JP2009193693A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2009193693A
JP2009193693A JP2008030257A JP2008030257A JP2009193693A JP 2009193693 A JP2009193693 A JP 2009193693A JP 2008030257 A JP2008030257 A JP 2008030257A JP 2008030257 A JP2008030257 A JP 2008030257A JP 2009193693 A JP2009193693 A JP 2009193693A
Authority
JP
Japan
Prior art keywords
lead
negative electrode
alloy
battery
strap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008030257A
Other languages
Japanese (ja)
Other versions
JP5326291B2 (en
Inventor
Kazunari Ando
和成 安藤
Kei Ishimaki
圭 石牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008030257A priority Critical patent/JP5326291B2/en
Publication of JP2009193693A publication Critical patent/JP2009193693A/en
Application granted granted Critical
Publication of JP5326291B2 publication Critical patent/JP5326291B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead-acid battery having excellent reliability which suppresses reduction in an electrolytic solution and also suppresses corrosion of joint parts between a positive electrode plate lug part and a negative electrode strap even if an electrolytic solution level is lowered and the negative electrode strap is exposed. <P>SOLUTION: Electrolytic solution mist is refluxed into a cell chamber 10 using a lid 11 having an exhaust reflux structure A, antimony is not contained in the negative electrode strap 7, and alloy treatment is carried out in a lattice lug part, and the same alloy as that of the negative electrode strap is used, thereby preventing generation of oxyhydrogen gas and corrosion of a strap part. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

鉛蓄電池は、車両のエンジン始動用やバックアップ電源用といった様々な用途に用いられている。その中でも始動用鉛蓄電池は、エンジン始動用セルモータへの電力供給とともに、車両に搭載された各種電気・電子機器への電力を供給する。エンジン始動後、充放電がバランスして鉛蓄電池のSOCがほぼ100%に維持されるよう、オルタネータの出力電圧及び出力電流が設定されている。   Lead-acid batteries are used for various purposes such as vehicle engine starting and backup power supply. Among them, the start lead-acid battery supplies power to various electric and electronic devices mounted on the vehicle as well as power to the engine start cell motor. After the engine is started, the output voltage and output current of the alternator are set so that charge and discharge are balanced and the SOC of the lead storage battery is maintained at almost 100%.

また、始動用鉛蓄電池はエンジンルーム内に設置されるため、40℃〜80℃といった高温雰囲気下で充電が行なわれるために、鉛蓄電池は過充電状態となりやすく、その結果として、電解液中の水が電気分解により酸素および水素ガスに分解されて電池外に排出され、電解液面が低下する。また、充電が行なわれない場合でも、電解液からの蒸発水分や、電池内に充満した電解液ミストが電池外に散逸することによっても電解液面が低下する。   Moreover, since the lead acid battery for starting is installed in the engine room, charging is performed in a high temperature atmosphere such as 40 ° C. to 80 ° C., the lead acid battery is likely to be overcharged. As a result, in the electrolyte solution Water is decomposed into oxygen and hydrogen gas by electrolysis and discharged out of the battery, and the electrolytic solution level is lowered. Further, even when charging is not performed, the electrolytic solution level also decreases due to evaporation of moisture from the electrolytic solution and the electrolytic solution mist filled in the battery being dissipated outside the battery.

液式鉛蓄電池における電解液の低下は、負極ストラップの腐食や負極活物質の酸化による電池容量の低下をもたらすため、電解液面の点検により液面が規定以下に低下した場合には、負極ストラップや負極板の全面が電解液に浸漬されるように補水作業を行なう。   The decrease in the electrolyte in a liquid lead-acid battery results in a decrease in battery capacity due to corrosion of the negative electrode strap and oxidation of the negative electrode active material. Water replenishment work is performed so that the entire surface of the negative electrode plate is immersed in the electrolyte.

このような補水作業の手間を省く目的で、液式鉛蓄電池の減液を抑制する技術開発が継続して行なわれている。例えば、鉛蓄電池の格子体用鉛合金に、水素過電圧を低下させるアンチモンを含まない合金、例えば鉛−カルシウム合金や鉛−スズ合金を用いることによって、電気分解による減液を抑制する技術は広く一般に使用されている。   In order to save the labor of such water replenishment work, technical development for suppressing the liquid reduction of the liquid lead-acid battery has been continued. For example, the use of an antimony-free alloy that reduces hydrogen overvoltage, such as a lead-calcium alloy or a lead-tin alloy, as a lead alloy for a lead-acid battery grid body, and a technique for suppressing liquid reduction due to electrolysis is generally widely used. in use.

一方、電解液からの水分蒸発や電池内に充満した電解液ミストの電池外への散逸による減液を抑制するために、主に鉛蓄電池の排気構造を改良するという観点で、様々な検討が行なわれてきている。   On the other hand, various studies have been made mainly from the viewpoint of improving the exhaust structure of lead-acid batteries, in order to suppress liquid evaporation due to water evaporation from the electrolyte and dissipation of electrolyte mist filled in the battery. Has been done.

例えば、特許文献1には、セルから発生した酸素・水素ガスの電池外へ排気するにあたり、この排気経路を迷路構造とし、水蒸気や電解液ミストがこの迷路構造を通過する間に、迷路構造の壁面に水あるいは電解液として結露させ、これらをセル内に還流する構造が示されている。このように鉛蓄電池の排気経路を迷路構造とすることにより、水蒸気や電解液ミストの電池外への散逸による電解液の減液を効果的に抑制することができる。   For example, Patent Document 1 discloses that when exhausting oxygen / hydrogen gas generated from a cell to the outside of the battery, the exhaust path has a maze structure, and water vapor or electrolyte mist passes through the maze structure. A structure is shown in which water is condensed on the wall surface as water or an electrolytic solution, and these are refluxed into the cell. Thus, by making the exhaust path of the lead storage battery have a labyrinth structure, it is possible to effectively suppress the decrease of the electrolyte due to the dissipation of water vapor or electrolyte mist to the outside of the battery.

