され、また成形温度もそれらにより最適な条件が選択される。   In any method, the filler content is preferably about 60 to 90% by weight. When the filler content is less than this range, it is difficult to obtain a good thermal conductivity effect of the filler, and when it is more than this range, molding becomes difficult. The resin is selected from various types according to the purpose, the curing agent and curing accelerator are selected accordingly, and the optimum molding temperature is selected accordingly.

実施例1
次に、本発明に係る球状粒子の実施例1について説明する。実施例1に係る球状粒子の原料としては、MgO粉末(高純度化学研究所社製、商品名MGO12PB)及びα−Al粉末(住友化学工業社製、商品名AKP−30)を用いた。MgO粉末及びα−Al粉末を重量比で55:45の割合で水を用いた湿式ボールミルによって混合し、得られたスラリーをスプレードライヤーを用いて造粒乾燥して平均粒径25μmの顆粒状の粒子を得た。
Example 1
Next, Example 1 of spherical particles according to the present invention will be described. As raw materials for the spherical particles according to Example 1, MgO powder (product name: MGO12PB, manufactured by High Purity Chemical Laboratory Co., Ltd.) and α-Al 2 O 3 powder (product name: AKP-30, manufactured by Sumitomo Chemical Co., Ltd.) are used. It was. The MgO powder and the α-Al 2 O 3 powder were mixed by a wet ball mill using water at a weight ratio of 55:45, and the resulting slurry was granulated and dried using a spray dryer, and the average particle size was 25 μm. Granular particles were obtained.

酸素及びアセチレンの混合ガスの燃焼により形成された火炎中に、得られた顆粒状の粒子を混合ガスの噴出方向と平行に供給し、火炎中において溶融球状化させた後、火炎先端を流水中へ入射させることによって溶融粒子を流水中へ投入し凝固させた。   In the flame formed by the combustion of the mixed gas of oxygen and acetylene, the obtained granular particles are supplied in parallel with the jet direction of the mixed gas, and are melted and spheroidized in the flame. The molten particles were poured into running water to be solidified.

得られた球状粒子の代表的な走査電子顕微鏡写真を図1に示す。この球状粒子の集合体であるフィラーは、平均粒径17μmであり、その長辺と短辺の比は平均で1.12であった。この球状粒子は、Cu−Kα線を用いたX線回折、球状粒子断面の走査電子顕微鏡観察により、酸化マグネシウムからなる相と、MgAlからなる相から構成される共晶組織を呈しており、空隙等の欠陥を有さない緻密質であることいるがわかった。 A representative scanning electron micrograph of the obtained spherical particles is shown in FIG. The filler, which is an aggregate of spherical particles, had an average particle diameter of 17 μm, and the ratio of the long side to the short side was 1.12 on average. The spherical particles exhibit a eutectic structure composed of a phase composed of magnesium oxide and a phase composed of MgAl 2 O 4 by X-ray diffraction using Cu—Kα rays and scanning electron microscope observation of the cross section of the spherical particles. It was found to be dense with no defects such as voids.

得られた球状粒子をエポキシシランカップリング剤で処理し、この球状粒子を100%とした場合に、この球状粒子に対して、20重量%のノボラックエポキシ樹脂、10重量%のノボラックフェノール、0.4重量%の硬化促進剤及び0.4重量%のカルナバワックスを加えて100℃で混錬し粉砕した。得られた粉末を170℃で7MPaの圧力でプレス成形して直径20mm、厚さ3mmの樹脂成型物を得た。得られた樹脂成型物の熱伝導率をレーザフラッシュ法により測定したところ、3.38W/mKの値を得た。   When the obtained spherical particles are treated with an epoxy silane coupling agent and the spherical particles are taken as 100%, 20% by weight of a novolac epoxy resin, 10% by weight of novolak phenol, 0.0. 4 wt% curing accelerator and 0.4 wt% carnauba wax were added and kneaded at 100 ° C. and pulverized. The obtained powder was press-molded at 170 ° C. and a pressure of 7 MPa to obtain a resin molded product having a diameter of 20 mm and a thickness of 3 mm. When the thermal conductivity of the obtained resin molding was measured by a laser flash method, a value of 3.38 W / mK was obtained.

