JP2009134917A - Electrode plate for nonaqueous secondary batteries, and nonaqueous secondary battery using the same - Google Patents

Electrode plate for nonaqueous secondary batteries, and nonaqueous secondary battery using the same Download PDF

Info

Publication number
JP2009134917A
JP2009134917A JP2007308474A JP2007308474A JP2009134917A JP 2009134917 A JP2009134917 A JP 2009134917A JP 2007308474 A JP2007308474 A JP 2007308474A JP 2007308474 A JP2007308474 A JP 2007308474A JP 2009134917 A JP2009134917 A JP 2009134917A
Authority
JP
Japan
Prior art keywords
active material
thin film
current collector
electrode active
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007308474A
Other languages
Japanese (ja)
Inventor
Tomofumi Yanagi
智文 柳
Shoichi Imayado
昇一 今宿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007308474A priority Critical patent/JP2009134917A/en
Publication of JP2009134917A publication Critical patent/JP2009134917A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problems: the expansion and contraction of the volume of silicon due to occlusion and discharge of lithium during charge and discharge is very influential when using a silicon thin film as a negative electrode, so that wrinkles are produced and a silicon thin film is peeled from a collector to deteriorate cycle characteristics, and a long time is required to form the thin film and mechanical strength of the collector is deteriorated by exposing the collector in high temperatures for a long time, so that it becomes difficult to manufacture batteries in a later process. <P>SOLUTION: The thin films 3a-3b of an electrode active material made to grow on a protrusion 2 of the collector 1 in a columnar shape are laminated in two or more stages to form a multi-layer structure. Thereby, effect of expansion and contraction of the volume of silicon due to occlusion and discharge of lithium during charge and discharge is relieved and peeling of the electrode active material from the collector 1 can be suppressed. In addition, a thermal load is reduced when forming the films, because the thin films 3a-3b are formed into multi-layers and deterioration of mechanical strength of the collector 1 can be suppressed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウムイオン電池に代表される非水系二次電池に関し、特にこの非水系二次電池用電極板およびこれを用いた非水系二次電池に関するものである。   The present invention relates to a non-aqueous secondary battery typified by a lithium ion battery, and particularly to an electrode plate for a non-aqueous secondary battery and a non-aqueous secondary battery using the same.

近年、携帯用電子機器の電源として利用が広がっている非水系二次電池の代表例としてのリチウム二次電池は、負極にリチウムの吸蔵および放出が可能な炭素質材料等を用い、正極にLiCoO等の遷移金属とリチウムの複合酸化物を活物質として用いており、これによって、高電位で高放電容量のリチウム二次電池を実現している。しかし、近年の電子機器および通信機器の多機能化に伴って、リチウム二次電池の充放電サイクルに伴う特性劣化の改善が望まれている。 In recent years, a lithium secondary battery as a representative example of a non-aqueous secondary battery that is widely used as a power source for portable electronic devices uses a carbonaceous material that can occlude and release lithium as a negative electrode, and LiCoO as a positive electrode. A composite oxide of a transition metal such as 2 and lithium is used as an active material, thereby realizing a lithium secondary battery having a high potential and a high discharge capacity. However, with the recent multi-functionalization of electronic devices and communication devices, it is desired to improve the characteristic deterioration accompanying the charge / discharge cycle of the lithium secondary battery.

最近では負極として用いられる材料として、リチウムと反応して合金を形成するアルミニウム、シリコン、錫などが報告されている。その中でも特にシリコンは理論容量が大きく負極材料として特に有望であり、種々の非水系二次電池が提案されている。中でも薄膜シリコンを用いた非水系二次電池は良好な充放電サイクル特性を示す。   Recently, aluminum, silicon, tin and the like that react with lithium to form an alloy have been reported as materials used for the negative electrode. In particular, silicon has a large theoretical capacity and is particularly promising as a negative electrode material, and various nonaqueous secondary batteries have been proposed. Among these, non-aqueous secondary batteries using thin film silicon exhibit good charge / discharge cycle characteristics.

しかしながら集電体上に形成した薄膜を活物質として用いるためには、ある程度の厚みが必要であり、最適な薄膜形成条件で活物質薄膜を形成すると、薄膜形成に長時間を要し集電体が長時間高温にさらされることで集電体の機械的強度が低下するため後工程での電池製作が困難になる。   However, in order to use the thin film formed on the current collector as an active material, a certain amount of thickness is required. If an active material thin film is formed under optimum thin film formation conditions, it takes a long time to form the thin film, and the current collector Is exposed to a high temperature for a long time, the mechanical strength of the current collector is reduced, making it difficult to produce a battery in a later step.

また、シリコン薄膜を負極として用いた場合、充放電時のリチウムの吸蔵・放出によるシリコンの体積の膨張・収縮が非常に大きいため、集電体にしわの発生や、シリコン薄膜と集電体とが剥離するという問題があった。このしわや剥離がリチウム二次電池のサイクル特性を悪化させる原因となっている。   In addition, when a silicon thin film is used as the negative electrode, the expansion and contraction of the volume of silicon due to insertion and extraction of lithium during charging and discharging is very large. There was a problem of peeling. This wrinkle and peeling cause deterioration of the cycle characteristics of the lithium secondary battery.

これらの問題を解決する方法として、凹凸のある集電体上に形成されたシリコン薄膜が充放電を行うことによりリチウムの吸蔵・放出がなされ活物質薄膜が膨張収縮することにより、厚み方向に切れ目が形成され柱状に分離され、この柱状部分の周りに形成された隙間により、活物質の膨張収縮により生ずる応力を緩和させ活物質が集電体から剥離することを抑制する方法が提案されている(例えば、特許文献1参照)。   As a method for solving these problems, the silicon thin film formed on the uneven current collector is charged and discharged, so that lithium is absorbed and released, and the active material thin film expands and contracts. Is formed and separated into a columnar shape, and a method has been proposed in which a gap formed around the columnar portion relieves stress caused by expansion and contraction of the active material and suppresses the active material from peeling from the current collector. (For example, refer to Patent Document 1).

また、集電体と薄膜との密着性を向上させるため、集電体材料及び活物質材料との間で合金を形成するような物質で集電体と薄膜との間に中間層を設ける方法が提案されている(例えば、特許文献2参照)。
特開2002−83594号公報 特許第3733065号公報
Further, in order to improve the adhesion between the current collector and the thin film, a method of providing an intermediate layer between the current collector and the thin film with a substance that forms an alloy between the current collector material and the active material. Has been proposed (see, for example, Patent Document 2).
JP 2002-83594 A Japanese Patent No. 3733065

しかしながら、上述した従来技術においては、充放電によって発生する切れ目は不規則であり薄膜の柱状の形状を制御するのが困難であるため切れ目が少ないところでは膨張収縮による集電体からのはがれが発生する。中間層の合金形成も拡散状態を制御することが困難であるため合金形成の状態に差が生じて密着強度の弱い部分が発生する。   However, in the above-described prior art, the breaks generated by charging / discharging are irregular, and it is difficult to control the columnar shape of the thin film, so peeling occurs from the current collector due to expansion and contraction where there are few breaks. To do. Since it is difficult to control the diffusion state in the formation of the alloy of the intermediate layer, a difference occurs in the state of alloy formation, and a portion having a low adhesion strength is generated.

本発明は上記従来の課題を鑑みてなされたもので、充放電時の膨張収縮による剥がれを
抑制し、安定した品質で信頼性の高い非水系二次電池用電極板を提供することを目的とするものである。
The present invention has been made in view of the above-described conventional problems, and an object thereof is to provide an electrode plate for a non-aqueous secondary battery that suppresses peeling due to expansion and contraction during charge and discharge and has a stable quality and high reliability. To do.

上記従来の課題を解決するために本発明の非水系二次電池用電極板は、帯状の金属箔からなる集電体の上に少なくとも正極活物質または負極活物質を含む電極活物質の薄膜を担持させた非水系二次電池用電極板であって、集電体の凸部の上に柱状に成長させた電極活物質の薄膜を二段以上に積層させて多層構造としたことを特徴とするものである。   In order to solve the above-described conventional problems, the electrode plate for a non-aqueous secondary battery according to the present invention includes a thin film of an electrode active material containing at least a positive electrode active material or a negative electrode active material on a current collector made of a strip-shaped metal foil. An electrode plate for a non-aqueous secondary battery supported, characterized in that a multilayer structure is formed by laminating a thin film of electrode active material grown in a columnar shape on a convex portion of a current collector in two or more stages. To do.

