JP2009132778A - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition Download PDF

Info

Publication number
JP2009132778A
JP2009132778A JP2007308776A JP2007308776A JP2009132778A JP 2009132778 A JP2009132778 A JP 2009132778A JP 2007308776 A JP2007308776 A JP 2007308776A JP 2007308776 A JP2007308776 A JP 2007308776A JP 2009132778 A JP2009132778 A JP 2009132778A
Authority
JP
Japan
Prior art keywords
weight
parts
rubber
polymerization
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007308776A
Other languages
Japanese (ja)
Inventor
Toshitaka Nishioka
利恭 西岡
Katsunori Yano
克典 矢野
Tomoyoshi Akiyama
友良 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon A&L Inc
Original Assignee
Nippon A&L Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon A&L Inc filed Critical Nippon A&L Inc
Priority to JP2007308776A priority Critical patent/JP2009132778A/en
Publication of JP2009132778A publication Critical patent/JP2009132778A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To attain improvement of balance of impact strength, heat-resistance, processability and uniformness of appearance of a thermoplastic resin composition containing a poly-lactic acid resin. <P>SOLUTION: The thermoplastic resin composition comprises 5-60 pts.wt. of the poly-lactic acid resin (L), 10-70 pts.wt. of a rubber-containing graft copolymer (G), 5-50 pts.wt. of a polycarbonate resin (C) and 10-80 pts.wt. of an α-methylstyrene-acrylonitrile copolymer (A) (provided that total of (L), (G), (C) and (A) is 100 pts.wt.). 70 wt.% or more of a monomer used for graft polymerization of the rubber-containing graft copolymer (G) is a (meth)acrylate based monomer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は熱可塑性樹脂組成物に関するものである。詳しくは、衝撃強度、耐熱性、加工性、外観の均一性のバランスに優れたポリ乳酸樹脂を含む熱可塑性樹脂組成物に関するものである。   The present invention relates to a thermoplastic resin composition. More specifically, the present invention relates to a thermoplastic resin composition containing a polylactic acid resin having an excellent balance of impact strength, heat resistance, workability, and appearance uniformity.

近年、地球的規模での環境問題として、石油化学製品の使用増加による石油資源の将来性が危ぶまれている。例えば、ポリ乳酸樹脂は植物であるとうもろこしや芋類を原料として得られる乳酸からなる樹脂であり、石油を原料としない環境対応型の樹脂として知られている。しかしながら、ポリ乳酸樹脂は、ノッチ付き衝撃強度および、耐熱性に劣るといった欠点がある。
一方、ABS樹脂は優れた物性バランスおよび成形加工性を有しており、広範な分野に利用されているが、原料は石油資源に依存している。これら両者の欠点を補うことを目的に下記の従来技術が提案されているが、衝撃強度、耐熱性、加工性、外観の均一性の諸物性を全て満足することはできず、改良が望まれている。
特開2000−327847号公報 特開2004−269720号公報 特開2005−171204号公報 特開2006−137908号公報 特開2006−161024号公報 特開2007−63368号公報 特開2007−126535号公報
In recent years, as an environmental problem on a global scale, the future of petroleum resources due to increased use of petrochemical products has been threatened. For example, a polylactic acid resin is a resin made of lactic acid obtained from plant corn and potatoes as a raw material, and is known as an environmentally friendly resin that does not use petroleum as a raw material. However, the polylactic acid resin has the disadvantages that it is inferior in notched impact strength and heat resistance.
On the other hand, ABS resin has an excellent balance of physical properties and moldability and is used in a wide range of fields, but the raw material depends on petroleum resources. The following prior arts have been proposed for the purpose of compensating both of these drawbacks, but they cannot satisfy all physical properties such as impact strength, heat resistance, workability, and uniformity of appearance, and improvements are desired. ing.
JP 2000-327847 A JP 2004-269720 A JP-A-2005-171204 JP 2006-137908 A JP 2006-161024 A JP 2007-63368 A JP 2007-126535 A

本発明は、上記課題を解決するために成されたもので、衝撃強度、耐熱性、加工性、外観の均一性のバランスに優れたポリ乳酸樹脂を含む熱可塑性樹脂組成物を提供することを目的とするものである。   The present invention has been made to solve the above problems, and provides a thermoplastic resin composition containing a polylactic acid resin having an excellent balance of impact strength, heat resistance, workability, and appearance uniformity. It is the purpose.

すなわち本発明は、ポリ乳酸樹脂(L)5〜60重量部、ゴム含有グラフト共重合体(G)10〜70重量部、ポリカーボネート樹脂(C)5〜50重量部、α−メチルスチレン−アクリロニトリル共重合体(A)10〜80重量部からなる熱可塑性樹脂組成物(ただし、(L)、(G)、(C)、(A)の合計は100重量部である)であって、ゴム含有グラフト共重合体(G)のグラフト重合に用いる単量体のうち、70重量%以上が(メタ)アクリル酸エステル系単量体であることを特徴とする熱可塑性樹脂組成物を提供するものである。   That is, the present invention relates to polylactic acid resin (L) 5 to 60 parts by weight, rubber-containing graft copolymer (G) 10 to 70 parts by weight, polycarbonate resin (C) 5 to 50 parts by weight, α-methylstyrene-acrylonitrile copolymer. A thermoplastic resin composition comprising 10 to 80 parts by weight of the polymer (A) (however, the total of (L), (G), (C) and (A) is 100 parts by weight), and contains a rubber Among the monomers used for graft polymerization of the graft copolymer (G), a thermoplastic resin composition is provided wherein 70% by weight or more is a (meth) acrylate monomer. is there.

本発明における熱可塑性樹脂組成物は、衝撃強度、耐熱性、加工性、外観の均一性のバランスに優れ、特に石油資源消費の抑制にも貢献できる環境対応型材料として、車両分野、家電分野、建材分野、サニタリー分野等に広く用いることができる。   The thermoplastic resin composition according to the present invention has an excellent balance of impact strength, heat resistance, processability, and uniformity of appearance, and particularly as an environmentally friendly material that can contribute to the suppression of petroleum resource consumption. It can be widely used in the field of building materials and sanitary.

以下、本発明の熱可塑性樹脂組成物につき詳細に説明する。
本発明において、ポリ乳酸樹脂(L)は熱可塑性樹脂組成物の必須成分を構成する。市販されているポリ樹脂としては、例えば三井化学(株)製 商品名:レイシア、ユニチカ(株)製 商品名:テラマック等が挙げられるが、これらに限定されるものではない。
Hereinafter, the thermoplastic resin composition of the present invention will be described in detail.
In the present invention, the polylactic acid resin (L) constitutes an essential component of the thermoplastic resin composition. Examples of the commercially available polyresin include, but are not limited to, product names: Lacia, manufactured by Mitsui Chemicals, Inc., and product names: Terramac, manufactured by Unitika Ltd.

