JP2009200284A - レーザ光源装置、画像表示装置及びモニタ装置 - Google Patents

レーザ光源装置、画像表示装置及びモニタ装置 Download PDF

Info

Publication number
JP2009200284A
JP2009200284A JP2008041029A JP2008041029A JP2009200284A JP 2009200284 A JP2009200284 A JP 2009200284A JP 2008041029 A JP2008041029 A JP 2008041029A JP 2008041029 A JP2008041029 A JP 2008041029A JP 2009200284 A JP2009200284 A JP 2009200284A
Authority
JP
Japan
Prior art keywords
light source
wavelength
laser light
light
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008041029A
Other languages
English (en)
Inventor
Kunihiko Takagi
邦彦 高城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008041029A priority Critical patent/JP2009200284A/ja
Publication of JP2009200284A publication Critical patent/JP2009200284A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Projection Apparatus (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】高出力化を実現することが可能なレーザ光源装置、画像表示装置及びモニタ装置を提供すること。
【解決手段】基本波長の光を射出する光源と、基本波長の光の少なくとも一部を所定の変換波長のレーザ光に変換する波長変換素子16と、該波長変換素子16の射出端面16bに設けられ所定の変換波長の光を透過させ、基本波長の光を反射させる反射部18と、光源から射出された基本波長の光を波長変換素子16に向かって反射させるとともに、反射部18において反射された基本波長の光の光路を光源に戻すように調整する光路調整素子13とを備えることを特徴とするレーザ光源装置。
【選択図】図1