本発明の非水系二次電池用電極板によると、集電体の凸部の上に形成された電極活物質の薄膜の形状が先太りにならないため、充放電時の活物質の膨張収縮で柱同士が干渉することなく集電体から活物質の剥がれを抑制できる。また、薄膜を多層に形成するため膜形成時の熱負荷が軽減され集電体の機械的強度の低下を抑制することができる。   According to the electrode plate for a non-aqueous secondary battery of the present invention, since the shape of the thin film of the electrode active material formed on the convex portion of the current collector does not taper, the expansion and contraction of the active material during charge / discharge The separation of the active material from the current collector can be suppressed without interference between the columns. Further, since the thin film is formed in multiple layers, the thermal load during film formation is reduced, and the reduction in mechanical strength of the current collector can be suppressed.

本発明の第1の発明においては、帯状の金属箔からなる集電体の上に少なくとも正極活物質または負極活物質を含む電極活物質の薄膜を担持させた非水系二次電池用電極板であって、集電体の凸部の上に電極活物質の薄膜を柱状に二段以上形成することにより、充放電時の活物質の膨張収縮で柱同士が干渉することなく集電体から活物質の剥がれを抑制できる。また、集電体の凸部の上に柱状に成長させた電極活物質の薄膜を二段以上積層させて多層構造としたことで膜形成時の熱負荷が軽減され集電体の機械的強度の低下を抑制することができる。   In the first invention of the present invention, there is provided an electrode plate for a non-aqueous secondary battery in which a thin film of an electrode active material containing at least a positive electrode active material or a negative electrode active material is supported on a current collector made of a strip-shaped metal foil. In addition, by forming two or more electrode active material thin films on the convex portions of the current collector in a columnar shape, the active material can be activated from the current collector without interfering with each other due to the expansion and contraction of the active material during charging and discharging. Material peeling can be suppressed. In addition, a multilayer structure is formed by stacking two or more electrode active material thin films on the convex portions of the current collector to reduce the thermal load during film formation, and the current collector's mechanical strength Can be suppressed.

本発明の第2の発明においては、集電体の凸部の上に柱状に成長させた電極活物質の薄膜を同一方向に傾斜させて二段以上積層して多層構造としたことにより、活物質の膨張時に柱同士の干渉が抑制され剥がれによるサイクル寿命の低下を抑制することができる。   In the second invention of the present invention, a thin film of electrode active material grown in a columnar shape on the convex portion of the current collector is inclined in the same direction and laminated in two or more stages to form a multilayer structure. Interference between the columns during the expansion of the substance can be suppressed, and a reduction in cycle life due to peeling can be suppressed.

本発明の第3の発明においては、集電体の凸部の上に柱状に成長させた電極活物質の薄膜を奇数段と偶数段が交互に逆方向に傾斜するように二段以上積層させて多層構造としたことにより、活物質の膨張収縮による基材の伸縮を抑制し基材切れによるサイクル寿命の低下を抑制する。   In the third aspect of the present invention, the electrode active material thin film grown in a columnar shape on the convex portion of the current collector is laminated in two or more stages so that the odd and even stages are alternately inclined in the opposite direction. By adopting a multilayer structure, the expansion and contraction of the base material due to the expansion and contraction of the active material is suppressed, and the decrease in cycle life due to the shortage of base material is suppressed.

本発明の第4の発明においては、集電体の凸部の上に柱状に成長させた電極活物質の薄膜を同一方向に傾斜させて二段以上積層した薄膜を交互に逆方向に傾斜するように二段以上に積層させて多層構造としたことにより、充放電時の活物質の膨張収縮で柱同士が干渉することなく集電体のしわの発生を抑制する。   In the fourth invention of the present invention, the thin films of the electrode active material grown in a columnar shape on the convex portion of the current collector are inclined in the same direction, and the thin films laminated in two or more stages are alternately inclined in the opposite direction. As described above, the multi-layer structure is formed by stacking in two or more stages, so that wrinkles of the current collector are suppressed without interfering with each other due to expansion and contraction of the active material during charge and discharge.

本発明の第5の発明においては、集電体の凸部の上に柱状に成長させた電極活物質の薄膜を二段以上に積層させて多層構造とした非水系二次電池用電極板と対極となる電極板とをセパレータを介して巻回または積層して構成した電極板を非水系電解液とともに電池ケースに封入して非水系二次電池を構成したことにより、サイクル特性の良い非水系二次電池が得られる。   According to a fifth aspect of the present invention, there is provided an electrode plate for a non-aqueous secondary battery in which a thin film of an electrode active material grown in a columnar shape on a convex portion of a current collector is laminated in two or more stages to form a multilayer structure; Non-aqueous secondary battery with good cycle characteristics by constructing a non-aqueous secondary battery by enclosing an electrode plate that is formed by winding or laminating a counter electrode with a non-aqueous electrolyte together with a non-aqueous electrolyte. A secondary battery is obtained.

以下、本発明の一実施の形態について図面を参照しながら説明する。図1は本発明における集電体の上に活物質薄膜を二段以上積層させて形成した電極板の断面図をSEM観察した模式図である。表面に一定の間隔で形成された集電体1の凸部2の上に柱状に成長させた電極活物質3を同一方向に傾斜させて二段以上積層して構成した。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram obtained by SEM observation of a cross-sectional view of an electrode plate formed by laminating two or more active material thin films on a current collector in the present invention. The electrode active material 3 grown in a columnar shape on the protrusions 2 of the current collector 1 formed on the surface at regular intervals was inclined in the same direction and laminated in two or more stages.

本発明の非水系二次電池用電極板において、集電体1の凸部2上に少なくとも正極活物
質または負極活物質を担持させる手段としては、集電体1の特定部位へこれらの電極活物質3の選択的担持が可能である真空プロセスを用いるのが好ましく、またこの際に電極活物質3は主として凸部2における平面上に柱状に形成するのがより好ましい。これは柱状に電極活物質3の薄膜を形成することでリチウムを吸蔵した際における電極活物質3の薄膜の体積膨張を緩和する効果があるからである。
In the electrode plate for a non-aqueous secondary battery of the present invention, as a means for supporting at least the positive electrode active material or the negative electrode active material on the convex portion 2 of the current collector 1, these electrode activities are applied to a specific part of the current collector 1. It is preferable to use a vacuum process capable of selectively supporting the substance 3, and in this case, the electrode active material 3 is more preferably formed mainly in a columnar shape on the plane of the convex portion 2. This is because forming a thin film of the electrode active material 3 in a columnar shape has an effect of relaxing the volume expansion of the thin film of the electrode active material 3 when lithium is occluded.

まず、集電体1の凸部2の平面上に電極活物質3の薄膜を形成する手段としては、真空プロセスであれば特に限定はされないが、蒸着法、スッパッタリング法、CVD法などのドライプロセスを用いることができる。このときの電極活物質3としては、例えば負極用活物質としてSi,Sn,Ge,Alやこれらの合金、SiOxやSnOx等の酸化物、SiSxやSnS等を用いることができ非晶質または低結晶性であることが好ましい。   First, a means for forming a thin film of the electrode active material 3 on the plane of the convex portion 2 of the current collector 1 is not particularly limited as long as it is a vacuum process, but there are a vapor deposition method, a sputtering method, a CVD method, and the like. A dry process can be used. As the electrode active material 3 at this time, for example, Si, Sn, Ge, Al or an alloy thereof, an oxide such as SiOx or SnOx, SiSx or SnS, or the like can be used as the negative electrode active material. It is preferably crystalline.

次に、集電体1の凸部2の平面上に形成する電極活物質3の薄膜の厚みとしては、作製する非水系二次電池の要求特性によっても異なるが、概ね5〜30μmの範囲が好ましく、さらに10〜25μmの範囲であることがより好ましい。   Next, the thickness of the thin film of the electrode active material 3 formed on the plane of the convex portion 2 of the current collector 1 varies depending on the required characteristics of the non-aqueous secondary battery to be manufactured, but is in a range of approximately 5 to 30 μm. More preferably, it is more preferably in the range of 10 to 25 μm.