本発明におけるゴム含有グラフト共重合体(G)とは、ゴム状重合体にビニル系単量体を重合して得られるものであり、該ゴム状重合体としては、ポリブタジエン、ポリイソプレン、ブタジエンースチレン共重合体、イソプレン−スチレン共重合体、ブタジエン−アクリロニトリル共重合体、ブタジエン−イソプレン−スチレン共重合体、ポリクロロプレンなどのジエン系ゴム、エチレン−プロピレン共重合体、エチレン−プロピレン−非共役ジエン共重合体、エチレン−ブテン−1−非共役ジエン共重合体、ポリブチルアクリレート系ゴム、ポリオルガノシロキサン系ゴム、さらにはこれらの2種以上のゴムからなる複合ゴム等が挙げられ、一種又は二種以上用いることができる。これらのうち、特に共役ジエン系ゴムが衝撃強度発現性の観点から、ポリブチルアクリレート系ゴムが衝撃強度と外観均一性のバランスの観点から好ましい。
ゴム含有グラフト共重合体の製造に好適に用いられるビニル系単量体としては、(メタ)アクリル酸エステル系単量体、スチレン系単量体、シアン化ビニル系単量体が挙げられるが、本発明においては、これらビニル系単量体の70重量%以上が(メタ)アクリル酸エステル系単量体であることが必要である。(メタ)アクリル酸エステル系単量体が70重量%未満では外観の均一性が低下する。(メタ)アクリル酸エステル系単量体としては、メチルアクリレート、メチルメタアクリレート、プロピルアクリレート、プロピルメタアクリレート、ブチルアクリレート、ブチルメタアクリレート等が挙げられ、特にメチルメタクリレートが好ましい。更には、ビニル系単量体の内、80重量%以上がメチルメタクリレートおよび/またはメチルアクリレートであることが好ましい。
スチレン系単量体としては、スチレン、α−メチルスチレン、パラメチルスチレン、ブロムスチレン等が挙げられ、一種又は二種以上用いることができる。特にスチレン、α−メチルスチレンが好ましい。
シアン化ビニル系単量体としては、アクリロニトリル、メタクリロニトリル等が挙げられる。特にアクリロニトリルが好ましい。
また、上記ビニル系単量体と共に無水マレイン酸、マレイン酸ジメチル等の不飽和酸系単量体、N−フェニルマレイミド、N−シクロヘキシルマレイミドなどのマレイミド系単量体などを用いることも可能である。
上記のゴム含有グラフト共重合体を構成するゴム状重合体とビニル系単量体の割合については特に制限はないが、好ましくはゴム状重合体15〜65重量%および(メタ)アクリル酸エステル系単量体を70重量%以上含むビニル系単量体35〜85重量%である。
また、ゴム含有グラフト共重合体の重合方法についても特に制限はなく、乳化重合、懸濁重合、塊状重合、溶液重合またはこれらの組み合わせにより製造することができるが、高温高湿環境下における経時安定性維持の観点から、ゴム含有グラフト共重合体に含有されるアルカリ金属の含有量が0.01重量%以下であることが好ましい。
The rubber-containing graft copolymer (G) in the present invention is obtained by polymerizing a vinyl monomer to a rubber-like polymer. Examples of the rubber-like polymer include polybutadiene, polyisoprene, and butadiene. Diene rubber such as styrene copolymer, isoprene-styrene copolymer, butadiene-acrylonitrile copolymer, butadiene-isoprene-styrene copolymer, polychloroprene, ethylene-propylene copolymer, ethylene-propylene-nonconjugated diene Examples thereof include copolymers, ethylene-butene-1-nonconjugated diene copolymers, polybutyl acrylate rubbers, polyorganosiloxane rubbers, and composite rubbers composed of two or more of these rubbers. More than one species can be used. Of these, conjugated diene rubber is particularly preferable from the viewpoint of impact strength development, and polybutyl acrylate rubber is preferable from the viewpoint of balance between impact strength and appearance uniformity.
Examples of vinyl monomers suitably used for the production of rubber-containing graft copolymers include (meth) acrylic acid ester monomers, styrene monomers, and vinyl cyanide monomers. In the present invention, it is necessary that 70% by weight or more of these vinyl monomers are (meth) acrylic acid ester monomers. When the (meth) acrylic acid ester monomer is less than 70% by weight, the uniformity of the appearance is deteriorated. Examples of the (meth) acrylic acid ester monomer include methyl acrylate, methyl methacrylate, propyl acrylate, propyl methacrylate, butyl acrylate, and butyl methacrylate, and methyl methacrylate is particularly preferable. Further, 80% by weight or more of the vinyl monomer is preferably methyl methacrylate and / or methyl acrylate.
Examples of the styrenic monomer include styrene, α-methylstyrene, paramethylstyrene, bromostyrene, and the like, and one or more of them can be used. In particular, styrene and α-methylstyrene are preferable.
Examples of the vinyl cyanide monomer include acrylonitrile and methacrylonitrile. Particularly preferred is acrylonitrile.
Moreover, it is also possible to use an unsaturated acid monomer such as maleic anhydride and dimethyl maleate, a maleimide monomer such as N-phenylmaleimide, N-cyclohexylmaleimide, and the like together with the vinyl monomer. .
Although there is no restriction | limiting in particular about the ratio of the rubber-like polymer which comprises said rubber-containing graft copolymer, and a vinyl-type monomer, Preferably 15-65 weight% of rubber-like polymers and (meth) acrylic acid ester type | system | group It is 35 to 85% by weight of a vinyl monomer containing 70% by weight or more of monomers.
The polymerization method of the rubber-containing graft copolymer is not particularly limited, and can be produced by emulsion polymerization, suspension polymerization, bulk polymerization, solution polymerization, or a combination thereof, but is stable over time in a high temperature and high humidity environment. From the viewpoint of maintaining the property, the content of alkali metal contained in the rubber-containing graft copolymer is preferably 0.01% by weight or less.

本発明におけるα−メチルスチレン−アクリロニトリル共重合体(A)の組成割合としては、特にα−メチルスチレン60〜80重量%およびアクリロニトリル20〜40重量%であることが好ましい。
また、α−メチルスチレン−アクリロニトリル共重合体(A)の重合方法についても特に制限はなく、乳化重合、懸濁重合、塊状重合、溶液重合またはこれらの組み合わせにより製造することができる。
The composition ratio of the α-methylstyrene-acrylonitrile copolymer (A) in the present invention is particularly preferably 60 to 80% by weight of α-methylstyrene and 20 to 40% by weight of acrylonitrile.
Moreover, there is no restriction | limiting in particular also about the polymerization method of (alpha) -methylstyrene acrylonitrile copolymer (A), It can manufacture by emulsion polymerization, suspension polymerization, block polymerization, solution polymerization, or these combination.

本発明において、ポリカーボネート樹脂(C)は熱可塑性樹脂組成物の必須成分を構成する。市販されているポリカーボネート樹脂としては、例えば住友ダウ(株)製 商品名:カリバー、帝人化成(株)製 商品名:パンライト、三菱エンジニアリングプラスチックス(株)製 ユーピロン等が挙げられるが、これらに限定されるものではない。   In the present invention, the polycarbonate resin (C) constitutes an essential component of the thermoplastic resin composition. Examples of the commercially available polycarbonate resin include Sumitomo Dow Co., Ltd. trade name: Caliber, Teijin Chemicals Co., Ltd. trade name: Panlite, Mitsubishi Engineering Plastics Co., Ltd. Iupilon, etc. It is not limited.