しかしながら、特許文献1で示された構造の場合、電解液の蒸発や電解液ミストの排出による電解液の減少は抑制できるが、鉛蓄電池の自己放電や充電末期の水の電気分解による減液量を抑制できない。さらに、蓋に排気経路としての迷路構造を配置した場合、蓋上部に補水用の液口栓を配置するスペースの余裕がなく、実質的に補水作業を行なうことができなかった。その結果、減液が進行した場合、ストラップ部分が露出し、極板の耳部とストラップとの接合部分における異種合金の存在による腐食が進行し、接合部分において断線を生じていた。
特開平8−22815号公報
However, in the case of the structure shown in Patent Document 1, the decrease in the electrolyte due to the evaporation of the electrolyte and the discharge of the electrolyte mist can be suppressed, but the amount of liquid decrease due to the self-discharge of the lead storage battery and the electrolysis of the water at the end of charging is suppressed. Can not. Further, when a labyrinth structure as an exhaust path is arranged on the lid, there is no room for placing a water replenisher for the water replenishment on the top of the lid, and the water replenishment work cannot be performed substantially. As a result, when the liquid reduction proceeded, the strap portion was exposed, and corrosion due to the presence of a dissimilar alloy in the joint portion between the ear portion of the electrode plate and the strap proceeded, resulting in disconnection at the joint portion.
JP-A-8-22815

本発明は、前記したような、蓋内部に設けた排気還流構造を有した鉛蓄電池において、電解液の減液を抑制するとともに電解液面が低下して負極ストラップが露出しても、負極板耳部と負極ストラップの接合部分の腐食を抑制する信頼性の高い鉛蓄電池を提供するのを目的とする。   In the lead-acid battery having the exhaust gas recirculation structure provided inside the lid as described above, the negative electrode plate can be used even if the negative electrode strap is exposed even when the electrolyte surface is lowered and the electrolyte surface is lowered. It is an object of the present invention to provide a highly reliable lead-acid battery that suppresses corrosion at the joint between the ear part and the negative electrode strap.

前記した課題を解決するために、本発明の請求項1に係る発明は、正極格子体及び負極格子体にそれぞれ鉛−カルシウム合金を用いて作成された正極板及び負極板は電解液中に浸漬され、正極板と負極板及び前記電解液を収納する電槽の上部に接合した蓋には、セル室から排出されるガスを電池外部に排出するための排気機能と、結露した水分もしくは電解液を前記セルに還流するための還流機能を有した排気還流構造を有するとともに、負極板の同極性同士を接合するストラップ形成用鉛合金はアンチモンを含まない鉛合金である鉛蓄電池を示すものである。   In order to solve the above-described problem, the invention according to claim 1 of the present invention is that a positive electrode plate and a negative electrode plate prepared using a lead-calcium alloy in a positive electrode grid body and a negative electrode grid body, respectively, are immersed in an electrolytic solution. The lid joined to the positive electrode plate, the negative electrode plate, and the upper part of the battery case containing the electrolyte solution has an exhaust function for discharging the gas discharged from the cell chamber to the outside of the battery, and the condensed moisture or electrolyte solution. The lead alloy for forming a strap for joining the same polarities of the negative electrode plates together with a recirculation function for recirculating to the cell is a lead storage battery that is a lead alloy that does not contain antimony. .

本発明の請求項2に係る発明は、排気還流構造は、セル室に対応する排気室において、排気室は、セルからのガスを導入する開口部と前記ガスをセル室外に排出するための排出路を有するとともに、排出路から開口部に向け下方へ傾斜する底壁を有し、底壁には前記底壁に対向する天井壁に向かい底壁板状突起を設け、底壁板状突起は、その一端が排気室を形成する一方の側壁と接続されるとともに他の一端は前記側壁に対向する側壁には接続されずに間隙を有し、天井壁には底壁に対向するよう天井板状突起を有し、天井板状突起は、底壁板状突起間に垂下させ、互いに隣接する底壁板状突起には、間隙を交互に設けた鉛蓄電池を示すものである。   The invention according to claim 2 of the present invention is such that the exhaust gas recirculation structure has an exhaust chamber corresponding to the cell chamber, wherein the exhaust chamber has an opening for introducing a gas from the cell and a discharge for discharging the gas to the outside of the cell chamber. And a bottom wall that slopes downward from the discharge path toward the opening, and a bottom wall plate-like protrusion is provided on the bottom wall toward the ceiling wall facing the bottom wall. The ceiling plate is connected so that one end thereof is connected to one side wall forming the exhaust chamber and the other end is not connected to the side wall facing the side wall but has a gap, and the ceiling wall faces the bottom wall. The ceiling plate-like projections are provided between the bottom wall plate-like projections, and the bottom wall plate-like projections adjacent to each other indicate lead storage batteries in which gaps are alternately provided.

本発明の請求項3に係る発明は、負極板の同極性同士を接合するストラップ形成用鉛合金には、実質的にアンチモンを含有せず、スズを含有する鉛蓄電池を示すものである。   The invention according to claim 3 of the present invention shows a lead storage battery containing tin substantially free of antimony in the strap forming lead alloy for joining the same polarities of the negative electrode plates.

本発明の請求項4に係る発明は、鉛−カルシウム合金からなる負極板の耳部の両表面は、鉛−スズ合金層を形成する鉛蓄電池を示すものである。   The invention according to claim 4 of the present invention shows a lead storage battery in which both surfaces of the ear portion of a negative electrode plate made of a lead-calcium alloy form a lead-tin alloy layer.

さらに、本発明の請求項5に係る発明は、鉛−スズ合金層は、エキスパンド格子体を作成する鉛合金シートのエキスパンド格子体の耳部に対応する非展開部を、鉛−スズ合金箔にて一体に圧延形成する鉛蓄電池を示すものである。   Furthermore, in the invention according to claim 5 of the present invention, the lead-tin alloy layer has a lead-tin alloy foil in which a non-expanded portion corresponding to an ear portion of the expanded lattice body of the lead alloy sheet for creating the expanded lattice body is formed. 1 shows a lead storage battery that is integrally rolled.

前記した本発明の構成によれば、電解液の減少が低減され、負極ストラップが電解液面から露出するのを抑制するとともに、負極ストラップが電解液面から露出しても負極板耳部と負極ストラップとの接合部分の断線を防ぐことができる信頼性の高い鉛蓄電池を提供できるという顕著な効果を得ることができる。   According to the configuration of the present invention described above, the decrease in the electrolytic solution is reduced, and the negative electrode strap is prevented from being exposed from the electrolytic solution surface. The remarkable effect that the reliable lead acid battery which can prevent the disconnection of the junction part with a strap can be provided can be acquired.