本発明の一実施の形態では真空蒸着法にて薄膜を形成した。図2は本発明の一実施の形態における電極板の製造装置の概略図である。コイル状に巻かれた表面に複数個の凸部2を形成した帯状の金属箔からなる集電体1を巻き出し部4より繰り出し、蒸着源6に対して放射状に配置されたサポートロール5aと5bの間を交互に通し巻き取り部8でコイル状に巻き取られていく構成とし、遮蔽板9で蒸着の範囲を規制している。   In one embodiment of the present invention, a thin film is formed by vacuum deposition. FIG. 2 is a schematic view of an apparatus for manufacturing an electrode plate in one embodiment of the present invention. A current roll 1 made of a strip-shaped metal foil having a plurality of convex portions 2 formed on a surface wound in a coil shape; The space 5b is alternately wound in a coil shape by the winding portion 8, and the range of vapor deposition is regulated by the shielding plate 9.

ここで、サポートロール5aと5bの間を交互に集電体1が走行すると、一つの蒸発源6に対して複数の蒸着形成部7a〜7dに蒸着を行なうことが可能となる。サポートロール5a、5bの配置を蒸発源6に対して放射状に同じ角度で配置した。このことにより蒸発源6に対する蒸着形成部の角度θ1,θ2,θ3,θ4,に同じ角度となるように構成した。   Here, when the current collector 1 runs alternately between the support rolls 5 a and 5 b, it becomes possible to perform vapor deposition on the plurality of vapor deposition forming portions 7 a to 7 d with respect to one evaporation source 6. The support rolls 5 a and 5 b were arranged radially at the same angle with respect to the evaporation source 6. In this way, the vapor deposition forming part was configured to have the same angles θ1, θ2, θ3, θ4 with respect to the evaporation source 6.

まず、巻き出し部4より繰り出された集電体1が蒸着形成部7aを通過することで電極活物質の薄膜層3aが集電体1の凸部2の平面上に蒸着形成され、蒸着形成部7bで電極活物質の薄膜層3bが、蒸着形成部7cで電極活物質の薄膜層3c、さらに蒸着形成部7dで電極活物質の薄膜層3dがそれぞれ蒸着される。非水系二次電池の特性上必要な膜厚を一度に蒸着すると集電体1の凸部2に形成された柱状の電極活物質3が先太りになり、充放電による電極活物質3の膨張時に柱同士が干渉し集電体1からはがれサイクル特性が悪くなる。   First, the current collector 1 drawn out from the unwinding portion 4 passes through the vapor deposition forming portion 7a, whereby the thin film layer 3a of the electrode active material is vapor-deposited on the plane of the convex portion 2 of the current collector 1, thereby forming the vapor deposition. The electrode active material thin film layer 3b is deposited in the portion 7b, the electrode active material thin film layer 3c is deposited in the vapor deposition forming portion 7c, and the electrode active material thin film layer 3d is vapor deposited in the vapor deposition forming portion 7d. When the film thickness required for the characteristics of the nonaqueous secondary battery is deposited at once, the columnar electrode active material 3 formed on the convex portion 2 of the current collector 1 becomes thicker, and the electrode active material 3 expands due to charge / discharge. Sometimes the columns interfere with each other and peel off from the current collector 1, resulting in poor cycle characteristics.

本発明の非水系二次電池用電極板は電極活物質3を二段以上の薄膜を積層する構成にすることで、柱状の電極活物質3の薄膜の先太りを抑制し充放電による電極活物質3の膨張時に柱同士の干渉がなく集電体1からの電極活物質3の剥れが抑制され、サイクル特性の良い非水系二次電池が得られる。   The electrode plate for a non-aqueous secondary battery of the present invention has a structure in which the electrode active material 3 is formed by laminating two or more thin films, thereby suppressing the thickening of the thin film of the columnar electrode active material 3 and the electrode active due to charge / discharge. There is no interference between the columns when the material 3 expands, and the peeling of the electrode active material 3 from the current collector 1 is suppressed, and a non-aqueous secondary battery with good cycle characteristics is obtained.

図3は本発明における集電体の上に電極活物質の薄膜10を二段以上積層させて形成した電極板の断面をSEM観察した模式図である。集電体1の凸部2に柱状に成長させた電極活物質の薄膜10を奇数段と偶数段が互いに逆方向に傾斜するように鉛直方向に二段以上積層し構成した。   FIG. 3 is a schematic view obtained by SEM observation of a cross section of an electrode plate formed by laminating two or more layers of electrode active material thin films 10 on the current collector in the present invention. A thin film 10 of an electrode active material grown in a columnar shape on the convex portion 2 of the current collector 1 was constructed by laminating two or more stages in the vertical direction so that the odd-numbered stages and the even-numbered stages were inclined in opposite directions.

図4は図3に示す電極板の製造装置の概略図である。サポートロール5c、5dの配置を蒸発源6に対して放射状に同じ角度で配置した。このことにより蒸発源6に対する蒸着形成部の角度θ5,θ7,θ9が正方向に、θ6,θ8,θ10を逆方向に同じ角度となるように構成した。   4 is a schematic view of the electrode plate manufacturing apparatus shown in FIG. The support rolls 5 c and 5 d were arranged radially at the same angle with respect to the evaporation source 6. Thus, the angles θ5, θ7, and θ9 of the vapor deposition forming portion with respect to the evaporation source 6 are configured to be in the forward direction, and θ6, θ8, and θ10 are configured to have the same angle in the reverse direction.

ここで、サポートロール5cと5dの間を交互に集電体1が走行すると、一つの蒸発源6に対して複数の蒸着形成部11a〜11fに蒸着を行なうことが可能となる。   Here, when the current collector 1 runs alternately between the support rolls 5c and 5d, it becomes possible to perform vapor deposition on the plurality of vapor deposition forming portions 11a to 11f with respect to one evaporation source 6.

まず、巻き出し部4より繰り出された集電体1が蒸着形成部11aを通過することで電極活物質の薄膜層10aが集電体1の凸部2の平面上に蒸着形成され、蒸着形成部11bで電極活物質の薄膜層10bが、蒸着形成部11cで電極活物質の薄膜層10c、蒸着形成部11dで電極活物質の薄膜層10dが、蒸着形成部11eで電極活物質の薄膜層10e、さらに蒸着形成部11fで電極活物質の薄膜層10fがそれぞれ蒸着される。   First, when the current collector 1 drawn out from the unwinding portion 4 passes through the vapor deposition forming portion 11a, the thin film layer 10a of the electrode active material is vapor deposited on the plane of the convex portion 2 of the current collector 1, thereby forming the vapor deposition. The electrode active material thin film layer 10b is formed in the portion 11b, the electrode active material thin film layer 10c is formed in the vapor deposition forming portion 11c, the electrode active material thin film layer 10d is formed in the vapor deposition forming portion 11d, and the electrode active material thin film layer is formed in the vapor deposition forming portion 11e. 10e, and further, the thin film layer 10f of the electrode active material is vapor deposited in the vapor deposition forming portion 11f.

図5は本発明における集電体の上に電極活物質の薄膜12を二段以上積層させて形成した電極板の断面をSEM観察した模式図である。集電体1の凸部2に柱状に成長させた電極活物質の薄膜12を同一方向に傾斜させて二段以上積層した薄膜を交互に逆方向に傾斜するように二段以上に積層させて多層構造とした。   FIG. 5 is a schematic view obtained by SEM observation of a cross section of an electrode plate formed by laminating two or more electrode active material thin films 12 on a current collector in the present invention. The thin film 12 of the electrode active material grown in a columnar shape on the convex portion 2 of the current collector 1 is inclined in the same direction, and the thin films laminated in two or more stages are laminated in two or more stages so as to alternately incline in the opposite direction. A multilayer structure was adopted.