Description

本発明は、レーザ光源装置、画像表示装置及びモニタ装置に関する。
従来から、プロジェクタ等の光学装置用の照明光源として高圧水銀ランプが多用されてきたが、色再現性、瞬時点灯が難しい、寿命が短い等の課題がある。そこで、この分野において、これらの課題を解決するためにレーザ光源装置の開発が進められている。特に外部共振器構造を持つレーザ光源装置は、外部共振器の使用により特定の波長の光が強められ、高出力が得られるものである。また、例えば赤外レーザ光などの基本波長の光を発振させた後、第2高調波発生素子(Second Harmonic Generator,以下、SHGと略記する)等の波長変換素子を用いて、赤外レーザ光を1/2の波長の可視光に変換する技術が用いられる(例えば、特許文献1参照。)。
特許文献1に記載の第2次高調波発生装置は、非線形光学材料からなるドメイン反転型構造の射出端面に曲率を有する凸面を形成し、この凸面にミラー構造を設けている。そして、非線形光学材料を傾けることにより、非線形光学材料を進行する光の共振長を変化させ、緑色光や青色光の第2次高調波光を発生させることができる。
特開平6−132595号公報
しかしながら、上記特許文献1に記載の第2次高調波発生装置では、非線形光学材料の射出端面に曲率を有する凸面を形成する加工が必要となり、コストが高くなってしまう。また、一方向に曲率を有する凸面では、許容できる角度ズレが1軸しかないため、他の1つの角度軸については非線形光学材料を精度良く配置する必要がある。これにより、組み立て工数の増大を招いてしまう。
また、非線形光学結晶は波長整合を温度で制御する場合がある。この場合、所定の放熱量に設計されたヒータを備えたヒートスプレッダー上に波長変換素子を配置する。このとき、光源とミラー構造との面合わせを行うために非線形光学結晶の角度調整を行った場合、波長変換素子とヒートスプレッダー表面との隙間が増え、その隙間に充填される接着剤の量が増加する。その結果、ヒートスプレッダーからの放熱量が低下し、レーザ発振時にレーザの吸収により非線形光学結晶の整合温度よりも高温になってしまい、非線形光学結晶は位相整合条件から外れてしまう。これにより、射出されるレーザ光の強度が低下してしまう。
本発明は、上記の課題を解決するためになされたものであって、高出力化を実現することが可能なレーザ光源装置、画像表示装置及びモニタ装置を提供することを目的とする。
上記目的を達成するために、本発明は、以下の手段を提供する。
本発明のレーザ光源装置は、基本波長の光を射出する光源と、前記基本波長の光の少なくとも一部を所定の変換波長の光に変換する波長変換素子と、該波長変換素子の射出端面に設けられ前記所定の変換波長の光を透過させ、前記基本波長の光を反射させる反射部と、前記光源から射出された基本波長の光を前記波長変換素子に向かって反射させるとともに、前記反射部において反射された前記基本波長の光の光路を前記光源に戻すように調整する光路調整素子とを備えることを特徴とする。
本発明に係るレーザ光源装置では、光源から射出された基本波長の光は、光路調整素子を介して波長変換素子に入射する。波長変換素子に入射された光のうち所定の変換波長に変換された光は、波長変換素子の射出端面に設けられた反射部を透過し、所定の変換波長に変換されなかった基本波長の光は、反射部において反射される。反射部において反射された基本波長の光は、再び波長変換素子に入射される。そして、波長変換素子を通過することによって所定の変換波長に変換されなかった基本波長の光の光路は光路調整素子により調整される。
ここで、光路調整素子を調整することで、反射部において反射された基本波長の光を光源に正確に戻すことが可能となる。すなわち、光源と反射部とが共振可能な角度となっていない場合でも、光路調整素子を角度調整することにより、光源から射出された光を光源と反射部との間で共振させることが可能となる。したがって、波長変換素子の配置精度が不要となるため、簡易な組み立てにより高出力なレーザ光を射出させることが可能となる。
また、波長変換素子を温度制御する場合でも、波長変換素子を動かさずに、光源と反射部との位置合わせができる。これにより、波長変換素子とヒートスプレッダーとの隙間量は設計値から変化しないため、所定の放熱量が確保される温度制御が可能となる。したがって、波長変換素子を所定の温度に保つことが可能となるため、波長変換素子における光の利用効率を向上させることが可能となる。
また、本発明のレーザ光源装置は、前記光路調整素子が、前記所定の変換波長の光を透過させて前記光源とは異なる方向に射出させることが好ましい。
本発明に係るレーザ光源装置では、光路調整素子が、所定の変換波長の光を透過させて光源とは異なる方向に射出させる。これにより、反射部において反射され、再び波長変換素子を通過することにより所定の変換波長に変換された光を光源と反射部との間の光路から取り出すことができる。したがって、光源から射出された光の利用効率を向上させることが可能となる。
また、本発明のレーザ光源装置は、前記光路調整素子の角度調整を行う角度調整機構を備えることが好ましい。
本発明に係るレーザ光源装置では、角度調整機構により、反射部において反射され、光路調整素子に入射する光の光路を調整する。これにより、反射部において反射された光を光源に正確に入射させることが可能となる。
また、角度調整機構を設けない場合は、光路調整素子を調整した後、例えば、接着剤で光路調整素子を固定する必要があるため、経年変化により接着剤が劣化し、光路調整素子の位置にも経年変化が生じる。しかしながら、本発明では、接着剤等による固定とは異なるため、経年変化による光路調整素子の位置ズレが少なくなるため、出力強度の低下を抑えることが可能となる。
また、本発明のレーザ光源装置は、溝部に前記光路調整素子を保持する保持部材を備え、前記角度調整機構は、前記溝部に設けられ前記光路調整素子を固定する固定部と、前記光路調整素子の射出端面側の前記保持部材に前記射出端面に接触して設けられ、前記射出端面から前記光路調整素子の入射端面に向かう方向に進退する第1ねじ部及び第2ねじ部と、前記光路調整素子の入射端面と前記溝部との間に設けられた弾性部材とを備えることが好ましい。
本発明に係るレーザ光源装置では、保持部材に設けられた第1,第2ねじ部を進退させることにより、保持部材に保持された光路調整素子の角度2軸を調整することが可能となる。このように、第1,第2ねじ部により、反射部において反射された光の光路が調整されることにより、光源内のミラーの面と反射部の反射面とを簡易な構成で、精度の良く位置合わせすることが可能となる。
さらに、光路調整素子の入射端面と溝部との間に弾性部材を備えることにより、光路調整素子の射出端面を第1,第2ねじ部に押し当てることができる。これにより、第1,第2ねじ部と光路調整素子との間に隙間が生じてしまうのを抑えることができる。したがって、光路調整素子と第1,第2ねじ部との接触を良好に保つことができる。