以下、本発明の実施の形態を、図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の鉛蓄電池を示す断面図である。鉛蓄電池1は、鉛−カルシウム合金の正極格子体よりなる正極板2と、鉛−カルシウム合金の負極格子体よりなる負極板3およびセパレータ4とでセル5を構成し、正極板2同士は正極ストラップ6で、さらに負極板3同士は負極ストラップ7で接続して構成する。負極ストラップ7には、アンチモンを含まない鉛合金を用いる。負極ストラップ7にアンチモンが含有されていると水素過電圧が低下し、その部分の水素ガスの発生が促進され、電解液8が著しく減少するからである。   FIG. 1 is a sectional view showing a lead storage battery of the present invention. The lead storage battery 1 comprises a cell 5 with a positive electrode plate 2 made of a lead-calcium alloy positive electrode lattice, a negative electrode plate 3 made of a lead-calcium alloy negative electrode lattice, and a separator 4. The strap 6 and the negative plates 3 are further connected by a negative strap 7. The negative electrode strap 7 is made of a lead alloy that does not contain antimony. This is because if the negative electrode strap 7 contains antimony, the hydrogen overvoltage is lowered, the generation of hydrogen gas in that portion is promoted, and the electrolyte solution 8 is remarkably reduced.

セル5は、電解液8とともに、電槽9のセル室10に収納され、電槽9の上部に蓋11が接合され、正極ストラップ6には、極柱12を介して電池外部へ電気的に接続される外部端子13が蓋11上部に存在している。蓋11には、セル室10から排出されるガスを電池外に排出する排気機能と、排気経路内で結露した水分または電解液をセル室10に還流する還流機能を有した排気還流構造Aを有している。   The cell 5 is housed in the cell chamber 10 of the battery case 9 together with the electrolyte 8, a lid 11 is joined to the upper part of the battery case 9, and the positive electrode strap 6 is electrically connected to the outside of the battery via the pole column 12. An external terminal 13 to be connected is present on the top of the lid 11. The lid 11 is provided with an exhaust gas recirculation structure A having an exhaust function for exhausting the gas exhausted from the cell chamber 10 to the outside of the battery and a reflux function for returning moisture or electrolyte condensed in the exhaust path to the cell chamber 10. Have.

図1に示した排気還流構造Aの構成例を、図1と図2の本発明の鉛蓄電池1の排気還流構造を示す斜視図を用いて説明する。排気還流構造Aは、蓋11にセル室10に対応するように設けられた排気室14と、排気室14の上部を閉じる排気蓋15を有する。排気室14の最下部にはセル室10に開口する開口部16を有しており、排気室14の最上部には排出路17が存在する。   A configuration example of the exhaust gas recirculation structure A shown in FIG. 1 will be described with reference to perspective views showing the exhaust gas recirculation structure of the lead storage battery 1 of the present invention shown in FIGS. 1 and 2. The exhaust gas recirculation structure A includes an exhaust chamber 14 provided on the lid 11 so as to correspond to the cell chamber 10, and an exhaust lid 15 that closes an upper portion of the exhaust chamber 14. An opening 16 that opens to the cell chamber 10 is provided at the bottom of the exhaust chamber 14, and a discharge path 17 exists at the top of the exhaust chamber 14.

セル室10内で発生した酸水素ガスは、開口部16より排気室14の最下部に入り、排気室14最上部で排出路17より排出される。排出路17から排出されたガスは、一括排出路18を通じて電池外に放出されるが、一括排出路18を設けずにセル室10毎に電池外部へ排出路17を延長してガスを放出してもよい。   The oxyhydrogen gas generated in the cell chamber 10 enters the lowermost portion of the exhaust chamber 14 through the opening 16 and is discharged from the discharge passage 17 at the uppermost portion of the exhaust chamber 14. The gas discharged from the discharge path 17 is released outside the battery through the collective discharge path 18, but the gas is released by extending the discharge path 17 outside the battery for each cell chamber 10 without providing the collective discharge path 18. May be.

排気室14内に底壁19より突出した底壁板状突起20aと天井壁21から垂下した天井板状突起20bを設け、排出ガスが底壁板状突起20aと天井板状突起20bを交互に配置させた板状突起20を設ける。底壁板状突起20aは、排気室14を構成する側壁22に一体に接続されているが、一方の側壁には接続せずに間隙23を形成し、隣接する底壁板状突起20aに存在する間隙23は、底壁19の傾斜方向に対して交互に位置するように設ける。   In the exhaust chamber 14, a bottom wall plate-like protrusion 20a protruding from the bottom wall 19 and a ceiling plate-like protrusion 20b hanging from the ceiling wall 21 are provided, and exhaust gas alternately alternates between the bottom wall plate-like protrusion 20a and the ceiling plate-like protrusion 20b. The arranged plate-like protrusion 20 is provided. The bottom wall plate-like protrusion 20a is integrally connected to the side wall 22 constituting the exhaust chamber 14, but is not connected to one side wall but forms a gap 23 and exists in the adjacent bottom wall plate-like protrusion 20a. The gaps 23 are provided so as to be alternately positioned with respect to the inclination direction of the bottom wall 19.

セル室10で発生した水蒸気及び電解液ミストを含む酸水素ガスは排気室14の板状突起20に接触するように流れ、板状突起20上に結露させた液滴が成長するにつれて底壁19に落下して集合し、排出路17から開口部16にかけて下方に傾斜した底壁19の間隙23より開口部16に導かれ、開口部16を通じてセル室10内に還流される。板状突起20は底壁19および天井壁21を基部として複数設けることによりガス中の水分を効率良く捕捉して還流することができる。   Oxyhydrogen gas containing water vapor and electrolyte mist generated in the cell chamber 10 flows so as to come into contact with the plate-like protrusions 20 in the exhaust chamber 14, and the bottom wall 19 grows as droplets condensed on the plate-like protrusions 20 grow. Then, the liquid drops and gathers to the opening 16 through the gap 23 of the bottom wall 19 inclined downward from the discharge path 17 to the opening 16, and is returned to the cell chamber 10 through the opening 16. By providing a plurality of the plate-like protrusions 20 with the bottom wall 19 and the ceiling wall 21 as the base, it is possible to efficiently capture and recirculate moisture in the gas.

なお、図2には示してないが、排気室14内の液滴の流れを円滑にするために底壁板状突起20aは、側壁22に一体に接続された部分よりも底壁19において開口部16に近い位置、すなわち低い位置に間隙23を設置するように傾斜させることにより結露した液滴を開口部16に容易に導くことができる。さらに、図2では、開口部16はスリット形状にするのが好ましく、開口部16が円形の場合にはその開口面積により、液滴による表面張力により開口部16が閉塞してセル室10への液滴の還流が妨げられる可能性もある。   Although not shown in FIG. 2, the bottom wall plate-like protrusion 20 a has an opening in the bottom wall 19 rather than a portion integrally connected to the side wall 22 in order to facilitate the flow of droplets in the exhaust chamber 14. By inclining so as to place the gap 23 at a position close to the portion 16, that is, at a low position, the condensed liquid droplets can be easily guided to the opening portion 16. Further, in FIG. 2, the opening 16 is preferably formed in a slit shape. When the opening 16 is circular, the opening 16 is closed by the surface tension due to the liquid droplets due to the opening area, and the opening 16 enters the cell chamber 10. There is also a possibility that the reflux of the droplets is hindered.