図6は図5に示す電極板の製造装置の概略図である。表面に複数個の凸部2を形成した帯状の金属箔からなる集電体1を巻き出し部4より繰り出し、蒸着形成部13で薄膜を形成し、巻き取り部8でコイル状に巻き取られていく構成とした。また、この製造装置は巻き取り部8から繰り出し蒸着形成部13で薄膜を形成し、巻き出し部4で巻き取ることも可能である。   6 is a schematic view of the electrode plate manufacturing apparatus shown in FIG. A current collector 1 made of a strip-shaped metal foil having a plurality of convex portions 2 formed on the surface thereof is unwound from the unwinding portion 4, a thin film is formed by the vapor deposition forming portion 13, and the coil is wound by the winding portion 8. It was set as the composition which goes. In addition, this manufacturing apparatus can also draw out a thin film from the take-up unit 8 by the vapor deposition forming unit 13 and take up by the unwinding unit 4.

集電体1の走行方向をサポートロール5eからサポートロール5fに向かって走行させて薄膜を形成した。次に、真空破壊をすることなく集電体2の走行方向をサポートロール5fからサポートロール5eに向かって走行させて薄膜を形成した。次に真空破壊をして成膜された電極板を巻き取り部8から巻き出し部4に付け替えた後、先ほどと同様に集電体1の走行方向をサポートロール5eからサポートロール5fに向かって走行させて薄膜を形成した。   The traveling direction of the current collector 1 was caused to travel from the support roll 5e toward the support roll 5f to form a thin film. Next, a thin film was formed by running the current collector 2 in the running direction from the support roll 5f toward the support roll 5e without breaking the vacuum. Next, after the electrode plate formed by vacuum breakage is changed from the winding unit 8 to the unwinding unit 4, the traveling direction of the current collector 1 is directed from the support roll 5e to the support roll 5f as before. A thin film was formed by running.

次に、真空破壊をすることなく集電体2の走行方向をサポートロール5fからサポートロール5eに向かって走行させて薄膜を形成した。さらに真空破壊をして成膜された電極板を巻き取り部8から巻き出し部4に付け替えた後、先ほどと同様に集電体1の走行方向をサポートロール5eからサポートロール5fに向かって走行させて薄膜を形成した。   Next, a thin film was formed by running the current collector 2 in the running direction from the support roll 5f toward the support roll 5e without breaking the vacuum. Further, after the electrode plate formed by vacuum breakage was changed from the winding unit 8 to the unwinding unit 4, the traveling direction of the current collector 1 traveled from the support roll 5e toward the support roll 5f in the same manner as before. To form a thin film.

次に、真空破壊をすることなく集電体2の走行方向をサポートロール5fからサポートロール5eに向かって走行させて薄膜を形成した。集電体1をサポートロール5eからサポートロール5fに向かって走行させて薄膜を形成すると、図5に示すように、1層目12aが形成される。次いで、集電体1をサポートロール5fからサポートロール5eに向かって走行させて薄膜を形成すると2層目12bが形成されることになる。   Next, a thin film was formed by running the current collector 2 in the running direction from the support roll 5f toward the support roll 5e without breaking the vacuum. When the current collector 1 is run from the support roll 5e toward the support roll 5f to form a thin film, a first layer 12a is formed as shown in FIG. Next, when the current collector 1 is moved from the support roll 5f toward the support roll 5e to form a thin film, a second layer 12b is formed.

次いで、真空破壊をして成膜された電極板を巻き取り部8から巻き出し部4に付け替えた後、集電体1をサポートロール5fからサポートロール5eに向かって走行させて薄膜を形成すると4層目12cが形成される。次いで、集電体1をサポートロール5fからサポートロール5eに向かって走行させて薄膜を形成すると4層目12dが形成されることになる。   Next, after changing the electrode plate formed by vacuum breakage from the winding unit 8 to the unwinding unit 4, the current collector 1 is moved from the support roll 5f toward the support roll 5e to form a thin film. A fourth layer 12c is formed. Next, when the current collector 1 is run from the support roll 5f toward the support roll 5e to form a thin film, a fourth layer 12d is formed.

さらにもう一度真空破壊をして成膜された電極板を巻き取り部8から巻き出し部4に付け替えた後、集電体1をサポートロール5fからサポートロール5eに向かって走行させて薄膜を形成すると5層目12eが形成される。次いで、集電体1をサポートロール5fからサポートロール5eに向かって走行させて薄膜を形成すると6層目12fが形成されることになる。   Further, after the vacuum break is performed again and the electrode plate formed is changed from the winding unit 8 to the unwinding unit 4, the current collector 1 is run from the support roll 5f toward the support roll 5e to form a thin film. A fifth layer 12e is formed. Next, when the current collector 1 is run from the support roll 5f toward the support roll 5e to form a thin film, a sixth layer 12f is formed.

本発明の一実施の形態では、集電体1の凸部2の陰になり平坦部には電極活物質12は堆積されず凸部2の表面にのみ堆積される。   In one embodiment of the present invention, the electrode active material 12 is not deposited on the flat portion behind the convex portion 2 of the current collector 1, but is deposited only on the surface of the convex portion 2.

ここで本発明の対極となる非水系二次電池用電極板を作製する手段としては、一般的に金属箔からなる集電体1の上に活物質を担持してこれらの電極活物質を含有した塗料を集電体に塗布乾燥させる方法がある。具体的には、まず真空蒸着法にて作成した本発明の負極板に対向する正極板については特に限定されないが、アルミニウムやアルミニウム合金製の箔や不織布等を用いることができ、厚みが5μm〜30μmを有する正極集電体の片面または両面に正極活物質、導電材、結着剤を分散媒中にプラネタリーミキサー等の分散機により混合分散させた正極合剤塗料を塗布、乾燥、圧延して正極活物質合剤層を形成することにより作製される。   Here, as a means for producing an electrode plate for a non-aqueous secondary battery as a counter electrode of the present invention, an active material is generally supported on a current collector 1 made of a metal foil and contains these electrode active materials. There is a method of applying and drying the applied paint to a current collector. Specifically, the positive electrode plate opposed to the negative electrode plate of the present invention first prepared by a vacuum deposition method is not particularly limited, but a foil or a nonwoven fabric made of aluminum or aluminum alloy can be used, and the thickness is 5 μm to Apply, dry, and roll a positive electrode mixture paint in which a positive electrode active material, a conductive material, and a binder are mixed and dispersed in a dispersion medium such as a planetary mixer on one or both sides of a positive electrode current collector having a thickness of 30 μm. Then, the positive electrode active material mixture layer is formed.

正極活物質としてはコバルト酸リチウム、導電材としてはアセチレンブラック、正極用結着剤としてはポリフッ化ビニリデン(PVdF)を使用した。   Lithium cobaltate was used as the positive electrode active material, acetylene black was used as the conductive material, and polyvinylidene fluoride (PVdF) was used as the positive electrode binder.

一方、真空蒸着法にて作成した本発明の正極板を使用したときの負極板についても特に限定されないが、圧延銅箔、電解銅箔等を用いることができ、厚みが5μm〜25μmを有する負極集電体の片面または両面に負極活物質、結着剤、必要に応じて導電材、増粘剤を分散媒中にプラネタリーミキサー等の分散機により混合分散させた負極の合剤塗料を塗布、乾燥、圧延して負極活物質合剤層を形成することにより作製される。   On the other hand, although it does not specifically limit about the negative electrode plate when using the positive electrode plate of this invention created by the vacuum evaporation method, Rolled copper foil, electrolytic copper foil, etc. can be used, and the negative electrode which has thickness of 5 micrometers-25 micrometers Apply the negative electrode active material, binder, and if necessary, conductive material and thickener to one or both sides of the current collector in a dispersion medium and disperse the negative electrode mixture paint using a planetary mixer or other dispersing machine. The negative electrode active material mixture layer is formed by drying and rolling.

負極用活物質としては、各種天然黒鉛および人造黒鉛、このときの負極用結着剤としてはPVdF、増粘剤としては、ポリエチレンオキシド(PEO)、カルボキシメチルセルロース(CMC)をはじめとするセルロース系樹脂およびその変性体が、合剤塗料の分散性,増粘性の観点から好ましい。   As the negative electrode active material, various natural graphites and artificial graphite, at this time, the negative electrode binder is PVdF, and the thickeners are cellulose resins such as polyethylene oxide (PEO) and carboxymethyl cellulose (CMC). And its modified body is preferable from the viewpoint of dispersibility and thickening of the mixture paint.

