JP2009183949A - Ultraviolet light cleaning apparatus and ultraviolet lamp therefor - Google Patents

Ultraviolet light cleaning apparatus and ultraviolet lamp therefor Download PDF

Info

Publication number
JP2009183949A
JP2009183949A JP2009114870A JP2009114870A JP2009183949A JP 2009183949 A JP2009183949 A JP 2009183949A JP 2009114870 A JP2009114870 A JP 2009114870A JP 2009114870 A JP2009114870 A JP 2009114870A JP 2009183949 A JP2009183949 A JP 2009183949A
Authority
JP
Japan
Prior art keywords
ultraviolet light
ultraviolet
lamp
processed
open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009114870A
Other languages
Japanese (ja)
Other versions
JP2009183949A5 (en
JP4883133B2 (en
Inventor
Koji Hosoya
細谷  浩二
Hiromi Sakamoto
弘実 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2009114870A priority Critical patent/JP4883133B2/en
Publication of JP2009183949A publication Critical patent/JP2009183949A/en
Publication of JP2009183949A5 publication Critical patent/JP2009183949A5/ja
Application granted granted Critical
Publication of JP4883133B2 publication Critical patent/JP4883133B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultraviolet light-cleaning apparatus which can prevent irregularities of treatment or the like from being caused through adhesion of a white powder to a lamp housing by accelerating the treatment speed of a material to be treated. <P>SOLUTION: An open housing 33 which surrounds a whole ultraviolet lamp 32 group along four peripheries and allows a lower surface side to be opened is disposed in a lamp housing 30. A porous gas diffusing plate 35 having, for example, a stainless plate with many holes of 1-3 mm is disposed on the ceiling part of an opened housing 33. Clean nitrogen gas (inert gas) is supplied from the porous gas diffusing plate 35, and an entire space from the circumference of the ultraviolet lamp 32 group to an ultraviolet light emitting space X of a work W is filled with nitrogen, and is maintained in an inert gas atmosphere where oxygen is almost not present. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、紫外光を利用して被処理物表面の洗浄を行う紫外光洗浄装置およびこれに用いる紫外線ランプに関する。   The present invention relates to an ultraviolet light cleaning apparatus for cleaning the surface of an object to be processed using ultraviolet light and an ultraviolet lamp used therefor.

例えば、液晶ディスプレイや半導体装置の製造プロセスにおいて、基板の表面を清浄化するために基板に紫外光を照射して表面の有機物の酸化分解を行わせる紫外光洗浄装置が利用されている。
この種の紫外光洗浄装置は、基板(被処理物)に紫外光を照射すると、まず、基板の雰囲気中の酸素分子に紫外光が吸収されてオゾンが生成し、このオゾンが紫外光を受けて更に光分解することにより活性酸素等の活性種を生じ、この活性種により基板表面の有機物が酸化分解されると考えられている。
For example, in a manufacturing process of a liquid crystal display or a semiconductor device, an ultraviolet light cleaning apparatus that irradiates the substrate with ultraviolet light to oxidize and decompose organic substances on the surface is used to clean the surface of the substrate.
In this type of ultraviolet light cleaning device, when the substrate (object to be processed) is irradiated with ultraviolet light, first, ultraviolet light is absorbed by oxygen molecules in the atmosphere of the substrate to generate ozone, and this ozone receives ultraviolet light. Further, it is considered that active species such as active oxygen are generated by further photolysis, and organic substances on the substrate surface are oxidatively decomposed by the active species.

このような光洗浄の原理から、被処理物の雰囲気中に酸素が存在していることは必須であると考えられている。一方で、紫外光が大気中の酸素分子に衝突してオゾンを生成させることは、紫外光が大気中の酸素によって吸収されることを意味する。現に、大気の紫外光透過率は極めて小さく、例えば波長172nmの紫外光では大気中を2mm進むだけで約40数%に減衰することが知られており被処理物表面の紫外光強度を高めて洗浄の処理スピードを上げるためには、大気中の酸素の存在は障害になる。   From the principle of such optical cleaning, it is considered essential that oxygen exists in the atmosphere of the object to be processed. On the other hand, the collision of ultraviolet light with oxygen molecules in the atmosphere to generate ozone means that the ultraviolet light is absorbed by oxygen in the atmosphere. Actually, the ultraviolet light transmittance of the atmosphere is extremely small. For example, ultraviolet light having a wavelength of 172 nm is known to attenuate to about 40% by simply proceeding through the atmosphere by 2 mm, increasing the ultraviolet light intensity on the surface of the workpiece. In order to increase the processing speed of cleaning, the presence of oxygen in the atmosphere becomes an obstacle.

そこで、従来の紫外光洗浄装置では、例えば図11に示すように、紫外光を透過する石英ガラスで窓部材1を形成した密閉型のランプハウス2内に紫外線ランプ3を収容し、このランプハウス2内には供給口2Aから窒素を流し込み、排出口2Bから流し出すことでランプハウス2内に窒素を満たして紫外線ランプ3の周囲から酸素を排除する構成としていた。そして、その上で、ランプハウス2外には酸素が存在するため、ランプハウス2の窓部材1を被処理物4に対し数mm程度の近距離に近づけて配置していた。   Therefore, in the conventional ultraviolet light cleaning apparatus, for example, as shown in FIG. 11, an ultraviolet lamp 3 is housed in a hermetic lamp house 2 in which a window member 1 is formed of quartz glass that transmits ultraviolet light. In this configuration, nitrogen is supplied into the interior 2 from the supply port 2 </ b> A, and is discharged from the outlet 2 </ b> B to fill the lamp house 2 with nitrogen and exclude oxygen from the surroundings of the ultraviolet lamp 3. In addition, since oxygen exists outside the lamp house 2, the window member 1 of the lamp house 2 is disposed close to the workpiece 4 at a short distance of about several mm.

ところが、液晶ディスプレイ用のガラス基板等の板状をなす被処理物4をローラコンベア5等の搬送手段によって搬送しながら洗浄処理を行う関係上、被処理物4自体の反りや、搬送時の振動や微細な跳ね上がりを避け得ないから、窓部材1を被処理物4に近接させるには限界があり、処理スピード向上の制約となっていた。このような事情下で、処理スピードの向上を課題とした技術として特許文献1に記載の発明があるが、未だ十分に処理スピードを向上させることができない。   However, because the cleaning process is performed while the workpiece 4 having a plate shape such as a glass substrate for a liquid crystal display is transported by a transporting means such as a roller conveyor 5, the warp of the workpiece 4 itself and vibration during transport are performed. In other words, it is unavoidable to make a slight jump, so that there is a limit in bringing the window member 1 close to the workpiece 4, which is a limitation on the processing speed. Under such circumstances, there is an invention described in Patent Document 1 as a technique for improving the processing speed, but the processing speed cannot be sufficiently improved.

また、この種の紫外光洗浄装置では、窓部材1に次第に白粉が付着し、被処理物の処理不良や処理ムラを発生させ、歩留まり低下の原因となるという問題がある。これは次のような原因によると考えられている。すなわち、半導体や液晶デバイスの製造工程では、有機溶剤、酸、アルカリなどの各種薬品が使用されているため、これらが気化、霧化して空気中に浮遊していることがある。また、それらの薬品の使用後に基板を洗浄したとしても、僅かに付着して残る薬品が基板への紫外光照射時に、熱を受けて基板から気化してくることもある。すると、それらの薬品が紫外光を受けて化学反応を起こし、硫酸アンモニウム等の反応生成物を生じてこれが窓部材1に付着するのである。窓部材1に白粉が付着すると、紫外光の照射ムラの原因となるから、ランプハウス2を反転させて窓部材1の外面を頻繁に掃除しなくてはならず、そのメンテナンス作業の負担は相当に大きい。
なお、このような窓部材1への白粉の付着防止を課題とした技術には特許文献2に記載の発明があるが、窓部材1の加熱手段を必要とするため、装置が複雑化して高価になるという問題がある。
In addition, this type of ultraviolet light cleaning apparatus has a problem that white powder gradually adheres to the window member 1 to cause processing defects and processing unevenness of the object to be processed, resulting in a decrease in yield. This is considered to be caused by the following reasons. That is, since various chemicals such as organic solvents, acids, and alkalis are used in the manufacturing process of semiconductors and liquid crystal devices, these may be vaporized and atomized and suspended in the air. Further, even if the substrate is cleaned after using these chemicals, the chemical that remains slightly adhered may be vaporized from the substrate by receiving heat when the substrate is irradiated with ultraviolet light. Then, these chemicals receive ultraviolet light and cause a chemical reaction to produce a reaction product such as ammonium sulfate, which adheres to the window member 1. If white powder adheres to the window member 1, it causes uneven irradiation of ultraviolet light. Therefore, the lamp house 2 must be reversed to frequently clean the outer surface of the window member 1, and the maintenance work is considerable. Big.
In addition, although there exists invention of patent document 2 in the technique which made the subject the adhesion prevention of the white powder to such a window member 1, since the heating means of the window member 1 is required, an apparatus becomes complicated and expensive. There is a problem of becoming.