上記のような構成によれば、セル室10からのガスは、電池外に排出される間に底壁19より突出させた底壁板状突起20aに接触してガスが左右に移動し、さらに天井壁21より垂下する天井板状突起20bに接触してガスは上下に移動するため、全体として見掛け上のガス経路が延長され、排気室14内における還流効率を高くすることができる。   According to the above configuration, the gas from the cell chamber 10 contacts the bottom wall plate-like protrusion 20a protruded from the bottom wall 19 while being discharged out of the battery, and the gas moves to the left and right. Since the gas moves up and down in contact with the ceiling plate-like protrusion 20b hanging from the ceiling wall 21, the apparent gas path is extended as a whole, and the reflux efficiency in the exhaust chamber 14 can be increased.

一方、電解液8から気相中に露出した状態の負極ストラップ7では、負極ストラップ7と負極板耳部3a間の接合部分が腐食して断線する場合がある。一般的に始動用鉛蓄電池のストラップには製造上において溶接性や強度向上のために鉛―アンチモン合金が使用されており、負極ストラップ7と負極板耳部3aにおける腐食現象は負極格子を鉛−カルシウム合金とし、負極ストラップ7を鉛―アンチモン合金とした場合に生じやすい。   On the other hand, in the negative electrode strap 7 exposed from the electrolytic solution 8 in the gas phase, the joint between the negative electrode strap 7 and the negative electrode tab 3a may corrode and break. In general, lead-antimony alloys are used in the lead-acid battery straps for starting in order to improve weldability and strength in manufacturing. Corrosion phenomenon in the negative-electrode strap 7 and the negative-electrode plate ear 3a leads to the negative-electrode grid. This is likely to occur when a calcium alloy is used and the negative electrode strap 7 is a lead-antimony alloy.

これは、負極板耳部3a同士を負極ストラップ7と溶接する際に負極板耳部3aに含まれるカルシウムと負極ストラップ7を形成するため、鉛−アンチモン合金中に含まれるアンチモンによる電位差によりこの部分における酸化還元反応が優先的に生じるために腐食が進行するものである。   This is because, when the negative electrode plate ears 3a are welded to the negative electrode strap 7, the negative electrode strap 7 and calcium contained in the negative electrode plate ear 3a are formed, so this portion is caused by the potential difference due to antimony contained in the lead-antimony alloy. Corrosion proceeds because the redox reaction takes place preferentially.

さらに好ましい形態として、図3はエキスパンド方式による負極板3の製作を示す図であり、図4は負極ストラップ7と負極板耳部3aの接合部分を示す図として、(a)はストラップの側面図であり、(b)はストラップの断面図である。   As a more preferred form, FIG. 3 is a view showing the production of the negative electrode plate 3 by the expanding method, FIG. 4 is a view showing a joint portion of the negative electrode strap 7 and the negative electrode plate ear 3a, and (a) is a side view of the strap. (B) is a cross-sectional view of the strap.

鉛−カルシウム系合金を用いる格子体には一般的にエキスパンド方式が用いられる。負極板耳部3aと負極ストラップ7との接合部分の溶接性を向上させるために、鉛−カルシウム−スズ合金からなる負極板耳部3aの両表面に鉛−スズ合金層24を一体に形成させ、負極板耳部3aと鉛−スズ合金により形成された負極ストラップ7との溶接で、両者とも鉛およびスズを含有した金属になり負極板耳部3aの溶接性を高めることができる。   An expanding system is generally used for a lattice body using a lead-calcium alloy. In order to improve the weldability of the joint portion between the negative electrode plate ear portion 3a and the negative electrode strap 7, the lead-tin alloy layers 24 are integrally formed on both surfaces of the negative electrode plate ear portion 3a made of lead-calcium-tin alloy. By welding the negative electrode plate ear portion 3a and the negative electrode strap 7 formed of a lead-tin alloy, both of them become a metal containing lead and tin, and the weldability of the negative electrode plate ear portion 3a can be improved.

カルシウム含有鉛合金を用いた負極板耳部3aでは、溶接中に合金中のカルシウムが酸化されて負極板耳部3aに酸化皮膜が生成して十分に溶接されず、負極ストラップ7と負極板耳部3aとの間に隙間25を生じる。さらに電解液8が減少して負極ストラップ7が電解液8から露出した場合に、この隙間25の部分で腐食が進行する。   In the negative electrode plate ear portion 3a using the calcium-containing lead alloy, calcium in the alloy is oxidized during welding and an oxide film is formed on the negative electrode plate ear portion 3a and is not sufficiently welded. A gap 25 is generated between the portion 3a. Further, when the electrolyte solution 8 is reduced and the negative strap 7 is exposed from the electrolyte solution 8, corrosion proceeds in the gap 25.

図3では、エキスパンド格子体26は、鉛−カルシウム−スズ合金からなる圧延シート27を負極板耳部3aに相当する部分を非展開部28として残し、圧延シート27の両側を網目29に展開して作成する。   In FIG. 3, the expanded lattice body 26 has a rolled sheet 27 made of a lead-calcium-tin alloy, leaving portions corresponding to the negative electrode tabs 3 a as non-deployed portions 28, and unfolding both sides of the rolled sheet 27 to a mesh 29. Create.

負極板耳部3aの両面に鉛―スズ合金層24を形成させるためには、負極板耳部3aを構成する非展開部28にスズ50%の鉛―スズ合金箔30を表裏に位置させ(裏面は図示せず)、一体に圧延された圧延シート27をエキスパンド加工し、最終的に極板形状に切断されて負極板耳部3aの両面に鉛−スズ合金層24を形成させる。なお、図3の切込み31は、エキスパンド格子26の網目29を形成するためのものであり、負極板3はエキスパンド格子体26に未化成の活物質32を塗着した状態を示す。   In order to form the lead-tin alloy layer 24 on both surfaces of the negative electrode plate ear portion 3a, the lead-tin alloy foil 30 of 50% tin is positioned on the front and back of the non-deployed portion 28 constituting the negative electrode plate ear portion 3a ( The back surface is not shown), and the rolled sheet 27 rolled integrally is expanded and finally cut into an electrode plate shape to form lead-tin alloy layers 24 on both surfaces of the negative electrode tab 3a. 3 is for forming the mesh 29 of the expanded lattice 26, and the negative electrode plate 3 shows a state in which an unformed active material 32 is applied to the expanded lattice 26. FIG.