セパレータについては、リチウムイオン二次電池の使用範囲に耐えうる組成であれば特に限定されないが、ポリエチレン、ポリプロピレンなどの微多孔フィルムを用いるのが一般的でありまた態様として好ましい。このセパレータの厚みは特に限定されないが、10〜25μmとすれば良い。   The separator is not particularly limited as long as it can withstand the range of use of the lithium ion secondary battery, but a microporous film such as polyethylene or polypropylene is generally used and is preferable as an embodiment. The thickness of the separator is not particularly limited, but may be 10 to 25 μm.

さらに、電解液については、電解質塩としてLiPFおよびLIBFなどの各種リチウム化合物を用いることができる。また溶媒としてエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)を単独および組み合わせて用いることができる。 Moreover, for the electrolytic solution, it is possible to use various lithium compounds such as LiPF 6 and LiBF 4 as an electrolyte salt. Further, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) can be used alone or in combination as a solvent.

さらに本発明の非水系二次電池としては、例えば図7に示したように複合リチウム酸化物を活物質とする正極板18と真空蒸着法により作成した本発明の構成の負極板20とをセパレータ22を介して渦巻状に巻回した電極群17を作製した後、この電極群17を有底円筒形の電池ケース14の内部に絶縁板23と共に収容し、電極群17の下部より導出した負極リード21を電池ケース14の底部に接続し、次いで電極群17の上部より導出した正極リード19を封口板15に接続し、電池ケース14に所定量の非水溶媒からなる電解液(図示せず)を注液した後、電池ケース14の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し電池ケース14の開口部を内方向に折り曲げてかしめ封口して構成することができる。以下、具体的な実施の形態についてさらに詳しく説明する。   Further, as the non-aqueous secondary battery of the present invention, for example, as shown in FIG. 7, a positive electrode plate 18 using a composite lithium oxide as an active material and a negative electrode plate 20 of the present invention prepared by a vacuum deposition method are separated. After the electrode group 17 wound in a spiral shape through 22 is produced, the electrode group 17 is housed in the bottomed cylindrical battery case 14 together with the insulating plate 23, and the negative electrode led out from the lower part of the electrode group 17 The lead 21 is connected to the bottom of the battery case 14, and then the positive electrode lead 19 led out from the upper part of the electrode group 17 is connected to the sealing plate 15. The battery case 14 has an electrolyte solution (not shown) made of a predetermined amount of nonaqueous solvent. ), The sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 14, and the opening of the battery case 14 is bent inward to be caulked and sealed. Hereinafter, specific embodiments will be described in more detail.

本発明における非水系二次電池用電極板の実施例1として、真空蒸着法を使い負極板を
作製した。図1は本発明における集電体の上に活物質薄膜を二段以上積層させて形成した電極板の断面をSEM観察した模式図である。集電体1の凸部2に電極活物質を同一方向から傾斜させて二段以上積層し構成した。
As Example 1 of the electrode plate for a non-aqueous secondary battery in the present invention, a negative electrode plate was produced using a vacuum deposition method. FIG. 1 is a schematic view obtained by SEM observation of a cross section of an electrode plate formed by laminating two or more active material thin films on a current collector in the present invention. Two or more layers of electrode active materials were laminated on the convex portion 2 of the current collector 1 so as to be inclined from the same direction.

凸部2の表面上に形成された薄膜層3a〜3dは同一方向に同じ角度で形成され、柱状に積層された活物質薄膜は空隙を持っていることがわかる。この空隙が充放電時のリチウム吸蔵で活物質の膨張による柱同士の干渉を抑制し集電体からの活物質の剥れを防止する。   It can be seen that the thin film layers 3a to 3d formed on the surface of the convex portion 2 are formed at the same angle in the same direction, and the active material thin films stacked in a columnar shape have voids. The voids store lithium during charging / discharging to suppress interference between columns due to expansion of the active material, and prevent the active material from peeling from the current collector.

次いで、帯状の集電体1の凸部2に負極活物質薄膜を同一方向に多層に形成した電極板を円筒形のリチウムイオン二次電池(図示せず)で規定する幅にスリット加工してリチウムイオン二次電池用電極板を作製した。   Next, an electrode plate in which negative electrode active material thin films are formed in multiple layers in the same direction on the convex portions 2 of the strip-shaped current collector 1 is slit to a width defined by a cylindrical lithium ion secondary battery (not shown). An electrode plate for a lithium ion secondary battery was produced.

本発明における非水系二次電池用電極板の実施例2として、真空蒸着法を使い負極板を作製した。図3は本発明における集電体の上に活物質薄膜を二段以上積層させて形成した電極板の断面をSEM観察した模式図である。集電体1の凸部2に柱状に成長させた電極活物質の薄膜10を奇数段と偶数段が互い違いとなるよう基材に対して鉛直方向に二段以上積層し構成した。   As Example 2 of the electrode plate for a non-aqueous secondary battery in the present invention, a negative electrode plate was produced using a vacuum deposition method. FIG. 3 is a schematic diagram obtained by SEM observation of a cross section of an electrode plate formed by laminating two or more active material thin films on the current collector in the present invention. The electrode active material thin film 10 grown in a columnar shape on the convex portion 2 of the current collector 1 was formed by laminating two or more stages in the vertical direction with respect to the base material so that the odd-numbered steps and the even-numbered steps were alternated.

凸部2の表面上に形成された電極活物質の薄膜10である薄膜層10a〜10fは互い違いに逆方向に形成され、柱状に積層された活物質薄膜は空隙を持っていることがわかる。この空隙が充放電時のリチウム吸蔵で活物質の膨張による柱同士の干渉を抑制し集電体の伸縮を抑制し集電体の切れを防止する。   It can be seen that the thin film layers 10a to 10f, which are the thin film 10 of the electrode active material formed on the surface of the convex portion 2, are alternately formed in opposite directions, and the active material thin films stacked in a columnar shape have voids. The voids store lithium during charging and discharging, suppress interference between columns due to expansion of the active material, suppress expansion and contraction of the current collector, and prevent the current collector from being cut.

次いで、帯状の集電体1の凸部2に電極活物質の薄膜を交互に多層に形成した電極板を円筒形のリチウムイオン二次電池(図示せず)で規定する幅にスリット加工してリチウムイオン二次電池用電極板を作製した。   Next, an electrode plate in which thin films of electrode active materials are alternately formed in multiple layers on the convex portion 2 of the strip-shaped current collector 1 is slit to a width defined by a cylindrical lithium ion secondary battery (not shown). An electrode plate for a lithium ion secondary battery was produced.

本発明における非水系二次電池用電極板の実施例3として、真空蒸着法を使い負極板を作製した。図5は本発明における集電体の上に活物質薄膜を二段以上積層させて形成した電極板の断面をSEM観察した模式図である。集電体1の凸部2に柱状に成長させた電極活物質の薄膜12を同一方向に傾斜させて二段以上積層した薄膜を交互に逆方向に傾斜するように二段以上に積層させて多層構造とした。   As Example 3 of the electrode plate for a non-aqueous secondary battery in the present invention, a negative electrode plate was produced using a vacuum deposition method. FIG. 5 is a schematic view obtained by SEM observation of a cross section of an electrode plate formed by laminating two or more active material thin films on the current collector in the present invention. The thin film 12 of the electrode active material grown in a columnar shape on the convex portion 2 of the current collector 1 is inclined in the same direction, and the thin films laminated in two or more stages are laminated in two or more stages so as to alternately incline in the opposite direction. A multilayer structure was adopted.

次いで、集電体1の凸部2に柱状に成長させた電極活物質の薄膜12を同一方向に傾斜させて二段以上積層した薄膜を厚み方向に交互に逆方向に傾斜するように二段以上に積層させて電極活物質の薄膜12を多層に形成した電極板を円筒形のリチウムイオン二次電池(図示せず)で規定する幅にスリット加工してリチウムイオン二次電池用電極板を作製した。   Next, the electrode active material thin film 12 grown in a columnar shape on the convex portion 2 of the current collector 1 is inclined in the same direction and two or more layers are stacked in two steps so as to alternately incline in the opposite directions in the thickness direction. The electrode plate formed by laminating the electrode active material thin film 12 in multiple layers as described above is slit to a width defined by a cylindrical lithium ion secondary battery (not shown) to form an electrode plate for a lithium ion secondary battery. Produced.

