JP2009173501A - Method of manufacturing high purity silicon carbide powder for silicon carbide single crystal manufacture and silicon carbide single crystal - Google Patents

Method of manufacturing high purity silicon carbide powder for silicon carbide single crystal manufacture and silicon carbide single crystal Download PDF

Info

Publication number
JP2009173501A
JP2009173501A JP2008016221A JP2008016221A JP2009173501A JP 2009173501 A JP2009173501 A JP 2009173501A JP 2008016221 A JP2008016221 A JP 2008016221A JP 2008016221 A JP2008016221 A JP 2008016221A JP 2009173501 A JP2009173501 A JP 2009173501A
Authority
JP
Japan
Prior art keywords
silicon carbide
carbide powder
single crystal
producing
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008016221A
Other languages
Japanese (ja)
Inventor
Shinobu Endo
忍 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2008016221A priority Critical patent/JP2009173501A/en
Publication of JP2009173501A publication Critical patent/JP2009173501A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing silicon carbide powder having ≤0.1 ppm impurity content, free from causing extreme decrease of specific surface area under single crystal growing condition by sublimation process and having a particle diameter exhibiting stable sublimation rate. <P>SOLUTION: The method of manufacturing high purity silicon carbide powder for silicon carbide single crystal manufacture includes a silicon carbide powder forming step of: obtaining silicon carbide powder by heating and firing a mixture obtained by mixing a high purity silicon source with a high purity organic compound containing oxygen in the molecule and leaving carbon by heating as a carbon source under non-oxidizing atmosphere; and a heat treating step of: heating the resultant silicon carbide powder at 2,100-2,500°C when the silicon carbide powder is kept at a holding temperature of ≥1,700°C and <2,000°C and the silicon carbide powder having 100-300 μm average particle diameter and ≤0.1 ppm impurity elements content is obtained by carrying out the silicon carbide powder forming step and the heat treating step. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

炭化ケイ素単結晶製造用高純度炭化ケイ素粉体の製造方法及び炭化ケイ素単結晶に関する。   The present invention relates to a method for producing a high-purity silicon carbide powder for producing a silicon carbide single crystal and a silicon carbide single crystal.

従来、炭化ケイ素単結晶の製造方法としては、高純度黒鉛容器を用い、炭化ケイ素の種結晶上に炭化ケイ素粉体を2000℃以上の高温で昇華し、炭化ケイ素単結晶を得る改良レーリー法(改良昇華再結晶法)が知られている。   Conventionally, as a method for producing a silicon carbide single crystal, an improved Rayleigh method in which a silicon carbide powder is sublimated at a high temperature of 2000 ° C. or higher on a silicon carbide seed crystal using a high-purity graphite container ( An improved sublimation recrystallization method) is known.

一方、炭化ケイ素粉体の製造方法としては、一般的にケイ砂と石油コークスを原料とし、炭化ケイ素粉体を得るアチソン法が知られている。しかし、この方法によれば、上記原料中に不純物が多く含まれているために、得られた炭化ケイ素粉体を炭化ケイ素単結晶製造に用いた場合、単結晶中に不純物が混入するだけでなく、結晶欠陥も多発することが開示されている(例えば、非特許文献1参照。)。   On the other hand, as a method for producing silicon carbide powder, an Atchison method for obtaining silicon carbide powder using silica sand and petroleum coke as raw materials is generally known. However, according to this method, since the raw material contains a large amount of impurities, when the obtained silicon carbide powder is used for the production of a silicon carbide single crystal, only the impurities are mixed in the single crystal. In addition, it is disclosed that crystal defects frequently occur (see, for example, Non-Patent Document 1).

また、特許文献1にはn型炭化ケイ素単結晶の育成に際し、不純物の含有割合が1ppm以下の高純度炭化ケイ素粉体を原料として用いることが記載されている。しかし、その製造方法については、一切記載されていない。このような高純度の炭化ケイ素粉体は市販されておらず、高純度の炭化ケイ素粉体を得る方法としては、特許文献2に開示されており、これにより得られる高純度の炭化ケイ素粉体の各不純物元素量は1ppm以下を達成している。この方法によれば高純度の液状のケイ素源と、液状の炭素源を原料として用いることにより、生成した炭化ケイ素の純度を1ppm以下に保っているが、高純度原料は取り扱いが困難であり、炭化ケイ素生成における中間プロセスでの不純物の混入に細心の注意が必要であるという問題があり、高純度炭化ケイ素粉体を得るのは非常に困難であった。
第51回応用物理学会学術公演予稿集29−W−1(1990) 特開平6−219896号 特開平5−24818号
Patent Document 1 describes that, when growing an n-type silicon carbide single crystal, a high-purity silicon carbide powder having an impurity content of 1 ppm or less is used as a raw material. However, the manufacturing method is not described at all. Such a high-purity silicon carbide powder is not commercially available, and a method for obtaining a high-purity silicon carbide powder is disclosed in Patent Document 2, and a high-purity silicon carbide powder obtained thereby is obtained. The amount of each impurity element is 1 ppm or less. According to this method, by using a high-purity liquid silicon source and a liquid carbon source as raw materials, the purity of the generated silicon carbide is kept at 1 ppm or less, but the high-purity raw materials are difficult to handle, There has been a problem that it is necessary to pay close attention to the incorporation of impurities in an intermediate process in the production of silicon carbide, and it has been very difficult to obtain high-purity silicon carbide powder.
Proceedings of the 51st Japan Society of Applied Physics 29-W-1 (1990) Japanese Patent Laid-Open No. 6-21989 JP-A-5-24818

本発明の第1の目的は、結晶欠陥の数が少なく、電子特性に優れた炭化ケイ素単結晶を製造するための原料として、不純物含有量が0.1ppm以下であり、昇華法による単結晶育成条件下で比表面積の大幅な減少を起こすことがない、安定した昇華速度を示す粒径を有する炭化ケイ素粉体の製造方法を提供することにある。   The first object of the present invention is to produce a silicon carbide single crystal having a small number of crystal defects and excellent electronic properties, and has an impurity content of 0.1 ppm or less, and single crystal growth by a sublimation method. An object of the present invention is to provide a method for producing a silicon carbide powder having a particle size exhibiting a stable sublimation rate without causing a significant reduction in specific surface area under the conditions.

また本発明の第2の目的は、かかる製造方法により得られた炭化ケイ素粉体を原料とした炭化ケイ素単結晶を提供することにある。   A second object of the present invention is to provide a silicon carbide single crystal using a silicon carbide powder obtained by such a production method as a raw material.

本発明の第1の特徴は、高純度のケイ素源、酸素を分子内に含有し加熱により炭素を残留する炭素源としての高純度有機化合物を均質に混合して得られた混合物を、非酸化性雰囲気下において加熱焼成して炭化ケイ素粉体を得る炭化ケイ素粉体生成工程と、得られた炭化ケイ素粉体を、1700℃以上2000℃未満の温度に保持し、上述の保持温度で保持中に、あるいは室温まで降温後、再加熱により、2100℃〜2500℃の温度において熱処理を行う熱処理工程とを含み、上述の炭化ケイ素粉体生成工程及び上述の熱処理工程を行うことにより、平均粒径が100μm〜300μm、各不純物元素の含有量が0.1ppm以下の炭化ケイ素粉体を得る炭化ケイ素単結晶製造用高純度炭化ケイ素粉体の製造方法を要旨とする。   The first feature of the present invention is that a mixture obtained by homogeneously mixing a high-purity silicon source and a high-purity organic compound as a carbon source containing oxygen in the molecule and remaining carbon by heating is non-oxidized. Silicon carbide powder production step for obtaining silicon carbide powder by heating and firing in a neutral atmosphere, and maintaining the obtained silicon carbide powder at a temperature of 1700 ° C. or higher and lower than 2000 ° C. Or a heat treatment step of performing a heat treatment at a temperature of 2100 ° C. to 2500 ° C. by reheating after lowering the temperature to room temperature, and performing the above-mentioned silicon carbide powder production step and the above-mentioned heat treatment step, The summary is a method for producing a high-purity silicon carbide powder for producing a silicon carbide single crystal to obtain a silicon carbide powder having a content of 100 μm to 300 μm and an impurity element content of 0.1 ppm or less.