以上、鉛蓄電池1において、排気還流構造Aは、電解液8の水分蒸発および電解液ミストの電池外への散逸による減液を抑制し、アンチモンを含有しない合金を用いた負極ストラップ7は、電解液8中の水の電気分解量も減少できる。   As described above, in the lead storage battery 1, the exhaust gas recirculation structure A suppresses liquid loss due to moisture evaporation of the electrolytic solution 8 and dissipation of the electrolytic solution mist to the outside of the battery, and the negative electrode strap 7 using an alloy containing no antimony The amount of electrolysis of water in the liquid 8 can also be reduced.

さらに、水の電気分解量の減少は、電気分解により発生する酸水素ガス量も減少できる結果、酸水素ガス発生とともに生じる電解液8のミストも抑制することができることから、電解液8のミストを前記排気還流構造Aにて電解液8に効率的に還流する相乗効果により減液量を顕著に抑制する鉛蓄電池1を得ることができる。   Further, the reduction of the amount of water electrolyzed can also reduce the amount of oxyhydrogen gas generated by electrolysis, and as a result, the mist of the electrolyte 8 generated along with the generation of oxyhydrogen gas can also be suppressed. The lead storage battery 1 that remarkably suppresses the amount of liquid reduction can be obtained by the synergistic effect of efficiently returning to the electrolyte solution 8 in the exhaust gas recirculation structure A.

以下、実施例により、本発明の効果を説明する。   Hereinafter, the effects of the present invention will be described with reference to examples.

本発明例および比較例による鉛蓄電池は、JISD5301始動用鉛蓄電池に示された80D26を供試電池とし、振動を加えながら充電時の減液量を評価した。   The lead storage batteries according to the present invention and the comparative example were 80D26 shown in the lead storage battery for starting JISD5301, and the amount of liquid reduction during charging was evaluated while applying vibration.

正極板は、鉛−カルシウム0.07%−スズ1.6%の鉛合金の圧延シートをエキスパンド加工して得られた正極格子体を用いて常法により作成した。負極板は、鉛−カルシウム0.07%−スズ0.25%の鉛合金の圧延シートをエキスパンド加工して得られた負極格子体に鉛粉と水と硫酸及び添加剤を加えて混練したペーストを充填して作成した。さらに、セパレータはポリエチレン樹脂の微多孔膜を袋状にして正極板を包む構成にして、セルは正極板7枚と負極板8枚にて構成した。   The positive electrode plate was prepared by a conventional method using a positive electrode lattice body obtained by expanding a rolled sheet of lead alloy of lead-calcium 0.07% -tin 1.6%. The negative electrode plate is a paste prepared by adding lead powder, water, sulfuric acid and additives to a negative electrode grid obtained by expanding a rolled sheet of lead alloy of lead-calcium 0.07% -tin 0.25%. Created by filling. Further, the separator was configured to wrap a positive electrode plate in a bag shape of a polyethylene resin microporous film, and the cell was composed of seven positive electrode plates and eight negative electrode plates.

本発明例及び比較例の鉛蓄電池に用いる負極ストラップ合金は、鉛−スズ2.5%合金と鉛−アンチモン2.5%合金を準備した。負極板耳部は、鉛−カルシウム合金のカルシウムの酸化皮膜による負極ストラップとの溶接性を評価するため、負極板耳部にスズ50%−鉛合金箔を両面付与した格子体と付与していない格子体を準備した。さらに、これらの正極板、負極板及び負極ストラップ合金の組合せで、蓋に排気還流構造を有した供試電池A及び電池C〜電池Iと、排気還流構造のない供試電池として電池B及び電池J〜電池Mを作成した。   The negative electrode strap alloys used in the lead storage batteries of the present invention and the comparative examples were prepared as a lead-tin 2.5% alloy and a lead-antimony 2.5% alloy. In order to evaluate the weldability with the negative electrode strap by the calcium oxide film of a lead-calcium alloy, the negative electrode plate ear | edge part is not provided with the grid body which gave both surfaces of the 50% tin-lead alloy foil to the negative electrode plate ear | edge part. A grid was prepared. Further, a combination of the positive electrode plate, the negative electrode plate, and the negative electrode strap alloy, the test batteries A and B to C having the exhaust recirculation structure on the lid, and the battery B and the battery as the test batteries having no exhaust recirculation structure J to Battery M were created.

本発明例及び比較例の各電池を60℃の温度雰囲気下で、充電電圧14.5V(最大充電電流25A)にて2000時間定電圧充電する間、1G(15Hz)の加速度で上下方向に振動を加え、電池の質量減を減液量として測定した。   Each battery of the present invention example and comparative example vibrates in the vertical direction at an acceleration of 1 G (15 Hz) while charging at a constant voltage of 2000 hours at a charging voltage of 14.5 V (maximum charging current 25 A) in a temperature atmosphere of 60 ° C. The battery mass loss was measured as the amount of liquid reduction.

次に、前記した電池A〜電池Mの各電池について、電解液面を負極ストラップ下面よりさらに5mm下方の位置に設定して、負極ストラップを電解液から露出した状態とし、前述同様、60℃の温度雰囲気下および振動を加えた状態で充電電圧14.5Vで2000時間定電圧充電を行なった後、各電池を分解して負極ストラップの状態を確認した。   Next, for each of the batteries A to M described above, the electrolyte surface was set at a position 5 mm below the lower surface of the negative electrode strap so that the negative electrode strap was exposed from the electrolytic solution. After performing constant voltage charging at a charging voltage of 14.5 V for 2000 hours in a temperature atmosphere and with vibration applied, each battery was disassembled and the state of the negative strap was confirmed.

供試電池の組合せ内容と減液量及び負極ストラップの状態を表1に示す。   Table 1 shows the combination contents of test cells, the amount of liquid reduction, and the state of the negative electrode strap.