本発明の非水系二次電池用電極板を用いた非水系二次電池における一実施の形態について以下に説明する。   An embodiment of a non-aqueous secondary battery using the electrode plate for a non-aqueous secondary battery of the present invention will be described below.

まず、負極板として実施例1で作製した負極板を用い、次に正極活物質としてコバルトの一部をニッケルおよびマンガンで置換したコバルト酸リチウムを100重量部、導電材としてアセチレンブラックを活物質100重量部に対して2重量部、結着剤としてポリフッ化ビニリデンを活物質100重量部に対して2重量部とを適量のN−メチル−2−ピロ
リドンと共に双腕式練合機にて攪拌し混練することで、正極合剤塗料を作製した後にこの正極合剤塗料を上記集電体の両面に塗布乾燥した後に総厚が126μmとなるようにプレスすることで、合剤片面厚みが58μmとなるように正極集電体上に正極活物質合剤層を形成した後、図1に示した円筒形のリチウムイオン二次電池で規定する幅にスリッタ加工し正極板18を作製した。
First, the negative electrode plate produced in Example 1 was used as the negative electrode plate, and then 100 parts by weight of lithium cobaltate in which a part of cobalt was substituted with nickel and manganese as the positive electrode active material, and acetylene black as the active material 100 as the active material. 2 parts by weight with respect to parts by weight, 2 parts by weight with respect to 100 parts by weight of polyvinylidene fluoride as a binder, and an appropriate amount of N-methyl-2-pyrrolidone are stirred in a double-arm kneader. By kneading, after preparing the positive electrode mixture paint, the positive electrode mixture paint is applied and dried on both sides of the current collector, and then pressed so that the total thickness becomes 126 μm. After forming a positive electrode active material mixture layer on the positive electrode current collector, slitting was performed to a width defined by the cylindrical lithium ion secondary battery shown in FIG.

さらに、図7に示したように正極板18と負極板20とをセパレータ22を介して渦巻状に巻回した電極群17を作製した後、この電極群17を電池ケース14の内部に絶縁板23と共に収容し、電極群17の下部より導出した負極リード21を電池ケース14の底部に接続し、次いで電極群17の上部より導出した正極リード19を封口板15に接続し、所定量の非水溶媒からなる電解液(図示せず)を注液した後、封口板15を挿入し電池ケース14の開口部をかしめ封口することにより非水系二次電池を作製した。   Further, as shown in FIG. 7, after preparing the electrode group 17 in which the positive electrode plate 18 and the negative electrode plate 20 are spirally wound through the separator 22, the electrode group 17 is placed inside the battery case 14 in an insulating plate. 23, the negative electrode lead 21 led out from the lower part of the electrode group 17 is connected to the bottom of the battery case 14, and then the positive electrode lead 19 led out from the upper part of the electrode group 17 is connected to the sealing plate 15. After injecting an electrolyte solution (not shown) made of an aqueous solvent, a sealing plate 15 was inserted, and the opening of the battery case 14 was caulked and sealed to produce a non-aqueous secondary battery.

上記非水系二次電池において渦巻状に巻回した電極群17を作製後に、この電極群17を解体して観察したところ正極板18、負極板20ともに電極板切れや電極活物質層の脱落などの不具合は認められなかった。さらにこの非水系二次電池を300サイクル充放電させたが、サイクル劣化もなく300サイクル後に非水系二次電池および電極群17を解体したところリチウム析出や電極活物質層の脱落などの不具合は認められなかった。これは集電体1の凸部2の上面に電極活物質の薄膜3を斜め方向に柱状に形成することでリチウムを吸蔵した際における電極活物質の薄膜の膨張およびリチウムを放出した際における電極活物質の薄膜の収縮による体積変化を緩和する効果により活物質の脱落が発生しなかったために良好な電池特性を維持できたものと考えられる。   After producing the spirally wound electrode group 17 in the non-aqueous secondary battery, the electrode group 17 was disassembled and observed. As a result, both the positive electrode plate 18 and the negative electrode plate 20 were broken, the electrode active material layer was dropped, etc. No defects were found. Furthermore, this non-aqueous secondary battery was charged and discharged for 300 cycles. However, after the non-aqueous secondary battery and the electrode group 17 were disassembled after 300 cycles without cycle deterioration, defects such as lithium deposition and electrode active material layer dropping were recognized. I couldn't. This is because the thin film 3 of the electrode active material is formed on the upper surface of the convex portion 2 of the current collector 1 in a columnar shape in an oblique direction so that the thin film of the electrode active material when lithium is occluded and the electrode when lithium is released It is considered that good battery characteristics could be maintained because the active material did not fall off due to the effect of relaxing the volume change due to the shrinkage of the thin film of the active material.

本発明の非水系二次電池用電極板を用いた非水系二次電池における一実施の形態について以下に説明する。   An embodiment of a non-aqueous secondary battery using the electrode plate for a non-aqueous secondary battery of the present invention will be described below.

まず負極板として実施例2で作製した負極板を用い、次に実施例4と同様に作成した正極板を用いて実施例4同様に非水系二次電池を作成した。   First, the negative electrode plate produced in Example 2 was used as the negative electrode plate, and then a non-aqueous secondary battery was produced in the same manner as in Example 4 using the positive electrode plate produced in the same manner as in Example 4.

上記非水系二次電池を300サイクル充放電させたが、サイクル劣化もなく300サイクル後に非水系二次電池および電極群17を解体したところ集電体の切れや電極活物質層の脱落などの不具合は認められなかった。これは集電体1の凸部2に柱状に成長させた電極活物質の薄膜3を奇数段と偶数段が互い違いとなるよう基材に対して鉛直方向に二段以上積層し柱状に形成することでリチウムを吸蔵した際における電極活物質の薄膜の膨張およびリチウムを放出した際における電極活物質の薄膜の収縮による集電体の伸縮が緩和され集電体の切れが発生しなかったため良好な電池特性を維持できたものと考えられる。   The above non-aqueous secondary battery was charged and discharged for 300 cycles, but the non-aqueous secondary battery and the electrode group 17 were disassembled after 300 cycles without cycle deterioration. Was not recognized. The electrode active material thin film 3 grown in a columnar shape on the convex portion 2 of the current collector 1 is formed in a columnar shape by laminating two or more layers in the vertical direction with respect to the substrate so that the odd-numbered steps and the even-numbered steps are alternated. As a result, the expansion of the electrode active material thin film when occluded lithium and the expansion and contraction of the current collector due to the contraction of the electrode active material thin film when lithium was released were alleviated, and the current collector did not break. It is thought that the battery characteristics could be maintained.

本発明の非水系二次電池用電極板を用いた非水系二次電池における一実施の形態について以下に説明する。まず負極板として実施例3で作製した負極板を用い、次に実施例4と同様に作成した正極板を用いて実施例4同様に非水系二次電池を作成した。   An embodiment of a non-aqueous secondary battery using the electrode plate for a non-aqueous secondary battery of the present invention will be described below. First, the negative electrode plate produced in Example 3 was used as the negative electrode plate, and then the nonaqueous secondary battery was produced in the same manner as in Example 4 using the positive electrode plate produced in the same manner as in Example 4.

上記非水系二次電池を300サイクル充放電させたが、サイクル劣化もなく300サイクル後に非水系二次電池および電極群17を解体したところ集電体の切れやしわ、電極活物質層の脱落などの不具合は認められなかった。これは集電体1の凸部2に柱状に成長させた電極活物質の薄膜を同一方向に傾斜させて二段以上積層した薄膜を交互に逆方向に傾斜するように二段以上に積層させて多層構造としたことでリチウムを吸蔵した際における電極活物質の薄膜の膨張およびリチウムを放出した際における電極活物質の薄膜の収縮による集電体の伸縮が緩和され集電体の切れが発生しなかったため良好な電池特性を維持で
きたものと考えられる。
The non-aqueous secondary battery was charged and discharged for 300 cycles, but the non-aqueous secondary battery and the electrode group 17 were disassembled after 300 cycles without cycle deterioration, and the current collector was broken or wrinkled, the electrode active material layer was dropped, etc. No defects were found. This is because a thin film of electrode active material grown in a columnar shape on the convex portion 2 of the current collector 1 is tilted in the same direction and two or more stacked thin films are alternately stacked in two or more stages so as to incline in opposite directions. Due to the multi-layer structure, the expansion of the electrode active material thin film when lithium is occluded and the expansion and contraction of the current collector due to the contraction of the electrode active material thin film when lithium is released are alleviated, causing the current collector to break. It was considered that good battery characteristics could be maintained.