特開2003−80191号公報JP 2003-80191 A 特開平11−295500号公報JP 11-295500 A

本発明は上記のような事情に基づいて完成されたもので、被処理物の処理スピードを高め、しかもランプハウスに白粉ができるだけ付着しないようにしてメンテナンス作業を軽減できる紫外光洗浄装置およびそれに適した紫外線ランプを提供することを目的とする。   The present invention has been completed based on the above circumstances, and an ultraviolet light cleaning apparatus capable of increasing the processing speed of the object to be processed and reducing the maintenance work by preventing white powder from adhering to the lamp house as much as possible, and suitable for it. An object is to provide an ultraviolet lamp.

本発明は、被処理物の表面で紫外光によって有機物が分解される過程において、必要とされる酸素が極めて微量であり、被処理物が大気程度の酸素含有雰囲気中に置かれている状態で自然と被処理物の表面に付着する程度の量で足ることを発見したことに基づく。すなわち、従来は、被処理物表面における有機物の分解原理から、被処理物は大気中で紫外光を照射することが必須であると考えられていた。しかしながら、必ずしもそのような多量の酸素を必要とするのではなく、被処理物が紫外光に照射される空間を不活性ガスで置換して大気(酸素)を排除した状態にしておいても、被処理物をいったん酸素含有雰囲気中に通過させ、それを紫外光照射空間内に搬送すれば、被処理物表面に付着して引きずり込まれる酸素によって十分に有機物の酸化分解が可能であることを発見したのである。   In the present invention, in the process in which organic matter is decomposed by ultraviolet light on the surface of the object to be treated, the amount of oxygen required is extremely small, and the object to be treated is placed in an oxygen-containing atmosphere of the atmosphere. It is based on the discovery that it is sufficient to adhere to the surface of the object to be treated. That is, conventionally, from the principle of decomposition of organic substances on the surface of the object to be processed, it has been considered essential that the object to be processed is irradiated with ultraviolet light in the atmosphere. However, it does not necessarily require such a large amount of oxygen, and even if the space in which the object is irradiated with ultraviolet light is replaced with an inert gas and the atmosphere (oxygen) is excluded, Once the material to be processed is passed through an oxygen-containing atmosphere and transported into the ultraviolet light irradiation space, it is possible to sufficiently oxidize and decompose organic matter by the oxygen that is attached and dragged onto the surface of the material to be processed. I found it.

そこで、前記目的を達成するための手段として、請求項1の発明は、搬送される被処理物に、紫外線ランプを備えたランプハウスからの紫外光を照射することで前記被処理物表面の洗浄を行う紫外光洗浄装置であって、前記ランプハウス内の前記紫外線ランプの周囲から、搬送された前記被処理物が前記紫外光の照射を受ける領域にかけての紫外光照射空間を、不活性ガス雰囲気にするためのガス供給手段を設け、前記被処理物は酸素含有雰囲気中を通った後に前記紫外光照射空間に搬送される構成とした。   Accordingly, as means for achieving the above object, the invention of claim 1 is directed to cleaning the surface of the object to be processed by irradiating the object to be conveyed with ultraviolet light from a lamp house having an ultraviolet lamp. An ultraviolet light cleaning apparatus for performing an ultraviolet light irradiation space from the periphery of the ultraviolet lamp in the lamp house to a region where the conveyed object is irradiated with the ultraviolet light, and an inert gas atmosphere. Gas supply means is provided, and the object to be processed is conveyed to the ultraviolet light irradiation space after passing through an oxygen-containing atmosphere.

本発明の紫外光洗浄装置によれば、ガス供給手段から供給される不活性ガスによって、紫外光照射空間が不活性ガス雰囲気にされる。ここで紫外光照射空間とは、ランプハウス内の紫外線ランプの周囲から、搬送された被処理物が紫外光の照射を受ける領域にかけての空間をいうから、紫外線ランプから放射された紫外光は酸素をほとんど含まない空間を通って被処理物に照射されることになり、酸素による吸収を受けずに強い紫外光強度で被処理物が照射される。
一方、被処理物は、大気中等の酸素含有雰囲気中を通って前記紫外光照射空間に搬送されるから、酸素含有雰囲気中に存在していたときに酸素が薄い膜となって被処理物表面に付着しており、これがそのまま紫外光照射空間内に引きずり込まれ、紫外光照射空間内で強い紫外光を受けてそれらの酸素が活性化して表面の有機物が分解される。
According to the ultraviolet light cleaning apparatus of the present invention, the ultraviolet light irradiation space is made an inert gas atmosphere by the inert gas supplied from the gas supply means. Here, the ultraviolet light irradiation space means a space from the periphery of the ultraviolet lamp in the lamp house to a region where the conveyed workpiece is irradiated with ultraviolet light, and therefore the ultraviolet light emitted from the ultraviolet lamp is oxygen. The object to be processed is irradiated through a space that does not substantially contain oxygen, and the object to be processed is irradiated with strong ultraviolet light intensity without being absorbed by oxygen.
On the other hand, the object to be processed passes through an oxygen-containing atmosphere such as the atmosphere and is transported to the ultraviolet light irradiation space. Therefore, when the object is present in the oxygen-containing atmosphere, the surface of the object to be processed becomes a thin film of oxygen. This is dragged into the ultraviolet light irradiation space as it is, receives strong ultraviolet light in the ultraviolet light irradiation space, activates those oxygens, and decomposes organic substances on the surface.

また、請求項2の発明は、前記ランプハウスは、前記被処理物側の一面を開放させた開放ハウジング内にその開放面に沿わせるように紫外線ランプを並べて構成し、前記ガス供給手段を前記ランプハウスのうち前記紫外線ランプの前記開放面とは反対側に配置した多孔のガス拡散板を通して前記不活性ガスを吐出する構成としたところに特徴を有する。
これによれば、ガス拡散板を通して不活性ガスがランプハウス内に吐出され、この不活性ガスが紫外線ランプの周囲から開放ハウジングの開放面に向かって流れ、その開放面から被処理物の表面を包むように流れ出す。
Further, in the invention of claim 2, the lamp house is configured such that ultraviolet lamps are arranged along the open surface in an open housing in which one surface on the workpiece side is open, and the gas supply means In the lamp house, the inert gas is discharged through a porous gas diffusion plate disposed on the opposite side of the open surface of the ultraviolet lamp.
According to this, the inert gas is discharged into the lamp house through the gas diffusion plate, the inert gas flows from the periphery of the ultraviolet lamp toward the open surface of the open housing, and from the open surface to the surface of the object to be processed. It flows out like wrapping.

請求項3の発明に係る紫外光洗浄装置は、搬送される被処理物に、紫外線ランプを備えたランプハウスからの紫外光を照射することで前記被処理物表面の洗浄を行う紫外光洗浄装置であって、前記ランプハウスは、前記被処理物側の一面を開放させた開放ハウジング内に、紫外光照射面が平坦な角筒型をなす紫外線ランプをその紫外線照射面が前記開放ハウジングの開放面に沿うように配置して構成され、前記ランプハウスには、前記紫外線ランプの前記開放ハウジングの前記開放面とは反対側に位置する平坦面に対面するように多孔のガス拡散板を備え、このガス拡散板から不活性ガスを吐出して、前記紫外線ランプの周囲から、搬送された前記被処理物が前記紫外光の照射を受ける領域にかけての紫外光照射空間を不活性ガス雰囲気にするためのガス供給手段を設けるとともに、前記被処理物を酸素含有雰囲気中を通った後に前記紫外光照射空間に搬送する搬送機構を設けたところに特徴を有する。   An ultraviolet light cleaning apparatus according to a third aspect of the present invention is an ultraviolet light cleaning apparatus for cleaning the surface of an object to be processed by irradiating the object to be conveyed with ultraviolet light from a lamp house having an ultraviolet lamp. The lamp house includes an ultraviolet lamp having a rectangular tube shape with a flat ultraviolet light irradiation surface in an open housing in which one surface of the object to be processed is opened, and the ultraviolet irradiation surface is open to the open housing. The lamp house includes a porous gas diffusion plate so as to face a flat surface located opposite to the open surface of the open housing of the ultraviolet lamp, An inert gas is discharged from the gas diffusion plate, and the ultraviolet light irradiation space from the periphery of the ultraviolet lamp to the region where the object to be processed is irradiated with the ultraviolet light is made an inert gas atmosphere. Provided with a gas supply means for, having characterized the at having a transfer mechanism for transferring the ultraviolet light irradiation space after the object to be treated through the oxygen-containing atmosphere.