表1における記載内容で、各電池の減液量は、蓋に排気還流構造を有した一般的な電池Aを100%とした時の百分率で示した。さらに、負極ストラップの状態の項目において、◎印は負極ストラップと負極板耳部の接合部分に隙間がないもの、○印は負極ストラップと負極板耳部の接合部分に何ら異常がないもの、△印は負極ストラップと負極板耳部の接合部分に腐食が進行中のもの、さらに×印は接合部分の腐食が進行して負極ストラップと負極板耳部が断線しているものを示す。   In the description in Table 1, the amount of liquid reduction of each battery is shown as a percentage when a general battery A having an exhaust gas recirculation structure on the lid is defined as 100%. Further, in the item of the state of the negative electrode strap, ◎ indicates that there is no gap at the joint between the negative electrode strap and the negative electrode plate ear, ○ indicates that there is no abnormality at the joint between the negative electrode strap and the negative electrode plate, △ The mark indicates that the corrosion is in progress at the joint between the negative strap and the negative electrode plate ear, and the X indicates that the corrosion at the joint is advanced and the negative strap and the negative electrode plate are disconnected.

Figure 2009193693
Figure 2009193693

表1に示した結果より、負極ストラップ合金に鉛−スズ合金を用いた電池F〜電池Mは、比較例の負極ストラップ合金に鉛−アンチモン合金を用いた電池A〜電池Eに比べて減液量が小さくなる結果が得られた。その中でも負極ストラップ合金に鉛−スズ合金を用い、正極ストラップ合金に鉛−アンチモン合金を用いた電池Fと電池Gと鉛−スズ合金を用いた電池Hと電池Iとの比較においては、僅かに電池F及び電池Gが電池H及び電池Iよりも減液量が多い傾向が見られた。これは、正極ストラップから溶出したアンチモンが負極板に移行したため減液量が多くなったと思われる。   From the results shown in Table 1, the batteries F to M using the lead-tin alloy as the negative electrode strap alloy are less liquid than the batteries A to E using the lead-antimony alloy as the negative electrode strap alloy of the comparative example. Results with smaller amounts were obtained. Among them, in comparison between the battery F and the battery G using the lead-tin alloy for the negative electrode strap alloy and the lead-antimony alloy for the positive electrode strap alloy, the battery H and the battery I using the lead-tin alloy are slightly different. There was a tendency that the battery F and the battery G had more liquid reduction than the batteries H and I. This is probably because the amount of liquid reduction increased because antimony eluted from the positive electrode strap transferred to the negative electrode plate.

負極ストラップの状態は、負極ストラップに鉛−スズ合金を用いた電池F〜電池Mは負極ストラップに異常がなく、電池A〜電池Eは負極ストラップ及び負極板耳部に腐食が見られ、特に、電池A、電池B及び電池Dは腐食が進行して負極ストラップと負極板耳部が断線していた。電池A〜電池Eは、負極ストラップに鉛−アンチモン合金を用いることで減液量が多くなり、ストラップが早期に気相中に暴露され腐食が加速したと考えられる。   As for the state of the negative electrode strap, the batteries F to M using the lead-tin alloy for the negative electrode strap have no abnormality in the negative electrode strap, and the batteries A to E have corrosion in the negative electrode strap and the negative electrode plate ear, Battery A, battery B, and battery D were corroded, and the negative electrode strap and the negative electrode plate ear were disconnected. It is considered that batteries A to E have a reduced amount of liquid by using a lead-antimony alloy for the negative electrode strap, and the strap is exposed to the gas phase at an early stage to accelerate corrosion.

また、電池A〜電池Eにおいて、負極板耳部に鉛−スズ50%合金層を付与した電池B、電池C及び電池Eは、負極ストラップと負極板耳部の接合部分は隙間がなく、電池A及び電池Dと比較しても接合状態が良好であり、減液量が多く負極ストラップが早期に気相中に暴露されても電池A及び電池Dより腐食の程度が小さかったと考えられる。さらに、電池F〜電池Mにおいて、負極板耳部に鉛−スズ50%合金層を付与した電池G、電池I、電池K及び電池Mは、負極ストラップと負極板耳部の接合部分は隙間がなく、電池H、電池J及び電池Lより溶接状態が良好でありより好ましい構成である。   Further, in the batteries A to E, the battery B, the battery C, and the battery E in which the lead-tin 50% alloy layer is applied to the negative electrode plate ear portion have no gap between the joint portions of the negative electrode strap and the negative electrode plate ear portion. Even when compared with A and battery D, the bonding state is good, and the amount of liquid reduction is large, and even when the negative electrode strap is exposed to the gas phase at an early stage, the degree of corrosion is considered to be smaller than that of battery A and battery D. Further, in the batteries F to M, the battery G, the battery I, the battery K, and the battery M in which the lead-tin 50% alloy layer is applied to the negative electrode plate ear portion have a gap between the joint portions of the negative electrode strap and the negative electrode plate ear portion. The welding state is better than that of the battery H, the battery J, and the battery L, and is a more preferable configuration.

次に、蓋に排気還流構造を有した電池において、電池Aと電池Bとの比較で、排気還流構造を有した電池Aに比較して、排気還流構造を持たない電池Bは15%多い減液量であった。一方、負極ストラップに鉛−スズ合金を用いた電池F〜電池Mにおいて、特に減液量が少なかった排気還流構造を有した電池H及び電池Iは、同構成の電池L及び電池Mに対して減液量を28%に減少させることができた。   Next, in the battery having the exhaust gas recirculation structure on the lid, the battery A and the battery B are compared with the battery A having the exhaust gas recirculation structure, and the battery B without the exhaust gas recirculation structure is reduced by 15%. The amount was liquid. On the other hand, in the batteries F to M using the lead-tin alloy for the negative electrode strap, the battery H and the battery I having an exhaust gas recirculation structure in which the amount of liquid reduction is particularly small are compared with the battery L and the battery M having the same configuration. The amount of liquid reduction could be reduced to 28%.

これは、電池A及び電池Bのストラップが鉛−アンチモン合金であるため、水の電気分解を生じ易く、酸水素ガスとともに電解液ミストが電池外に放出されたためと推測された。一方、ストラップに鉛−スズ合金を用いることにより、水の電気分解を鉛−アンチモン合金より抑制するため電解液ミストの発生が少なく、排気還流構造を有することにより電解液ミストを効率的に還流できたものと推測された。   This is presumably because the straps of the battery A and the battery B are made of lead-antimony alloy, so that water is easily electrolyzed, and the electrolyte mist is discharged out of the battery together with the oxyhydrogen gas. On the other hand, by using a lead-tin alloy for the strap, the electrolysis of water is suppressed compared to the lead-antimony alloy, so there is less generation of electrolyte mist, and the exhaust gas recirculation structure allows efficient return of the electrolyte mist. It was speculated.