本発明に係る非水系二次電池用電極板は、集電体上に形成した凸部の上に電極活物質合剤層を効率良く担持することができ、信頼性の高い非水系二次電池が得られるため、電子機器および通信機器の多機能化に伴って、高容量化が望まれている携帯用電源等として有用である。   The electrode plate for a non-aqueous secondary battery according to the present invention can efficiently support the electrode active material mixture layer on the convex portion formed on the current collector, and is a highly reliable non-aqueous secondary battery. Therefore, it is useful as a portable power source or the like for which higher capacity is desired along with multifunctionalization of electronic devices and communication devices.

本発明における一実施の形態に係わる集電体の上に活物質薄膜を同一方向に傾斜させて二段以上積層させて形成した電極板の断面をSEM観察した模式図The schematic diagram which observed the cross section of the electrode plate formed by laminating | stacking two or more steps of the active material thin film on the electrical power collector concerning one embodiment in this invention in the same direction, and observed by SEM 本発明における一実施の形態に係わる集電体の上に活物質薄膜を同一方向に傾斜させて二段以上積層させて形成した電極板の製造装置の概略図Schematic of an electrode plate manufacturing apparatus formed by laminating two or more stages of an active material thin film inclined in the same direction on a current collector according to an embodiment of the present invention. 本発明における一実施の形態に係わる集電体の上に活物質薄膜を奇数段と偶数段が互いに逆方向に傾斜するように鉛直方向に二段以上積層させて形成した電極板の断面をSEM観察した模式図A cross section of an electrode plate formed by laminating two or more stages of active material thin films in the vertical direction on the current collector according to one embodiment of the present invention so that odd-numbered stages and even-numbered stages are inclined in opposite directions to each other is SEM. Schematic diagram observed 本発明における一実施の形態に係わる集電体の上に活物質薄膜を奇数段と偶数段が互いに逆方向に傾斜するように鉛直方向に二段以上積層させて形成した電極板の製造装置の概略図An electrode plate manufacturing apparatus formed by laminating two or more stages of active material thin films in a vertical direction on the current collector according to an embodiment of the present invention so that odd and even stages are inclined in opposite directions. Schematic 本発明における一実施の形態に係わる集電体の凸部の上に柱状に成長させた電極活物質の薄膜を同一方向に傾斜させて二段以上積層した薄膜を交互に逆方向に傾斜するように二段以上に積層させて形成した電極板の断面をSEM観察した模式図The thin film of the electrode active material grown in a columnar shape on the convex portion of the current collector according to one embodiment of the present invention is tilted in the same direction so that the thin films laminated in two or more stages are alternately tilted in the opposite direction. Schematic of SEM observation of the cross section of the electrode plate formed by laminating two or more layers 本発明における一実施の形態に係わる集電体の凸部の上に柱状に成長させた電極活物質の薄膜を同一方向に傾斜させて二段以上積層した薄膜を交互に逆方向に傾斜するように二段以上に積層させて形成した電極板の製造装置の概略図The thin film of the electrode active material grown in a columnar shape on the convex portion of the current collector according to one embodiment of the present invention is tilted in the same direction so that the thin films laminated in two or more stages are alternately tilted in the opposite direction. Schematic of electrode plate manufacturing equipment formed by laminating in two or more stages 本発明の一実施の形態に係わる円筒形二次電池の一部切欠斜視図1 is a partially cutaway perspective view of a cylindrical secondary battery according to an embodiment of the present invention.

符号の説明Explanation of symbols

1 集電体
2 凸部
3,10,12 電極活物質
3a,3b,3c,3d,10a,10b,10c,10d,10e,10f,12a,12b,12c,12d,12e,12f 電極活物質の薄膜層
4 巻き出し部
5a,5b,5c,5d,5e,5f サポートロール
6 蒸発源
7a,7b,7c,7d,11a,11b,11c,11d,11e,11f,13 薄膜形成部
8 巻取り部
9 遮蔽板
14 電池ケース
15 封口板
16 封口ガスケット
17 電極群
18 正極板
19 正極リード
20 負極板
21 負極リード
22 セパレータ
23 絶縁板
θ1,θ2,θ3,θ4,θ5,θ6,θ7,θ8,θ9,θ10 蒸着源に対する蒸着面の角度
DESCRIPTION OF SYMBOLS 1 Current collector 2 Convex part 3,10,12 Electrode active material 3a, 3b, 3c, 3d, 10a, 10b, 10c, 10d, 10e, 10f, 12a, 12b, 12c, 12d, 12e, 12f Thin film layer 4 Unwinding part 5a, 5b, 5c, 5d, 5e, 5f Support roll 6 Evaporation source 7a, 7b, 7c, 7d, 11a, 11b, 11c, 11d, 11e, 11f, 13 Thin film forming part 8 Winding part 9 Shielding plate 14 Battery case 15 Sealing plate 16 Sealing gasket 17 Electrode group 18 Positive electrode plate 19 Positive electrode lead 20 Negative electrode plate 21 Negative electrode lead 22 Separator 23 Insulating plate θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10 Angle of deposition surface with respect to deposition source

Claims (5)

帯状の金属箔からなる集電体の凸部の上に少なくとも正極活物質または負極活物質を含む電極活物質の薄膜を担持させた非水系二次電池用電極板であって、前記集電体の凸部の上に柱状に成長させた電極活物質の薄膜を二段以上に積層させて多層構造としたことを特徴とする非水系二次電池用電極板。   An electrode plate for a non-aqueous secondary battery in which a thin film of an electrode active material containing at least a positive electrode active material or a negative electrode active material is supported on a convex portion of a current collector made of a strip-shaped metal foil, the current collector An electrode plate for a non-aqueous secondary battery, characterized in that a thin film of an electrode active material grown in a columnar shape on a convex portion is laminated in two or more stages to form a multilayer structure. 前記集電体の凸部の上に柱状に成長させた電極活物質の薄膜を同一方向に傾斜させて二段以上積層して多層構造としたことを特徴とする請求項1に記載の非水系二次電池用電極板。   2. The non-aqueous system according to claim 1, wherein a thin film of an electrode active material grown in a columnar shape on the convex portion of the current collector is inclined in the same direction to form a multilayer structure by stacking two or more steps. Secondary battery electrode plate. 前記集電体の凸部の上に柱状に成長させた電極活物質の薄膜を奇数段と偶数段が交互に逆方向に傾斜するように二段以上に積層して多層構造としたことを特徴とする請求項1に記載の非水系二次電池用電極板。   A thin film of an electrode active material grown in a columnar shape on the convex portion of the current collector is laminated in two or more steps so that odd and even steps are alternately inclined in the opposite direction to form a multilayer structure. The electrode plate for nonaqueous secondary batteries according to claim 1. 前記集電体の凸部の上に柱状に成長させた電極活物質の薄膜を同一方向に傾斜させて二段以上積層した薄膜を交互に逆方向に傾斜するように二段以上に積層させて多層構造としたことを特徴とする請求項1に記載の非水系二次電池用電極板。   The thin film of the electrode active material grown in a columnar shape on the convex portion of the current collector is inclined in the same direction, and the thin films laminated in two or more stages are laminated in two or more stages so as to alternately incline in the opposite direction. The electrode plate for a non-aqueous secondary battery according to claim 1, wherein the electrode plate has a multilayer structure. 請求項1〜4のいずれか一つに記載の非水系二次電池用電極板と対極となる電極板とをセパレータを介して巻回または積層して構成した電極群を非水系電解液とともに電池ケースに封入して構成したことを特徴とする非水系二次電池。   A battery comprising an electrode group formed by winding or laminating the electrode plate for a non-aqueous secondary battery according to any one of claims 1 to 4 and an electrode plate serving as a counter electrode with a separator together with a non-aqueous electrolyte. A non-aqueous secondary battery characterized by being enclosed in a case.
JP2007308474A 2007-11-29 2007-11-29 Electrode plate for nonaqueous secondary batteries, and nonaqueous secondary battery using the same Pending JP2009134917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007308474A JP2009134917A (en) 2007-11-29 2007-11-29 Electrode plate for nonaqueous secondary batteries, and nonaqueous secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007308474A JP2009134917A (en) 2007-11-29 2007-11-29 Electrode plate for nonaqueous secondary batteries, and nonaqueous secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2009134917A true JP2009134917A (en) 2009-06-18