本発明のレーザ光源装置は、前記光源と前記波長変換素子との間の光路上に配置され、前記光源から射出された光のうち所定の選択波長の光を透過させる波長選択部を備えることが好ましい。
本発明に係るレーザ光源装置では、光源から射出された光は、波長選択部を通過することにより所定の選択波長の光が透過される。これにより、光源と反射部との間を往復する光の発振波長のスペクトルが制限されるため、所望の波長の光を安定して射出させることが可能となる。
また、本発明のレーザ光源装置は、前記波長選択部が、前記波長変換素子の入射端面に成膜されていることが好ましい。
本発明に係るレーザ光源装置では、波長選択部が、波長変換素子の入射端面に成膜されている。これにより、波長変換素子と波長選択部とが別体に設けられる場合に比べて、光源から射出された光が通過する光学部材と空気との界面を少なくすることができるため、光量の損失を抑えることが可能となる。したがって、高出力なレーザ光を射出することが可能となる。
本発明の画像表示装置は、上記のレーザ光源装置と、該レーザ光源装置からの光を利用して、表示面に所望の大きさの画像を表示させる画像形成装置とを備えることを特徴とする。
本発明に係る画像表示装置では、レーザ光源装置より射出されたレーザ光は画像形成装置に入射される。そして、画像形成装置により形成された画像が表示面に表示される。このとき、レーザ光源装置より射出される光は、上述したように、高出力なレーザ光を射出するため、明るく鮮明な画像を表示することが可能となる。
本発明のモニタ装置は、上記のレーザ光源装置と、該レーザ光源装置から射出されたレーザ光により被写体を撮像する撮像手段とを備えることを特徴とする
本発明に係るモニタ装置では、レーザ光源装置より射出されたレーザ光は被写体を照射し、撮像手段により被写体を撮像する。このとき、上述したように、高出力なレーザ光を射出するため、明るい光により被写体が照射される。したがって、撮像手段により被写体を鮮明に撮像することが可能となる。
以下、図面を参照して、本発明に係るレーザ光源装置、画像表示装置及びモニタ装置の実施形態について説明する。なお、以下の図面においては、各部材を認識可能な大きさとするために、各部材の縮尺を適宜変更している。
[第1実施形態]
レーザ光源装置1は、図1及び図2に示すように、基台11と、半導体レーザ素子(光源)12と、ダイクロイックミラー(光路調整素子)13と、波長変換素子16と、角度調整機構20とを備えている。
ここで、半導体レーザ素子12から射出されるレーザ光の射出方向をZ軸とし、後述するエミッタ14の配列方向をY軸とし、射出方向及び配列方向に直交する軸をX軸とする。
半導体レーザ素子12は、図2に示すように、射出端面12aから、例えば、1065nmの波長の赤外レーザ光(基本波長の光)を射出する面発光型レーザダイオードであり、平面視が円形状のエミッタ(発光部)14がそれぞれ複数形成されている。具体的には、半導体レーザ素子12は、Y軸方向に複数のエミッタ14を有している。
また、エミッタ14は、図2の拡大図に示すように、DBR(Distributed Bragg Reflector)層12b上に、活性層12cが積層された構成になっている。
また、図2に示すように、半導体レーザ素子12から射出されたレーザ光の光路上にダイクロイックミラー13が配置されている。このダイクロイックミラー13は、半導体レーザ素子12から射出されたレーザ光が45°の角度で反射面(入射端面)13aに入射するように配置されている。これにより、半導体レーザ素子12から射出されたレーザ光の光路は90°変換されて射出される。
このダイクロイックミラー13は、図1に示すように、溝部31a,32aを有する第1,第2保持部(保持部材)31,32に保持されている。第1,第2保持部31,32は、ダイクロイックミラー13のY軸方向の端部側に設けられており、XZ平面において、角度45°の方向に開口している。そして、溝部31a,32a内にダイクロイックミラー13の端部が、ダイクロイックミラー13と隙間33を設けて配置されている。
波長変換素子16は、図1に示すように、ダイクロイックミラー13から射出されたレーザ光の光路上に配置されている。また、波長変換素子16は、複数のエミッタ14から射出されたレーザ光が入射端面16aにすべて入射するように配置されている。
波長変換素子16としては、非線形光学素子であるPPLN(Periodically Poled Lithium Niobate)が用いられ、入射光をほぼ半分の波長に変換し、2次高調波を発生させるSHG素子として機能する。
そして、図1に示すように、半導体レーザ素子12から射出された光のうち一部の光は、波長変換素子16を通過することによって、ほぼ半分の(532.5nm)の緑色のレーザ光(所定の変換波長の光)に変換される。
波長変換素子16は、ヒートスプレッダーとして機能する温度調節基板(本実施形態では、銅製の板)26の上面26aに接着固定されている。この温度調節基板26には、波長変換素子16の温度を調節するサーミスタ(図示略)と、ヒータ(図示略)とが設けられている。波長変換素子16は、温度の変化に伴い内部の屈折率が変化するため、サーミスタにより波長変換素子16の温度を検出し、検出された波長変換素子16の温度に基づいてヒータにより、波長変換素子16を加熱する。すなわち、温度調節基板26により、波長変換素子16を適温に調整することで膨張させ、波長整合させる。これにより、半導体レーザ素子12から射出されたレーザ光を所定の変換波長の高調波レーザ光に効率良く変換することが可能となる。
また、波長変換素子16の射出端面16bには、共振器ミラーとして機能する反射膜(反射部)18が形成されている。反射膜18は、波長変換素子16において半分の波長に変換された光を選択的に透過するとともに、それ以外の光を反射する機能を有する。すなわち、反射膜18により、波長変換素子16において半分の波長に変換されなかった光は半導体レーザ素子12の方へ戻される。本実施形態において、反射膜18は、図2に示すように、波長変換素子16から射出された光のうち、波長変換素子16によって所定の変換波長に変換されなかった光(赤外光:基本波長の光)を選択的に約80%以上の高効率で反射し、所定の変換波長に変換された光を約80%以上透過する。すなわち、半導体レーザ素子12のDBR層12bと、反射膜18との間で、半導体レーザ素子12から射出されたレーザ光が共振することにより、所定の変換波長のレーザ光を増幅させる。
また、半導体レーザ素子12から射出されたレーザ光は、サーマルレンズ効果により集光される。そして、反射膜18は、集光されたレーザ光のビームウエスト部に位置するように配置されている。これにより、波長変換素子16における変換効率を向上させることが可能となる。