本発明によれば、結晶欠陥の数が少なく、電子特性に優れた炭化ケイ素単結晶を製造するための原料として、不純物含有量が0.1ppm以下であり、昇華法による単結晶育成条件下で比表面積の大幅な減少を起こすことがない、安定した昇華速度を示す粒径を有する炭化ケイ素粉体の製造方法が提供される。また本発明によれば、かかる製造方法により得られた炭化ケイ素粉体を原料とした炭化ケイ素単結晶が提供される。   According to the present invention, as a raw material for producing a silicon carbide single crystal having a small number of crystal defects and excellent electronic properties, the impurity content is 0.1 ppm or less, and under the conditions for growing a single crystal by a sublimation method. A method for producing a silicon carbide powder having a particle size exhibiting a stable sublimation rate without causing a significant reduction in specific surface area is provided. Moreover, according to this invention, the silicon carbide single crystal which uses the silicon carbide powder obtained by this manufacturing method as a raw material is provided.

以下に実施形態を挙げて本発明を説明するが、本発明が以下の実施形態に限定されないことはいうまでもない。図中、同一の機能及び用途を有するものについては同様の符号を付して説明を省略する。   Hereinafter, the present invention will be described with reference to embodiments, but it goes without saying that the present invention is not limited to the following embodiments. In the figure, components having the same functions and applications are denoted by the same reference numerals and description thereof is omitted.

本発明者らは高純度ケイ素源と高純度炭素源を用いて、高純度炭化ケイ素粉体を製造するにあたって、原料の高純度化だけではなく焼成温度パターン(あるいは熱履歴)に着目して鋭意検討を重ねた。その結果、焼成過程において生成した炭化ケイ素粉体をさらに1700℃以上2000℃未満の温度に保持する際に起こる粒子成長過程で不純物が粒子外周部に移動すること、及び2100℃〜2500℃にて加熱焼成処理を行うことにより更なる粒成長と表面の昇華分解を生起させることで不純物の高効率除去が達成され、安定した高純度炭化ケイ素粉体が得られることを知見した。実施形態にかかる炭化ケイ素単結晶製造用高純度炭化ケイ素粉体の製造方法は、上記知見に基づくものである。   In producing high-purity silicon carbide powder using a high-purity silicon source and a high-purity carbon source, the present inventors have earnestly focused not only on the purification of raw materials but also on the firing temperature pattern (or thermal history). Repeated examination. As a result, impurities move to the outer periphery of the particle during the particle growth process that occurs when the silicon carbide powder generated in the firing process is further maintained at a temperature of 1700 ° C. or more and less than 2000 ° C., and at 2100 ° C. to 2500 ° C. It has been found that by carrying out the baking treatment, high efficiency removal of impurities can be achieved by causing further grain growth and surface sublimation decomposition, and a stable high-purity silicon carbide powder can be obtained. The manufacturing method of the high purity silicon carbide powder for manufacturing a silicon carbide single crystal according to the embodiment is based on the above knowledge.

実施形態にかかる炭化ケイ素単結晶製造用高純度炭化ケイ素粉体の製造方法は、
(イ)高純度のケイ素源と、酸素を分子内に含有し、加熱により炭素を残留する高純度有機化合物を炭素源とし、これらを均質に混合して得られた混合物を非酸化性雰囲気下において加熱焼成して炭化ケイ素粉体を得る炭化ケイ素粉体生成工程と、
(ロ)得られた炭化ケイ素粉体を、1700℃以上2000℃未満の温度に保持し、かかる保持温度で保持中に、2100℃〜2500℃の温度において熱処理を行なう熱処理工程とを含む。
A method for producing a high-purity silicon carbide powder for producing a silicon carbide single crystal according to an embodiment,
(B) A high purity silicon source and a high purity organic compound containing oxygen in the molecule and remaining carbon by heating is used as a carbon source, and a mixture obtained by homogeneously mixing them in a non-oxidizing atmosphere A silicon carbide powder production step of obtaining a silicon carbide powder by heating and baking in
(B) a heat treatment step of holding the obtained silicon carbide powder at a temperature of 1700 ° C. or higher and lower than 2000 ° C., and performing a heat treatment at a temperature of 2100 ° C. to 2500 ° C. during the holding at the holding temperature.

かかる製造方法によれば、炭化ケイ素粉体生成工程及び熱処理する工程を行うことにより、平均粒径が100μm〜300μm、各不純物元素の含有量が0.1ppm以下である炭化ケイ素粉体を得ることができる。以下、より詳細に説明する。   According to this manufacturing method, by performing the silicon carbide powder generation step and the heat treatment step, a silicon carbide powder having an average particle size of 100 μm to 300 μm and a content of each impurity element of 0.1 ppm or less is obtained. Can do. This will be described in more detail below.

ケイ素源としては、高純度のテトラアルコキシシラン、その重合体、酸化ケイ素から選択される1種以上を用いる。本発明において酸化ケイ素とは、二酸化ケイ素、一酸化ケイ素を包含するものとする。ケイ素源としては、具体的には、テトラエトキシシランに代表されるアルコキシシラン、その低分子量重合体(オリゴマー)、及び、さらに重合度が高いケイ酸ポリマー等や、シリカゾル、微粉体シリカ等の酸化ケイ素化合物が挙げられる。アルコキシシランとしては、メトキシシラン、エトキシシラン、プロポキシシラン、ブトキシシラン等が例示され、なかでも、ハンドリング性の観点から、エトキシシランが好ましく用いられる。   As the silicon source, one or more selected from high-purity tetraalkoxysilane, a polymer thereof, and silicon oxide are used. In the present invention, silicon oxide includes silicon dioxide and silicon monoxide. Specific examples of silicon sources include alkoxysilanes typified by tetraethoxysilane, low molecular weight polymers (oligomers) thereof, silicate polymers having a higher degree of polymerization, and oxidation of silica sol, fine powder silica, etc. A silicon compound is mentioned. Examples of the alkoxy silane include methoxy silane, ethoxy silane, propoxy silane, butoxy silane and the like. Among these, ethoxy silane is preferably used from the viewpoint of handling properties.

ここでオリゴマーとは重合度2〜15程度の重合体を指す。これらケイ素源のなかでも、均質性やハンドリング性が良好な観点から、テトラエトキシシランのオリゴマー及びテトラエトキシシランのオリゴマーと微粉体シリカとの混合物等が好適である。また、これらのケイ素源は高純度の物質が用いられ、初期の不純物含有量が20ppm以下であることが好ましく、5ppm以下であることがさらに好ましい。   Here, the oligomer refers to a polymer having a degree of polymerization of about 2 to 15. Among these silicon sources, from the viewpoint of good homogeneity and handling properties, an oligomer of tetraethoxysilane and a mixture of an oligomer of tetraethoxysilane and fine powder silica are preferable. These silicon sources are high-purity substances, and the initial impurity content is preferably 20 ppm or less, more preferably 5 ppm or less.