また、請求項4の発明に係る紫外線ランプは、搬送される被処理物に紫外光を照射することで前記被処理物表面の洗浄を行う紫外光洗浄装置のランプハウスに備えられる紫外線ランプであって、前記ランプハウスは、前記被処理物側の一面を開放させた開放ハウジングと、前記開放面とは前記紫外線ランプを挟んで反対側に位置する多孔のガス拡散板とを備え、そのガス拡散板から不活性ガスを吐出して前記紫外線ランプの周囲から、搬送された前記被処理物が前記紫外光の照射を受ける領域にかけての紫外光照射空間を不活性ガス雰囲気にするようにされており、前記紫外線ランプが、対向する各二面を平坦面とした断面ほぼ長方形状の筒型をなし、長辺側の一対の平坦面の一方を前記ガス拡散板にほぼ平行に対面させ、他方を前記被処理物にほぼ平行に対面させて配置されるものであるところに特徴を有する。   An ultraviolet lamp according to a fourth aspect of the present invention is an ultraviolet lamp provided in a lamp house of an ultraviolet light cleaning apparatus that cleans the surface of the object to be processed by irradiating the object to be conveyed with ultraviolet light. The lamp house includes an open housing in which one surface of the object to be processed is opened, and a porous gas diffusion plate located on the opposite side of the ultraviolet lamp with respect to the open surface. An inert gas is discharged from the plate and the ultraviolet light irradiation space from the periphery of the ultraviolet lamp to the region where the object to be processed is irradiated with the ultraviolet light is made an inert gas atmosphere. The ultraviolet lamp has a cylindrical shape with a substantially rectangular cross section with the two opposing surfaces as flat surfaces, with one of the pair of flat surfaces on the long side facing the gas diffusion plate substantially parallel to the other, The processed Characterized in place are those which are arranged substantially parallel to is opposed to.

請求項1の発明によれば、紫外線ランプからの紫外光が途中で酸素に吸収されることなく、被処理物表面に到達するから、被処理物表面の紫外光強度が飛躍的に強くなる。従って、紫外線ランプの出力が同じであれば、従来よりも高速で洗浄処理を行うことができ、あるいは、従来と同等の速度で洗浄処理を行うには、紫外線ランプの本数を減らすことができる。また、紫外光照射空間の雰囲気が不活性ガス雰囲気となって空気が排除されているから、仮に、本装置が設置してある大気中に有機溶剤、酸、アルカリなどの各種薬品が気化・霧化して浮遊していたとしても、それが紫外光を受けて硫酸アンモニウム等の反応生成物を生じてしまうことがなく、ランプハウス等への白粉の付着を防止してメンテナンス作業が簡単になる。   According to the first aspect of the present invention, since the ultraviolet light from the ultraviolet lamp reaches the surface of the object to be processed without being absorbed by oxygen on the way, the ultraviolet light intensity on the surface of the object to be processed is remarkably increased. Therefore, if the output of the ultraviolet lamp is the same, the cleaning process can be performed at a higher speed than before, or the number of ultraviolet lamps can be reduced to perform the cleaning process at a speed equivalent to the conventional one. In addition, since the atmosphere in the ultraviolet light irradiation space is an inert gas atmosphere and air is excluded, various chemicals such as organic solvents, acids, and alkalis are vaporized / misted in the atmosphere where this equipment is installed. Even if it floats and becomes floating, it does not generate a reaction product such as ammonium sulfate by receiving ultraviolet light, and it is possible to prevent white powder from adhering to the lamp house or the like and to simplify the maintenance work.

請求項2の発明では、ランプハウスに窓部材がないから構造が極めて簡単になり、かつ、紫外光照射空間を均一な不活性ガス雰囲気にすることができる。   In the invention of claim 2, since there is no window member in the lamp house, the structure becomes very simple, and the ultraviolet light irradiation space can be made a uniform inert gas atmosphere.

請求項3および請求項4の発明によれば、紫外線ランプが角筒型をなし、その平坦な紫外線照射面が被処理物に対して平行に対面することになる。この結果、紫外線ランプの紫外線照射面から被処理物までの距離が均一化され、被処理物表面における紫外線強度を均一化してムラのない洗浄処理が可能である。   According to the invention of claim 3 and claim 4, the ultraviolet lamp has a rectangular tube shape, and the flat ultraviolet irradiation surface faces the object to be processed in parallel. As a result, the distance from the ultraviolet irradiation surface of the ultraviolet lamp to the object to be processed is made uniform, and the ultraviolet light intensity on the surface of the object to be processed is made uniform so that a uniform cleaning process is possible.

しかも、紫外線ランプの他方の平坦面もガス拡散板に対して平行に対面することになるから、ガス拡散板から吐出された不活性ガスがいったん紫外線ランプの平坦面に衝突し、ここで横向きに流れを変えて紫外線ランプの両側部から真っ直ぐに被処理物に向かう流れが生成されるようになる。この結果、被処理物表面のうち紫外線ランプに直接対面して紫外線の照射を受けている領域が、紫外線ランプの両側部から流れ出す不活性ガスの流れに両側から包まれるようになる。このため、被処理物表面には微量の酸素しか存在していないという事情があっても、酸素が紫外光の照射を受けてオゾンを生成し、そのオゾンから活性酸素が生成されて有機物が分解されるという光化学反応が円滑に進むものと考えられる。 In addition, since the other flat surface of the ultraviolet lamp also faces the gas diffusion plate in parallel, the inert gas discharged from the gas diffusion plate once collides with the flat surface of the ultraviolet lamp, where it faces sideways. The flow is changed to generate a flow straight from the both sides of the ultraviolet lamp toward the workpiece. As a result, the region of the surface of the object to be treated that is directly exposed to the ultraviolet lamp and is irradiated with ultraviolet rays is enveloped from both sides by the flow of inert gas flowing out from both sides of the ultraviolet lamp. For this reason, even if there is a situation where only a small amount of oxygen is present on the surface of the object to be processed, oxygen is irradiated with ultraviolet light to generate ozone, and active oxygen is generated from the ozone to decompose organic matter. It is thought that the photochemical reaction that is carried out proceeds smoothly.

本実施形態の洗浄ラインを示す正面図Front view showing the cleaning line of the present embodiment 本実施形態の紫外光洗浄装置を示す斜視図The perspective view which shows the ultraviolet-light cleaning apparatus of this embodiment 図2中のII-II線に沿う部分断面図Partial sectional view taken along line II-II in FIG. 図2中のIII−III線に沿う部分断面図Partial sectional view taken along line III-III in FIG. 大気中と窒素中の紫外線の減衰グラフAttenuation graph of ultraviolet light in the atmosphere and nitrogen. 本実施形態の紫外光洗浄装置における紫外線強度を説明するための概略断面図Schematic sectional view for explaining the ultraviolet intensity in the ultraviolet light cleaning apparatus of the present embodiment 角筒型ランプと円筒型ランプとの紫外光照射状況を示す概略的断面図Schematic cross-sectional view showing the ultraviolet light irradiation status of a rectangular tube lamp and a cylindrical lamp 本実施形態の洗浄装置による洗浄度合いを示すグラフGraph showing the degree of cleaning by the cleaning device of the present embodiment 角筒型ランプと円筒型ランプとの窒素ガスの流れを説明するための概略的断面図Schematic sectional view for explaining the flow of nitrogen gas between a rectangular tube lamp and a cylindrical lamp 本実施形態の洗浄装置と従来装置との必要ランプ数を示すためのグラフA graph for indicating the number of lamps required for the cleaning device of this embodiment and the conventional device 従来の紫外光洗浄装置を示す概略的断面図Schematic cross-sectional view showing a conventional ultraviolet cleaning device

本発明の紫外光洗浄装置は、液晶ディスプレイ用のガラス基板(本発明の被処理物に相当する)の洗浄を行う基板洗浄装置10に組み込まれている。図1に示すように、基板洗浄装置10はその正面から見て左側から順に、搬送ユニット11、本発明に係る紫外光洗浄装置20,搬送ユニット12、ウエット洗浄を行うウエット洗浄装置13を連続して配置して構成されている。紫外光洗浄装置20及びウエット洗浄装置13の内部には、搬送ユニット11内に設けたと同様な搬送機構14(図2参照)が備えられており、ワークW(ガラス基板)が図1中の矢印に示すように左側から右側に順次搬送され、全体として連続する洗浄ラインをなしている。   The ultraviolet light cleaning apparatus of the present invention is incorporated in a substrate cleaning apparatus 10 for cleaning a glass substrate for liquid crystal display (corresponding to an object to be processed of the present invention). As shown in FIG. 1, the substrate cleaning apparatus 10 includes a transport unit 11, an ultraviolet light cleaning apparatus 20, a transport unit 12, and a wet cleaning apparatus 13 for performing wet cleaning in order from the left side when viewed from the front. Arranged. Inside the ultraviolet light cleaning device 20 and the wet cleaning device 13, a transport mechanism 14 (see FIG. 2) similar to that provided in the transport unit 11 is provided, and the workpiece W (glass substrate) is an arrow in FIG. As shown in FIG. 4, the sheet is sequentially conveyed from the left side to the right side to form a continuous cleaning line as a whole.