さらに、ダイクロイックミラー13は、反射膜18で反射されたレーザ光(基本波長の光)の光路を調整する。具体的には、反射膜18で反射されたレーザ光のうち、再び波長変換素子16を通過することにより、所定の変換波長の光に変換されたレーザ光を透過させ半導体レーザ素子12とは異なる方向に射出させる。一方、所定の変換波長に変換されなかったレーザ光を半導体レーザ素子12のDBR層12bに戻すものである。
角度調整機構20は、図1に示すように、固定部21と、第1ねじ部22と、第2ねじ部23と、バネ(弾性部材)24,25とを備えており、ダイクロイックミラー13の角度を調整し、反射膜18において反射され波長変換素子16から射出されたレーザ光が半導体レーザ素子12に向かって射出される光路を調整するものである。
固定部21は、図3に示すように、第2保持部32の溝部32aに設けられている。具体的には、固定部21は、ダイクロイックミラー13の射出端面13bと接触している。この固定部21により、ダイクロイックミラー13を安定して保持することが可能となる。さらに、溝部32aには、他の固定部27が設けられており、この他の固定部27は、ダイクロイックミラー13の底面13cと接触している。
第1ねじ部22は、図1に示すように、ダイクロイックミラー13の射出端面13b側の第1保持部31に設けられており、ダイクロイックミラー13の角部13dに接触している。また、第2ねじ23部は、ダイクロイックミラー13の射出端面13b側の第2保持部32に設けられており、ダイクロイックミラー13の角部13dと対角の位置の角部13eに接触している。すなわち、第1,第2ねじ部22,23は、図1及び図4に示すように、ダイクロイックミラー13の射出端面13bの対角の位置に配置されている。
そして、図1に示すように、第1,第2ねじ部22,23を回転し、第1ねじ部22を長手方向(矢印A方向)に進退させ、第2ねじ部23を長手方向(矢印B方向)に進退させる。そして、溝部31a,32a内に突出される第1,第2ねじ部22,23の長さを変化させる。これによって、ダイクロイックミラー13の幅方向の軸P1及び長さ方向の軸P2まわりの角度が変化する。このようにして、ダイクロイックミラー13の2軸の角度調整を行うことにより、ダイクロイックミラー13において反射されたレーザ光の光路が調整され、それぞれ対応した半導体レーザ素子12のDBR層12bに入射される。
また、ダイクロイックミラー13の入射端面13aと溝部31a,32aとの隙間33には、図3に示すように、それぞれバネ24,25が設けられている。このバネ24,25は、ダイクロイックミラー13の入射端面13aから射出端面13bに向かう方向に付勢されているため、バネ24,25の付勢力によりダイクロイックミラー13を第1,第2ねじ部22,23に押し当てている。
以上より、本実施形態に係るレーザ光源装置1では、ダイクロイックミラー13を軸P1,P2まわりに角度調整することで、反射膜18において反射された基本波長のレーザ光の光路が調整され、レーザ光を半導体レーザ素子12のDBR層12bに正確に戻すことが可能となる。すなわち、半導体レーザ素子12と反射膜18とが共振可能な角度となっていない場合でも、ダイクロイックミラー13の角度を調整することにより、レーザ光の入射位置と半導体レーザ素子12のDBR層12bとの位置合わせが行われる。これにより、半導体レーザ素子12から射出されたレーザ光を半導体レーザ素子12のDBR層12bと反射膜18との間で共振させることが可能となる。しがって、波長変換素子16の配置精度が不要となるため、簡易な組み立てにより、高出力なレーザ光を射出させることが可能となる。
また、波長変換素子16を温度制御する場合でも、波長変換素子16を動かさずに、ダイクロイックミラー13を角度調整することによって、半導体レーザ素子12のDBR層12bと反射膜18との位置合わせができる。これにより、波長変換素子16とヒートスプレッダーとの隙間量は設計値から変化しないため、所定の放熱量が確保される温度制御が可能となる。したがって、波長変換素子16を所定の温度に保つことが可能となるため、波長変換素子16におけるレーザ光の利用効率を向上させることが可能となる。
つまり、本実施形態のレーザ光源装置1は、高出力化を実現することが可能である。
また、ダイクロイックミラー13は、所定の変換波長のレーザ光を透過させる特性も有している。これにより、反射膜18で反射され再び波長変換素子16を通過することにより、所定の変換波長に変換されたレーザ光を半導体レーザ素子12のDBR層12bと反射膜18との間の光路から取り出すことが可能となる。したがって、半導体レーザ素子12から射出されたレーザ光の利用効率を向上させることが可能となる。
また、角度調整機構20により、ダイクロイックミラー13の角度を調整することにより、反射膜18において反射されたレーザ光を半導体レーザ素子12のDBR層12bに正確に入射させることが可能となる。また、第1,第2ねじ部22,23を進退させることにより、ダイクロイックミラー13の角度を調整しているため、反射膜18において反射されたレーザ光を簡易な構成で、精度の良く半導体レーザ素子12のDBR層12bに入射させることが可能となる。
また、バネ24,25を備えることにより、ダイクロイックミラー13を第1,第2ねじ部22,23に押し当てることができる。これにより、第1,第2ねじ部22,23とダイクロイックミラー13との間に隙間が生じてしまうのを抑えることができる。したがって、ダイクロイックミラー13と第1,第2ねじ部22,23との接触を良好に保つことができるので、ダイクロイックミラー13の角度を精度良く調整することが可能となる。
また、反射膜18は、レーザ光のビームウエスト部に位置するように配置されている。ここで、波長変換素子16における変換効率はエネルギー密度の2乗に比例するため、波長変換素子16内のレーザエネルギー密度が高まり変換効率が向上する。さらに、反射膜18を設けず、波長変換素子16とは別体で反射ミラーを設ける場合に比べて、本実施形態では、反射膜18と空気との界面がないため、基本波長の光の界面反射による光量の損失が減ることになる。したがって、より高出力なレーザ光を射出することが可能となる。
なお、ダイクロイックミラー13は、波長変換素子16の反射膜18で反射されたレーザ光のうち、再び波長変換素子16を通過することにより、所定の変換波長の光に変換されたレーザ光を透過させたが、この機能は必ずしも有していなくても良い。すなわち、ダイクロイックミラー13に変えて反射させる特性のみ有する反射ミラーを用い、波長変換素子16の反射膜18のみにおいて所定の変換波長に変換されたレーザ光を取り出す構成であっても良い。
また、他の固定部27は必ずしも設ける必要はないが、他の固定部27を設けることにより、ダイクロイックミラー13をより安定して保持することが可能となる。