炭素源として用いられる物質は、酸素を分子内に含有し、加熱により炭素を残留する高純度有機化合物であるが、具体的には、フェノール樹脂、フラン樹脂、エポキシ樹脂、フェノキシ樹脂やグルコース等の単糖類、蔗糖等の少糖類、セルロース、デンプン等の多糖類などの等の各種糖類が挙げられる。これらはケイ素源と均質に混合するという目的から、常温で液状のもの、溶媒に溶解するもの、熱可塑性或いは熱融解性のように加熱することにより軟化するもの或いは液状となるものが主に用いられるが、なかでも、レゾール型フェノール樹脂やノボラック型フェノール樹脂が好適である。   The substance used as the carbon source is a high-purity organic compound that contains oxygen in the molecule and retains carbon by heating. Specifically, a phenol resin, a furan resin, an epoxy resin, a phenoxy resin, glucose, etc. Examples thereof include various sugars such as monosaccharides, oligosaccharides such as sucrose, and polysaccharides such as cellulose and starch. For the purpose of homogeneously mixing with the silicon source, these are mainly used in liquid form at room temperature, those that dissolve in a solvent, those that soften or become liquid when heated, such as thermoplastic or heat-meltable. Among them, a resol type phenol resin and a novolac type phenol resin are preferable.

ケイ素源と炭素源の均質混合物を得る際に、混合物を硬化させて固形物とすることも必要に応じて行われる。例えば、上述の如く、液状の炭素源を用いた場合は、ケイ素源と炭素源の均質混合物を硬化して、その後の炭化ケイ素生成工程を施すものである。硬化の方法としては、加熱により架橋する方法、硬化触媒により硬化する方法、電子線や放射線による方法が挙げられる。硬化触媒としては、炭素源がフェノール樹脂やフラン樹脂の場合は、トルエンスルホン酸、トルエンカルボン酸、酢酸、しゅう酸、塩酸、硫酸等の酸類、ヘキサミンなどのアミン類などを用いることができる。炭素源として各種糖類を用いる場合は、加熱時に酸素、オゾン或いは空気雰囲気中で不融化した後、非酸化性雰囲気下での炭化工程に進むのが好ましい。   When obtaining a homogeneous mixture of a silicon source and a carbon source, the mixture is cured to form a solid as necessary. For example, as described above, when a liquid carbon source is used, a homogeneous mixture of a silicon source and a carbon source is cured and a subsequent silicon carbide generating step is performed. Examples of the curing method include a method of crosslinking by heating, a method of curing with a curing catalyst, and a method of electron beam or radiation. As the curing catalyst, when the carbon source is a phenol resin or a furan resin, toluenesulfonic acid, toluenecarboxylic acid, acetic acid, oxalic acid, hydrochloric acid, sulfuric acid and other acids, and amines such as hexamine can be used. When various saccharides are used as the carbon source, it is preferable to proceed to a carbonization step in a non-oxidizing atmosphere after insolubilization in an oxygen, ozone or air atmosphere during heating.

さらに純度を向上させ、均一性を増すための手段として原料混合物にハロゲン化合物を0.5〜5重量%添加することができる。原料混合物にハロゲン化合物を添加することにより、炭化ケイ素合成プロセスの中で不純物をハロゲン化し、焼成プロセスで気化、飛散させて不純物を除去するものである。この方法は、原料に混入した不純物の除去に特に有効で、炭化ケイ素を基礎として5ppmまでの不純物であれば、処理後の不純物を0.5ppm以下に抑制することができる。   Furthermore, a halogen compound can be added to the raw material mixture in an amount of 0.5 to 5% by weight as a means for improving purity and increasing uniformity. By adding a halogen compound to the raw material mixture, the impurities are halogenated in the silicon carbide synthesis process, and the impurities are removed by vaporizing and scattering in the firing process. This method is particularly effective for removing impurities mixed in the raw material. If impurities are up to 5 ppm based on silicon carbide, the impurities after treatment can be suppressed to 0.5 ppm or less.

ハロゲン化合物の添加時期は、原料を混合する時点が最も適している。添加するハロゲン化合物としては、原料が液状又は水溶液状で混合されている場合は、塩化アンモニウム、塩酸水溶液など不純物を含まない液状形態での添加が望ましい。また、炭素源として熱可塑性フェノール樹脂やフラン樹脂を用い、固体状のケイ素源を用いる場合は、ポリ塩化ビニル、塩素化ポリエチレン、ポリクロロプレン等のハロゲンを含むポリマーを添加することが好適である。   The timing of adding the halogen compound is most suitable when the raw materials are mixed. As the halogen compound to be added, when the raw materials are mixed in the form of liquid or aqueous solution, addition in a liquid form containing no impurities such as ammonium chloride and aqueous hydrochloric acid is desirable. When a thermoplastic phenol resin or furan resin is used as the carbon source and a solid silicon source is used, it is preferable to add a polymer containing halogen such as polyvinyl chloride, chlorinated polyethylene, or polychloroprene.

ハロゲン化合物を添加した場合の不純物除去は、原料硬化固形物の炭化工程、あるいは、直接焼成する場合には焼成工程、それぞれの昇温時にハロゲン化合物が分解して不純物元素と反応し、排出されることにより行われるが、ハロゲン化物の分解温度近傍で10〜30分間反応をさせてから、その後の焼成工程の温度まで昇温を行うことが、不純物除去の効果の観点からさらに好ましい。   Impurity removal in the case of adding a halogen compound is a carbonization step of a raw material solidified solid, or in the case of direct firing, a firing step. The halogen compound decomposes and reacts with the impurity element at each temperature rise and is discharged. However, it is more preferable from the viewpoint of the effect of removing impurities that the reaction is carried out in the vicinity of the decomposition temperature of the halide for 10 to 30 minutes and then the temperature is raised to the temperature of the subsequent firing step.

また、炭化ケイ素生成工程における加熱焼成の非酸化性雰囲気中に1〜5容量%のハロゲンあるいはハロゲン化水素を添加する方法を用いれば、各不純物元素の含有量を0.3ppm以下まで減少させることも可能である。この方法は焼成工程以前のすべての工程における不純物汚染に対して効果があり、20ppm以下の汚染に対して十分な効果を発揮する。   In addition, if a method of adding 1 to 5% by volume of halogen or hydrogen halide in the non-oxidizing atmosphere of heating and firing in the silicon carbide production step, the content of each impurity element is reduced to 0.3 ppm or less. Is also possible. This method is effective against impurity contamination in all steps before the firing step, and exhibits a sufficient effect against contamination of 20 ppm or less.