さて、図2に示すように、紫外光洗浄装置20には上面を開口させた箱形をなす搬送チャンバー21が設けられており、その開口部を塞ぐように2枚のランプハウス30が図示しないヒンジ機構によって開閉可能に配置されている(図2参照)。搬送チャンバー21内には搬送機構14を構成する複数本のコンベア軸22がガラス基板の搬送方向と直交する方向に回転自在に設けられており、それらの各コンベア軸22に設けた複数個のコンベアローラ23に載せてワークW(図3及び図4にのみ図示)が搬送される。   As shown in FIG. 2, the ultraviolet light cleaning device 20 is provided with a box-shaped transfer chamber 21 having an upper surface opened, and two lamp houses 30 are not shown so as to close the opening. The hinge mechanism can be opened and closed (see FIG. 2). In the transfer chamber 21, a plurality of conveyor shafts 22 constituting the transfer mechanism 14 are rotatably provided in a direction orthogonal to the glass substrate transfer direction, and a plurality of conveyors provided on the respective conveyor shafts 22. The workpiece W (shown only in FIGS. 3 and 4) is carried on the roller 23.

ランプハウス30は、支持プレート31の下面に複数本の紫外線ランプ32をワークWの搬送方向と直交する方向に平行に並べて構成してあり、そのランプ32群全体を四周から囲んで下面側を開放させた開放ハウジング33が設けられている。したがって、紫外線ランプ32群は、上記開放ハウジング33内にその開放面に沿わせるように横並びになっており、搬送機構14によってワークWが開放ハウジング33の下方の紫外光照射空間X(図3,図4参照)に搬送されるときに、そのワークWの表面に紫外光を照射できるようになっている。なお、この実施形態では、紫外線ランプ32は、合成石英ガラス製の断面が矩形状をなす扁平な角筒型であり、その上下の一対の平坦面に電極を設けて例えば波長172nmの真空紫外光を放射するエキシマランプとしてある。   The lamp house 30 is configured by arranging a plurality of ultraviolet lamps 32 on the lower surface of the support plate 31 in parallel in a direction perpendicular to the conveying direction of the workpiece W, and surrounds the entire group of the lamps 32 from the four sides and opens the lower surface side. An open housing 33 is provided. Accordingly, the ultraviolet lamps 32 are arranged side by side along the open surface in the open housing 33, and the work W is placed in the open light 33 below the open housing 33 by the transport mechanism 14 (FIG. 3). When transported to (see FIG. 4), the surface of the workpiece W can be irradiated with ultraviolet light. In this embodiment, the ultraviolet lamp 32 is a flat rectangular tube made of synthetic quartz glass having a rectangular cross section, and electrodes are provided on a pair of upper and lower flat surfaces, for example, vacuum ultraviolet light having a wavelength of 172 nm. Excimer lamp that emits

さて、図4に示すように、開放ハウジング33の天井部(前記開放面とは反対側)には、例えばステンレス板に直径2mmの孔を3mmピッチで多数形成して開口率40%となるようにした多孔のガス拡散板35を開放ハウジング33の開放面と平行になる(紫外線ランプ32の上側の平坦面と平行に対面する)ように配置してある。なお、ガス拡散板35に形成する孔の孔径は1〜3mm、開口率は30〜60%とすることが望ましい。そして、前記支持プレート31には、そのガス拡散板35によって区画された空間に連なるガス供給口36が形成されており、支持プレート31上には前記ガス供給口36を上から覆うようにガス供給ダクト37が設けられている。このガス供給ダクト37には、図示しない窒素ガス供給源が接続され、清浄な窒素ガス(不活性ガス)をガス供給ダクト37及びガス供給口36を通じてガス拡散板35の上方の空間に供給するようになっており、これらの構成がガス供給手段38を構成する。なお、搬送チャンバー21の底部には、図示しない排気装置に連なる排気ダクト24が設けられており、搬送チャンバー21内に供給された窒素ガスと共に内部で発生したオゾンガス等を排出できるようにしている。   As shown in FIG. 4, in the ceiling portion of the open housing 33 (on the side opposite to the open surface), for example, a number of holes with a diameter of 2 mm are formed on a stainless plate at a pitch of 3 mm so that the opening ratio is 40%. The porous gas diffusion plate 35 is arranged so as to be parallel to the open surface of the open housing 33 (facing parallel to the flat surface above the ultraviolet lamp 32). In addition, it is desirable that the hole diameter of the hole formed in the gas diffusion plate 35 is 1 to 3 mm and the aperture ratio is 30 to 60%. The support plate 31 is formed with a gas supply port 36 connected to a space defined by the gas diffusion plate 35, and the gas supply is performed on the support plate 31 so as to cover the gas supply port 36 from above. A duct 37 is provided. A nitrogen gas supply source (not shown) is connected to the gas supply duct 37 so that clean nitrogen gas (inert gas) is supplied to the space above the gas diffusion plate 35 through the gas supply duct 37 and the gas supply port 36. These components constitute the gas supply means 38. Note that an exhaust duct 24 connected to an exhaust device (not shown) is provided at the bottom of the transfer chamber 21 so that ozone gas and the like generated inside can be discharged together with the nitrogen gas supplied into the transfer chamber 21.

上記構成の本実施形態によれば、図4の矢印に示すように、ランプハウス30内に設けられているガス拡散板35の微細孔から窒素ガスが下向きに吐出される。吐出された窒素ガスは、まず紫外線ランプ32の平坦面に衝突し、ここで横向きに流れを変え、紫外線ランプ32の両側部から真っ直ぐワークW表面に向かって落ちるように流れる。このため、紫外線ランプ32の周囲からワークWの紫外線照射空間Xにかけて全体が窒素の流れで満たされ、酸素がほとんど存在しない不活性ガス雰囲気に維持される。したがって、各紫外線ランプ32から放射された紫外光はほとんど酸素に吸収されることなく紫外線照射空間Xに到達し、ワークW表面の紫外線強度は従来に比べて飛躍的に高くなる。   According to the present embodiment having the above-described configuration, nitrogen gas is discharged downward from the fine holes of the gas diffusion plate 35 provided in the lamp house 30 as indicated by arrows in FIG. The discharged nitrogen gas first collides with the flat surface of the ultraviolet lamp 32, changes the flow in the lateral direction, and flows so as to fall straight from both sides of the ultraviolet lamp 32 toward the surface of the workpiece W. For this reason, the whole is filled with the flow of nitrogen from the periphery of the ultraviolet lamp 32 to the ultraviolet irradiation space X of the workpiece W, and an inert gas atmosphere in which almost no oxygen is present is maintained. Therefore, the ultraviolet light radiated from each ultraviolet lamp 32 reaches the ultraviolet irradiation space X with almost no absorption by oxygen, and the ultraviolet intensity on the surface of the workpiece W is dramatically increased as compared with the conventional case.

ちなみに、波長172nmの紫外光の窒素中と空気中の減衰量を測定すると図5に示す通りで、空気(Air)中では極めて急速に減衰し、窒素(N2)中の減衰は僅かであることが明らかである。   By the way, when the attenuation amount of ultraviolet light having a wavelength of 172 nm in nitrogen and air is measured, as shown in FIG. 5, it attenuates very rapidly in air (Air), and the attenuation in nitrogen (N2) is slight. Is clear.