本発明の熱可塑性樹脂組成物は、ポリ乳酸樹脂(L)5〜60重量部、ゴム含有グラフト共重合体(G)10〜70重量部、ポリカーボネート樹脂(C)5〜50重量部、α−メチルスチレン−アクリロニトリル共重合体(A)10〜80重量部からなるものである(ただし、(L)、(G)、(C)、(A)の合計は100重量部である。)。
ポリ乳酸樹脂(L)の配合比率が5重量部未満では、原料の殆どを石油資源に依存しているという環境負荷は低減されず、60重量部を超えると耐熱性が低下する。好ましくは10〜50重量部、更に好ましくは15〜45重量部である。
ゴム含有グラフト共重合体(G)の配合比率が10重量部未満では衝撃強度が劣り、70重量部を超えると加工性や耐熱性が低下する。好ましくは15〜65重量部、更に好ましくは20〜60重量部である。
ポリカーボネート樹脂(C)の配合比率が5重量部未満では耐熱性が劣り、50重量部を超えると衝撃強度が低下する。好ましくは5〜45重量部、更に好ましくは10〜40重量部である。
α−メチルスチレン−アクリロニトリル共重合体(A)の配合比率が10重量部未満では耐熱性が劣り、80重量部を超えると衝撃強度が低下する。好ましくは15〜70重量部、更に好ましくは20〜60重量部である。
The thermoplastic resin composition of the present invention comprises 5 to 60 parts by weight of a polylactic acid resin (L), 10 to 70 parts by weight of a rubber-containing graft copolymer (G), 5 to 50 parts by weight of a polycarbonate resin (C), α- It consists of 10-80 parts by weight of a methylstyrene-acrylonitrile copolymer (A) (however, the total of (L), (G), (C), (A) is 100 parts by weight).
When the blending ratio of the polylactic acid resin (L) is less than 5 parts by weight, the environmental load that most of the raw materials depend on petroleum resources is not reduced, and when it exceeds 60 parts by weight, the heat resistance is lowered. Preferably it is 10-50 weight part, More preferably, it is 15-45 weight part.
When the blending ratio of the rubber-containing graft copolymer (G) is less than 10 parts by weight, the impact strength is inferior, and when it exceeds 70 parts by weight, workability and heat resistance are lowered. Preferably it is 15-65 weight part, More preferably, it is 20-60 weight part.
When the blending ratio of the polycarbonate resin (C) is less than 5 parts by weight, the heat resistance is inferior, and when it exceeds 50 parts by weight, the impact strength is lowered. Preferably it is 5-45 weight part, More preferably, it is 10-40 weight part.
When the blending ratio of the α-methylstyrene-acrylonitrile copolymer (A) is less than 10 parts by weight, the heat resistance is poor, and when it exceeds 80 parts by weight, the impact strength is lowered. Preferably it is 15-70 weight part, More preferably, it is 20-60 weight part.

また、本発明における熱可塑性樹脂組成物には、上記各成分の他に、その物性を損なわない限りにおいて、その目的に応じて樹脂の混合時、成形時等に安定剤、顔料、染料、補強剤(タルク、マイカ、クレー、ガラス繊維等)、着色剤(カーボンブラック、酸化チタン等)、紫外線吸収剤、酸化防止剤、難燃剤、滑剤、離型剤、可塑剤、帯電防止剤、無機および有機系抗菌剤等の公知の添加剤を配合することができる。   In addition to the above components, the thermoplastic resin composition according to the present invention includes stabilizers, pigments, dyes, reinforcements at the time of resin mixing and molding depending on the purpose, as long as the physical properties are not impaired. Agent (talc, mica, clay, glass fiber, etc.), colorant (carbon black, titanium oxide, etc.), UV absorber, antioxidant, flame retardant, lubricant, mold release agent, plasticizer, antistatic agent, inorganic and Known additives such as organic antibacterial agents can be blended.

本発明における熱可塑性樹脂組成物の混合方法としては、バンバリーミキサー、押出機等公知の混練機を用いる方法が挙げられる。また、混合順序にも何ら制限はなく、4成分の一括混練はもちろんのこと、予め任意の2〜3成分を混合した後に残る成分を混合することも可能である。   Examples of the method for mixing the thermoplastic resin composition in the present invention include a method using a known kneader such as a Banbury mixer or an extruder. Also, there is no limitation on the mixing order, and it is possible to mix the remaining components after mixing any two or three components in advance, as well as batch mixing of the four components.

〔実施例〕
以下に実施例を用いて本発明を具体的に説明するが、本発明はこれらによって何ら制限されるものではない。
また、特段の断りが無い限り、%や部は重量を基準とする。
〔Example〕
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited by these.
Unless otherwise specified,% and parts are based on weight.

ポリ乳酸樹脂(L)
ポリ乳酸樹脂(L)として、三井化学株式会社製LACEA H−400を用いた。
Polylactic acid resin (L)
LACEA H-400 manufactured by Mitsui Chemicals, Inc. was used as the polylactic acid resin (L).

ゴム状重合体1〜3の作製
ゴム状重合体1:ステンレス製耐圧重合反応機に、減圧下で純水130部、ロジン酸カリウム2.0部、オレイン酸カリウム0.5部、ナフタレンスルホン酸ナトリウムのホルマリン縮合物1.0部、水酸化ナトリウム0.05部、ブタジエン95部、スチレン3部、アクリロニトリル2.部、t−ドデシルメルカプタン0.20部を加えて十分攪拌しながら67℃に昇温した後、過硫酸カリウム0.8部を仕込み67℃で重合を開始した。重合転化率が66%を越えた時点で過硫酸カリウム0.2部を仕込み、反応温度を72℃に上げて反応を継続し、重合転化率が98%を超えたことを確認して槽内温度を35℃以下に冷却した。燐酸アグロメ法によって重合体粒子を肥大化させ、ラテックス状のゴム状重合体1を得た。その固形分濃度は38.7重量%、pH10.4、平均粒子径は390nmであった。
Preparation of rubber-like polymers 1-3 Rubber-like polymer 1: 130 parts of pure water, 2.0 parts of potassium rosinate, 0.5 parts of potassium oleate, naphthalene sulfonic acid in a pressure-resistant polymerization reactor made of stainless steel under reduced pressure Sodium formalin condensate 1.0 part, sodium hydroxide 0.05 part, butadiene 95 parts, styrene 3 parts, acrylonitrile 2. parts, t-dodecyl mercaptan 0.20 part was added and the temperature was raised to 67 ° C. with sufficient stirring. After warming, 0.8 part of potassium persulfate was charged and polymerization was started at 67 ° C. When the polymerization conversion rate exceeded 66%, 0.2 parts of potassium persulfate was charged, the reaction temperature was raised to 72 ° C., and the reaction was continued, and it was confirmed that the polymerization conversion rate exceeded 98%. The temperature was cooled below 35 ° C. The polymer particles were enlarged by the phosphoric acid agglomeration method to obtain a latex-like rubbery polymer 1. The solid content concentration was 38.7% by weight, pH was 10.4, and the average particle size was 390 nm.