原料混合固形物を必要に応じて500〜1000℃に予め加熱する焼成工程(予備加熱炭化焼成工程)をさらに加えることもできる。上述の如くハロゲン化合物を添加する場合には、原料混合物を非酸化性雰囲気下で500〜600℃の温度加熱で10〜30分間加熱し、その後、非酸化性雰囲気下で800〜1000℃の温度で30分間〜2時間加熱する、二段炭化(予備加熱炭化焼成工程)を行うことが好ましい。この800〜1000℃での加熱は、30分間以下であると前処理として不十分であり、2時間を超えて加熱を継続しても効果の向上は見られない。また、非酸化性雰囲気としては、窒素あるいは、アルゴンなどを用いるが、経済的理由からは窒素が望ましい。   A firing step (preheating carbonization firing step) in which the raw material mixed solid is preheated to 500 to 1000 ° C. may be further added as necessary. When the halogen compound is added as described above, the raw material mixture is heated at a temperature of 500 to 600 ° C. for 10 to 30 minutes in a non-oxidizing atmosphere, and then at a temperature of 800 to 1000 ° C. in a non-oxidizing atmosphere. It is preferable to perform two-stage carbonization (preheating carbonization baking process) which is heated for 30 minutes to 2 hours. The heating at 800 to 1000 ° C. is insufficient as a pretreatment when it is 30 minutes or less, and even if the heating is continued for more than 2 hours, the effect is not improved. As the non-oxidizing atmosphere, nitrogen or argon is used, but nitrogen is preferable for economic reasons.

次に加熱焼成工程について詳述する。予備炭化により得られた、あるいは未炭化の原料混合物又は原料混合後に硬化された固形物が、炭化ケイ素生成工程における非酸化性雰囲気中での加熱(炭化)焼成を経ることにより、即ち、予備炭化された固形物を加熱焼成するか、未炭化物をここで加熱炭化焼成することにより、炭化ケイ素粉体が生成する。この非酸化性雰囲気としては、高温においても非反応性であることから、アルゴンを用いることが望ましい。焼成過程では、まず炭化ケイ素生成のために、原料固形物を加熱炉内で生成に必要な温度以上に加熱する必要がある。一般的には、1350〜1800℃で行うが、より効率的な生成を行うためには1600〜1800℃が望ましい。この炭化ケイ素生成反応は、吸熱反応であるため生成物の温度測定には注意をしなくてはならない。   Next, the heating and baking process will be described in detail. The solid material obtained by preliminary carbonization, or the uncarbonized raw material mixture or the solid material cured after the raw material mixing is subjected to heating (carbonization) firing in a non-oxidizing atmosphere in the silicon carbide production step, that is, preliminary carbonization. Silicon carbide powder is produced by heating and firing the resulting solid, or by heating and carbonizing and firing the uncarburized material. As this non-oxidizing atmosphere, argon is desirable because it is non-reactive even at high temperatures. In the firing process, first, in order to produce silicon carbide, it is necessary to heat the raw material solids to a temperature higher than that necessary for production in a heating furnace. Generally, the temperature is 1350 to 1800 ° C., but 1600 to 1800 ° C. is desirable for more efficient production. Since this silicon carbide formation reaction is an endothermic reaction, care must be taken in measuring the temperature of the product.

また、焼成中に発生するSiO、COを含む気体は不純物元素を大量に伴っているため、加熱炉中に一定量の非酸化性雰囲気ガスを適切に導入することによりこれらの発生気体を反応容器系外へ絶えず排出し、除去することが望ましい。   In addition, since the gas containing SiO and CO generated during firing is accompanied by a large amount of impurity elements, these generated gases are introduced into the reaction vessel by appropriately introducing a certain amount of non-oxidizing atmosphere gas into the heating furnace. It is desirable to continuously discharge out of the system and remove it.

生成した炭化ケイ素粒子を成長させるために、その後、後処理工程において、ある程度の高温に加熱し、その温度を保持することが好ましい。保持温度は1700℃以上2000℃未満が好ましい。この加熱の際、炭化ケイ素粒子の結晶子の増大及び粒子成長に伴って、粒子表面近傍に不純物が移動することが不純物分析の結果より明らかとなっている。   In order to grow the generated silicon carbide particles, it is preferable to maintain the temperature by heating to a certain high temperature thereafter in a post-treatment step. The holding temperature is preferably 1700 ° C. or higher and lower than 2000 ° C. As a result of impurity analysis, it is clear that impurities move to the vicinity of the particle surface as the crystallites of the silicon carbide particles increase and the particles grow during this heating.

上述の炭化ケイ素生成工程により得られた炭化ケイ素粉体を、上述の1700℃以上2000℃未満の温度に加熱して、さらに、2100℃〜2500℃の温度、好ましくは2200℃〜2400℃の温度における加熱処理を行うことにより、その表面近傍不純物が更なる粒成長と一部昇華分解に伴って外部に除去され、目的とする純度を達成した炭化ケイ素粉体が得られることになる。2100℃〜2500℃の加熱処理において、高温側での加熱が好ましい理由は、高温側ほど粒子の成長が促進され、また低温側ではα型とβ型が混在するが高温側ほど結晶型がα型に均質化されるからである。   The silicon carbide powder obtained by the above-mentioned silicon carbide production step is heated to the above-mentioned temperature of 1700 ° C. or more and less than 2000 ° C., and further, a temperature of 2100 ° C. to 2500 ° C., preferably a temperature of 2200 ° C. to 2400 ° C. By performing the heat treatment in, impurities near the surface are removed to the outside along with further grain growth and partial sublimation decomposition, and a silicon carbide powder that achieves the target purity can be obtained. In the heat treatment at 2100 ° C. to 2500 ° C., the reason why heating on the high temperature side is preferable is that the growth of particles is promoted on the high temperature side, and α type and β type are mixed on the low temperature side. This is because it is homogenized into a mold.

炭化ケイ素粒子生成後の後処理工程において行われるこの2100℃〜2500℃の温度における加熱処理は、上述の如き不純物の除去の観点に加え、結晶粒径の制御の観点からも好ましい。即ち、加熱によって更なる粒成長が起こり、所望の粒径を有する粉体を得ることができるものである。   The heat treatment at a temperature of 2100 ° C. to 2500 ° C. performed in the post-treatment step after the generation of silicon carbide particles is preferable from the viewpoint of controlling the crystal grain size in addition to the above-mentioned removal of impurities. That is, further grain growth occurs by heating, and a powder having a desired particle diameter can be obtained.

実施形態にかかる製造方法においては、上述の加熱条件を満たしうるものであれば、特に製造装置及び連続製造、バッチ製造等の方法に制限はない。即ち、この炭化ケイ素生成工程における加熱(炭化)焼成と、後処理工程における加熱処理とは、1つの加熱炉内で、温度及び時間などの加熱条件を制御しながら連続的に行ってもよく、炭化ケイ素生成工程において生成した炭化ケイ素粉体を、別の加熱炉に移して後処理工程に付してもよい。   In the manufacturing method concerning embodiment, if the above-mentioned heating conditions are satisfy | filled, there will be no restriction | limiting in particular in methods, such as a manufacturing apparatus and continuous manufacturing, batch manufacturing. That is, the heating (carbonization) firing in the silicon carbide production step and the heat treatment in the post-treatment step may be performed continuously in one heating furnace while controlling heating conditions such as temperature and time, The silicon carbide powder produced in the silicon carbide production process may be transferred to another heating furnace and subjected to a post-treatment process.