また、本実施形態の装置において、窒素ガスを供給し続けて紫外光の照射を行った場合と、窒素ガスの供給を止めて大気雰囲気で紫外光の照射を行った場合とで、紫外線ランプ32の下面(図6中A点)、ワークW表面(同B点)及びA、B点の中間(同C点)における紫外線強度とオゾン濃度とを測定すると同図中の表に示す通りであった。同表において、「Air」の表記は空気中で紫外光照射を行った場合(従来タイプの装置に相当する)、「N2」の表記は窒素ガスを供給して紫外光照射を行った場合を示す。A点ーB点間の距離は2mm、窒素ガスの流速は3cm/secであった。また、紫外線強度はウシオ電機株式会社製紫外線受光器VUV−172Sを使用して同社製紫外線強度センサUIT−151によって測定し、オゾン濃度は荏原実業株式会社製のオゾン濃度計EG−2001Bにより測定した。   In the apparatus of the present embodiment, the ultraviolet lamp 32 is used when the nitrogen gas is continuously supplied and irradiated with ultraviolet light, and when the nitrogen gas supply is stopped and the ultraviolet light is irradiated in the atmospheric air. The UV intensity and ozone concentration at the bottom surface (point A in FIG. 6), the surface of the workpiece W (point B) and between the points A and B (point C) are as shown in the table of FIG. It was. In the table, “Air” represents the case where ultraviolet light irradiation was performed in air (corresponding to a conventional type device), and “N2” represents the case where ultraviolet light irradiation was performed by supplying nitrogen gas. Show. The distance between point A and point B was 2 mm, and the flow rate of nitrogen gas was 3 cm / sec. In addition, the ultraviolet intensity was measured by Ushio Electric Co., Ltd. ultraviolet light receiver VUV-172S with the company's ultraviolet intensity sensor UIT-151, and the ozone concentration was measured by an ozone concentration meter EG-2001B made by Sugawara Jitsugyo Co., Ltd. .

この測定結果から明らかなように、本実施形態の装置によれば、大気雰囲気中で紫外線照射を行う従来の場合に比べて、ワークW表面(B点)における紫外線強度を2.5倍に強めることができる。この結果、従来の同じ処理スピード・洗浄度合いを得るためには、約半分の本数の紫外線ランプ32で足り、装置の製造コストを大幅に削減することができ、加えてランプの消耗・交換に起因するランニングコストも半減させることができる。   As is apparent from the measurement results, according to the apparatus of the present embodiment, the ultraviolet intensity on the surface of the workpiece W (point B) is increased by 2.5 times compared to the conventional case where ultraviolet irradiation is performed in the air atmosphere. be able to. As a result, approximately half the number of UV lamps 32 is sufficient to obtain the same processing speed and cleaning degree as in the prior art, and the manufacturing cost of the apparatus can be greatly reduced. In addition, the lamp is consumed and replaced. The running cost is also halved.

なお、図6に示した測定結果において、従来タイプの装置(「Air」の表記)では、同一の紫外線ランプ32を使用しながら、ランプ表面(A点)での紫外線強度が40mW/cm3であって、本実施形態の装置(「N2」の表記)に比べて低くなるのは、紫外線センサーをランプ表面に接触させたとしても、センサーとランプとの間に微小なギャップが生ずることを避け得ず、従来装置ではそのギャップ内に大気(酸素)が侵入して紫外線を減衰させるためである。   In the measurement results shown in FIG. 6, in the conventional type device (indicated by “Air”), the ultraviolet intensity at the lamp surface (point A) was 40 mW / cm 3 while using the same ultraviolet lamp 32. Thus, it is lower than the apparatus of the present embodiment (indicated by “N2”), even if the ultraviolet sensor is brought into contact with the lamp surface, it is possible to avoid a minute gap between the sensor and the lamp. In the conventional apparatus, the atmosphere (oxygen) enters the gap and attenuates ultraviolet rays.

また、本実施形態では、紫外線ランプ32の下側の平坦面(紫外線照射面)は、ワークWに対して平行に対面する形態となっているから、図7(A)に示すように、紫外線ランプ32の紫外線照射面とワークW表面との間の距離は、紫外線ランプが円形の場合(同図(B))に比べて均一化され、ワークW表面の紫外線強度は均一になる。   In the present embodiment, the flat surface (ultraviolet irradiation surface) on the lower side of the ultraviolet lamp 32 faces in parallel with the workpiece W, and therefore, as shown in FIG. The distance between the ultraviolet irradiation surface of the lamp 32 and the surface of the workpiece W is made uniform as compared with the case where the ultraviolet lamp is circular ((B) in the figure), and the ultraviolet intensity on the surface of the workpiece W becomes uniform.

さて、ワークWは、搬送機構14によって紫外線照射空間Xの外(酸素を含有した大気雰囲気)から紫外線照射空間Xの内(窒素雰囲気)へと搬送されるため、ワークWが紫外線照射空間X外に存在していたときにワークW表面に付着した酸素を薄い膜状に引きずりながら、ワークWは紫外線照射空間X内に進入する。このため、紫外線照射空間X内では、ワークWの周囲は窒素雰囲気でありながら、その表面だけに薄い膜状の酸素が付着した状態となっており、紫外光はほとんど吸収されることなくワークW表面の膜状酸素に到達し、ここでオゾンと活性酸素種を生成し、ワークW表面の有機物の酸化分解が行われる。   Now, since the workpiece W is transported from the outside of the ultraviolet irradiation space X (atmosphere containing oxygen) by the transport mechanism 14 to the inside of the ultraviolet irradiation space X (nitrogen atmosphere), the workpiece W is outside the ultraviolet irradiation space X. The workpiece W enters the ultraviolet irradiation space X while dragging the oxygen adhering to the surface of the workpiece W into a thin film. For this reason, in the ultraviolet irradiation space X, although the periphery of the work W is a nitrogen atmosphere, thin film oxygen is attached only to the surface of the work W, and the work W is hardly absorbed. It reaches the film-like oxygen on the surface, where ozone and active oxygen species are generated, and the organic matter on the surface of the workpiece W is oxidatively decomposed.

図6の表から明らかなように、本実施形態の装置(「Air」の表記)では、ワークW表面のオゾン濃度は大気雰囲気中での紫外線照射を行う従来の装置(「N2」の表記)に比べて相対的には半分に低下する(200ppm)。しかし、汚染させたワークWに紫外光を照射し、その照射光量に応じて純水の接触角がどのように変化して行くかを測定した結果(図8)から明らかなように、紫外光照射前の接触角が約60degであったところ80mJ/cm2まで照射すれば(50mW/cm2で1.6秒間)、約3degにまで低下したから、十分な洗浄が行われ、この程度のオゾン濃度によって十分な洗浄が行われることが確認できた。   As is apparent from the table of FIG. 6, in the apparatus of the present embodiment (notation of “Air”), the ozone concentration on the surface of the workpiece W is the conventional apparatus that irradiates ultraviolet rays in the air atmosphere (notation of “N2”). Compared to, it is relatively halved (200 ppm). However, as shown in the result (FIG. 8) of measuring how the contact angle of pure water changes depending on the irradiation light quantity, the contaminated work W is irradiated with ultraviolet light. When the contact angle before irradiation was about 60 deg., Irradiation to 80 mJ / cm 2 (1.6 seconds at 50 mW / cm 2) decreased to about 3 deg. As a result, it was confirmed that sufficient cleaning was performed.

また、窒素ガスを吐出するガス拡散板35は紫外線ランプ32の上側の平坦面に平行に対面する形態となっている。このため、図9(A)に示すように、ガス拡散板35から吐出された窒素ガスがいったん紫外線ランプ32の上側の平坦面に衝突し、ここで横向きに流れを変えて紫外線ランプ32の両側部から真っ直ぐにワークWに向かう流れが生成される。この結果、ワークWのうち紫外線ランプ32に直接対面して紫外線の照射を受けている領域Yが、紫外線ランプ32の両側部から流れ出す不活性ガスの流れに両側から包まれるようになり、ワークW表面には微量の酸素しか存在していないという事情があっても、酸素と紫外光による有機物の酸化分解を促進する光化学反応が円滑に進む。   Further, the gas diffusion plate 35 that discharges nitrogen gas is configured to face in parallel with the upper flat surface of the ultraviolet lamp 32. For this reason, as shown in FIG. 9 (A), the nitrogen gas discharged from the gas diffusion plate 35 once collides with the flat surface on the upper side of the ultraviolet lamp 32, where the flow is changed in the horizontal direction to change both sides of the ultraviolet lamp 32. A flow straight from the section toward the workpiece W is generated. As a result, the region Y of the workpiece W that directly faces the ultraviolet lamp 32 and is irradiated with ultraviolet rays is enveloped from both sides by the flow of inert gas flowing out from both sides of the ultraviolet lamp 32. Even if there is only a trace amount of oxygen on the surface, the photochemical reaction that promotes the oxidative decomposition of organic matter by oxygen and ultraviolet light proceeds smoothly.