実施例2
次に、本発明に係る球状粒子の実施例2について説明する。実施例1に係る球状粒子は、実施例1と同様に、MgO粉末及びα−Al粉末を用い、MgO粉末及びα−Al粉末の重量比を45:55の割合にした以外は、実施例1と同様の方法で造粒乾燥して平均粒子径24μmの顆粒状の粒子を得て、実施例1と同様の方法で溶融球状化させたのち、凝固させ球状粒子を得た。得られた球状粒子は、平均粒子径16μmであり、その長辺と短辺の比は平均で1.10であった。この球状粒子は、Cu−Kα線を用いたX線回折、球状粒子断面の走査電子顕微鏡観察により、酸化マグネシウムからなる相と、MgAlからなる相から構成される共晶組織を呈しており、空隙等の欠陥を有さない緻密質であることがわかった。
Example 2
Next, Example 2 of spherical particles according to the present invention will be described. Spherical particles according to the first embodiment, in the same manner as in Example 1, using a MgO powder and α-Al 2 O 3 powder was a MgO powder and α-Al 2 O 3 powder weight ratio of the proportion of 45:55 Except for the above, granulated and dried by the same method as in Example 1 to obtain granular particles having an average particle size of 24 μm, melted and spheronized by the same method as in Example 1, and then solidified to obtain spherical particles. It was. The obtained spherical particles had an average particle diameter of 16 μm, and the ratio of the long side to the short side was 1.10 on average. The spherical particles exhibit a eutectic structure composed of a phase composed of magnesium oxide and a phase composed of MgAl 2 O 4 by X-ray diffraction using Cu—Kα rays and scanning electron microscope observation of the cross section of the spherical particles. It was found to be dense with no defects such as voids.

得られた球状粒子をエポキシシランカップリング剤で処理し、この球状粒子を100%とした場合に、この球状粒子に対して、20重量%のノボラックエポキシ樹脂、10重量%のノボラックフェノール、0.4重量%の硬化促進剤及び0.4重量%のカルナバワックスを加えて100℃で混錬し粉砕した。得られた粉末を170℃で7MPaの圧力でプレス成形して直径20mm、厚さ3mmの樹脂成型物を得た。得られた樹脂成型物の熱伝導率をレーザフラッシュ法により測定したところ、3.11W/mKの値を得た。   When the obtained spherical particles are treated with an epoxy silane coupling agent and the spherical particles are taken as 100%, 20% by weight of a novolac epoxy resin, 10% by weight of novolak phenol, 0.0. 4 wt% curing accelerator and 0.4 wt% carnauba wax were added and kneaded at 100 ° C. and pulverized. The obtained powder was press-molded at 170 ° C. and a pressure of 7 MPa to obtain a resin molded product having a diameter of 20 mm and a thickness of 3 mm. When the thermal conductivity of the obtained resin molding was measured by a laser flash method, a value of 3.11 W / mK was obtained.

比較例1
次に、本発明に係る球状粒子の比較例1について説明する。比較例1に係る球状粒子の原料として、実施例1と同様に、MgO粉末及びα−Al粉末を用い、MgO粉末及びα−Al粉末の重量比を80:20の割合にした以外は、実施例1と同様の方法で球状粒子を得た。得られた球状粒子は、平均粒子径34μmであり、その長辺と短辺の比は平均で1.47であった。この球状粒子は、Cu−Kα線を用いたX線回折、球状粒子断面の走査電子顕微鏡観察により、酸化マグネシウムからなる相と、MgAlからなる相から構成されており、粒子内に多くの空隙を有していることがわかった。
Comparative Example 1
Next, Comparative Example 1 of spherical particles according to the present invention will be described. As the raw material of the spherical particles according to Comparative Example 1, MgO powder and α-Al 2 O 3 powder were used as in Example 1, and the weight ratio of MgO powder and α-Al 2 O 3 powder was a ratio of 80:20. Except for the above, spherical particles were obtained in the same manner as in Example 1. The obtained spherical particles had an average particle diameter of 34 μm, and the ratio of the long side to the short side was 1.47 on average. This spherical particle is composed of a phase made of magnesium oxide and a phase made of MgAl 2 O 4 by X-ray diffraction using Cu—Kα rays and scanning electron microscope observation of the cross section of the spherical particle, and there are many in the particles. It was found that it has a void.