このように、炭化ケイ素生成工程を経て炭化ケイ素粉体を形成した後に、非常に高温での加熱処理(後処理工程)を置くことにより、炭化ケイ素生成工程の中間段階で若干の純度の低下が生じたとしても、この後処理により純化されて、0.5ppm以下の高純度が安定的に得られると推定される。但し、中間段階での不純物混入量が炭化ケイ素を基準として2ppmを超えると、得られる炭化ケイ素粉末の不純物を0.5ppm以下を保つことが難しくなるので、不純物混入防止のためのプロセス管理は必要である。しかしながら、2000〜2100℃の加熱処理を含まない場合に比べ、純度の安定性、即ち、不純物含有量のばらつきは明らかに改良され、不純物含有量のより少ない均一な炭化ケイ素粉体が得られる。また、炭化ケイ素粉末の平均粒径も、通常の焼成工程のみにより得られる5μm以下から、実施形態にかかる方法を用いることにより10〜500μmに増大し、粒度分布も従来品に比較して均一となる。   Thus, after forming the silicon carbide powder through the silicon carbide production process, by placing a heat treatment (post-treatment process) at a very high temperature, there is a slight decrease in purity in the intermediate stage of the silicon carbide production process. Even if it occurs, it is estimated that it is purified by this post-treatment, and a high purity of 0.5 ppm or less can be stably obtained. However, if the amount of impurities mixed in the intermediate stage exceeds 2 ppm based on silicon carbide, it becomes difficult to keep the impurities of the obtained silicon carbide powder to 0.5 ppm or less, so process management for preventing impurities from mixing is necessary. It is. However, as compared with the case where the heat treatment at 2000 to 2100 ° C. is not included, the stability of the purity, that is, the variation in the impurity content is clearly improved, and a uniform silicon carbide powder having a smaller impurity content can be obtained. Further, the average particle size of the silicon carbide powder is increased from 5 μm or less obtained only by a normal firing process to 10 to 500 μm by using the method according to the embodiment, and the particle size distribution is uniform compared to the conventional product. Become.

実施形態の原料であるケイ素源と炭素源の純度は、各不純物元素含有量1ppm以下であることが好ましいが、焼成工程での純化の許容範囲内であれば必ずしもこれに限定するものではない。また、ここで不純物元素とは、1989年IUPAC無機化学命名法改訂版の周期律表における1族から16族元素に属し、且つ、原子番号3以上であり、原子番号6〜8及び同14〜16の元素を除く元素をいう。   The purity of the silicon source and the carbon source, which are raw materials of the embodiment, is preferably 1 ppm or less for each impurity element, but is not necessarily limited to this as long as it is within the allowable range of purification in the firing step. Here, the impurity element belongs to the group 1 to group 16 element in the periodic table of the 1989 IUPAC inorganic chemical nomenclature revised edition, and has an atomic number of 3 or more, and the atomic numbers 6 to 8 and 14 to 14 An element excluding 16 elements.

炭素とケイ素の比(以下、C/Si比と略記)は、混合硬化固形物を炭化して得られる炭化物中間体を、元素分析することにより定義される。化学量論的には、C/Si比が3.0の時に生成炭化ケイ素中の遊離炭素が0%となるはずであるが、実際には同時に生成するSiOガスの揮散により低C/Si比において遊離炭素が発生する。この生成炭化ケイ素粉体中の遊離炭素量が単結晶製造用途に適当でない量にならないように予め配合を決定することが重要である。通常、1気圧近傍で1600℃以上での焼成では、C/Si比を2.0〜2.5にすると遊離炭素を抑制することができ、この範囲を好適に用いることができる。C/Si比を2.5以上にすると遊離炭素が顕著に増加するが、この遊離炭素は粒成長を抑制する効果を持つため、粒子形成の目的に応じて適宜選択しても良い。但し、雰囲気の圧力を低圧又は高圧で焼成する場合は、純粋な炭化ケイ素を得るためのC/Si比は変動するので、この場合は必ずしも上述のC/Si比の範囲に限定するものではない。   The ratio of carbon to silicon (hereinafter abbreviated as C / Si ratio) is defined by elemental analysis of a carbide intermediate obtained by carbonizing a mixed cured solid. Stoichiometrically, when the C / Si ratio is 3.0, the free carbon in the generated silicon carbide should be 0%. However, in practice, the low C / Si ratio is caused by volatilization of the SiO gas generated at the same time. Free carbon is generated in It is important to determine the formulation in advance so that the amount of free carbon in the resulting silicon carbide powder does not become an amount that is not suitable for single crystal production applications. Usually, in firing at 1600 ° C. or more near 1 atm, free carbon can be suppressed when the C / Si ratio is set to 2.0 to 2.5, and this range can be suitably used. When the C / Si ratio is 2.5 or more, free carbon significantly increases. However, since this free carbon has an effect of suppressing grain growth, it may be appropriately selected according to the purpose of grain formation. However, when the atmospheric pressure is fired at a low pressure or a high pressure, the C / Si ratio for obtaining pure silicon carbide varies, and in this case, it is not necessarily limited to the above-mentioned range of C / Si ratio. .

実施形態にかかる製造方法により得られた炭化ケイ素の平均粒径は10〜500μmであり、好ましくは30〜200μmである。平均粒径が10μm以下になると、単結晶を作るための炭化ケイ素の昇華温度(2000〜5000℃)で焼結を起こし、昇華表面積が小さくなり、単結晶の成長が遅くなる。また、500μm以上になると、粒子自身の比表面積が小さくなるため、やはり単結晶の成長が遅くなる。   The average particle diameter of the silicon carbide obtained by the manufacturing method according to the embodiment is 10 to 500 μm, preferably 30 to 200 μm. When the average particle size is 10 μm or less, sintering occurs at the sublimation temperature (2000 to 5000 ° C.) of silicon carbide for making a single crystal, the sublimation surface area is reduced, and the growth of the single crystal is slowed. On the other hand, when the particle size is 500 μm or more, the specific surface area of the particles themselves is reduced, so that the growth of the single crystal is also delayed.

高純度炭化ケイ素原料粉体を用いて炭化ケイ素単結晶を得るためには、改良レーリー法等の公知の方法を用いることができる。例えば、黒鉛容器上蓋の部分に種結晶として、研磨によりSi面が現れている単結晶板を設置し、この黒鉛容器中に上述の製造方法で得られた炭化ケイ素粉体を充填し、昇華再結晶法により単結晶の育成を行う方法等を挙げることができる。   In order to obtain a silicon carbide single crystal using high-purity silicon carbide raw material powder, a known method such as an improved Rayleigh method can be used. For example, a single crystal plate with a Si surface appearing as a seed crystal is placed as a seed crystal in the upper part of the graphite container, and this graphite container is filled with the silicon carbide powder obtained by the above-described manufacturing method and resublimated. Examples thereof include a method of growing a single crystal by a crystal method.

高純度炭化ケイ素原料粉体から得られた単結晶が、従来の製造方法で得られたものに比べ優位性があることを確認するために、改良レーリー法(種結晶を有する昇華再結晶法)を用いて単結晶の育成を試みた。   An improved Rayleigh method (sublimation recrystallization method with seed crystals) to confirm that single crystals obtained from high-purity silicon carbide raw material powder are superior to those obtained by conventional production methods An attempt was made to grow single crystals.