このように本実施形態では、ワークW表面に到達するまでの紫外光の減衰を非常に小さくできるから、ワークW表面における単位面積あたりの紫外線強度を大幅に高めることができる。このことは、結局、次のような利点が得られることを意味する。
(1)従来と同等の処理スピードや洗浄度合いを確保しながら必要なランプ本数を、約半分に削減できて装置の製造コストを安価にできる。
ちなみに、同程度の汚れ具合である無アルカリガラスのワークWに対し、本実施形態の装置でランプ本数を変えて紫外光照射を行った場合の純水の接触角変化を測定した結果(「N2」の表記)を図10に示す。この実験で、ランプ出力は400W,照射距離2mm、窒素ガスまたは空気の供給風速は3cm/sec、ワークWの搬送速度は67mm/secであった。ここで、「Air」の表記があるグラフは、窒素ガスの供給を停止して空気を供給した場合であって、従来装置に相当する。このグラフから明らかなように、純水の接触角を5deg以下にするには、従来装置では8本の紫外線ランプを必要としているところ、本実施形態の装置では半分の4本で済む。
As described above, in the present embodiment, the attenuation of the ultraviolet light until reaching the surface of the workpiece W can be made extremely small, so that the ultraviolet intensity per unit area on the surface of the workpiece W can be greatly increased. This means that the following advantages can be obtained in the end.
(1) The required number of lamps can be reduced to about half while ensuring the same processing speed and cleaning degree as before, and the manufacturing cost of the apparatus can be reduced.
By the way, the result of measuring the contact angle change of pure water when a non-alkali glass workpiece W having the same degree of contamination was irradiated with ultraviolet light by changing the number of lamps with the apparatus of this embodiment (“N2 ")" Is shown in FIG. In this experiment, the lamp output was 400 W, the irradiation distance was 2 mm, the supply speed of nitrogen gas or air was 3 cm / sec, and the conveyance speed of the workpiece W was 67 mm / sec. Here, the graph with the notation “Air” is a case where the supply of nitrogen gas is stopped and the air is supplied, and corresponds to a conventional apparatus. As is apparent from this graph, in order to make the contact angle of pure water 5 degrees or less, the conventional apparatus requires eight ultraviolet lamps, but the apparatus of the present embodiment only needs half, four.

(2)また、この種の装置では、ランプの寿命が次第に尽きることによって定期的なランプ交換を余儀なくされるが、設置してあるランプ本数が元々少ないため、ランプの交換本数も少なく、ランニングコストを大幅に低減させることができる。 (2) In addition, with this type of equipment, the lamp life is gradually exhausted, so it is necessary to replace the lamp regularly. However, since the number of lamps installed is originally small, the number of lamp replacements is small, and the running cost is low. Can be greatly reduced.

(3)紫外線ランプ32とワークWとの間のギャップを従来よりも大きくとることができるからワークWの振動が生じやすい高速搬送にも耐えることができ、かつ、単位面積あたりの紫外線強度が高いから、結局、処理スピードの高速化が可能になる。
しかも、特に本実施形態では、ランプハウス30に開放ハウジング33を使用しているから、従来の密閉型ランプハウスで必須であった窓部材1を省略することができる。この結果、次のような利点がさらに得られる。
(3) Since the gap between the ultraviolet lamp 32 and the workpiece W can be made larger than before, it can withstand high-speed conveyance in which the workpiece W is likely to vibrate, and the ultraviolet intensity per unit area is high. As a result, the processing speed can be increased.
Moreover, in particular, in this embodiment, since the open housing 33 is used for the lamp house 30, the window member 1 that is essential in the conventional sealed lamp house can be omitted. As a result, the following advantages are further obtained.

(4)窓部材1による紫外光の減衰をなくしてワークWにおける単位面積あたりの紫外線強度をより高めることができる。
(5)窓部材1が無い分、ランプハウス30の構造の簡単化と製造コストの引き下げが可能になる。
(6)また、窓部材1が無いから、半導体や液晶デバイスの製造工程で硫酸アンモニウム等の反応生成物が白粉として窓部材1に付着することがなくなり、その除去のためのメンテナンス作業が大幅に軽減される。本実施形態では、紫外線ランプ32の周囲から紫外光照射空間Xにかけて、ガス拡散板35から吐き出された清浄な窒素に囲まれるようになるから、仮に本装置を設置した半導体工場等の大気中に有機溶剤、酸、アルカリなどの各種薬品の蒸気が含まれていたとしても、それが紫外光照射空間Xに入り込むことがない。また、仮に、ワークWへの紫外光の照射時に各種薬品の蒸気がワークWから揮発してきたとしても、それらの蒸気は窒素ガスの流れに乗じて紫外光照射空間Xから排出される。このため、ランプハウス30内で上記薬品の蒸気が紫外光によって光反応を生じたとしても、反応生成物がランプハウス30内に付着することがなく、メンテナンス作業も極めて容易になる。
(4) The attenuation of ultraviolet light by the window member 1 can be eliminated, and the ultraviolet intensity per unit area of the workpiece W can be further increased.
(5) Since the window member 1 is not provided, the structure of the lamp house 30 can be simplified and the manufacturing cost can be reduced.
(6) In addition, since there is no window member 1, reaction products such as ammonium sulfate do not adhere to the window member 1 as white powder in the manufacturing process of semiconductors and liquid crystal devices, and the maintenance work for removing it is greatly reduced. Is done. In the present embodiment, since it is surrounded by clean nitrogen discharged from the gas diffusion plate 35 from the periphery of the ultraviolet lamp 32 to the ultraviolet light irradiation space X, it is temporarily in the atmosphere of a semiconductor factory or the like where the apparatus is installed. Even if vapors of various chemicals such as organic solvents, acids, and alkalis are contained, they do not enter the ultraviolet light irradiation space X. Further, even if vapors of various chemicals are volatilized from the workpiece W when the workpiece W is irradiated with ultraviolet light, the vapors are exhausted from the ultraviolet light irradiation space X by multiplying the flow of nitrogen gas. For this reason, even if the chemical vapor causes a photoreaction in the lamp house 30 due to ultraviolet light, the reaction product does not adhere to the lamp house 30 and the maintenance work becomes very easy.

さらに、開放ハウジング33内には紫外線ランプ32の上方にガス拡散板35を配置し、そこに形成した多数の小孔から窒素ガスを吐出させる構成であるから、紫外線ランプ32から紫外線照射領域Xまでを緩やかな流れの窒素ガスで包み込むことができ、少量のガス使用量で均一な洗浄処理を可能にできる。本発明に適用可能な窒素ガスの供給方法としては、ワークWの表面に付着して引きずり込まれる酸素を剥がしてしまわないものであれば、スリット方式やノズル方式等も採用できるが、本実施形態のように窒素ガスを拡散させて均一に供給できるガス拡散板35を使用することが最も好ましい。   Furthermore, since the gas diffusion plate 35 is disposed above the ultraviolet lamp 32 in the open housing 33 and nitrogen gas is discharged from a large number of small holes formed therein, the ultraviolet lamp 32 to the ultraviolet irradiation region X are arranged. Can be wrapped with a slow flow of nitrogen gas, and a uniform cleaning process can be achieved with a small amount of gas used. As a nitrogen gas supply method applicable to the present invention, a slit method, a nozzle method, or the like can be adopted as long as it does not peel off oxygen that is attached to and dragged on the surface of the workpiece W. As described above, it is most preferable to use a gas diffusion plate 35 that can diffuse and uniformly supply nitrogen gas.

さらには、本実施形態の紫外線ランプ32は、対向する各二面を平坦面とした断面長方形状の角筒型とし、長辺側の一対の平坦面の一方をガス拡散板35にほぼ平行に対面させ、かつ、他方の平坦面をワークWにほぼ平行に対面させて配置しているから、次のような効果が得られる。   Furthermore, the ultraviolet lamp 32 of the present embodiment is a rectangular tube having a rectangular cross section with two opposing surfaces being flat surfaces, and one of the pair of flat surfaces on the long side is substantially parallel to the gas diffusion plate 35. Since the two flat surfaces are arranged so as to face each other substantially parallel to the workpiece W, the following effects can be obtained.

(7)図7に示すように、紫外線ランプ32下面の平坦な紫外線照射面がワークW表面に対して平行に対面することになる。この結果、紫外線ランプ32の紫外線照射面の各点からワークW表面までの距離が均一化され、ワークW表面における紫外線強度を均一化してムラのない洗浄処理が可能となる。 (7) As shown in FIG. 7, the flat ultraviolet irradiation surface on the lower surface of the ultraviolet lamp 32 faces the surface of the workpiece W in parallel. As a result, the distance from each point on the ultraviolet irradiation surface of the ultraviolet lamp 32 to the surface of the workpiece W is made uniform, and the ultraviolet intensity on the surface of the workpiece W is made uniform, thereby making it possible to perform a uniform cleaning process.