また、角度調整機構20は、固定部21と、第1ねじ部22と、第2ねじ部23と、バネ24,25とを備えた構成にしたが、角度調整機構20の構成はこれに限らず、反射膜18において反射され、ダイクロイックミラー13に入射するレーザ光の入射角度を調整する機構であれば良い。また、角度調整機構20を備えず、製造装置が備えた図示しない調整機構によりダイクロイックミラー13の角度調整を行った後、固定する構成であっても良い。
さらに、第1,第2ねじ部22,23がダイクロイックミラー13を直接接触した構成としたが、ダイクロイックミラー13が枠体に保持された構成で、第1,第2ねじ部22,23を枠体に接触させ、枠体を矢印A方向及び矢印B方向に押圧しても良い。この構成では、ダイクロイックミラー13に第1,第2ねじ部22,23を直接接触させる場合に比べて、ダイクロイックミラー13の損傷を抑えることが可能となる。
また、第1保持部31及び第2保持部32を別々に設けたが、一体的に構成されていても良い。また、複数のエミッタ14を備えた構成としたが、1つのエミッタを備えた半導体レーザ素子12を備えた構成であっても良い。
[第1実施形態の変形例1]
図1に示す第1実施形態では、角度調整機構20を用いてダイクロイックミラー13の角度調整を行い、反射膜18において反射されたレーザ光を正確に半導体レーザ素子12のDBR層12bに入射させたが、角度調整機構20を備えていないレーザ光源装置40であっても良い。
レーザ光源装置40のダイクロイックミラー13は、図5に示すように、まず、図示しない調整機構により、ダイクロイックミラー13の幅方向の軸P1及び長さ方向の軸P2まわりの角度を調整する。その後、第1,第2保持部31,32とダイクロイックミラー13との隙間33の少なくとも一部に接着剤41(固定部材)を充填させることにより、ダイクロイックミラー13を第1,第2保持部31,32に固定する。
この構成の場合も、ダイクロイックミラー13の角度を調整することにより、反射膜18において反射されたレーザ光を正確に半導体レーザ素子12のDBR層12bに入射させることができる。これにより、高出力なレーザ光を射出させることが可能となる。
[第1実施形態の変形例2]
本第1実施形態の変形例2では、図6に示すように、溝部31a,32bを覆うカバー部材46を備えたレーザ光源装置であっても良い。なお、図6では、第1実施形態と構成の異なる部分のみ示し、また、第1,第2保持部31,32は同様の構成であるため、第2保持部32を例に挙げて説明する。
カバー部材46は、図6に示すように、ダイクロイックミラー13の上面13f及び第2保持部32の端面32b,32cに接触している。具体的には、カバー部材46は、半導体レーザ素子12の射出端面12aと略平行な端面32b及びダイクロイックミラー13の上面13fと略平行な端面32cに接触している。また、カバー部材46は、第1ねじ部47により第2保持部32の端面32bにカバー部材46が固定され、第2ねじ部48により第2保持部32の端面32cにカバー部材46が固定さている。さらに、カバー部材46は、弾性力を有しており、ダイクロイックミラー13の上面13fから他の固定部27に向かって付勢されている。また、第1保持部31にも同様のカバー部材46が設けられている。
このように、カバー部材46を設けることにより、ダイクロイックミラー13の幅方向の位置ずれを抑えることができるため、より精度良く、ダイクロイックミラー13の角度を調整することが可能となる。
なお、カバー部材46の配置は、これに限るものではなく、例えば、ダイクロイックミラー13の側面13g及び第2保持部32の側面32dに接触するカバー部材であっても良い。これにより、ダイクロイックミラー13の長さ方向の位置ずれを抑えることができる。また、幅方向の位置ずれを抑えるカバー部材46及び長さ方向の位置ずれを抑えるカバー部材を両方を備えた構成であっても良い。
[第2実施形態]
次に、本発明に係る第2実施形態について、図7を参照して説明する。なお、以下に説明する各実施形態の図面において、上述した第1実施形態に係るレーザ光源装置1と構成を共通とする箇所には同一符号を付けて、説明を省略することにする。
本実施形態に係るレーザ光源装置60では、BPF61を備えている点で第1実施形態と異なる。その他の構成においては第1実施形態と同様である。
BPF(Band−Pass Filter、波長選択部)61は、図7に示すように、ダイクロイックミラー13と波長変換素子16との間の光路上に配置されている。このBPF61は、ダイクロイックミラー13で反射されたレーザ光のうち所定の選択波長のレーザ光を透過させる特性を有している。
また、BPF61は、ダイクロイックミラー13において反射されたレーザ光の中心軸Oに垂直な面に対して傾斜して配置されている。これにより、BPF61よって所定の選択波長以外のレーザ光が半導体レーザ素子12に戻らないようになっている。
以上より、本実施形態に係るレーザ光源装置60では、半導体レーザ素子12から射出されたレーザ光は、BPF61を通過することにより、必要な帯域幅となる。このように、BPF61は、半導体レーザ素子12と反射膜18との間を往復するレーザ光の発振波長のスペクトルを制限されるため、BPF61により緑色のレーザ光が安定して出力されるようになっている。
また、BPF61を波長変換素子16と一体的に形成するのではなく、別体に備えることにより、所望の選択波長のレーザ光を透過させるBPF61を作製し易くなる。
なお、BPF61は必ずしも傾斜して配置しなくても良い。
また、BPF61をダイクロイックミラー13と波長変換素子16との間の光路上に配置したが、半導体レーザ素子12とダイクロイックミラー13との間の光路上に設けても良い。
[第3実施形態]
次に、本発明に係る第3実施形態について、図8を参照して説明する。
本実施形態に係るレーザ光源装置70では、波長選択膜71が波長変換素子16の入射端面16aに成膜されている点において第1実施形態と異なる。その他の構成においては第1実施形態と同様である。
波長変換素子16の入射端面16aは、図8に示すように、傾斜されており、この傾斜面に波長選択膜(波長選択部)71が成膜されている。このように、波長変換素子16の入射端面16aを傾斜させて波長選択膜71を成膜することにより、所定の選択波長のレーザ光が透過する。また、波長変換素子16の入射端面16aが傾斜しているため、所定の選択波長以外のレーザ光が半導体レーザ素子12に戻らないようになっている。
以上より、本実施形態に係るレーザ光源装置70では、波長選択膜71が波長変換素子16の入射端面16aに成膜されているため、波長変換素子16と波長選択部とを別体に設ける場合に比べて、半導体レーザ素子12から射出されたレーザ光が通過する光学部材と空気との界面を少なくすることができる。したがって、光量の損失を抑えることができるため、高出力なレーザ光を射出させることが可能となる。
なお、波長変換素子16の入射端面16aは必ずしも傾斜していなくても良い。