ここで炭化ケイ素単結晶の製造装置について比べる。まず、炭化ケイ素単結晶の製造装置10の概略図を図1に示す。炭化ケイ素単結晶の製造装置10の中心には円筒型黒鉛容器12がおかれ、円筒型黒鉛容器12内に原料となる炭化ケイ素粉体14Aを入れて、黒鉛蓋16を閉じる。黒鉛蓋16の内側には、単結晶成長のための種結晶14Bが配置される。円筒型黒鉛容器12の周囲には、容器12内の温度を安定させるため黒鉛フェルト又は黒鉛発泡体の断熱材18が配置されている。円筒型黒鉛容器12は中空支持枠22によって石英チャンバー24中に石英チャンバー24のいずれの壁面、蓋面、底面にも接することなく配置されている。石英チャンバー24の上面には石英上蓋26A、下面には底蓋26Bがそれぞれ設けられ、石英蓋26A、26Bそれぞれの中央部には、温度測定用の石英の窓28A、28Bが取り付けられている。石英チャンバーの側壁30は冷却水を流すことができるよう二重槽となっており、容器12内の温度制御は、石英チャンバー側壁二重曹30の冷却水、及び、黒鉛容器を加熱する高周波コイル32によって行われる。   Here, it compares about the manufacturing apparatus of a silicon carbide single crystal. First, a schematic view of a silicon carbide single crystal manufacturing apparatus 10 is shown in FIG. A cylindrical graphite container 12 is placed at the center of the silicon carbide single crystal manufacturing apparatus 10, and silicon carbide powder 14 A as a raw material is placed in the cylindrical graphite container 12, and the graphite lid 16 is closed. Inside the graphite lid 16, a seed crystal 14B for single crystal growth is disposed. Around the cylindrical graphite container 12, a heat insulating material 18 made of graphite felt or graphite foam is disposed in order to stabilize the temperature in the container 12. The cylindrical graphite container 12 is disposed in the quartz chamber 24 by the hollow support frame 22 without contacting any wall surface, lid surface, or bottom surface of the quartz chamber 24. A quartz upper lid 26A is provided on the upper surface of the quartz chamber 24, and a bottom lid 26B is provided on the lower surface. Quartz windows 28A and 28B for temperature measurement are attached to the central portions of the quartz lids 26A and 26B, respectively. The side wall 30 of the quartz chamber is a double tank so that cooling water can flow, and the temperature in the container 12 is controlled by the cooling water of the quartz chamber side wall double soda 30 and the high-frequency coil 32 for heating the graphite container. Is done by.

これらの装置全体がステンレスチャンバ(図示せず)内に設置されており、内圧の制御やガス置換はこのステンレスチャンバで行われる。従って、石英チャンバの上蓋と底蓋には開口部(図示せず)が設けられ、ステンレスチャンバ内と石英チャンバ内との雰囲気が同じになるようにされている。 The entire apparatus is installed in a stainless steel chamber (not shown), and internal pressure control and gas replacement are performed in the stainless steel chamber. Accordingly, an opening (not shown) is provided in the top and bottom lids of the quartz chamber so that the atmosphere in the stainless steel chamber and the quartz chamber are the same.

本装置で用いられる黒鉛容器、黒鉛蓋、断熱材は、得られる単結晶の純度保持の観点から高純度の黒鉛原料を用いることが好ましく、黒鉛原料は高純度処理されたものが用いられるが、具体的には、2500℃以上の温度で予め十分ベーキングされ、育成温度で不純物の発生がないものが望ましい。炭化ケイ素単結晶の製造装置10を用いた単結晶の育成については、実施例にて詳述する。   The graphite container, graphite lid, and heat insulating material used in this apparatus are preferably high-purity graphite raw materials from the viewpoint of maintaining the purity of the obtained single crystal, and the graphite raw materials are those subjected to high-purity treatment. Specifically, it is desirable that the substrate is sufficiently baked at a temperature of 2500 ° C. or higher and no impurities are generated at the growth temperature. The growth of the single crystal using the silicon carbide single crystal manufacturing apparatus 10 will be described in detail in Examples.

以下に実施例を挙げて本発明を具体的に説明するが、本発明の主旨を超えない限り本実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples as long as the gist of the present invention is not exceeded.

炭化ケイ素粉体の製造
(実施例1)
SiO2 含有量40%の高純度エチルシリケートオリゴマー620gと含水率20%の高純度液体レゾール型フェノール樹脂288gとを混合し、触媒として高純度マレイン酸水溶液(35重量%)92gを投入し150℃で加熱して硬化させた。得られた硬化物を窒素雰囲気下で900℃で1時間炭化した。炭化物をアルゴン(Ar)雰囲気下にて2300℃で2時間加熱して自然冷却により室温まで冷却した。
Production of silicon carbide powder (Example 1)
620 g of high-purity ethyl silicate oligomer having a SiO 2 content of 40% and 288 g of high-purity liquid resol type phenol resin having a water content of 20% are mixed, and 92 g of a high-purity maleic acid aqueous solution (35% by weight) is added as a catalyst at 150 ° C. And heated to cure. The obtained cured product was carbonized at 900 ° C. for 1 hour under a nitrogen atmosphere. The carbide was heated at 2300 ° C. for 2 hours under an argon (Ar) atmosphere and cooled to room temperature by natural cooling.

得られた粉体の不純物分析は、粉体をフッ素、硝酸、硫酸を含む混酸で、加圧熱分解した後、1CP−質量分析法及びフレームレス原子吸光法で行った。また粉体の平均粒径をレーザー回折方式の粒度分布測定装置にて測定した。ばらつきを検討するため、この操作を5回繰り返した。3回目の不純物分析の結果を表1に示す。

Figure 2009173501
Impurity analysis of the obtained powder was performed by 1CP-mass spectrometry and flameless atomic absorption after the powder was pyrolyzed under pressure with a mixed acid containing fluorine, nitric acid and sulfuric acid. The average particle size of the powder was measured with a laser diffraction particle size distribution analyzer. This operation was repeated 5 times in order to examine the variation. The results of the third impurity analysis are shown in Table 1.
Figure 2009173501

表1から明らかなように、不純物はいずれも0.5ppm以下であり、含有量のばらつきも少ないことが確認された。得られた粉体の平均粒径は50〜80μmであった。   As is clear from Table 1, it was confirmed that the impurities were all 0.5 ppm or less and the content variation was small. The average particle diameter of the obtained powder was 50 to 80 μm.

上述の、粒径の測定結果等から明らかなように、実施例にかかる方法により得られた炭化ケイ素粉体は、十分な平均粒径を有し、不純物含有率も極めて低いものであった。   As is apparent from the particle size measurement results described above, the silicon carbide powder obtained by the method according to the example had a sufficient average particle size and a very low impurity content.

上述の、粒径の測定結果及び表1に明らかなように、本発明の方法により得られた炭化ケイ素粉体は、十分な平均粒径を有し、不純物含有率も極めて低いものであった。   As is apparent from the measurement results of the particle diameters and Table 1 described above, the silicon carbide powder obtained by the method of the present invention had a sufficient average particle diameter and an extremely low impurity content. .

改良レーリー法を用いて単結晶を育成するための炭化ケイ素単結晶の製造装置を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing apparatus of the silicon carbide single crystal for growing a single crystal using the improved Rayleigh method.