上記のように構成することにより、負極ストラップにアンチモンを含まない合金を使用し、排気還流構造Aを併せ持つことにより、相乗効果による電解液の減液を抑制した鉛蓄電池を得ることができる。   By comprising as mentioned above, the lead storage battery which suppressed the liquid reduction of the electrolyte solution by a synergistic effect can be obtained by using the alloy which does not contain antimony for a negative electrode strap, and having exhaust-gas recirculation | reflux structure A together.

本発明によれば、蓋に排気還流構造を有した鉛蓄電池における減液を抑制でき、負極ストラップと負極板耳部との接合部分の腐食に対する信頼性が向上することから、多くの鉛蓄電池に好適であり、その利用価値は高い。   According to the present invention, liquid reduction in a lead storage battery having an exhaust gas recirculation structure on the lid can be suppressed, and reliability against corrosion of the joint portion between the negative electrode strap and the negative electrode plate ear is improved. It is suitable and its utility value is high.

本発明の鉛蓄電池を示す断面図Sectional drawing which shows the lead acid battery of this invention 本発明の鉛蓄電池の排気還流構造を示す斜視図The perspective view which shows the exhaust gas recirculation structure of the lead acid battery of this invention エキスパンド方式による負極板の製作を示す図Diagram showing production of negative electrode plate by expanding method (a)負極ストラップと負極板耳部の接合部分を示すストラップの側面図、(b)負極ストラップと負極板耳部の接合部分を示すストラップの断面図(A) Side view of the strap showing the junction between the negative electrode strap and the negative electrode plate ear, (b) Cross section of the strap showing the junction between the negative electrode strap and the negative electrode plate ear

符号の説明Explanation of symbols

A 排気還流構造
1 鉛蓄電池
2 正極板
3 負極板
3a 負極板耳部
4 セパレータ
5 セル
6 正極ストラップ
7 負極ストラップ
8 電解液
9 電槽
10 セル室
11 蓋
12 極柱
13 外部端子
14 排気室
15 排気蓋
16 開口部
17 排出路
18 一括排出路
19 底壁
20 板状突起
20a 底壁板状突起
20b 天井板状突起
21 天井壁
22 側壁
23 間隙
24 鉛−スズ合金層
25 隙間
26 エキスパンド格子体
27 圧延シート
28 非展開部
29 網目
30 鉛―スズ合金箔
31 切込み
32 活物質
A exhaust gas recirculation structure 1 lead acid battery 2 positive electrode plate 3 negative electrode plate 3a negative electrode plate ear 4 separator 5 cell 6 positive electrode strap 7 negative electrode strap 8 electrolyte 9 battery case 10 cell chamber 11 lid 12 polar column 13 external terminal 14 exhaust chamber 15 exhaust Lid 16 Opening 17 Discharge path 18 Collective discharge path 19 Bottom wall 20 Plate-like protrusion 20a Bottom wall plate-like protrusion 20b Ceiling plate-like protrusion 21 Ceiling wall 22 Side wall 23 Gap 24 Lead-tin alloy layer 25 Gap 26 Expanded grid 27 Rolling Sheet 28 Non-development part 29 Mesh 30 Lead-tin alloy foil 31 Notch 32 Active material

Claims (5)

正極格子体及び負極格子体にそれぞれ鉛−カルシウム合金を用いて作成された正極板及び負極板は電解液中に浸漬され、前記正極板と前記負極板及び前記電解液を収納する電槽の上部に接合した蓋には、セル室から排出されるガスを電池外部に排出するための排気機能と、結露した水分もしくは電解液を前記セルに還流するための還流機能を有した排気還流構造を有するとともに、前記負極板の同極性同士を接合するストラップ形成用鉛合金はアンチモンを含まない鉛合金であることを特徴とする鉛蓄電池。 A positive electrode plate and a negative electrode plate prepared using a lead-calcium alloy for the positive electrode grid body and the negative electrode grid body, respectively, are immersed in an electrolyte solution, and an upper part of a battery case that houses the positive electrode plate, the negative electrode plate, and the electrolyte solution The lid joined to the cell has an exhaust function for exhausting the gas exhausted from the cell chamber to the outside of the battery, and an exhaust recirculation structure having a reflux function for returning condensed moisture or electrolyte to the cell. The lead alloy for forming a strap for joining the same polarities of the negative electrode plates is a lead alloy containing no antimony. 前記排気還流構造は、前記セル室に対応する排気室において、前記排気室は、セルからのガスを導入する開口部と前記ガスをセル室外に排出するための排出路を有するとともに、前記排出路から前記開口部に向け下方へ傾斜する底壁を有し、前記底壁には前記底壁に対向する天井壁に向かい底壁板状突起を設け、前記底壁板状突起は、その一端が前記排気室を形成する一方の側壁と接続されるとともに他の一端は前記側壁に対向する側壁には接続されずに間隙を有し、前記天井壁には前記底壁に対向するよう天井板状突起を有し、前記天井板状突起は、前記底壁板状突起間に垂下させ、互いに隣接する前記底壁板状突起には、前記間隙を交互に設けたことを特徴とする請求項1記載の鉛蓄電池。 The exhaust gas recirculation structure has an exhaust chamber corresponding to the cell chamber, the exhaust chamber having an opening for introducing a gas from the cell and a discharge path for discharging the gas to the outside of the cell chamber. A bottom wall that slopes downward toward the opening, and a bottom wall plate-like protrusion is provided on the bottom wall toward the ceiling wall that faces the bottom wall. It is connected to one side wall forming the exhaust chamber and the other end is not connected to the side wall facing the side wall but has a gap, and the ceiling wall has a ceiling plate shape so as to face the bottom wall. 2. The projection according to claim 1, wherein the ceiling plate-like projections are suspended between the bottom wall plate-like projections, and the gaps are alternately provided in the bottom wall plate-like projections adjacent to each other. Lead acid battery of description. 前記負極板の同極性同士を接合するストラップ形成用鉛合金には、実質的にアンチモンを含有せず、スズを含有することを特徴とする請求項2記載の鉛蓄電池。 The lead storage battery according to claim 2, wherein the strap forming lead alloy for joining the same polarities of the negative electrode plates substantially does not contain antimony but contains tin. 鉛−カルシウム合金からなる前記負極板の耳部の両表面は、鉛−スズ合金層を形成することを特徴とする請求項3載記の鉛蓄電池。 The lead-acid battery according to claim 3, wherein both surfaces of the ear portion of the negative electrode plate made of a lead-calcium alloy form a lead-tin alloy layer. 前記鉛−スズ合金層は、エキスパンド格子体を作成する鉛合金シートの前記エキスパンド格子体の耳部に対応する非展開部を、鉛−スズ合金箔にて一体に圧延形成することを特徴とした請求項4記載の鉛蓄電池。 The lead-tin alloy layer is formed by integrally rolling a non-expanded portion corresponding to an ear portion of the expanded lattice body of a lead alloy sheet for creating an expanded lattice body with a lead-tin alloy foil. The lead acid battery according to claim 4.
JP2008030257A 2008-02-12 2008-02-12 Lead acid battery Expired - Fee Related JP5326291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008030257A JP5326291B2 (en) 2008-02-12 2008-02-12 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008030257A JP5326291B2 (en) 2008-02-12 2008-02-12 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2009193693A true JP2009193693A (en) 2009-08-27
JP5326291B2 JP5326291B2 (en) 2013-10-30