[第4実施形態]
以下、本発明の第4実施形態について図9を参照して説明する。
本実施形態では、上記第1〜第3実施形態のレーザ光源装置(変形例を含む)を備えるプロジェクタについて説明する。図9は本実施形態のプロジェクタの概略構成図である。
本実施形態のプロジェクタ100は、赤色光、緑色光、青色光をそれぞれ射出する赤色レーザ光源装置1R,緑色レーザ光源装置1G、青色レーザ光源装置1Bを備えており、これら光源装置が上記第1〜第3実施形態の光源装置(変形例を含む)40,60,70である。
プロジェクタ100は、レーザ光源装置1R,1G,1Bから射出された各色光をそれぞれ変調する透過型の液晶ライトバルブ(光変調装置)104R,104G,104Bと、液晶ライトバルブ104R,104G,104Bから射出された光を合成して投射レンズ107に導くクロスダイクロイックプリズム(色合成手段)106と、液晶ライトバルブ104R,104G,104Bによって形成された像を拡大してスクリーン110に投射する投射レンズ(投射手段)107と、を備えている。
さらに、プロジェクタ100は、レーザ光源装置1R,1G,1Bから射出されたレーザ光の照度分布を均一化させるための均一化光学系102R,102G,102Bを備えており、照度分布が均一化された光によって液晶ライトバルブ104R,104G,104Bを照明している。本実施形態では、均一化光学系102R,102G、102Bは、例えばホログラム102aとフィールドレンズ102bによって構成されている。
各液晶ライトバルブ104R,104G,104Bによって変調された3つの色光は、クロスダイクロイックプリズム106に入射する。このプリズムは4つの直角プリズムを貼り合わせて形成され、その内面に赤色光を反射する誘電体多層膜と青色光を反射する誘電体多層膜とが十字状に配置されている。これらの誘電体多層膜によって3つの色光が合成され、カラー画像を表す光が形成される。そして、合成された光は投射光学系である投射レンズ107によりスクリーン110上に投写され、拡大された画像が表示される。
本実施形態のプロジェクタ100においては、赤色レーザ光源装置1R,緑色レーザ光源装置1G,青色レーザ光源装置1Bとして上記第1〜第3実施形態のレーザ光源装置40,60,70が用いられているので、小型、安価で明るい画像表示が可能なプロジェクタを実現することができる。
なお、光変調装置として透過型の液晶ライトバルブを用いたが、反射型のライトバルブを用いても良いし、液晶以外の光変調装置を用いても良い。このようなライトバルブとしては、例えば、反射型液晶ライトバルブやデジタルマイクロミラーデバイス(Digital Micromirror Device)が挙げられる。投射光学系の構成は、使用されるライトバルブの種類によって適宜変更すればよい。
[第5実施形態]
以下、本発明の第5実施形態について図10を参照して説明する。
本実施形態では、走査型の画像表示装置について説明する。図10は本実施形態の画像表示装置の概略構成図である。
本実施形態の画像表示装置200は、図10に示すように、上記第1実施形態のレーザ光源装置1と、レーザ光源装置1から射出された光をスクリーン210に向かって走査するMEMSミラー(走査手段)202と、レーザ光源装置1から射出された光をMEMSミラー202に集光させる集光レンズ203とを備えている。レーザ光源装置1から射出された光は、MEMSミラー202の駆動によってスクリーン210上を水平方向、垂直方向に走査される。カラー画像を表示する場合は、例えばレーザダイオードを構成する複数のエミッタを、赤、緑、青のピーク波長を持つエミッタの組み合わせによって構成すれば良い。
なお、第2,第3実施形態のレーザ光源装置(変形例を含む)40,60,70を用いても良い。
[第6実施形態]
以下、上記実施形態のレーザ光源装置1を応用したモニタ装置300の構成例について図11を用いて説明する。
図11は、本実施形態のモニタ装置の概略構成図である。
本実施形態のモニタ装置300は、図11に示すように、装置本体310と、光伝送部320と、を備える。装置本体310は、上述の第1実施形態のレーザ光源装置1を備えている。
光伝送部320は、光を送る側と受ける側の2本のライトガイド321,322を備えている。各ライトガイド321,322は、多数本の光ファイバを束ねたものであり、レーザ光を遠方に送ることができる。光を送る側のライトガイド321の入射側には光源装置1が設置され、その出射側には拡散板323が設置されている。レーザ光源装置1から射出されたレーザ光は、ライトガイド321を通じて光伝送部320の先端に設けられた拡散板323に送られ、拡散板323により拡散されて被写体を照射する。
光伝送部320の先端には、結像レンズ324が設けられており、被写体からの反射光を結像レンズ324で受けることができる。受けた反射光は、受け側のライトガイド322を通じて装置本体310内に設けられた撮像手段としてのカメラ311に送られる。この結果、レーザ光源装置1から射出されたレーザ光で被写体を照射して得られた反射光に基づく画像をカメラ311で撮像することができる。
本実施形態のモニタ装置300によれば、上記第1実施形態のレーザ光源装置1が用いられているので、小型、安価で鮮明な撮像が可能なモニタ装置を実現することができる。
なお、第2,第3実施形態のレーザ光源装置(変形例を含む)40,60,70を用いても良い。
なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、色光合成手段として、クロスダイクロイックプリズムを用いたが、これに限るものではない。色光合成手段としては、例えば、ダイクロイックミラーをクロス配置とし色光を合成するもの、ダイクロイックミラーを平行に配置し色光を合成するものを用いることができる。
本発明の第1実施形態に係るレーザ光源装置を示す斜視図である。 図1のレーザ光源装置を示す斜視図である。 図1のレーザ光源装置を示す平面図である。 図1のレーザ光源装置の背面図である。 本発明の第1実施形態に係るレーザ光源装置の変形例1を示す斜視図である。 本発明の第1実施形態に係るレーザ光源装置の変形例2を示す斜視図である。 本発明の第2実施形態に係るレーザ光源装置を示す平面図である。 本発明の第3実施形態に係るレーザ光源装置を示す平面図である。 本発明の第2実施形態に係る画像表示装置を示す要部断面図である。 本発明の第3実施形態に係る画像表示装置を示す要部断面図である。 本発明の第4実施形態に係るモニタ装置を示す要部断面図である。
符号の説明
1,40,60,70…レーザ光源装置、12…半導体レーザ素子(光源)、13…ダイクロイックミラー(光路調整素子)、16…波長変換素子、18…反射膜(反射部)、20…角度調整機構、22…第1ねじ部、23…第2ねじ部、31…第1保持部、32…第2保持部