(8)しかも、紫外線ランプ32の他方の平坦面もガス拡散板35に対して平行に対面することになるから、ガス拡散板35から吐出された窒素ガスが紫外線ランプ32上面の平坦面に衝突し、図9に矢印で示すように紫外線ランプ35の両側部から真っ直ぐにワークW表面に向かう流れが生成される。この結果、ワークW表面のうち紫外線ランプ32に直接対面して紫外線の照射を受けている領域Yが、紫外線ランプ32の両側部から流れ出す窒素ガスの流れに両側から包まれるようになる。このため、被処理物表面には微量の酸素しか存在していないという事情があっても、酸素が紫外光の照射を受けてオゾンを生成し、そのオゾンから活性酸素が生成されて有機物が分解されるという光化学反応が円滑に進む。 (8) Moreover, since the other flat surface of the ultraviolet lamp 32 also faces the gas diffusion plate 35 in parallel, the nitrogen gas discharged from the gas diffusion plate 35 collides with the flat surface on the upper surface of the ultraviolet lamp 32. As shown by arrows in FIG. 9, a flow straight toward the surface of the workpiece W is generated from both sides of the ultraviolet lamp 35. As a result, the region Y of the surface of the work W that directly faces the ultraviolet lamp 32 and is irradiated with ultraviolet rays is surrounded by the flow of nitrogen gas flowing out from both sides of the ultraviolet lamp 32 from both sides. For this reason, even if there is a situation where only a small amount of oxygen is present on the surface of the object to be processed, oxygen is irradiated with ultraviolet light to generate ozone, and active oxygen is generated from the ozone to decompose organic matter. The photochemical reaction that is performed proceeds smoothly.

なお、窒素ガス(不活性ガス)の供給風速は、窒素ガスによる大気の置換を十分に行わせるためには、平均1cm/sec以上とすることが好ましく、特に、ワークWの搬送速度との関係で決定することが好ましいことが判った。すなわち、ワークWの搬送速度をAcm/sec、不活性ガスの供給風速をBcm/secとしたとき、A/Bを2以上とすることがよい。2未満では、ワークWに付着した酸素が剥がれる傾向を呈するものと思われる。   Note that the supply air speed of nitrogen gas (inert gas) is preferably 1 cm / sec or more on average in order to sufficiently replace the atmosphere with nitrogen gas, and in particular, the relationship with the conveyance speed of the workpiece W. It was found that it is preferable to determine with That is, when the conveying speed of the workpiece W is Acm / sec and the supply air velocity of the inert gas is Bcm / sec, A / B is preferably 2 or more. If it is less than 2, oxygen attached to the work W is considered to tend to peel off.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)本実施形態では、紫外線ランプとして波長172nmの誘電体バリア放電ランプを使用したが、真空紫外光を放射するエキシマランプであることが最適である。また、これに限らず、波長185nm、254nm等の低圧水銀ランプを使用してもよい。また、ランプ形状は、扁平な角筒状としているが、二重管タイプの誘電体バリア放電ランプであってもよいし、丸みを帯びた筒型であってもよい。紫外線照射面はできるだけ平坦面に近いことがより望ましい。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and further, within the scope not departing from the gist of the invention other than the following. Various modifications can be made.
(1) In this embodiment, a dielectric barrier discharge lamp having a wavelength of 172 nm is used as an ultraviolet lamp, but an excimer lamp that emits vacuum ultraviolet light is optimal. Further, the present invention is not limited to this, and a low-pressure mercury lamp having a wavelength of 185 nm, 254 nm or the like may be used. The lamp shape is a flat rectangular tube, but it may be a double-tube type dielectric barrier discharge lamp or a rounded tube. It is more desirable that the ultraviolet irradiation surface be as close to a flat surface as possible.

(2)また、本実施形態ではランプハウス30は下面側を開放させた開放ハウジング33内に紫外線ランプ32を配置した構成としたが、必ずしも、開放ハウジング33を使用しなくてもよく、例えば図11に示した密閉型のランプハウス2を使用つつ、そのランプハウス2の下方の紫外線照射空間に向けて窒素等の不活性ガスを供給する構成であってもよい。この場合には、ランプハウス2の窓部材1に多数の小孔を形成し、その小孔から不活性ガスをワークW表面に吐出させる構成としてもよく、また、窓部材1は無孔状とし、ランプハウス2の下部に設けたノズルから不活性ガスをワークW表面に吐出させる構成としてもよい。
このようにしても、ランプハウス2内にも窒素が満たされているから、紫外線ランプ3の周囲から、搬送された被処理物が紫外光の照射を受ける領域にかけての紫外線照射領域の全体を不活性ガス雰囲気にすることができ、被処理物表面における紫外線強度を大幅に高めることができる。しかも、本実施形態に比べて不活性ガスの消費量を削減することができ、ランニングコストを更に低減することができる。
(2) Further, in the present embodiment, the lamp house 30 has a configuration in which the ultraviolet lamp 32 is disposed in the open housing 33 whose bottom surface is open. However, the open housing 33 is not necessarily used. 11 may be configured to supply an inert gas such as nitrogen toward the ultraviolet irradiation space below the lamp house 2 while using the sealed lamp house 2 shown in FIG. In this case, a large number of small holes may be formed in the window member 1 of the lamp house 2, and an inert gas may be discharged from the small holes to the surface of the workpiece W. The window member 1 may be non-porous. The inert gas may be discharged onto the surface of the work W from a nozzle provided in the lower part of the lamp house 2.
Even in this case, since the lamp house 2 is also filled with nitrogen, the entire ultraviolet irradiation region from the periphery of the ultraviolet lamp 3 to the region where the conveyed workpiece is irradiated with the ultraviolet light is unsatisfactory. An active gas atmosphere can be obtained, and the ultraviolet intensity on the surface of the object to be processed can be greatly increased. In addition, the consumption of inert gas can be reduced as compared with the present embodiment, and the running cost can be further reduced.

(3)不活性ガスとしては、窒素ガスに限らず、酸素を含まず、紫外光の減衰ができるだけ少なく、かつ、反応性が低いガスであればよい。
(4)被処理物を紫外光照射空間内に搬送するに先立ち通過させる酸素含有雰囲気としては、本実施形態のような大気に限らず、ガス成分を調整した雰囲気であってもよく、必要な酸素が紫外光照射空間内に引きずり込まれるように付着する程度の酸素濃度を有していればよい。
(3) The inert gas is not limited to nitrogen gas, but may be any gas that does not contain oxygen, has minimal attenuation of ultraviolet light, and has low reactivity.
(4) The oxygen-containing atmosphere to be passed before the object to be processed is transported into the ultraviolet light irradiation space is not limited to the air as in the present embodiment, and may be an atmosphere in which gas components are adjusted. It is sufficient that the oxygen concentration is such that oxygen is attached so as to be dragged into the ultraviolet light irradiation space.

14…搬送機構
20…紫外光洗浄装置
30…ランプハウス
32…紫外線ランプ
33…開放ハウジング
35…ガス拡散板
36…ガス供給口
37…ガス供給ダクト
W…ワーク(被処理物)
DESCRIPTION OF SYMBOLS 14 ... Conveyance mechanism 20 ... Ultraviolet light cleaning apparatus 30 ... Lamp house 32 ... Ultraviolet lamp 33 ... Open housing 35 ... Gas diffusion plate 36 ... Gas supply port 37 ... Gas supply duct W ... Workpiece (processed object)

Claims (4)