Family

ID=40866620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007308474A Pending JP2009134917A (en) 2007-11-29 2007-11-29 Electrode plate for nonaqueous secondary batteries, and nonaqueous secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2009134917A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138769A (en) * 2009-12-30 2011-07-14 Korea Inst Of Scinence & Technology Negative electrode active material for self-supporting metal sulfide-based two-dimensional nanostructure, and method for manufacturing the same
WO2011093015A1 (en) * 2010-01-29 2011-08-04 パナソニック株式会社 Nonaqueous electrolyte secondary battery negative electrode and nonaqueous electrolyte secondary battery
US20110236755A1 (en) * 2010-03-26 2011-09-29 Semiconductor Energy Laboratory Co.,Ltd. Energy storage device and manufacturing method thereof
WO2011155397A1 (en) * 2010-06-11 2011-12-15 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US8658313B2 (en) 2009-09-30 2014-02-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing electrode, and method for manufacturing power storage device and power generation and storage device having the electrode
US8852294B2 (en) 2010-05-28 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US8940610B2 (en) 2010-04-16 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Electrode for energy storage device and method for manufacturing the same
US8969866B2 (en) 2010-07-02 2015-03-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9011702B2 (en) 2009-09-30 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing electrode for power storage device and method for manufacturing power storage device
US9136530B2 (en) 2010-05-28 2015-09-15 Semiconductor Energy Laboratory Co., Ltd. Energy storage device and manufacturing method thereof
US9281134B2 (en) 2010-06-02 2016-03-08 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US9337475B2 (en) 2011-08-30 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9620769B2 (en) 2011-06-24 2017-04-11 Semiconductor Energy Laboratory Co., Ltd. Power storage device, electrode thereof, and method for manufacturing power storage device
US9685275B2 (en) 2010-04-28 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US9735419B2 (en) 2010-03-26 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and method for forming electrode of secondary battery
US9929407B2 (en) 2011-12-21 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for non-aqueous secondary battery, non-aqueous secondary battery, and manufacturing methods thereof
US9960225B2 (en) 2010-06-30 2018-05-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of power storage device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052803A1 (en) * 2005-11-07 2007-05-10 Matsushita Electric Industrial Co., Ltd. Electrode for lithium rechargeable battery, lithium rechargeable battery, and process for producing said lithium rechargeable battery
JP2007128659A (en) * 2005-11-01 2007-05-24 Matsushita Electric Ind Co Ltd Anode for lithium secondary battery, and lithium secondary battery using the same
WO2007074654A1 (en) * 2005-12-28 2007-07-05 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
WO2007086411A1 (en) * 2006-01-25 2007-08-02 Matsushita Electric Industrial Co., Ltd. Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising such negative electrode for lithium secondary battery
JP2007194076A (en) * 2006-01-19 2007-08-02 Matsushita Electric Ind Co Ltd Lithium secondary battery
WO2007094311A1 (en) * 2006-02-14 2007-08-23 Matsushita Electric Industrial Co., Ltd. Electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128659A (en) * 2005-11-01 2007-05-24 Matsushita Electric Ind Co Ltd Anode for lithium secondary battery, and lithium secondary battery using the same
WO2007052803A1 (en) * 2005-11-07 2007-05-10 Matsushita Electric Industrial Co., Ltd. Electrode for lithium rechargeable battery, lithium rechargeable battery, and process for producing said lithium rechargeable battery
WO2007074654A1 (en) * 2005-12-28 2007-07-05 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP2007194076A (en) * 2006-01-19 2007-08-02 Matsushita Electric Ind Co Ltd Lithium secondary battery
WO2007086411A1 (en) * 2006-01-25 2007-08-02 Matsushita Electric Industrial Co., Ltd. Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising such negative electrode for lithium secondary battery
WO2007094311A1 (en) * 2006-02-14 2007-08-23 Matsushita Electric Industrial Co., Ltd. Electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous electrolyte secondary battery

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9011702B2 (en) 2009-09-30 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing electrode for power storage device and method for manufacturing power storage device
US8658313B2 (en) 2009-09-30 2014-02-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing electrode, and method for manufacturing power storage device and power generation and storage device having the electrode
JP2011138769A (en) * 2009-12-30 2011-07-14 Korea Inst Of Scinence & Technology Negative electrode active material for self-supporting metal sulfide-based two-dimensional nanostructure, and method for manufacturing the same
WO2011093015A1 (en) * 2010-01-29 2011-08-04 パナソニック株式会社 Nonaqueous electrolyte secondary battery negative electrode and nonaqueous electrolyte secondary battery
CN102725884A (en) * 2010-01-29 2012-10-10 松下电器产业株式会社 Nonaqueous electrolyte secondary battery negative electrode and nonaqueous electrolyte secondary battery
US20110236755A1 (en) * 2010-03-26 2011-09-29 Semiconductor Energy Laboratory Co.,Ltd. Energy storage device and manufacturing method thereof
US8748039B2 (en) 2010-03-26 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Energy storage device and manufacturing method thereof
US9735419B2 (en) 2010-03-26 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and method for forming electrode of secondary battery
US8940610B2 (en) 2010-04-16 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Electrode for energy storage device and method for manufacturing the same
US9685275B2 (en) 2010-04-28 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US10236502B2 (en) 2010-04-28 2019-03-19 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US8852294B2 (en) 2010-05-28 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US9136530B2 (en) 2010-05-28 2015-09-15 Semiconductor Energy Laboratory Co., Ltd. Energy storage device and manufacturing method thereof
US9281134B2 (en) 2010-06-02 2016-03-08 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US9685277B2 (en) 2010-06-02 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Electrode
US8835048B2 (en) 2010-06-11 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Power storage device
WO2011155397A1 (en) * 2010-06-11 2011-12-15 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9960225B2 (en) 2010-06-30 2018-05-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of power storage device
US8969866B2 (en) 2010-07-02 2015-03-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9620769B2 (en) 2011-06-24 2017-04-11 Semiconductor Energy Laboratory Co., Ltd. Power storage device, electrode thereof, and method for manufacturing power storage device
US9337475B2 (en) 2011-08-30 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9929407B2 (en) 2011-12-21 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for non-aqueous secondary battery, non-aqueous secondary battery, and manufacturing methods thereof

Similar Documents

Publication Publication Date Title
JP2009134917A (en) Electrode plate for nonaqueous secondary batteries, and nonaqueous secondary battery using the same
KR101295927B1 (en) Battery
JP6621765B2 (en) Secondary battery
US10361432B2 (en) Non-aqueous secondary battery
JP6572204B2 (en) Secondary battery and manufacturing method thereof
JP5515785B2 (en) Lithium ion secondary battery and negative electrode for lithium ion secondary battery
JP6193285B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack and car
US20080305391A1 (en) Anode and battery
KR20160004236A (en) Anode and secondary battery
JPWO2007074654A1 (en) Nonaqueous electrolyte secondary battery
JP6613647B2 (en) Manufacturing method of electrode for power storage device and manufacturing apparatus of said electrode
KR101862433B1 (en) Lithium-ion capacitor
JP2007042329A (en) Lithium secondary battery
WO2008072430A1 (en) Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same and nonaqueous electrolyte secondary battery employing it
CN102318128A (en) Lithium ion secondary battery and production method for same
KR20080107287A (en) Anode and secondary battery
JPWO2014091856A1 (en) Separator, electrode element, power storage device, and method for manufacturing the separator
JP4368193B2 (en) Lithium precursor battery and method for producing lithium secondary battery
JP2013025999A (en) Nonaqueous secondary battery
JP6897228B2 (en) Active material, electrodes and lithium-ion secondary battery
CN111033857B (en) Lithium ion secondary battery
JP2010165508A (en) Negative electrode and secondary battery
JP6903264B2 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2005011762A (en) Lithium ion secondary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101008

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130514