Claims (8)

  1. 基本波長の光を射出する光源と、
    前記基本波長の光の少なくとも一部を所定の変換波長の光に変換する波長変換素子と、
    該波長変換素子の射出端面に設けられ前記所定の変換波長の光を透過させ、前記基本波長の光を反射させる反射部と、
    前記光源から射出された基本波長の光を前記波長変換素子に向かって反射させるとともに、前記反射部において反射された前記基本波長の光の光路を調整する光路調整素子とを備えることを特徴とするレーザ光源装置。
  2. 前記光路調整素子が、前記所定の変換波長の光を透過させて前記光源とは異なる方向に射出させることを特徴とする請求項1に記載のレーザ光源装置。
  3. 前記光路調整素子の角度調整を行う角度調整機構を備えることを特徴とする請求項1または請求項2に記載のレーザ光源装置。
  4. 溝部に前記光路調整素子を保持する保持部材を備え、
    前記角度調整機構は、前記溝部に設けられ前記光路調整素子を固定する固定部と、
    前記光路調整素子の射出端面側の前記保持部材に前記射出端面に接触して設けられ、前記射出端面から前記光路調整素子の入射端面に向かう方向に進退する第1ねじ部及び第2ねじ部と、
    前記光路調整素子の入射端面と前記溝部との間に設けられた弾性部材とを備えることを特徴とする請求項3に記載のレーザ光源装置。
  5. 前記光源と前記波長変換素子との間の光路上に配置され、前記光源から射出された光のうち所定の選択波長の光を透過させる波長選択部を備えることを特徴とする請求項1から請求項4のいずれか1項に記載のレーザ光源装置。
  6. 前記波長選択部が、前記波長変換素子の入射端面に成膜されていることを特徴とする請求項5に記載のレーザ光源装置。
  7. 請求項1から請求項6のいずれか1項に記載のレーザ光源装置と、
    該レーザ光源装置からの光を利用して、表示面に所望の大きさの画像を表示させる画像形成装置とを備えることを特徴とする画像表示装置。
  8. 請求項1から請求項6のいずれか1項に記載のレーザ光源装置と、
    該レーザ光源装置から射出されたレーザ光により被写体を撮像する撮像手段とを備えることを特徴とするモニタ装置。
JP2008041029A 2008-02-22 2008-02-22 レーザ光源装置、画像表示装置及びモニタ装置 Pending JP2009200284A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008041029A JP2009200284A (ja) 2008-02-22 2008-02-22 レーザ光源装置、画像表示装置及びモニタ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008041029A JP2009200284A (ja) 2008-02-22 2008-02-22 レーザ光源装置、画像表示装置及びモニタ装置