搬送される被処理物に紫外線ランプを備えたランプハウスからの紫外光を照射することで前記被処理物表面の洗浄を行う紫外光洗浄装置であって、前記ランプハウス内の前記紫外線ランプの周囲から搬送された前記被処理物が前記紫外光の照射を受ける領域にかけての紫外光照射空間を、不活性ガス雰囲気にするためのガス供給手段を設け、前記被処理物は酸素含有雰囲気中を通った後に前記紫外光照射空間に搬送されることを特徴とする紫外光洗浄装置。 An ultraviolet light cleaning apparatus for cleaning the surface of the object to be processed by irradiating the object to be conveyed with ultraviolet light from a lamp house provided with an ultraviolet lamp, and surrounding the ultraviolet lamp in the lamp house A gas supply means is provided for bringing the ultraviolet light irradiation space over the region where the object to be processed conveyed from the region to be irradiated with the ultraviolet light into an inert gas atmosphere, and the object to be processed passes through the oxygen-containing atmosphere. After that, the ultraviolet light cleaning apparatus is transported to the ultraviolet light irradiation space. 前記ランプハウスは、前記被処理物側の一面を開放させた開放ハウジング内にその開放面に沿わせるように前記紫外線ランプを配置して構成し、前記ガス供給手段は前記ランプハウスのうち前記紫外線ランプの前記開放面とは反対側に配置した多孔のガス拡散板を通して前記不活性ガスを吐出する構成であることを特徴とする請求項1記載の紫外光洗浄装置。 The lamp house is configured by arranging the ultraviolet lamp so as to be along an open surface in an open housing in which one surface of the object to be processed is open, and the gas supply means includes the ultraviolet light in the lamp house. 2. The ultraviolet light cleaning apparatus according to claim 1, wherein the inert gas is discharged through a porous gas diffusion plate disposed on the side opposite to the open surface of the lamp. 搬送される被処理物に、紫外線ランプを備えたランプハウスからの紫外光を照射することで前記被処理物表面の洗浄を行う紫外光洗浄装置であって、前記ランプハウスは、前記被処理物側の一面を開放させた開放ハウジング内に、紫外光照射面が平坦なほぼ角筒型をなす紫外線ランプをその紫外線照射面が前記開放ハウジングの開放面に沿うように配置して構成され、前記ランプハウスには、前記紫外線ランプの前記開放ハウジングの前記開放面とは反対側に位置する平坦面に対面するように多孔のガス拡散板を備えて、前記紫外線ランプの周囲から、搬送された前記被処理物が前記紫外光の照射を受ける領域にかけての紫外光照射空間を、不活性ガス雰囲気にするためのガス供給手段を設けるとともに、前記被処理物を酸素含有雰囲気中を通った後に前記紫外光照射空間に搬送する搬送機構を設けたことを特徴とする紫外光洗浄装置。 An ultraviolet light cleaning apparatus that cleans the surface of the object to be processed by irradiating the object to be conveyed with ultraviolet light from a lamp house having an ultraviolet lamp, wherein the lamp house includes the object to be processed In an open housing with one side open, an ultraviolet lamp having a substantially rectangular tube shape with a flat ultraviolet light irradiation surface is arranged so that the ultraviolet light irradiation surface is along the open surface of the open housing, The lamp house includes a porous gas diffusion plate so as to face a flat surface opposite to the open surface of the open housing of the ultraviolet lamp, and is conveyed from the periphery of the ultraviolet lamp. A gas supply means is provided for making the ultraviolet irradiation space over the region where the workpiece is irradiated with the ultraviolet light into an inert gas atmosphere, and the workpiece is placed in an oxygen-containing atmosphere. Ultraviolet light cleaning apparatus characterized in that a transport mechanism for transporting said ultraviolet light irradiation space after Tsu. 搬送される被処理物に紫外光を照射することで前記被処理物表面の洗浄を行う紫外光洗浄装置のランプハウスに備えられる紫外線ランプであって、前記ランプハウスは、前記被処理物側の一面を開放させた開放ハウジングと、前記開放面とは前記紫外線ランプを挟んで反対側に位置する多孔のガス拡散板とを備え、そのガス拡散板から不活性ガスを吐出して前記紫外線ランプの周囲から、搬送された前記被処理物が前記紫外光の照射を受ける領域にかけての紫外光照射空間を不活性ガス雰囲気にするようにされており、前記紫外線ランプが、対向する各二面を平坦面とした断面ほぼ長方形状の筒型をなし、長辺側の一対の平坦面の一方を前記ガス拡散板にほぼ平行に対面させ、他方を前記被処理物にほぼ平行に対面させて配置されることを特徴とする紫外光洗浄装置用紫外線ランプ。 An ultraviolet lamp provided in a lamp house of an ultraviolet light cleaning apparatus for cleaning the surface of the object to be processed by irradiating the object to be conveyed with ultraviolet light, wherein the lamp house is disposed on the object to be processed side. An open housing having one surface open, and a porous gas diffusion plate located on the opposite side of the open surface with the open surface of the ultraviolet lamp, and discharging inert gas from the gas diffusion plate to discharge the ultraviolet lamp. The ultraviolet light irradiation space from the surroundings to the region where the workpiece to be processed is irradiated with the ultraviolet light is made to be an inert gas atmosphere, and the two surfaces facing each other are flattened. It has a cylindrical shape with a substantially rectangular cross section, and one of the pair of flat surfaces on the long side faces the gas diffusion plate substantially in parallel, and the other faces the object to be processed substantially in parallel. Specially Ultraviolet light cleaning device fixing lamp to.
JP2009114870A 2009-05-11 2009-05-11 UV light cleaning equipment Expired - Lifetime JP4883133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009114870A JP4883133B2 (en) 2009-05-11 2009-05-11 UV light cleaning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009114870A JP4883133B2 (en) 2009-05-11 2009-05-11 UV light cleaning equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003435401A Division JP4337547B2 (en) 2003-12-26 2003-12-26 Ultraviolet light cleaning device and ultraviolet lamp for ultraviolet light cleaning device

Publications (3)

Publication Number Publication Date
JP2009183949A true JP2009183949A (en) 2009-08-20
JP2009183949A5 JP2009183949A5 (en) 2011-04-14
JP4883133B2 JP4883133B2 (en) 2012-02-22

Family

ID=41067764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009114870A Expired - Lifetime JP4883133B2 (en) 2009-05-11 2009-05-11 UV light cleaning equipment

Country Status (1)

Country Link
JP (1) JP4883133B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003980A (en) * 2010-06-17 2012-01-05 Sumitomo Electric Ind Ltd Method and apparatus for manufacturing oxide superconducting thin film wire rod
WO2015176336A1 (en) * 2014-05-21 2015-11-26 深圳市华星光电技术有限公司 Ultraviolet light substrate cleaning method capable of adjusting ultraviolet light irradiation energy
JP2020185531A (en) * 2019-05-14 2020-11-19 ウシオ電機株式会社 Excimer light irradiation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260396A (en) * 1999-03-05 2000-09-22 Quark Systems Co Ltd Excimer lamp, excimer irradiation device, and organic compond decomposition method
JP2001137800A (en) * 1999-08-05 2001-05-22 Hitachi Electronics Eng Co Ltd Apparatus and method for treating substrate
JP2001300451A (en) * 2000-04-25 2001-10-30 Hoya Schott Kk Ultraviolet irradiation device
WO2002036259A1 (en) * 2000-11-01 2002-05-10 Shin-Etsu Engineering Co., Ltd. Excimer uv photo reactor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260396A (en) * 1999-03-05 2000-09-22 Quark Systems Co Ltd Excimer lamp, excimer irradiation device, and organic compond decomposition method
JP2001137800A (en) * 1999-08-05 2001-05-22 Hitachi Electronics Eng Co Ltd Apparatus and method for treating substrate
JP2001300451A (en) * 2000-04-25 2001-10-30 Hoya Schott Kk Ultraviolet irradiation device
WO2002036259A1 (en) * 2000-11-01 2002-05-10 Shin-Etsu Engineering Co., Ltd. Excimer uv photo reactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003980A (en) * 2010-06-17 2012-01-05 Sumitomo Electric Ind Ltd Method and apparatus for manufacturing oxide superconducting thin film wire rod
WO2015176336A1 (en) * 2014-05-21 2015-11-26 深圳市华星光电技术有限公司 Ultraviolet light substrate cleaning method capable of adjusting ultraviolet light irradiation energy
JP2020185531A (en) * 2019-05-14 2020-11-19 ウシオ電機株式会社 Excimer light irradiation device
JP7281083B2 (en) 2019-05-14 2023-05-25 ウシオ電機株式会社 Excimer light irradiation device

Also Published As

Publication number Publication date
JP4883133B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4337547B2 (en) Ultraviolet light cleaning device and ultraviolet lamp for ultraviolet light cleaning device
JP4682456B2 (en) Substrate processing method and substrate processing apparatus
JP5019156B2 (en) Excimer lamp device
JP4218192B2 (en) Substrate processing apparatus and processing method
KR100733803B1 (en) Excimer uv photo reactor
JP4883133B2 (en) UV light cleaning equipment
KR101553735B1 (en) Light irradiation apparatus
JP5586316B2 (en) UV ozone cleaning device
JP2009262046A (en) Ultraviolet radiation processing apparatus
TW201300177A (en) Ultraviolet radiation device
JP2002184742A (en) Dry cleaning device
JP2004162124A (en) Apparatus and method for treating substrate
JP2001219053A (en) Oxidizing method and oxidizing device using dielectric barrier discharge
JP2015103545A (en) Light source device, and desmear treatment device
JP2005129733A (en) Method and device for improving quality of surface
JP2007149938A (en) Substrate processing apparatus, substrate processing method and display device
JP2004119942A (en) Ultraviolet irradiation device
JP4645781B2 (en) Substrate processing method and substrate processing apparatus
KR20070031471A (en) Ultraviolet ray cleaning apparatus and method
US11465185B2 (en) Light irradiation device
TW201024852A (en) Excimer lamp apparatus
JP2019107613A (en) Light irradiation device
JP2005342637A (en) Cleaning method and cleaning apparatus using plasma gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090610

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4883133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term