比較例2
次に、本発明に係る球状粒子の比較例2について説明する。比較例2に係る球状粒子は、市販の球状アルミナを粒度分布が実施例1と同等になるように篩による分級によって調整し、実施例1と同様の方法でこの球状アルミナが充填された樹脂成形物を作製した。得られた成形物の熱伝導率を実施例1と同様の方法で測定したところ、2.93W/mKであった。
Comparative Example 2
Next, Comparative Example 2 of spherical particles according to the present invention will be described. The spherical particles according to Comparative Example 2 were prepared by adjusting commercially available spherical alumina by classification with a sieve so that the particle size distribution would be the same as in Example 1, and resin molding in which this spherical alumina was filled in the same manner as in Example 1 A product was made. It was 2.93 W / mK when the heat conductivity of the obtained molding was measured by the same method as Example 1.

実施例1に係る球状粒子の代表的な走査電子顕微鏡写真である。2 is a representative scanning electron micrograph of spherical particles according to Example 1. FIG.

Claims (8)

酸化マグネシウムからなる相とMgAlからなる相から構成される共晶組織を呈する球状粒子。 Spherical particles exhibiting a eutectic structure composed of a phase composed of magnesium oxide and a phase composed of MgAl 2 O 4 . その原材料が溶融した際の酸化マグネシウムと酸化アルミニウムとしての重量比が43:57〜57:43となるように調整されたMg、Al及びOを主成分とする溶融粒子が冷却凝固されることによって得られることを特徴とする請求項1記載の球状粒子。   By melting and solidifying molten particles mainly composed of Mg, Al, and O so that the weight ratio of magnesium oxide to aluminum oxide when the raw material is melted is 43:57 to 57:43 The spherical particle according to claim 1, which is obtained. 長辺と短辺の比が平均で1.0〜1.15である請求項1又は2記載の球状粒子。   The spherical particles according to claim 1 or 2, wherein the ratio of the long side to the short side is 1.0 to 1.15 on average. 請求項1乃至3いずれか記載の球状粒子を含む樹脂組成物。   A resin composition comprising the spherical particles according to claim 1. Mg、Al及びOを主成分とする溶融粒子を冷却凝固することによって請求項1記載の球状粒子を製造する球状粒子の製造方法であって、
前記溶融粒子は、その原材料が溶融した際の酸化マグネシウムと酸化アルミニウムとしての重量比が43:57〜57:43となるように調整されていることを特徴とする球状粒子の製造方法。
A method for producing spherical particles for producing spherical particles according to claim 1 by cooling and solidifying molten particles containing Mg, Al and O as main components,
The method for producing spherical particles, wherein the molten particles are adjusted so that the weight ratio of magnesium oxide to aluminum oxide when the raw materials are melted is 43:57 to 57:43.
前記冷却は、前記溶融粒子を冷媒に投入することによる急冷により行われることを特徴とする請求項5記載の球状粒子の製造方法。   6. The method for producing spherical particles according to claim 5, wherein the cooling is performed by quenching by introducing the molten particles into a refrigerant. 請求項1乃至3いずれか記載の球状粒子の集合体であり、平均粒径が5〜500μmであるフィラー。   The filler which is an aggregate | assembly of the spherical particle in any one of Claims 1 thru | or 3, and whose average particle diameter is 5-500 micrometers. 請求項7記載のフィラーと樹脂を含む半導体樹脂封止剤。   The semiconductor resin sealing agent containing the filler and resin of Claim 7.
JP2008062518A 2008-03-12 2008-03-12 Spherical particle, resin composition containing it, its producing method, filler being aggregation of the spherical particle and semiconductor resin sealing agent containing the filler Pending JP2009215132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008062518A JP2009215132A (en) 2008-03-12 2008-03-12 Spherical particle, resin composition containing it, its producing method, filler being aggregation of the spherical particle and semiconductor resin sealing agent containing the filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008062518A JP2009215132A (en) 2008-03-12 2008-03-12 Spherical particle, resin composition containing it, its producing method, filler being aggregation of the spherical particle and semiconductor resin sealing agent containing the filler