Publications (1)

Publication Number Publication Date
JP2009200284A true JP2009200284A (ja) 2009-09-03

Family

ID=41143464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008041029A Pending JP2009200284A (ja) 2008-02-22 2008-02-22 レーザ光源装置、画像表示装置及びモニタ装置

Country Status (1)

Country Link
JP (1) JP2009200284A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4669577B1 (ja) * 2010-08-31 2011-04-13 パナソニック株式会社 画像表示装置
JP4669578B1 (ja) * 2010-08-31 2011-04-13 パナソニック株式会社 画像表示装置
JP2015510273A (ja) * 2012-02-13 2015-04-02 リアルディー インコーポレイテッド レーザアーキテクチャ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4669577B1 (ja) * 2010-08-31 2011-04-13 パナソニック株式会社 画像表示装置
JP4669578B1 (ja) * 2010-08-31 2011-04-13 パナソニック株式会社 画像表示装置
JP2012053101A (ja) * 2010-08-31 2012-03-15 Panasonic Corp 画像表示装置
JP2012053100A (ja) * 2010-08-31 2012-03-15 Panasonic Corp 画像表示装置
JP2015510273A (ja) * 2012-02-13 2015-04-02 リアルディー インコーポレイテッド レーザアーキテクチャ

Similar Documents

Publication Publication Date Title
US7972034B2 (en) Laser light source, laser light source unit, illumination device, monitor apparatus, and image display apparatus
KR101217557B1 (ko) 직접 광변조가 가능한 레이저 모듈 및 이를 채용한 레이저디스플레이 장치
JP5082862B2 (ja) 光源装置、照明装置及び画像表示装置
JP2014060452A (ja) 固体光源装置、プロジェクタ、モニタ装置
JP4293241B2 (ja) 光源装置及びプロジェクタ
US20110128505A1 (en) Laser beam source device, laser beam source device manufacturing method, projector, and monitoring device
JP6119774B2 (ja) 固体光源装置、プロジェクタ、モニタ装置
JP5024088B2 (ja) レーザ光源装置、照明装置、画像表示装置及びモニタ装置
US7599415B2 (en) Light source device, lighting device, monitor device, and projector
JP2009141107A (ja) レーザ光源装置、プロジェクタおよび光学装置
JP2009200284A (ja) レーザ光源装置、画像表示装置及びモニタ装置
JP2009188056A (ja) レーザ光源装置、画像表示装置及びモニタ装置
JP2009027111A (ja) 光源装置、照明装置、モニタ装置及びプロジェクタ
US20110128506A1 (en) Laser beam source device, projector, and monitoring device
JP2008198824A (ja) 光源装置、照明装置、モニタ装置及び画像表示装置
JP2010010607A (ja) レーザ光源装置、プロジェクタ、モニタ装置
US8440953B2 (en) Laser beam source device, projector, and monitoring device having dual light emission elements with non-uniform light emission portions
KR20140129162A (ko) 레이저 구조물
JP2009192873A (ja) 光源装置、画像表示装置及びモニタ装置
JP2010067465A (ja) 光源装置及びプロジェクタ
JP2011114183A (ja) レーザー光源装置、画像表示装置及びモニター装置
JP2009117574A (ja) 光源装置、プロジェクタ、及びモニタ装置
JP2009194126A (ja) 光源装置、プロジェクタ、及びモニタ装置
JP2009058716A (ja) 照明装置、モニタ装置及び画像表示装置
JP2009212418A (ja) 光源装置、画像表示装置及びモニタ装置