符号の説明Explanation of symbols

10 炭化ケイ素単結晶の製造装置 10 Silicon carbide single crystal manufacturing equipment

Claims (7)

高純度のケイ素源、酸素を分子内に含有し加熱により炭素を残留する炭素源としての高純度有機化合物を均質に混合して得られた混合物を、非酸化性雰囲気下において加熱焼成して炭化ケイ素粉体を得る炭化ケイ素粉体生成工程と、
得られた炭化ケイ素粉体を、1700℃以上2000℃未満の温度に保持し、前記保持温度で保持中に、2100℃〜2500℃の温度において熱処理を行う熱処理工程と、を含み、
前記炭化ケイ素粉体生成工程及び前記熱処理工程を行うことにより、平均粒径が100μm〜300μm、各不純物元素の含有量が0.1ppm以下の炭化ケイ素粉体を得ることを特徴とする炭化ケイ素単結晶製造用高純度炭化ケイ素粉体の製造方法。
Carbonized by heating and firing in a non-oxidizing atmosphere a mixture obtained by homogeneously mixing a high-purity silicon source and a high-purity organic compound as a carbon source that contains oxygen in the molecule and retains carbon by heating. Silicon carbide powder production process for obtaining silicon powder;
A heat treatment step of holding the obtained silicon carbide powder at a temperature of 1700 ° C. or higher and lower than 2000 ° C., and performing a heat treatment at a temperature of 2100 ° C. to 2500 ° C. during the holding at the holding temperature,
By performing the silicon carbide powder generation step and the heat treatment step, a silicon carbide powder having an average particle size of 100 μm to 300 μm and a content of each impurity element of 0.1 ppm or less is obtained. A method for producing high-purity silicon carbide powder for crystal production.
前記熱処理工程における熱処理温度が、2200℃〜2400℃であることを特徴とする請求項1に記載の炭化ケイ素単結晶製造用高純度炭化ケイ素粉体の製造方法。   The method for producing a high-purity silicon carbide powder for producing a silicon carbide single crystal according to claim 1, wherein the heat treatment temperature in the heat treatment step is 2200 ° C to 2400 ° C. 前記炭素源が、常温で液状であるか、若しくは、加熱により軟化又は液状となる物質であることを特徴とする請求項1又は2に記載の炭化ケイ素単結晶製造用高純度炭化ケイ素粉体の製造方法。   The high-purity silicon carbide powder for producing a silicon carbide single crystal according to claim 1 or 2, wherein the carbon source is a liquid at room temperature, or a substance that becomes soft or liquid by heating. Production method. 前記混合物が、前記炭化ケイ素生成工程における加熱焼成前に非酸化性雰囲気下で500℃〜1000℃にて予め加熱炭化されることを特徴とする請求項1〜3のいずれか1項に記載の炭化ケイ素単結晶製造用高純度炭化ケイ素粉体の製造方法。   The said mixture is preheated and carbonized at 500 to 1000 degreeC in non-oxidizing atmosphere before the heat-firing in the said silicon carbide production | generation process, The any one of Claims 1-3 characterized by the above-mentioned. A method for producing a high-purity silicon carbide powder for producing a silicon carbide single crystal. 前記混合物を、前記炭化ケイ素生成工程における加熱焼成前に熱及び/又は硬化触媒で硬化することを特徴とする請求項1〜4のいずれか1項に記載の炭化ケイ素単結晶製造用高純度炭化ケイ素粉体の製造方法。   The high-purity carbonization for producing a silicon carbide single crystal according to any one of claims 1 to 4, wherein the mixture is cured with heat and / or a curing catalyst before heating and firing in the silicon carbide production step. A method for producing silicon powder. 前記混合物の非酸化性雰囲気下での加熱焼成において、加熱焼成用加熱炉内に、さらに、一定量の非酸化性雰囲気ガスを導入することにより、焼成時に発生したSiO、COを含む気体を、該ガスとともに該加熱炉外へ除去することを特徴とする請求項第1〜5のいずれか1項に記載の炭化ケイ素単結晶製造用高純度炭化ケイ素粉体の製造方法。   In the heating and firing of the mixture in a non-oxidizing atmosphere, by introducing a certain amount of non-oxidizing atmosphere gas into the heating and firing furnace, a gas containing SiO and CO generated during firing is obtained. The method for producing a high-purity silicon carbide powder for producing a silicon carbide single crystal according to any one of claims 1 to 5, wherein the gas is removed from the heating furnace together with the gas. 請求項1〜6のいずれか1項に記載された炭化ケイ素単結晶製造用高純度炭化ケイ素粉体の製造方法により製造された炭化ケイ素単結晶製造用高純度炭化ケイ素粉体を原料として用い、種結晶上に昇華再結晶法で成長させた、欠陥密度が5×102個/cm2以下の六方晶又は一部に菱面体晶を含む六方晶であることを特徴とする炭化ケイ素単結晶。 Using the high-purity silicon carbide powder for producing a silicon carbide single crystal produced by the method for producing a high-purity silicon carbide powder for producing a silicon carbide single crystal according to any one of claims 1 to 6, as a raw material, A silicon carbide single crystal characterized by being a hexagonal crystal having a defect density of 5 × 10 2 / cm 2 or less or a hexagonal crystal including a rhombohedral crystal partially grown on a seed crystal by a sublimation recrystallization method .
JP2008016221A 2008-01-28 2008-01-28 Method of manufacturing high purity silicon carbide powder for silicon carbide single crystal manufacture and silicon carbide single crystal Pending JP2009173501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008016221A JP2009173501A (en) 2008-01-28 2008-01-28 Method of manufacturing high purity silicon carbide powder for silicon carbide single crystal manufacture and silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008016221A JP2009173501A (en) 2008-01-28 2008-01-28 Method of manufacturing high purity silicon carbide powder for silicon carbide single crystal manufacture and silicon carbide single crystal

Publications (1)

Publication Number Publication Date
JP2009173501A true JP2009173501A (en) 2009-08-06

Family

ID=41029033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008016221A Pending JP2009173501A (en) 2008-01-28 2008-01-28 Method of manufacturing high purity silicon carbide powder for silicon carbide single crystal manufacture and silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP2009173501A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311115A (en) * 2011-08-24 2012-01-11 江阴巨能微粉科技有限公司 Preparation method of high-purity green silicon carbide micropowder
WO2012067011A1 (en) * 2010-11-15 2012-05-24 独立行政法人産業技術総合研究所 Silicon carbide powder for production of silicon carbide single crystal, and method for producing same
WO2012157293A1 (en) * 2011-05-18 2012-11-22 住友電気工業株式会社 Silicon carbide powder and method for producing silicon carbide powder
JP2012246165A (en) * 2011-05-26 2012-12-13 National Institute Of Advanced Industrial Science & Technology Method and apparatus for producing fine silicon carbide powder
WO2014017197A1 (en) * 2012-07-26 2014-01-30 住友電気工業株式会社 Method for manufacturing silicon carbide substrate
JP2014214058A (en) * 2013-04-26 2014-11-17 株式会社トクヤマ Silicon carbide granule and method for manufacturing the same
WO2014208460A1 (en) 2013-06-26 2014-12-31 株式会社ブリヂストン Silicon carbide powder
WO2014208461A1 (en) 2013-06-26 2014-12-31 株式会社ブリヂストン Silicon carbide powder
JP2015107901A (en) * 2013-12-06 2015-06-11 太平洋セメント株式会社 Method for manufacturing silicon carbide powder
JP2016106070A (en) * 2016-03-18 2016-06-16 住友電気工業株式会社 Manufacturing method of silicon carbide substrate
DE102015105085A1 (en) 2015-04-01 2016-10-06 Universität Paderborn Method for producing a silicon carbide-containing body
JP2017030980A (en) * 2015-07-28 2017-02-09 太平洋セメント株式会社 Silicon carbide powder
JPWO2014189008A1 (en) * 2013-05-20 2017-02-23 国立研究開発法人産業技術総合研究所 Silicon carbide single crystal and method for producing the same
CN110217796A (en) * 2019-06-04 2019-09-10 山东天岳先进材料科技有限公司 A kind of high-pure SiC power and preparation method thereof
JP2021084858A (en) * 2019-11-28 2021-06-03 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー METHOD FOR PRODUCING GRANULAR α-PHASE SILICON CARBIDE POWDERS WITH HIGH-PURITY
CN117585678A (en) * 2023-11-30 2024-02-23 宁波合盛新材料有限公司 Nitrogen absorption treatment method for new thermal field for synthesizing silicon carbide powder by PVT furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0948605A (en) * 1995-05-31 1997-02-18 Bridgestone Corp Production of extremely pure powdery silicon carbide for producing silicon carbide single crystal and single crystal
JP2002293525A (en) * 2001-03-30 2002-10-09 Bridgestone Corp Silicon carbine powder, its production method and silicon carbine monocrystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0948605A (en) * 1995-05-31 1997-02-18 Bridgestone Corp Production of extremely pure powdery silicon carbide for producing silicon carbide single crystal and single crystal
JP2002293525A (en) * 2001-03-30 2002-10-09 Bridgestone Corp Silicon carbine powder, its production method and silicon carbine monocrystal