Publications (1)

Publication Number Publication Date
JP2009215132A true JP2009215132A (en) 2009-09-24

Family

ID=41187391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008062518A Pending JP2009215132A (en) 2008-03-12 2008-03-12 Spherical particle, resin composition containing it, its producing method, filler being aggregation of the spherical particle and semiconductor resin sealing agent containing the filler

Country Status (1)

Country Link
JP (1) JP2009215132A (en)

Similar Documents

Publication Publication Date Title
JP6773153B2 (en) Boron Nitride Agglomerated Particles, Method for Producing Boron Nitride Aggregated Particles, The Boron Nitride Agglomerated Particle-Containing Resin Composition, Mold, and Sheet
JP7046056B2 (en) Spherical crystalline silica particles and their manufacturing method
JP5689985B2 (en) BN Sintered Particles with Recesses, Method for Producing the Same, and Polymer Material
JP6364883B2 (en) Boron nitride particles, boron nitride particle manufacturing method, heat-dissipating sheet coating solution containing boron nitride particles, heat-dissipating sheet containing boron nitride particles, and power device device
JP5602480B2 (en) Method for producing alumina particles provided with AlN modified layer
JP6934344B2 (en) Powder for spherical silica filler and its manufacturing method
TW201829313A (en) Spherical crystalline silica particles and method for producing same
JP6500339B2 (en) Heat dissipation sheet, coating liquid for heat dissipation sheet, and power device
JP6256158B2 (en) Heat dissipation sheet and heat dissipation sheet manufacturing method, slurry for heat dissipation sheet, and power device device
JP2022040270A (en) Powder for ceramic shaping, ceramic shaped article, and method for manufacturing the same
JP2015081205A (en) Silicon nitride filler, resin composite, insulating substrate, and semiconductor sealant
JP7433022B2 (en) Hollow silica particles, their manufacturing method, resin composite compositions and resin composites using the same
JP2017036190A (en) Boron nitride aggregated particle composition, bn aggregated particle-containing resin composition and their compact, as well as production method of boron nitride aggregated particle
WO1988000573A1 (en) Spherical corundum particles, process for their production, and highly heat-conductive rubber or plastic composition containing them
JP2016011358A (en) Resin composition, heat radiation sheet comprising resin composition, and power device unit comprising heat radiation sheet
WO2020138335A1 (en) Inorganic powder for heat-dissipating resin composition, heat-dissipating resin composition using same, and methods for producing same
JP7017362B2 (en) Spherical crystalline silica particles and their manufacturing method
JP2009215134A (en) Water resistant spherical particle, resin composition containing it, its producing method, filler being aggregation of the water resistant spherical particle and semiconductor resin sealing agent containing the filler
JP7292941B2 (en) Aluminum nitride composite filler
JP2009215132A (en) Spherical particle, resin composition containing it, its producing method, filler being aggregation of the spherical particle and semiconductor resin sealing agent containing the filler
JPH11269302A (en) Filler for improving thermal conductivity of resin product and its production
JP2009215133A (en) Spherical particles, resin composition containing the same and its manufacturing method, as well as filler being aggregate of the spherical particles and semiconductor resin sealing agent containing the filler
JPH07252377A (en) Highly heat-conductive resin composition
JP2004203664A (en) Spherical siliceous powder and manufacturing method and utilization of the same
KR102599515B1 (en) Manufacturing method of aluminum nitride sintered body