ゴム状重合体2:ステンレス製耐圧重合反応機に、減圧下で純水140部、オレイン酸カリウム3.0部、ナフタレンスルホン酸ナトリウムのホルマリン縮合物0.9部、水酸化カリウム0.06部、ブタジエン95部、スチレン5部、t−ドデシルメルカプタン0.17部、ブドウ糖0.08部、硫酸第一鉄0.005部を仕込んで撹拌しながら50℃に昇温した後、加硫酸カリウム0.3部を仕込み50℃で重合を開始した。重合転化率が63%を越えた時点でt−ブチルハイドロパーオキサイド0.05部を仕込み、反応温度を70℃に上げて反応を継続し、重合転化率が97%を超えたことを確認して槽内温度を40℃以下に冷却した。燐酸アグロメ法によって重合体粒子を肥大化させ、ラテックス状のゴム状重合体2を得た。その固形分濃度は36.8重量%、pH10.6、平均粒子径は280nmであった。   Rubber-like polymer 2: 140 parts of pure water, 3.0 parts of potassium oleate, 0.9 parts of formalin condensate of sodium naphthalene sulfonate, 0.06 part of potassium hydroxide in a pressure-resistant polymerization reactor made of stainless steel under reduced pressure , 95 parts of butadiene, 5 parts of styrene, 0.17 part of t-dodecyl mercaptan, 0.08 part of glucose and 0.005 part of ferrous sulfate, and heated to 50 ° C. with stirring. 3 parts were charged and polymerization was started at 50 ° C. When the polymerization conversion rate exceeded 63%, 0.05 part of t-butyl hydroperoxide was added, the reaction temperature was raised to 70 ° C., and the reaction was continued, and it was confirmed that the polymerization conversion rate exceeded 97%. The tank temperature was cooled to 40 ° C. or lower. The polymer particles were enlarged by the phosphoric acid agglomeration method to obtain a latex-like rubbery polymer 2. The solid content concentration was 36.8% by weight, pH was 10.6, and the average particle size was 280 nm.

ゴム状重合体3:ステンレス製耐圧重合反応機に、減圧下で純水130部、アルケニルコハク酸カリウム0.8部、ナフタレンスルホン酸ナトリウムのホルマリン縮合物0.5部、水酸化カリウム0.02部、ブチルアクリレート90部、メチルメタクリレート7部、アリルメタクリレート3部、t−ドデシルメルカプタン0.08部、ブドウ糖0.10部、硫酸第一鉄0.005部を仕込んで撹拌しながら53℃に昇温した後、t−ブチルハイドロパーオキサイド0.09部を仕込み53℃で重合を開始した。重合開始から210分かけて反応温度を63℃に上げて反応を継続し、重合転化率66%を越えた時点で、ブドウ糖0.02部とクメンハイドロパーオキサイド0.02部を添加し、70℃に昇温して反応を継続した。重合転化率が98%を超えたことを確認して槽内温度を35℃以下に冷却した。燐酸アグロメ法によって重合体粒子を肥大化させ、ラテックス状のゴム状重合体3を得た。その固形分濃度は38.0重量%、pH8.5、平均粒子径は350mであった。   Rubber-like polymer 3: 130 parts of pure water, 0.8 part of potassium alkenyl succinate, 0.5 part of formalin condensate of sodium naphthalene sulfonate under reduced pressure, 0.02 potassium hydroxide in a pressure resistant polymerization reactor made of stainless steel Part, 90 parts of butyl acrylate, 7 parts of methyl methacrylate, 3 parts of allyl methacrylate, 0.08 part of t-dodecyl mercaptan, 0.10 part of glucose and 0.005 part of ferrous sulfate, and the temperature is raised to 53 ° C. with stirring. After warming, 0.09 part of t-butyl hydroperoxide was charged and polymerization was started at 53 ° C. The reaction temperature was raised to 63 ° C. over 210 minutes from the start of the polymerization, and the reaction was continued. When the polymerization conversion rate exceeded 66%, 0.02 part of glucose and 0.02 part of cumene hydroperoxide were added, and 70% The reaction was continued by raising the temperature to 0 ° C. After confirming that the polymerization conversion rate exceeded 98%, the temperature in the tank was cooled to 35 ° C. or lower. The polymer particles were enlarged by the phosphoric acid agglomeration method to obtain a latex-like rubbery polymer 3. The solid content concentration was 38.0% by weight, pH 8.5, and the average particle size was 350 m.

ゴム含有グラフト共重合体G1〜G6の作製
ゴム含有グラフト共重合体G1:ステンレス製耐圧重合反応機に、減圧下で純水76.1部、ロジン酸カリウム0.3部、オレイン酸カリウム1.0部、ナフタレンスルホン酸ナトリウムのホルマリン縮合物0.7部、水酸化ナトリウム0.15部、ゴム状重合体1を固形分で40部、ブドウ糖0.08部、硫酸第一鉄0.004部を仕込んで十分攪拌しながら67℃に昇温した後、過硫酸カリウム0.30部を仕込み67℃で重合を開始した。開始直後からメチルメタクリレート55部とメチルアクリレート5部、t−ドデシルメルカプタン0.25部の混合物を3時間にわたって連続添加し、重合転化率が66%を越えた時点でt−ブチルハイドロパーオキサイド0.04部を仕込み、反応温度を72℃に上げて反応を2時間以上継続し、重合転化率が97%を超えたことを確認して槽内温度を40℃以下に冷却した。得られたラテックス状のゴム含有グラフト共重合体を多量のメタノール中に投入して沈殿させ、150メッシュのステンレス製金網に流した後、先ず適量のメタノール、次に多量の純水で洗浄した。その後、減圧下で含水率が1重量%以下になるまで乾燥させ、パウダー状のゴム含有グラフト共重合体G1を得た。
得られたゴム含有グラフト共重合体G1を灰化後、酸溶解してICP発光分光法および原子吸光法により、アルカリ金属含有量を測定した。結果は0.003重量%であった。
Preparation of rubber-containing graft copolymers G1 to G6 Rubber-containing graft copolymer G1: In a stainless steel pressure-resistant polymerization reactor, 76.1 parts of pure water, 0.3 part of potassium rosinate, and 1. 0 part, formalin condensate of sodium naphthalenesulfonate 0.7 part, sodium hydroxide 0.15 part, rubber-like polymer 1 40 parts by solid, glucose 0.08 part, ferrous sulfate 0.004 part The mixture was heated to 67 ° C. with sufficient stirring, and 0.30 part of potassium persulfate was charged, and polymerization was started at 67 ° C. Immediately after the start, a mixture of 55 parts of methyl methacrylate, 5 parts of methyl acrylate and 0.25 part of t-dodecyl mercaptan was continuously added over 3 hours, and when the polymerization conversion exceeded 66%, t-butyl hydroperoxide 0. 04 parts were charged, the reaction temperature was raised to 72 ° C., and the reaction was continued for 2 hours or more. After confirming that the polymerization conversion rate exceeded 97%, the temperature in the tank was cooled to 40 ° C. or less. The obtained latex-like rubber-containing graft copolymer was poured into a large amount of methanol, precipitated, poured into a 150-mesh stainless steel wire mesh, and then washed with an appropriate amount of methanol and then with a large amount of pure water. Then, it was dried until the water content became 1% by weight or less under reduced pressure to obtain a powdery rubber-containing graft copolymer G1.
The obtained rubber-containing graft copolymer G1 was incinerated and then dissolved in an acid, and the alkali metal content was measured by ICP emission spectroscopy and atomic absorption. The result was 0.003% by weight.

ゴム含有グラフト共重合体G2:ステンレス製耐圧重合反応機に、減圧下で純水45.5部、ロジン酸カリウム1.0部、オレイン酸カリウム0.5部、ナフタレンスルホン酸ナトリウムのホルマリン縮合物0.8部、水酸化カリウム0.03部、ゴム状重合体2を固形分で55部、t−ドデシルメルカプタン0.20部、ブドウ糖0.11部、硫酸第一鉄0.03部を仕込んで十分攪拌しながら65℃に昇温した後、クメンハイドロパーオキサイド0.07部を仕込み65℃で重合を開始した。開始直後からメチルメタクリレート20部、スチレン15部、アクリロニトリル10部の単量体混合物を3時間にわたって連続添加し、重合転化率が63%を越えた時点でt−ブチルハイドロパーオキサイド0.05部を仕込み、反応温度を72℃に上げて反応を2時間以上継続し、重合転化率が98%を超えたことを確認して槽内温度を35℃以下に冷却した。得られたラテックス状のゴム含有グラフト共重合体を多量のメタノール中に投入して沈殿させ、150メッシュのステンレス製金網に流した後、先ず適量のメタノール、次に多量の純水で洗浄した。その後、減圧下で含水率が1重量%以下になるまで乾燥させ、パウダー状のゴム含有グラフト共重合体G2を得た。
得られたゴム含有グラフト共重合体G2を灰化後、酸溶解してICP発光分光法および原子吸光法により、アルカリ金属含有量を測定した。結果は0.004重量%であった。
Rubber-containing graft copolymer G2: Formalin condensate of 45.5 parts pure water, 1.0 part potassium rosinate, 0.5 parts potassium oleate, sodium naphthalenesulfonate in a pressure-resistant polymerization reactor made of stainless steel under reduced pressure 0.8 part, 0.03 part of potassium hydroxide, 55 parts of solid polymer 2 in solid content, 0.20 part of t-dodecyl mercaptan, 0.11 part of glucose, 0.03 part of ferrous sulfate The mixture was heated to 65 ° C. with sufficient stirring, and then 0.07 part of cumene hydroperoxide was added to initiate polymerization at 65 ° C. Immediately after the start, a monomer mixture of 20 parts of methyl methacrylate, 15 parts of styrene and 10 parts of acrylonitrile was continuously added over 3 hours. When the polymerization conversion exceeded 63%, 0.05 part of t-butyl hydroperoxide was added. The reaction temperature was raised to 72 ° C. and the reaction was continued for 2 hours or longer. After confirming that the polymerization conversion rate exceeded 98%, the temperature in the tank was cooled to 35 ° C. or lower. The obtained latex-like rubber-containing graft copolymer was poured into a large amount of methanol, precipitated, poured into a 150-mesh stainless steel wire mesh, and then washed with an appropriate amount of methanol and then with a large amount of pure water. Then, it was dried until the water content became 1% by weight or less under reduced pressure to obtain a powdery rubber-containing graft copolymer G2.
The obtained rubber-containing graft copolymer G2 was incinerated, then dissolved in an acid, and the alkali metal content was measured by ICP emission spectroscopy and atomic absorption. The result was 0.004% by weight.

ゴム含有グラフト共重合体G3:ステンレス製耐圧重合反応機に、減圧下で純水74.7部、オレイン酸カリウム1.2部、ナフタレンスルホン酸ナトリウムのホルマリン縮合物1.0部、水酸化カリウム0.04部、ゴム状重合体3を固形分で40部、ブドウ糖0.09部、硫酸第一鉄0.004部を仕込んで十分攪拌しながら68℃に昇温した後、t−ブチルハイドロパーオキサイド0.07部を仕込み68℃で重合を開始した。開始直後からメチルメタクリレート56部、メチルアクリレート3部、スチレン1部、t−ドデシルメルカプタン0.20部の混合物を4時間にわたって連続添加し、重合転化率が65%を越えた時点でクメンハイドロパーオキサイド0.04部を仕込み、反応温度を73℃に上げて反応を2時間以上継続し、重合転化率が98%を超えたことを確認して槽内温度を40℃以下に冷却した。得られたラテックス状のゴム含有グラフト共重合体を多量のメタノール中に投入して沈殿させ、150メッシュのステンレス製金網に流した後、先ず適量のメタノール、次に多量の純水で洗浄した。その後、減圧下で含水率が1重量%以下になるまで乾燥させ、パウダー状のゴム含有グラフト共重合体G3を得た。
得られたゴム含有グラフト共重合体G3を灰化後、酸溶解してICP発光分光法および原子吸光法により、アルカリ金属含有量を測定した。結果は0.004重量%であった。
Rubber-containing graft copolymer G3: In a pressure-resistant polymerization reactor made of stainless steel, 74.7 parts of pure water, 1.2 parts of potassium oleate, 1.0 part of formalin condensate of sodium naphthalenesulfonate under reduced pressure, potassium hydroxide 0.04 part, 40 parts of rubbery polymer 3 in solid content, 0.09 part of glucose and 0.004 part of ferrous sulfate were charged and heated to 68 ° C. with sufficient stirring. 0.07 part of peroxide was charged and polymerization was started at 68 ° C. A mixture of 56 parts of methyl methacrylate, 3 parts of methyl acrylate, 1 part of styrene and 0.20 part of t-dodecyl mercaptan was added continuously for 4 hours from the start and cumene hydroperoxide was reached when the polymerization conversion exceeded 65%. 0.04 part was charged, the reaction temperature was raised to 73 ° C., and the reaction was continued for 2 hours or more. After confirming that the polymerization conversion rate exceeded 98%, the temperature in the tank was cooled to 40 ° C. or less. The obtained latex-like rubber-containing graft copolymer was poured into a large amount of methanol, precipitated, poured into a 150-mesh stainless steel wire mesh, and then washed with an appropriate amount of methanol and then with a large amount of pure water. Then, it was dried until the water content became 1% by weight or less under reduced pressure to obtain a powdery rubber-containing graft copolymer G3.
The obtained rubber-containing graft copolymer G3 was incinerated, then dissolved in acid, and the alkali metal content was measured by ICP emission spectroscopy and atomic absorption. The result was 0.004% by weight.

ゴム含有グラフト共重合体G4:容積が15リットルのプラグフロー塔型反応槽に10リットルの完全混合槽2基を直列に接続した連続的塊状重合装置を用いた。プラグフロー塔型反応槽が粒子形成工程を、第2反応器である1基目の完全混合槽が粒子径調整工程を、第3反応器が後重合工程を構成する。
プラグフロー塔型反応槽にエチルベンゼン27重量部、メチルメタクリレート57.0重量部、メチルアクリレート3.0重量部、ジエン系ゴム状重合体として、日本ゼオン社製Nipol NS320Sを13.0重量部、t−ドデシルメルカプタン0.22重量部、1、1−ビス(t−ブチルパーオキシ)3、3、5−トリメチルシクロヘキサン0.050重量部からなる原料を調整し、この原料を3段の攪拌式重合槽列反応器に毎時12kgで連続的に供給して単量体の重合を行った。3段目の槽より重合液を予熱器と減圧室より成る分離回収工程に導いた。
回収工程から出た樹脂は押出工程を経て粒状のペレットとしてゴム含有グラフト共重合体G4を得た。このペレットの組成分析を熱分解クロマトグラフィーで実施したところ、ジエン系ゴム成分26.0重量%、メチルメタクリレート単量体成分70.3重量%、メチルアクリレート単量体成分3.7重量%であった。
得られたゴム含有グラフト共重合体G4を灰化後、酸溶解してICP発光分光法および原子吸光法により、アルカリ金属含有量を測定した。結果は0.0004重量%であった。
Rubber-containing graft copolymer G4: A continuous bulk polymerization apparatus in which two 10-liter complete mixing tanks were connected in series to a plug flow tower type reaction tank having a volume of 15 liters was used. The plug flow tower type reaction vessel constitutes the particle formation step, the first complete mixing vessel as the second reactor constitutes the particle size adjustment step, and the third reactor constitutes the post-polymerization step.
In a plug flow column reactor, 27 parts by weight of ethylbenzene, 57.0 parts by weight of methyl methacrylate, 3.0 parts by weight of methyl acrylate, 13.0 parts by weight of Nipol NS320S manufactured by Nippon Zeon Co., Ltd. as a diene rubbery polymer, t -A raw material consisting of 0.22 parts by weight of dodecyl mercaptan, 0.050 part by weight of 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane was prepared, and this raw material was stirred in three stages. The monomer was polymerized by continuously feeding to the tank row reactor at 12 kg / hour. The polymerization solution was led from the third-stage tank to a separation and recovery step comprising a preheater and a decompression chamber.
The resin from the recovery step was subjected to an extrusion step to obtain a rubber-containing graft copolymer G4 as granular pellets. The composition analysis of the pellets was conducted by pyrolysis chromatography. As a result, the diene rubber component was 26.0% by weight, the methyl methacrylate monomer component was 70.3% by weight, and the methyl acrylate monomer component was 3.7% by weight. It was.
The obtained rubber-containing graft copolymer G4 was incinerated, then dissolved in an acid, and the alkali metal content was measured by ICP emission spectroscopy and atomic absorption. The result was 0.0004% by weight.

ゴム含有グラフト共重合体G5:前述と同様のプラグフロー塔型反応槽にエチルベンゼン27重量部、メチルメタクリレート57.0重量部、アクリロニトリル3.0重量部、ジエン系ゴム状重合体として、日本ゼオン社製Nipol NS320Sを13.0重量部、t−ドデシルメルカプタン0.30重量部、1、1−ビス(t−ブチルパーオキシ)3、3、5−トリメチルシクロヘキサン0.040重量部からなる原料を調整し、この原料を3段の攪拌式重合槽列反応器に毎時12kgで連続的に供給して単量体の重合を行った。3段目の槽より重合液を予熱器と減圧室より成る分離回収工程に導いた。
回収工程から出た樹脂は押出工程を経て粒状のペレットとしてゴム含有グラフト共重合体G5を得た。このペレットの組成分析を熱分解クロマトグラフィーで実施したところ、ジエン系ゴム成分26.0重量%、メチルメタクリレート単量体成分70.5重量%、アクリロニトリル単量体成分3.5重量%であった。
得られたゴム含有グラフト共重合体G5を灰化後、酸溶解してICP発光分光法および原子吸光法により、アルカリ金属含有量を測定した。結果は0.0006重量%であった。
Rubber-containing graft copolymer G5: 27 parts by weight of ethylbenzene, 57.0 parts by weight of methyl methacrylate, 3.0 parts by weight of acrylonitrile, and diene rubbery polymer in a plug flow tower type reaction vessel similar to the above. Preparation of raw material consisting of Nipol NS320S manufactured by 13.0 parts by weight, t-dodecyl mercaptan 0.30 parts by weight, 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane 0.040 parts by weight Then, this raw material was continuously supplied to a three-stage stirred polymerization tank train reactor at 12 kg / hour to polymerize the monomer. The polymerization solution was led from the third-stage tank to a separation and recovery step comprising a preheater and a decompression chamber.
The resin from the recovery step was subjected to an extrusion step to obtain a rubber-containing graft copolymer G5 as granular pellets. When the composition analysis of the pellets was performed by pyrolysis chromatography, the diene rubber component was 26.0% by weight, the methyl methacrylate monomer component was 70.5% by weight, and the acrylonitrile monomer component was 3.5% by weight. .
The obtained rubber-containing graft copolymer G5 was incinerated, then dissolved in acid, and the alkali metal content was measured by ICP emission spectroscopy and atomic absorption. The result was 0.0006% by weight.

ゴム含有グラフト共重合体G6:前述と同様のプラグフロー塔型反応槽にエチルベンゼン25重量部、メチルメタクリレート37.8重量部、アクリロニトリル12.6重量部、スチレン12.6部、ジエン系ゴム状重合体として、日本ゼオン社製Nipol NS320Sを12.0重量部、t−ドデシルメルカプタン0.35重量部、1、1−ビス(t−ブチルパーオキシ)3、3、5−トリメチルシクロヘキサン0.035重量部からなる原料を調整し、この原料を3段の攪拌式重合槽列反応器に毎時11kgで連続的に供給して単量体の重合を行った。3段目の槽より重合液を予熱器と減圧室より成る分離回収工程に導いた。
回収工程から出た樹脂は押出工程を経て粒状のペレットとしてゴム含有グラフト共重合体G6を得た。このペレットの組成分析を熱分解クロマトグラフィーで実施したところ、ジエン系ゴム成分24.0重量%、メチルメタクリレート単量体成分45.6重量%、アクリロニトリル単量体成分15.0重量%、スチレン単量体成分15.4重量%であった。
得られたゴム含有グラフト共重合体G6を灰化後、酸溶解してICP発光分光法および原子吸光法により、アルカリ金属含有量を測定した。結果は0.0004重量%であった。
Rubber-containing graft copolymer G6: In the same plug flow column reactor as described above, 25 parts by weight of ethylbenzene, 37.8 parts by weight of methyl methacrylate, 12.6 parts by weight of acrylonitrile, 12.6 parts of styrene, diene rubbery heavy As a combination, 12.0 parts by weight of Nipol NS320S manufactured by Nippon Zeon Co., Ltd., 0.35 parts by weight of t-dodecyl mercaptan, 0.035 weight of 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane The raw material consisting of parts was prepared, and this raw material was continuously supplied to a three-stage stirred polymerization tank train reactor at 11 kg / h to polymerize the monomer. The polymerization solution was led from the third-stage tank to a separation and recovery step comprising a preheater and a decompression chamber.
The resin from the recovery step was subjected to an extrusion step to obtain a rubber-containing graft copolymer G6 as granular pellets. The composition of the pellet was analyzed by pyrolysis chromatography. As a result, the diene rubber component was 24.0% by weight, the methyl methacrylate monomer component 45.6% by weight, the acrylonitrile monomer component 15.0% by weight, the styrene monomer The monomer component was 15.4% by weight.
The obtained rubber-containing graft copolymer G6 was incinerated and then dissolved in an acid, and the alkali metal content was measured by ICP emission spectroscopy and atomic absorption. The result was 0.0004% by weight.

ポリカーボネート樹脂(C)
ポリカーボネート樹脂(C)として、住友ダウ株式会社製 カリバー200−30を用いた。
Polycarbonate resin (C)
As the polycarbonate resin (C), Caliber 200-30 manufactured by Sumitomo Dow Co., Ltd. was used.

α−メチルスチレン−アクリロニトリル共重合体A1〜A2の製造
α−メチルスチレン−アクリロニトリル共重合体A1:容積が15リットルのプラグフロー塔型反応槽に10リットルの完全混合槽2基を直列に接続した連続的塊状重合装置を用いた。
プラグフロー塔型反応槽にエチルベンゼン30重量部、α−メチルスチレン49.7重量部、アクリロニトリル20.3重量部、t−ドデシルメルカプタン0.20重量部、1、1−ビス(t−ブチルパーオキシ)3、3、5−トリメチルシクロヘキサン0.090重量部からなる原料を調整し、この原料を3段の攪拌式重合槽列反応器に毎時9kgで連続的に供給して単量体の重合を行った。3段目の槽より重合液を予熱器と減圧室より成る分離回収工程に導いた。
回収工程から出た樹脂は押出工程を経て粒状のペレットとしてα−メチルスチレン−アクリロニトリル共重合体
A1を得た。このペレットの組成分析を熱分解クロマトグラフィーで実施したところ、α−メチルスチレン単量体成分71重量%、アクリロニトリル単量体成分29重量%であった。
Production of α-methylstyrene-acrylonitrile copolymers A1 to A2 α-methylstyrene-acrylonitrile copolymer A1: Two 10-liter complete mixing tanks were connected in series to a 15-liter plug flow column reactor. A continuous bulk polymerization apparatus was used.
In a plug flow column reactor, 30 parts by weight of ethylbenzene, 49.7 parts by weight of α-methylstyrene, 20.3 parts by weight of acrylonitrile, 0.20 parts by weight of t-dodecyl mercaptan, 1,1-bis (t-butylperoxy ) A raw material consisting of 0.090 parts by weight of 3,3,5-trimethylcyclohexane was prepared, and this raw material was continuously supplied to a three-stage stirred polymerization tank train reactor at 9 kg / hour to polymerize the monomer. went. The polymerization solution was led from the third-stage tank to a separation and recovery step comprising a preheater and a decompression chamber.
The resin from the recovery step was subjected to an extrusion step to obtain α-methylstyrene-acrylonitrile copolymer A1 as granular pellets. The composition analysis of the pellets was carried out by pyrolysis chromatography. As a result, the α-methylstyrene monomer component was 71% by weight and the acrylonitrile monomer component was 29% by weight.

α−メチルスチレン−アクリロニトリル共重合体A2:ステンレス製耐圧重合反応機に、減圧下で純水160部、ロジン酸カリウム2.5部、オレイン酸カリウム0.5部、ナフタレンスルホン酸ナトリウムのホルマリン縮合物0.7部、水酸化ナトリウム0.08部、α−メチルスチレン73部、アクリロニトリル27部、t−ドデシルメルカプタン0.15部を加えて十分攪拌しながら70℃に昇温した後、過硫酸カリウム0.7部を仕込み70℃で重合を開始した。重合転化率が68%を越えた時点で反応温度を76℃に上げて反応を継続し、重合転化率が96%を超えたことを確認して槽内温度を40℃以下に冷却した。得られたα−メチルスチレン−アクリロニトリル共重合体を多量のメタノール中に投入して沈殿させ、200メッシュのステンレス製金網に流した後、先ず適量のメタノール、次に多量の純水で洗浄した。その後、減圧下で含水率が1重量%以下になるまで乾燥させ、パウダー状のα−メチルスチレン−アクリロニトリル共重合体A2を得た。   α-methylstyrene-acrylonitrile copolymer A2: formalin condensation of 160 parts of pure water, 2.5 parts of potassium rosinate, 0.5 parts of potassium oleate, sodium naphthalenesulfonate in a pressure-resistant polymerization reactor made of stainless steel under reduced pressure 0.7 parts of sodium hydroxide, 0.08 parts of sodium hydroxide, 73 parts of α-methylstyrene, 27 parts of acrylonitrile, 0.15 part of t-dodecyl mercaptan and heated to 70 ° C. with sufficient stirring, followed by persulfuric acid 0.7 parts of potassium was charged and polymerization was started at 70 ° C. When the polymerization conversion rate exceeded 68%, the reaction temperature was raised to 76 ° C and the reaction was continued. After confirming that the polymerization conversion rate exceeded 96%, the temperature in the tank was cooled to 40 ° C or less. The obtained α-methylstyrene-acrylonitrile copolymer was poured into a large amount of methanol, precipitated, poured into a 200-mesh stainless steel wire mesh, and then washed with an appropriate amount of methanol and then with a large amount of pure water. Then, it was dried until the water content became 1% by weight or less under reduced pressure to obtain a powdery α-methylstyrene-acrylonitrile copolymer A2.

〔実施例1〜6、比較例1〜8〕
上記、ポリ乳酸樹脂(L)、ゴム含有グラフト共重合体(G1〜G6)、ポリカーボネート樹脂(C)、α−メチルスチレン−アクリロニトリル共重合体(A1〜A2)を表1に示す配合割合で混合し、30mmニ軸押出機を用いて240℃から260℃で溶融混合し、ペレット化した後、射出成形機にて各種試験片を作成して物性を評価した。それぞれの評価方法を以下に示し、評価結果を表1にまとめた。
[Examples 1-6, Comparative Examples 1-8]
The above-mentioned polylactic acid resin (L), rubber-containing graft copolymer (G1 to G6), polycarbonate resin (C), and α-methylstyrene-acrylonitrile copolymer (A1 to A2) are mixed in the mixing ratio shown in Table 1. Then, using a 30 mm twin screw extruder, it was melt-mixed at 240 ° C. to 260 ° C. and pelletized, and various test pieces were prepared with an injection molding machine to evaluate physical properties. Each evaluation method is shown below, and the evaluation results are summarized in Table 1.

各物性の評価方法
加工性:ISO 1133に基づき220℃、10Kgの条件でメルトインデックスを測定した。単位はg/10分。得られた測定結果に基づいて下記の様に相対区分した。
◎(優秀):40以上
○(良好):20以上〜40未満
△(微劣):5以上〜20未満
×(不良):5未満
Evaluation method of each physical property Workability: Melt index was measured at 220 ° C. and 10 kg based on ISO 1133. The unit is g / 10 minutes. Based on the measurement results obtained, relative classification was performed as follows.
◎ (excellent): 40 or more ○ (good): 20 or more to less than 40 △ (slightly inferior): 5 or more to less than 20 × (defect): less than 5

衝撃強度:ISO 179に準拠し、ノッチ付きのシャルピー衝撃値を測定した。単位はkJ/m
得られた測定結果に基づいて下記の様に相対区分した。
◎(優秀):15以上
○(良好):10以上〜15未満
△(微劣):5以上10未満
×(不良):5未満
Impact strength: Based on ISO 179, a Charpy impact value with a notch was measured. Unit is kJ / m 2.
Based on the measurement results obtained, relative classification was performed as follows.
◎ (Excellent): 15 or more ○ (Good): 10 or more and less than 15 △ (Slightly inferior): 5 or more and less than 10 × (Bad): Less than 5

耐熱性:ISO 75に準拠し、荷重1.8MPaの荷重たわみ温度を測定した。単位は℃。
得られた測定結果に基づいて下記の様に相対区分した。
◎(優秀):80℃以上
○(良好):75℃以上〜80℃未満
△(微劣):65℃以上〜75℃未満
×(不良):65℃未満
Heat resistance: Based on ISO 75, the deflection temperature under load of 1.8 MPa was measured. The unit is ° C.
Based on the measurement results obtained, relative classification was performed as follows.
◎ (Excellent): 80 ° C. or higher ○ (Good): 75 ° C. or higher to lower than 80 ° C.

外観の均一性:2箇所にゲートをもつデュポンインパクト測定用テストピースを肉眼で判定し、
下記の様に相対区分した。
◎(優秀):まったくウェルドラインが観察されず、表面光沢も良好。
○(良好):明確なウェルドラインは認められないが、テストピース中央の光沢がやや不均一。
△(微劣):ウェルドラインが認められ、光沢も不均一。
×(不良):明確なウェルドラインが認められる。
Appearance uniformity: The test piece for measuring DuPont impact with two gates is judged with the naked eye,
The relative classification was as follows.
◎ (Excellent): No weld line is observed and surface gloss is good.
○ (Good): No clear weld line is observed, but the gloss at the center of the test piece is slightly uneven.
Δ (slightly inferior): Weld line is observed and gloss is not uniform.
X (defect): A clear weld line is recognized.

Figure 2009132778
Figure 2009132778

以上のように、本発明は、衝撃強度、耐熱性、加工性、外観の均一性のバランスに優れた熱可塑性樹脂組成物が得られるものであり、車両分野、家電分野、建材分野、サニタリー分野等に広く用いることができる。
また、石油資源消費の抑制にも貢献できる環境対応型材料である。
As described above, the present invention provides a thermoplastic resin composition having an excellent balance of impact strength, heat resistance, workability, and appearance uniformity, and is used in the vehicle field, home appliance field, building material field, and sanitary field. Can be used widely.
It is also an environmentally friendly material that can contribute to the reduction of petroleum resource consumption.

Claims (4)

ポリ乳酸樹脂(L)5〜60重量部、ゴム含有グラフト共重合体(G)10〜70重量部、ポリカーボネート樹脂(C)5〜50重量部、α−メチルスチレン−アクリロニトリル共重合体(A)10〜80重量部からなる熱可塑性樹脂組成物(ただし、(L)、(G)、(C)、(A)の合計は100重量部である)であって、ゴム含有グラフト共重合体(G)のグラフト重合に用いる単量体のうち、70重量%以上が(メタ)アクリル酸エステル系単量体であることを特徴とする熱可塑性樹脂組成物。   5 to 60 parts by weight of polylactic acid resin (L), 10 to 70 parts by weight of rubber-containing graft copolymer (G), 5 to 50 parts by weight of polycarbonate resin (C), α-methylstyrene-acrylonitrile copolymer (A) 10 to 80 parts by weight of a thermoplastic resin composition (however, the total of (L), (G), (C) and (A) is 100 parts by weight), and a rubber-containing graft copolymer ( A thermoplastic resin composition characterized in that 70% by weight or more of the monomer used in the graft polymerization of G) is a (meth) acrylic acid ester monomer. α−メチルスチレン−アクリロニトリル共重合体(A)が、α−メチルスチレン60〜80重量%およびアクリロニトリル20〜40重量%からなる共重合体である請求項1に記載の熱可塑性樹脂組成物。   The thermoplastic resin composition according to claim 1, wherein the α-methylstyrene-acrylonitrile copolymer (A) is a copolymer comprising 60 to 80% by weight of α-methylstyrene and 20 to 40% by weight of acrylonitrile. ゴム含有グラフト共重合体(G)のグラフト重合に用いる単量体のうち、80重量%以上がメチルメタクリレートおよび/またはメチルアクリレートであることを特徴とする請求項1〜2何れかに記載の熱可塑性樹脂組成物。   3. The heat according to claim 1, wherein 80% by weight or more of the monomer used for graft polymerization of the rubber-containing graft copolymer (G) is methyl methacrylate and / or methyl acrylate. Plastic resin composition. ゴム含有グラフト共重合体(G)のアルカリ金属含有量が0.01重量%以下である請求項1〜3何れかに記載の熱可塑性樹脂組成物。   The thermoplastic resin composition according to any one of claims 1 to 3, wherein the rubber-containing graft copolymer (G) has an alkali metal content of 0.01% by weight or less.
JP2007308776A 2007-11-29 2007-11-29 Thermoplastic resin composition Pending JP2009132778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007308776A JP2009132778A (en) 2007-11-29 2007-11-29 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007308776A JP2009132778A (en) 2007-11-29 2007-11-29 Thermoplastic resin composition

Publications (1)

Publication Number Publication Date
JP2009132778A true JP2009132778A (en) 2009-06-18

Family

ID=40864983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007308776A Pending JP2009132778A (en) 2007-11-29 2007-11-29 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP2009132778A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013256591A (en) * 2012-06-13 2013-12-26 Panasonic Corp Polylactic acid resin composition, method for producing molded article, and molded article

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045486A (en) * 2004-07-02 2006-02-16 Nippon A & L Kk Thermoplastic resin composition
JP2006137908A (en) * 2004-11-15 2006-06-01 Umg Abs Ltd Polylactic acid-based thermoplastic resin composition and molded article of the same
JP2007161837A (en) * 2005-12-13 2007-06-28 Toray Ind Inc Styrene-based resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045486A (en) * 2004-07-02 2006-02-16 Nippon A & L Kk Thermoplastic resin composition
JP2006137908A (en) * 2004-11-15 2006-06-01 Umg Abs Ltd Polylactic acid-based thermoplastic resin composition and molded article of the same
JP2007161837A (en) * 2005-12-13 2007-06-28 Toray Ind Inc Styrene-based resin composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012055537; 古本宏二: プラスチック技術全書 8 ポリスチレン樹脂 , 19701120, 第191頁, 株式会社 工業調査会 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013256591A (en) * 2012-06-13 2013-12-26 Panasonic Corp Polylactic acid resin composition, method for producing molded article, and molded article

Similar Documents

Publication Publication Date Title
AU2003295672A1 (en) High flow engineering theremoplastic compositions and products made therefrom
US20230002608A1 (en) Thermoplastic compounds containing recycling material with superior quality
JP2011219558A (en) Thermoplastic resin composition and molding
JP2006045486A (en) Thermoplastic resin composition
AU596724B2 (en) Heat and impact resistant resin composition
KR20090119573A (en) Weatherable thermoplastic resin composition
JP2006241283A (en) Thermoplastic resin composition and resin molded product composed of the same
KR20150068313A (en) COMPOSITION OF STYRENE RESIN HAVING Chemical Resistance and SUPERIOR HEAT RESISTANCE AND MOLDED ARTICLE MADE FROM the SAME
JP2006045485A (en) Thermoplastic resin composition
JP2015178567A (en) Thermoplastic resin composition and resin molding
JP2007211206A (en) Thermoplastic resin composition
JP2009019083A (en) Thermoplastic resin composition
JP4530123B2 (en) Thermoplastic resin composition
JP5583884B2 (en) Thermoplastic resin composition
JP5214955B2 (en) Thermoplastic resin composition
JP2010059279A (en) Thermoplastic resin composition
JP5232503B2 (en) Thermoplastic resin composition
JP2009132778A (en) Thermoplastic resin composition
JP3080217B2 (en) Thermoplastic copolymer and thermoplastic resin composition using the same
EP0381358A1 (en) Low gloss agents, process for production thereof, low gloss thermoplastic resin compositions and molded articles
JP2006056961A (en) Thermoplastic resin composition and resin molding composed of the same
KR20130068871A (en) Heat-resistant abs resin composition with excellent processability and resistance for discoloration at high temperature and method for preparing the same
JP4805464B2 (en) Thermoplastic resin composition
JP2009132776A (en) Thermoplastic resin composition
JPH11116767A (en) Thermoplastic resin composition excellent in coloring property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130416