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209923A (en) * 2010-11-15 2013-07-17 独立行政法人产业技术综合研究所 Silicon carbide powder for production of silicon carbide single crystal, and method for producing same
WO2012067011A1 (en) * 2010-11-15 2012-05-24 独立行政法人産業技術総合研究所 Silicon carbide powder for production of silicon carbide single crystal, and method for producing same
JP2012101996A (en) * 2010-11-15 2012-05-31 National Institute Of Advanced Industrial Science & Technology Silicon carbide powder for producing silicon carbide single crystal, and production method therefor
US8951638B2 (en) 2010-11-15 2015-02-10 Denki Kagaku Kogyo Kabushiki Kaisha Silicon carbide powder for producing silicon carbide single crystal and a method for producing the same
US20130266810A1 (en) * 2010-11-15 2013-10-10 Denki Kagaku Kogyo Kabushiki Kaisha Silicon carbide powder for producing silicon carbide single crystal and a method for producing the same
WO2012157293A1 (en) * 2011-05-18 2012-11-22 住友電気工業株式会社 Silicon carbide powder and method for producing silicon carbide powder
JP2012240869A (en) * 2011-05-18 2012-12-10 Sumitomo Electric Ind Ltd Silicon carbide powder and method for producing silicon carbide
JP2012246165A (en) * 2011-05-26 2012-12-13 National Institute Of Advanced Industrial Science & Technology Method and apparatus for producing fine silicon carbide powder
CN102311115A (en) * 2011-08-24 2012-01-11 江阴巨能微粉科技有限公司 Preparation method of high-purity green silicon carbide micropowder
WO2014017197A1 (en) * 2012-07-26 2014-01-30 住友電気工業株式会社 Method for manufacturing silicon carbide substrate
JP2014024704A (en) * 2012-07-26 2014-02-06 Sumitomo Electric Ind Ltd Method for producing silicon carbide substrate
US9631296B2 (en) 2012-07-26 2017-04-25 Sumitomo Electric Industries, Ltd. Method of manufacturing silicon carbide substrate
CN104350187A (en) * 2012-07-26 2015-02-11 住友电气工业株式会社 Method for manufacturing silicon carbide substrate
JP2014214058A (en) * 2013-04-26 2014-11-17 株式会社トクヤマ Silicon carbide granule and method for manufacturing the same
JPWO2014189008A1 (en) * 2013-05-20 2017-02-23 国立研究開発法人産業技術総合研究所 Silicon carbide single crystal and method for producing the same
WO2014208461A1 (en) 2013-06-26 2014-12-31 株式会社ブリヂストン Silicon carbide powder
WO2014208460A1 (en) 2013-06-26 2014-12-31 株式会社ブリヂストン Silicon carbide powder
US9630854B2 (en) 2013-06-26 2017-04-25 Bridgestone Corporation Silicon carbide powder
JP2015107901A (en) * 2013-12-06 2015-06-11 太平洋セメント株式会社 Method for manufacturing silicon carbide powder
DE102015105085A1 (en) 2015-04-01 2016-10-06 Universität Paderborn Method for producing a silicon carbide-containing body
US10926291B2 (en) 2015-04-01 2021-02-23 Universität Paderborn Process for producing a silicon carbide-containing body
JP2017030980A (en) * 2015-07-28 2017-02-09 太平洋セメント株式会社 Silicon carbide powder
JP2016106070A (en) * 2016-03-18 2016-06-16 住友電気工業株式会社 Manufacturing method of silicon carbide substrate
CN110217796A (en) * 2019-06-04 2019-09-10 山东天岳先进材料科技有限公司 A kind of high-pure SiC power and preparation method thereof
JP2021084858A (en) * 2019-11-28 2021-06-03 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー METHOD FOR PRODUCING GRANULAR α-PHASE SILICON CARBIDE POWDERS WITH HIGH-PURITY
JP7096315B2 (en) 2019-11-28 2022-07-05 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー Method for manufacturing high-purity granule α-phase silicon carbide powder
CN117585678A (en) * 2023-11-30 2024-02-23 宁波合盛新材料有限公司 Nitrogen absorption treatment method for new thermal field for synthesizing silicon carbide powder by PVT furnace

Similar Documents

Publication Publication Date Title
JP2009173501A (en) Method of manufacturing high purity silicon carbide powder for silicon carbide single crystal manufacture and silicon carbide single crystal
JP3934695B2 (en) Method for producing high-purity silicon carbide powder for producing silicon carbide single crystal
KR100338849B1 (en) Method for preparing high purity silicon carbide powder and silicon carbide single crystal for the production of silicon carbide single crystal
JP2854201B2 (en) Vitreous carbon-coated graphite part used for silicon crystal production and method for producing the same
US6627169B1 (en) Silicon carbide powder and production method thereof
JP2011102205A (en) METHOD FOR CONTROLLING PARTICLE SIZE OF alpha-SILICON CARBIDE POWDER AND SILICON CARBIDE SINGLE CRYSTAL
KR101678622B1 (en) - - A porous composite of silicon dioxide-carbon and a method for preparing granules of -phase silicon carbide powder with a high purity by using it
JP5230882B2 (en) Method for producing silicon carbide powder and silicon carbide single crystal
JP7096315B2 (en) Method for manufacturing high-purity granule α-phase silicon carbide powder
JPH07157307A (en) Production of high purity beta-type silicon carbide powder for producing silicon carbide single crystal
JP5618302B2 (en) Production method and production apparatus for fine silicon carbide powder
JP2009269797A (en) Method for producing silicon carbide powder
JP5303103B2 (en) Silicon carbide sintered body and method for producing the same
US6387834B1 (en) Sintered silicon carbide body and method for producing the same
JP5261230B2 (en) Method for producing silicon fine particle light emitter
KR102496031B1 (en) Silicon carbide powder, method of fabrication the same and silicon carbide single crystal
KR101835792B1 (en) Method for manufacturing carbon-silica composite having minimized impurites and manufacturing equipment for carbon-silica composite
US20060240287A1 (en) Dummy wafer and method for manufacturing thereof
KR102413929B1 (en) Silicon carbide powder, method of fabrication the same and silicon carbide single crystal
JP2010100447A (en) Apparatus and method for producing silicon carbide single crystal
JP2009298610A (en) Method for producing silicon carbide tube
JP5130099B2 (en) Method for producing sintered silicon carbide
KR102318521B1 (en) Silicon carbide powder
KR102491237B1 (en) Silicon carbide powder and method of fabrication the same
JP2001130909A (en) Method for producing silicon carbide powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108