Family

ID=41075559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008030257A Expired - Fee Related JP5326291B2 (en) 2008-02-12 2008-02-12 Lead acid battery

Country Status (1)

Country Link
JP (1) JP5326291B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117502A1 (en) * 2011-02-28 2012-09-07 株式会社Gsユアサ Lead storage battery and method for manufacturing same
KR20180113801A (en) * 2017-04-07 2018-10-17 주식회사 엘지화학 Battery pack and vehicle comprising the battery pack
KR20180113802A (en) * 2017-04-07 2018-10-17 주식회사 엘지화학 Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
US10319969B2 (en) 2015-03-30 2019-06-11 Gs Yuasa International Ltd. Lead-acid battery and method of manufacturing lid member of lead-acid battery
CN111463400A (en) * 2020-04-14 2020-07-28 巨江电源科技有限公司 Anti-overflow lead-acid storage battery cover and storage battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6631015B2 (en) 2015-02-27 2020-01-15 株式会社Gsユアサ Lead storage battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52129928U (en) * 1976-03-30 1977-10-03
JPS5550518U (en) * 1978-09-29 1980-04-02
JPH07201333A (en) * 1993-12-28 1995-08-04 Matsushita Electric Ind Co Ltd Grid body for lead-acid battery
JP2005317332A (en) * 2004-04-28 2005-11-10 Furukawa Battery Co Ltd:The Lead-acid storage battery
JP2006114416A (en) * 2004-10-18 2006-04-27 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2007018812A (en) * 2005-07-06 2007-01-25 Shin Kobe Electric Mach Co Ltd Lattice body for lead-acid battery and its manufacturing method
JP2008041299A (en) * 2006-08-02 2008-02-21 Matsushita Electric Ind Co Ltd Lead-acid battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52129928U (en) * 1976-03-30 1977-10-03
JPS5550518U (en) * 1978-09-29 1980-04-02
JPH07201333A (en) * 1993-12-28 1995-08-04 Matsushita Electric Ind Co Ltd Grid body for lead-acid battery
JP2005317332A (en) * 2004-04-28 2005-11-10 Furukawa Battery Co Ltd:The Lead-acid storage battery
JP2006114416A (en) * 2004-10-18 2006-04-27 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2007018812A (en) * 2005-07-06 2007-01-25 Shin Kobe Electric Mach Co Ltd Lattice body for lead-acid battery and its manufacturing method
JP2008041299A (en) * 2006-08-02 2008-02-21 Matsushita Electric Ind Co Ltd Lead-acid battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117502A1 (en) * 2011-02-28 2012-09-07 株式会社Gsユアサ Lead storage battery and method for manufacturing same
CN103109413A (en) * 2011-02-28 2013-05-15 株式会社杰士汤浅国际 Lead storage battery and method for manufacturing same
JPWO2012117502A1 (en) * 2011-02-28 2014-07-07 株式会社Gsユアサ Lead-acid battery and method for manufacturing the same
JP5713097B2 (en) * 2011-02-28 2015-05-07 株式会社Gsユアサ Lead-acid battery and method for manufacturing the same
US10319969B2 (en) 2015-03-30 2019-06-11 Gs Yuasa International Ltd. Lead-acid battery and method of manufacturing lid member of lead-acid battery
KR20180113801A (en) * 2017-04-07 2018-10-17 주식회사 엘지화학 Battery pack and vehicle comprising the battery pack
KR20180113802A (en) * 2017-04-07 2018-10-17 주식회사 엘지화학 Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
KR102256596B1 (en) * 2017-04-07 2021-06-02 주식회사 엘지에너지솔루션 Battery pack and vehicle comprising the battery pack
KR102256104B1 (en) * 2017-04-07 2021-06-03 주식회사 엘지에너지솔루션 Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
CN111463400A (en) * 2020-04-14 2020-07-28 巨江电源科技有限公司 Anti-overflow lead-acid storage battery cover and storage battery
CN111463400B (en) * 2020-04-14 2022-12-23 巨江电源科技有限公司 Anti-overflow lead-acid storage battery cover and storage battery

Also Published As

Publication number Publication date
JP5326291B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5522444B2 (en) Lead acid battery
JP5326291B2 (en) Lead acid battery
JP5036304B2 (en) Lead acid battery and storage method of lead acid battery
JPWO2009142220A1 (en) Lead-acid battery and method for manufacturing the same
JP5061451B2 (en) Anode current collector for lead acid battery
JP5326196B2 (en) Lead acid battery
JP2010170939A (en) Lead storage battery
JP2003346888A (en) Lead-acid battery
JP5359193B2 (en) Lead acid battery
JP2009104914A (en) Lead-acid battery
JPWO2012153464A1 (en) Negative electrode for lead acid battery and lead acid battery
JP5151088B2 (en) Lead acid battery
JP4507483B2 (en) Control valve type lead acid battery
JP6398111B2 (en) Lead acid battery
JP6244801B2 (en) Lead acid battery
JP2008071693A (en) Lead storage battery
JP2006114417A (en) Lead-acid storage battery
JP2006210210A (en) Lead-acid battery
JP2010205572A (en) Lead acid battery
JP2008243480A (en) Lead storage battery
JP2007018812A (en) Lattice body for lead-acid battery and its manufacturing method
JP4892827B2 (en) Lead acid battery
JP6197426B2 (en) Lead acid battery
JP4896392B2 (en) Lead acid battery
JP5340615B2 (en) Lead-acid battery for vehicle engine start

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101007

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R151 Written notification of patent or utility model registration

Ref document number: 5326291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees