JP2007211206A - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition Download PDF

Info

Publication number
JP2007211206A
JP2007211206A JP2006035149A JP2006035149A JP2007211206A JP 2007211206 A JP2007211206 A JP 2007211206A JP 2006035149 A JP2006035149 A JP 2006035149A JP 2006035149 A JP2006035149 A JP 2006035149A JP 2007211206 A JP2007211206 A JP 2007211206A
Authority
JP
Japan
Prior art keywords
resin
rubber
weight
styrene
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006035149A
Other languages
Japanese (ja)
Inventor
Katsunori Yano
克典 矢野
Akio Yagawa
昭生 箭川
Akihiro Yamamoto
昭広 山本
Nobuyuki Tajima
信幸 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon A&L Inc
Original Assignee
Nippon A&L Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon A&L Inc filed Critical Nippon A&L Inc
Priority to JP2006035149A priority Critical patent/JP2007211206A/en
Publication of JP2007211206A publication Critical patent/JP2007211206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the balance of impact resistance strength, heat resistance and processability of a resin composition containing a biodegradable resin. <P>SOLUTION: The thermoplastic resin composition comprises 1-89.5 pts.wt.% of a biodegradable resin (A), 98.5-10 wt.% of a rubber-reinforced styrene-based resin (B) and 0.5-40 wt.% of a (meth)acrylic acid ester (co)polymer (C). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は熱可塑性樹脂組成物に関するものである。詳しくは、耐衝撃強度、耐熱性、加工性のバランスに優れた生分解性樹脂を含む熱可塑性樹脂組成物に関するものである。   The present invention relates to a thermoplastic resin composition. Specifically, the present invention relates to a thermoplastic resin composition containing a biodegradable resin excellent in the balance of impact strength, heat resistance, and workability.

近年、地球的規模での環境問題として、石油化学製品の使用増加による石油資源の将来性が危ぶまれている。例えば、ポリ乳酸樹脂は植物であるとうもろこしや芋類を原料として得られる乳酸からなる樹脂であり、生分解性を有する一方で上記石油を原料としない環境対応型の樹脂として知られている。しかしながら、ポリ乳酸樹脂は、その生分解性から、特に高湿度環境下において長期使用に耐え得る耐久性が懸念され、またノッチ付き衝撃強度および、耐熱性に劣るといった欠点がある。
一方、ABS樹脂は、優れた物性バランスおよび成形加工性を有しており、広範な分野に利用されている。
このため、例えば特開2000−327847号公報(特許文献1)には、脂肪族ポリエステル構造を持つ重合体とABS樹脂を含むポリオレフィンを配合して、自然環境の中で崩壊する高分子の改良技術が提案されている。しかしながら、これら組成物は、成形品の成形及び使用において樹脂の崩壊や劣化が危惧されるほか、耐衝撃性等の物性バランス面で必ずしも満足できる材料とは言い難い。
また、特開2004−269720号公報(特許文献2)、特開2005−171204号公報(特許文献3)には、ポリ乳酸とメタアクリル酸エステル系重合体からなる樹脂組成物が提案されているが、耐衝撃性が不十分であり、また十分な耐熱性を得るためには、メタクリル酸エステル系重合体が過剰に必要となり、結果として物性バランスが低下するという問題が発生する。
特開2000−327847号公報 特開2004−269720号公報 特開2005−171204号公報
In recent years, as an environmental problem on a global scale, the future of petroleum resources due to increased use of petrochemical products has been threatened. For example, polylactic acid resin is a resin made of lactic acid obtained from plant corn and moss as a raw material, and is known as an environmentally friendly resin that is biodegradable but does not use petroleum as a raw material. However, the polylactic acid resin is concerned with durability that can withstand long-term use, particularly in a high humidity environment, due to its biodegradability, and has the disadvantages of being inferior in notched impact strength and heat resistance.
On the other hand, ABS resins have excellent physical property balance and molding processability, and are used in a wide range of fields.
For this reason, for example, JP 2000-327847 A (Patent Document 1) contains a polymer having an aliphatic polyester structure and a polyolefin containing an ABS resin to improve a polymer that collapses in a natural environment. Has been proposed. However, these compositions are feared for resin collapse and deterioration during molding and use of molded products, and are not necessarily satisfactory materials in terms of balance of physical properties such as impact resistance.
JP-A-2004-269720 (Patent Document 2) and JP-A-2005-171204 (Patent Document 3) propose a resin composition comprising polylactic acid and a methacrylic ester polymer. However, the impact resistance is insufficient, and in order to obtain sufficient heat resistance, a methacrylic ester polymer is excessively required, resulting in a problem that the physical property balance is lowered.
JP 2000-327847 A JP 2004-269720 A JP-A-2005-171204

本発明者らは、生分解性樹脂とゴム強化スチレン系樹脂とからなる組成物における上記の品質上の問題点の改良について鋭意検討した結果、生分解性樹脂とゴム強化スチレン系樹脂とからなる組成物に特定量の(メタ)アクリル酸エステル(共)重合体を配合してなる組成物が、耐衝撃強度、耐熱性、加工性のバランスに優れた樹脂組成物であることを見い出し、本発明に到達したものである。   As a result of intensive investigations on improvement of the above-mentioned quality problems in the composition comprising a biodegradable resin and a rubber-reinforced styrene resin, the present inventors have made a biodegradable resin and a rubber-reinforced styrene resin. The composition comprising a specific amount of a (meth) acrylic acid ester (co) polymer blended with the composition was found to be a resin composition with an excellent balance of impact strength, heat resistance and processability. The invention has been reached.

すなわち本発明は、生分解性樹脂(A)1〜89.5重量%、ゴム強化スチレン系樹脂(B)98.5〜10重量%および(メタ)アクリル酸エステル(共)重合体(C)0.5〜40重量%からなる熱可塑性樹脂組成物を提供するものである。   That is, the present invention relates to biodegradable resin (A) 1 to 89.5% by weight, rubber-reinforced styrene resin (B) 98.5 to 10% by weight, and (meth) acrylic acid ester (co) polymer (C). A thermoplastic resin composition comprising 0.5 to 40% by weight is provided.

本発明における生分解性樹脂を含む樹脂組成物は、耐衝撃強度、耐熱性、加工性のバランスに優れるという効果を奏する。   The resin composition containing the biodegradable resin in the present invention has an effect of being excellent in the balance of impact strength, heat resistance, and processability.

以下、本発明の熱可塑性樹脂組成物につき詳細に説明する。
本発明の熱可塑性樹脂組成物を構成する生分解性樹脂(A)としては、ポリエステル系の樹脂であり、ポリ乳酸、ポリブチレンサクシネート、ポリブチレンサクシネート・アジペート、ポリブチレンサクシネート・テレフタレート、ポリエチレンサクシネート、およびポリブチレンサクシネート・カーボネート等のポリアルキレンサクシネート、ポリグリコール酸、ポリカプロラクトン、ポリヒドロキシ酪酸、ポリヒドロキシ吉草酸、ヒドロキシ酪酸、ヒドロキシ吉草酸共重合体等が挙げられる。これらのうち、特にポリ乳酸、ポリブチレンサクシネート、ポリブチレンサクシネート・アジペート、ポリブチレンサクシネート・テレフタレート、ポリエチレンサクシネートが好ましい。市販されているこれら生分解性樹脂としては、例えば三井化学(株)製 商品名:レイシア、ユニチカ(株)製 商品名:テラマック、昭和高分子(株)製 商品名:ビオノーレ、BASF社製 商品名:エコフレックス、デュポン社製 商品名:バイオマックス、(株)日本触媒製 商品名:ルナーレ、三菱瓦斯化学(株)製 商品名:ユーペック等が挙げられる。
Hereinafter, the thermoplastic resin composition of the present invention will be described in detail.
The biodegradable resin (A) constituting the thermoplastic resin composition of the present invention is a polyester-based resin, such as polylactic acid, polybutylene succinate, polybutylene succinate adipate, polybutylene succinate terephthalate, Examples include polyethylene succinate and polyalkylene succinates such as polybutylene succinate carbonate, polyglycolic acid, polycaprolactone, polyhydroxybutyric acid, polyhydroxyvaleric acid, hydroxybutyric acid, hydroxyvaleric acid copolymer, and the like. Of these, polylactic acid, polybutylene succinate, polybutylene succinate adipate, polybutylene succinate terephthalate, and polyethylene succinate are particularly preferable. Examples of these biodegradable resins available on the market include, for example, products manufactured by Mitsui Chemicals, Inc., trade names: Reiacia, manufactured by Unitika Ltd., trade names: Terramac, manufactured by Showa Polymer Co., Ltd., trade names: Bionore, manufactured by BASF Name: Ecoflex, manufactured by DuPont, Inc. Product name: Biomax, manufactured by Nippon Shokubai Co., Ltd. Product name: Lunare, manufactured by Mitsubishi Gas Chemical Co., Ltd.

また、本発明に用いるゴム強化スチレン系樹脂(B)とは、ゴム状重合体の存在下にスチレン系単量体またはスチレン系単量体とシアン化ビニル系単量体および必要に応じて他の共重合可能な単量体の1種または2種以上とを共重合してなる樹脂である。
ゴム強化スチレン系樹脂(B)を構成することのできるゴム状重合体としては、ポリブタジエン、ポリイソプレン、ブタジエンースチレン共重合体、イソプレン−スチレン共重合体、ブタジエン−アクリロニトリル共重合体、ブタジエン−イソプレン−スチレン共重合体、ポリクロロプレンなどのジエン系ゴム、エチレン−プロピレン共重合体、エチレン−プロピレン−非共役ジエン共重合体、エチレン−ブテン−1−非共役ジエン共重合体、またポリブチルアクリレートなどのアクリル系ゴム、ポリオルガノシロキサン系ゴム、さらにはこれらの2種以上のゴムからなる複合ゴム等が挙げられ、一種又は二種以上用いることができる。これらのうち、特にジエン系ゴムが好ましい。
The rubber-reinforced styrene resin (B) used in the present invention is a styrene monomer or a styrene monomer and a vinyl cyanide monomer in the presence of a rubber-like polymer, and other if necessary. It is a resin obtained by copolymerizing one or two or more of the copolymerizable monomers.
Examples of the rubbery polymer that can constitute the rubber-reinforced styrene resin (B) include polybutadiene, polyisoprene, butadiene-styrene copolymer, isoprene-styrene copolymer, butadiene-acrylonitrile copolymer, butadiene-isoprene. -Diene rubber such as styrene copolymer, polychloroprene, ethylene-propylene copolymer, ethylene-propylene-nonconjugated diene copolymer, ethylene-butene-1-nonconjugated diene copolymer, polybutyl acrylate, etc. Acrylic rubber, polyorganosiloxane rubber, and composite rubber composed of two or more of these rubbers can be used, and one or two or more of them can be used. Of these, diene rubber is particularly preferable.

スチレン系単量体としては、スチレン、α−メチルスチレン、パラメチルスチレン、ブロムスチレン等が挙げられ、一種又は二種以上用いることができる。特にスチレン、α−メチルスチレンが好ましい。
スチレン系単量体と共に用いることのできるシアン化ビニル系単量体としては、アクリロニトリル、メタクリロニトリル等が挙げられ、またスチレン系単量体とシアン化ビニル系単量体と共に用いることのできる他の共重合可能な単量体としては、メタクリル酸メチル、アクリル酸メチル等の(メタ)アクリル酸エステル系単量体、無水マレイン酸、マレイン酸ジメチル等の不飽和酸系単量体、N−フェニルマレイミド、N−シクロヘキシルマレイミドなどのマレイミド系単量体などが挙げられ、それらはそれぞれ一種又は二種以上用いることができる。
Examples of the styrene monomer include styrene, α-methylstyrene, paramethylstyrene, bromostyrene, and the like, and one or two or more types can be used. In particular, styrene and α-methylstyrene are preferable.
Examples of vinyl cyanide monomers that can be used with styrene monomers include acrylonitrile, methacrylonitrile, and others that can be used with styrene monomers and vinyl cyanide monomers. Examples of the copolymerizable monomer include (meth) acrylic acid ester monomers such as methyl methacrylate and methyl acrylate, unsaturated acid monomers such as maleic anhydride and dimethyl maleate, N- Examples thereof include maleimide monomers such as phenylmaleimide and N-cyclohexylmaleimide, and these can be used alone or in combination of two or more.

ゴム強化スチレン系樹脂(B)を構成するゴム状重合体と単量体合計(スチレン系単量体、シアン化ビニル系単量体および他の共重合可能な単量体)との組成比率には制限はないが、組成物の物性バランス面、特に耐衝撃強度の面より、ゴム状重合体5〜70重量%、単量体合計95〜30重量%であることが好ましい。
また、ゴム強化スチレン系樹脂(B)の重合方法についても特に制限はなく、乳化重合、懸濁重合、塊状重合、溶液重合またはこれらの組み合わせにより製造することができる。
The composition ratio of the rubber-like polymer constituting the rubber-reinforced styrene resin (B) and the total monomer (styrene monomer, vinyl cyanide monomer and other copolymerizable monomers) Although there is no limitation, it is preferable that the rubber-like polymer is 5 to 70% by weight and the total amount of monomers is 95 to 30% by weight from the viewpoint of the balance of physical properties of the composition, particularly the impact strength.
Moreover, there is no restriction | limiting in particular also about the polymerization method of rubber reinforcement | strengthening styrene-type resin (B), It can manufacture by emulsion polymerization, suspension polymerization, block polymerization, solution polymerization, or these combination.

本発明において用いられるアクリル酸エステル(共)重合体(C)とは、(メタ)アクリル酸エステル単量体を(共)重合してなる(共)重合体である。
(メタ)アクリル酸エステル単量体としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸i−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸i−ブチル、(メタ)アクリル酸s−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸2−ヒドロキシエチル等が挙げられる。
The acrylic ester (co) polymer (C) used in the present invention is a (co) polymer obtained by (co) polymerizing a (meth) acrylic ester monomer.
Examples of (meth) acrylic acid ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, and (meth) acrylic acid n. -Butyl, i-butyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, cyclohexyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate , (Meth) acrylic acid 2-ethylhexyl, (meth) acrylic acid 2-hydroxyethyl, and the like.

本発明における熱可塑性樹脂組成物は、上記の生分解性樹脂(A)1〜89.5重量%、ゴム強化スチレン系樹脂(B)98.5〜10重量%および(メタ)アクリル酸エステル(共)重合体(C)0.5〜40重量%からなるものであり、この範囲外では樹脂組成物における耐衝撃強度、耐熱性、加工性のバランスが低下するため好ましくない。好ましくは生分解性樹脂(A)1〜69.5重量%、ゴム強化スチレン系樹脂(B)98.5〜30重量%および(メタ)アクリル酸エステル(共)重合体(C)0.5〜30重量%である。   The thermoplastic resin composition of the present invention comprises the biodegradable resin (A) 1 to 89.5% by weight, the rubber-reinforced styrene resin (B) 98.5 to 10% by weight, and a (meth) acrylic acid ester ( Co) polymer (C) is composed of 0.5 to 40% by weight. Outside this range, the balance of impact resistance, heat resistance and workability in the resin composition is lowered, which is not preferable. Preferably, biodegradable resin (A) 1-69.5% by weight, rubber-reinforced styrene resin (B) 98.5-30% by weight and (meth) acrylic acid ester (co) polymer (C) 0.5 ~ 30% by weight.

さらに本発明の熱可塑性樹脂組成物の耐衝撃強度と耐熱性のバランスを調整するために、ゴム強化スチレン系樹脂(B)中のゴム状重合体の含有濃度の調整を目的とし、スチレン系単量体またはスチレン系単量体とシアン化ビニル系単量体および必要に応じて他の共重合可能な単量体の1種または2種以上とを共重合してなるスチレン系共重合体樹脂(D)を配合することができる。
スチレン系単量体またはスチレン系単量体とシアン化ビニル系単量体および必要に応じて他の共重合可能な単量体としては、上記ゴム強化スチレン系樹脂(B)の構成成分として例示したものが挙げられる。さらに耐熱性付与のために、スチレン系単量体としてα−メチルスチレンや、またN−フェニルマレイミド、N−シクロヘキシルマレイミドなどのマレイミド系単量体を用いることが好ましい。
Furthermore, in order to adjust the balance between the impact strength and the heat resistance of the thermoplastic resin composition of the present invention, the purpose is to adjust the content concentration of the rubber-like polymer in the rubber-reinforced styrene resin (B). A styrene copolymer resin obtained by copolymerizing a monomer or a styrene monomer with a vinyl cyanide monomer and, if necessary, one or more other copolymerizable monomers. (D) can be blended.
Examples of the styrene-based monomer or the styrene-based monomer and the vinyl cyanide monomer, and other copolymerizable monomers as necessary, are examples of components of the rubber-reinforced styrene-based resin (B). The thing which was done is mentioned. Furthermore, in order to impart heat resistance, it is preferable to use α-methylstyrene or maleimide monomers such as N-phenylmaleimide and N-cyclohexylmaleimide as styrene monomers.

また、本発明における熱可塑性樹脂組成物には、上記各成分の他に、その物性を損なわない限りにおいて、その目的に応じて樹脂の混合時、成形時等に安定剤、顔料、染料、補強剤(タルク、マイカ、クレー、ガラス繊維等)、着色剤(カーボンブラック、酸化チタン等)、紫外線吸収剤、酸化防止剤、滑剤、離型剤、可塑剤、帯電防止剤、無機および有機系抗菌剤等の公知の添加剤を配合することができる。   In addition to the above components, the thermoplastic resin composition according to the present invention includes stabilizers, pigments, dyes, reinforcements at the time of resin mixing and molding depending on the purpose, as long as the physical properties are not impaired. Agents (talc, mica, clay, glass fiber, etc.), colorants (carbon black, titanium oxide, etc.), UV absorbers, antioxidants, lubricants, mold release agents, plasticizers, antistatic agents, inorganic and organic antibacterials Known additives such as an agent can be blended.

本発明における生分解性樹脂(A)、ゴム強化スチレン系樹脂(B)、および(メタ)アクリル酸エステル(共)重合体(C)の混合方法としては、バンバリーミキサー、押出機等公知の混練機を用いる方法が挙げられる。又混合順序にも何ら制限はなく、三成分の一括混練はもちろんのこと、予め任意の二成分を混合した後に残る一成分を混合することも可能である。   As a method for mixing the biodegradable resin (A), the rubber-reinforced styrene resin (B), and the (meth) acrylic acid ester (co) polymer (C) in the present invention, a known kneading such as a Banbury mixer or an extruder. The method using a machine is mentioned. There is no limitation on the order of mixing, and it is possible to mix one component remaining after mixing two components in advance, as well as batch mixing of the three components.

[実施例]
以下に実施例を用いて本発明を具体的に説明するが、本発明はこれらによって何ら制限されるものではない。
[Example]
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited by these.

生分解性樹脂(A)
A−1:ポリ乳酸(三井化学(株)社製 LACEA H−400)
A−2:ポリ乳酸(三井化学(株)社製 LACEA H−440)
Biodegradable resin (A)
A-1: Polylactic acid (LACEA H-400 manufactured by Mitsui Chemicals, Inc.)
A-2: Polylactic acid (LACEA H-440 manufactured by Mitsui Chemicals, Inc.)

ゴム強化スチレン系樹脂(B)
ゴム強化スチレン系樹脂(B−1〜B−4)を、それぞれ以下の方法により製造した。
B−1:容積が15リットルのプラグフロー塔型反応槽(「新ポリマー製造プロセス」(工業調査会、佐伯康治/尾見信三著)185頁、図7.5(b)記載の三井東圧タイプと同種の反応槽で10段に仕切られたC1/C0=0.955を示すもの。)に10リットルの完全混合槽2基を直列に接続した連続的重合装置を用いてゴム強化スチレン系樹脂を製造した。プラグフロー塔型反応槽が粒子形成工程を、第2反応器である1基目の完全混合槽が粒子径調整工程を、第3反応器が後重合工程を構成する。
プラグフロー塔型反応槽にスチレン54.6重量部、アクリロニトリル17.2重量部、エチルベンゼン22.4重量部、日本ゼオン社製Nipol NS320Sを5.8重量部、t−ドデシルメルカプタン0.20重量部、1、1−ビス(t−ブチルパーオキシ)3、3、5−トリメチルシクロヘキサン0.045重量部からなる原料を調整し、この原料を3段の攪拌式重合槽列反応器に10kg/hで連続的に供給して単量体の重合をおこなった。3段目の槽より重合液を予熱器と減圧室より成る分離回収工程に導いた。
回収工程から出た樹脂は押出工程を経て粒状のペレットとしてゴム強化スチレン系樹脂B−1を得た。
Rubber reinforced styrene resin (B)
Rubber-reinforced styrene resins (B-1 to B-4) were produced by the following methods, respectively.
B-1: Plug flow column reactor with a volume of 15 liters ("New polymer production process" (Industry Research Committee, Koji Saeki / Shinzo Omi), page 185, Mitsui Higashi described in Fig. 7.5 (b) Rubber-reinforced styrene using a continuous polymerization apparatus in which two 10 liter complete mixing tanks are connected in series to a pressure type reactor of the same kind as C1 / C0 = 0.955 divided into 10 stages. Based resin was produced. The plug flow tower type reaction vessel constitutes the particle formation step, the first complete mixing vessel as the second reactor constitutes the particle size adjustment step, and the third reactor constitutes the post-polymerization step.
54.6 parts by weight of styrene, 17.2 parts by weight of acrylonitrile, 22.4 parts by weight of ethylbenzene, 5.8 parts by weight of Nipol NS320S manufactured by Nippon Zeon Co., Ltd., 0.20 parts by weight of t-dodecyl mercaptan A raw material consisting of 0.045 parts by weight of 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane was prepared, and the raw material was added to a three-stage stirred polymerization tank train reactor at 10 kg / h. The monomer was polymerized by continuously feeding in. The polymerization solution was led from the third-stage tank to a separation and recovery step comprising a preheater and a decompression chamber.
The resin discharged from the recovery step was subjected to an extrusion step to obtain rubber-reinforced styrene resin B-1 as granular pellets.

B−2:上記製法において、スチレン62.2重量部、アクリロニトリル10.3重量部、エチルベンゼン17.5重量部、日本ゼオン社製Nipol NS310Sを10.0重量部、t−ドデシルメルカプタン0.20重量部、1、1−ビス(t−ブチルパーオキシ)3、3、5−トリメチルシクロヘキサン0.055重量部からなる原料を調整し、プラグフロー塔型反応槽に供給した以外は、上記製法と同様に行い、ゴム強化スチレン系樹脂B−2を得た。 B-2: In the above production method, 62.2 parts by weight of styrene, 10.3 parts by weight of acrylonitrile, 17.5 parts by weight of ethylbenzene, 10.0 parts by weight of Nipol NS310S manufactured by Nippon Zeon Co., Ltd., 0.20 parts by weight of t-dodecyl mercaptan Parts, 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane Same as the above production method except that 0.055 parts by weight was prepared and supplied to a plug flow column type reaction vessel To obtain a rubber-reinforced styrene-based resin B-2.

B−3:上記製法において、スチレン84.3重量部、エチルベンゼン10.5重量部、旭化成社製ジエン55AEを5.2重量部、1、1−ビス(t−ブチルパーオキシ)3、3、5−トリメチルシクロヘキサン0.04重量部からなる原料を調整し、プラグフロー塔型反応槽に供給した以外は、上記製法と同様に行い、ゴム強化スチレン系樹脂B−3を得た。 B-3: In the above production method, 84.3 parts by weight of styrene, 10.5 parts by weight of ethylbenzene, 5.2 parts by weight of diene 55AE manufactured by Asahi Kasei Co., 1, 1, 1-bis (t-butylperoxy) 3, 3, A rubber-reinforced styrene-based resin B-3 was obtained in the same manner as in the above production method except that a raw material consisting of 0.04 part by weight of 5-trimethylcyclohexane was prepared and supplied to a plug flow column type reaction vessel.

B−4:窒素置換した反応器にポリブタジエンラテックス(重量平均粒子径0.25μ、ゲル含有量90%)50部(固形分)、水150部、エチレンジアミン四酢酸二ナトリウム塩0.1部、硫酸第2鉄0.001部、ナトリウムホルムアルデヒドスルホキシレート0.4部を入れ、60℃に加熱後、アクリロニトリル12.5部、スチレン37.5部およびキュメンハイドロパーオキサイド0.3部からなる混合物を3時間に亘り連続的に添加し、更に60℃で2時間重合した。その後、塩析・脱水・乾燥後、ゴム強化スチレン系樹脂B−4を得た。 B-4: 50 parts (solid content) of polybutadiene latex (weight average particle size 0.25 μ, gel content 90%), 150 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, sulfuric acid in a nitrogen-substituted reactor Ferric iron 0.001 part, sodium formaldehyde sulfoxylate 0.4 part, after heating to 60 ° C., a mixture consisting of 12.5 parts acrylonitrile, 37.5 parts styrene and 0.3 parts cumene hydroperoxide It was continuously added over 3 hours, and further polymerized at 60 ° C. for 2 hours. Then, after salting out, dehydrating and drying, rubber reinforced styrene resin B-4 was obtained.

(メタ)アクリル酸エステル(共)重合体(C)
C−1:ポリメタクリル酸メチル(住友化学(株)製 スミペックスMG−SS)
C−2:ポリメタクリル酸メチル(住友化学(株)製 スミペックスMH−F)
(Meth) acrylic acid ester (co) polymer (C)
C-1: Polymethyl methacrylate (Sumitex MG-SS manufactured by Sumitomo Chemical Co., Ltd.)
C-2: Polymethyl methacrylate (Sumitex MH-F manufactured by Sumitomo Chemical Co., Ltd.)

スチレン系共重合体樹脂(D)
D−1:スチレン・N−フェニルマレイミド共重合体(電気化学(株)製 デンカIP MS−NC)
D−2:スチレン75重量部およびアクリロニトリル25重量部を公知の塊状重合法により共重合を行い共重合体D−2を製造した。
Styrene copolymer resin (D)
D-1: Styrene / N-phenylmaleimide copolymer (DENKA IP MS-NC, manufactured by Electrochemical Co., Ltd.)
D-2: 75 parts by weight of styrene and 25 parts by weight of acrylonitrile were copolymerized by a known bulk polymerization method to produce a copolymer D-2.

〔実施例1〜10、比較例1〜6〕
上記、生分解性樹脂(A−1〜2)、ゴム強化スチレン系樹脂(B−1〜4)、(メタ)アクリル酸エステル(共)重合体(C−1〜2)およびスチレン系共重合体樹脂(D−1〜2)を表1に示す配合割合で混合し、30mmニ軸押出機を用いて220℃で溶融混合し、ペレット化した後、射出成形機にて各種試験片を作成し、物性を評価した結果を表1に示す。なお、それぞれの評価方法を以下に示す。
[Examples 1 to 10, Comparative Examples 1 to 6]
Biodegradable resin (A-1 to 2), rubber-reinforced styrene resin (B-1 to 4), (meth) acrylic acid ester (co) polymer (C-1 to 2) and styrene copolymer Combined resin (D-1 to 2) is mixed at the blending ratio shown in Table 1, melt mixed at 220 ° C. using a 30 mm twin screw extruder, pelletized, and then various test pieces are created with an injection molding machine. Table 1 shows the results of evaluating the physical properties. In addition, each evaluation method is shown below.

○加工性:ISO 1133に基づきメルトインデックス(220℃、10Kg)を測定した。単位:g/10分。
○衝撃強度
ISO 179に準拠し、ノッチ付きのシャルピー衝撃値を測定した。単位:kJ/m
○耐熱性
ISO 75に準拠し、荷重1.8MPaの荷重たわみ温度(℃)を測定した。
Workability: Melt index (220 ° C., 10 kg) was measured based on ISO 1133. Unit: g / 10 minutes.
-Impact strength Based on ISO 179, the Charpy impact value with a notch was measured. Unit: kJ / m 2.
○ Heat resistance Based on ISO 75, a deflection temperature (° C.) under a load of 1.8 MPa was measured.

Figure 2007211206
Figure 2007211206

以上のように、本発明は、生分解性樹脂とゴム強化スチレン系樹脂からなる組成物に、特定量の(メタ)アクリル酸エステル(共)重合体を配合することにより、耐衝撃強度と耐熱性、加工性のバランスに優れた樹脂組成物が得られるものであり、家電分野、建材分野、サニタリー分野等に広く用いることができる。
As described above, according to the present invention, when a specific amount of (meth) acrylic acid ester (co) polymer is blended with a composition comprising a biodegradable resin and a rubber-reinforced styrene resin, impact strength and heat resistance are increased. Resin composition with an excellent balance of workability and processability can be obtained, and can be widely used in the fields of home appliances, building materials, sanitary, and the like.

Claims (2)

生分解性樹脂(A)1〜89.5重量%、ゴム強化スチレン系樹脂(B)98.5〜10重量%および(メタ)アクリル酸エステル(共)重合体(C)0.5〜40重量%からなることを特徴とする熱可塑性樹脂組成物。 Biodegradable resin (A) 1-89.5% by weight, rubber-reinforced styrene resin (B) 98.5-10% by weight and (meth) acrylic acid ester (co) polymer (C) 0.5-40 A thermoplastic resin composition comprising: wt%. 生分解性樹脂(A)がポリ乳酸である請求項1記載の熱可塑性樹脂組成物。
The thermoplastic resin composition according to claim 1, wherein the biodegradable resin (A) is polylactic acid.
JP2006035149A 2006-02-13 2006-02-13 Thermoplastic resin composition Pending JP2007211206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006035149A JP2007211206A (en) 2006-02-13 2006-02-13 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006035149A JP2007211206A (en) 2006-02-13 2006-02-13 Thermoplastic resin composition

Publications (1)

Publication Number Publication Date
JP2007211206A true JP2007211206A (en) 2007-08-23

Family

ID=38489917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006035149A Pending JP2007211206A (en) 2006-02-13 2006-02-13 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP2007211206A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050427A (en) * 2006-08-23 2008-03-06 Ps Japan Corp Resin composition comprising styrene resin and polylactic acid
WO2011129173A1 (en) * 2010-04-13 2011-10-20 テクノポリマー株式会社 Thermoplastic resin composition and molded products
US8497333B2 (en) 2011-09-09 2013-07-30 Hyundai Motor Company Polylactic acid composition for automobile parts
WO2021039400A1 (en) * 2019-08-27 2021-03-04 東洋スチレン株式会社 Resin composition
WO2021240694A1 (en) * 2020-05-27 2021-12-02 東洋スチレン株式会社 Resin composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133456A (en) * 1988-11-14 1990-05-22 Asahi Chem Ind Co Ltd Antistatic resin composition
JPH08311301A (en) * 1995-05-23 1996-11-26 Asahi Chem Ind Co Ltd Abs resin composition for calendering
WO2005085352A1 (en) * 2004-03-05 2005-09-15 Mitsubishi Rayon Co., Ltd. Thermoplastic resin composition and molded article comprising the same
JP2006137908A (en) * 2004-11-15 2006-06-01 Umg Abs Ltd Polylactic acid-based thermoplastic resin composition and molded article of the same
JP2007126516A (en) * 2005-11-01 2007-05-24 Fujitsu Ltd Plant-derived resin-containing composition and plant-derived resin-containing molded form
JP2007191695A (en) * 2005-12-22 2007-08-02 Toray Ind Inc Resin composition and molded article comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133456A (en) * 1988-11-14 1990-05-22 Asahi Chem Ind Co Ltd Antistatic resin composition
JPH08311301A (en) * 1995-05-23 1996-11-26 Asahi Chem Ind Co Ltd Abs resin composition for calendering
WO2005085352A1 (en) * 2004-03-05 2005-09-15 Mitsubishi Rayon Co., Ltd. Thermoplastic resin composition and molded article comprising the same
JP2006137908A (en) * 2004-11-15 2006-06-01 Umg Abs Ltd Polylactic acid-based thermoplastic resin composition and molded article of the same
JP2007126516A (en) * 2005-11-01 2007-05-24 Fujitsu Ltd Plant-derived resin-containing composition and plant-derived resin-containing molded form
JP2007191695A (en) * 2005-12-22 2007-08-02 Toray Ind Inc Resin composition and molded article comprising the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050427A (en) * 2006-08-23 2008-03-06 Ps Japan Corp Resin composition comprising styrene resin and polylactic acid
WO2011129173A1 (en) * 2010-04-13 2011-10-20 テクノポリマー株式会社 Thermoplastic resin composition and molded products
US8497333B2 (en) 2011-09-09 2013-07-30 Hyundai Motor Company Polylactic acid composition for automobile parts
WO2021039400A1 (en) * 2019-08-27 2021-03-04 東洋スチレン株式会社 Resin composition
WO2021240694A1 (en) * 2020-05-27 2021-12-02 東洋スチレン株式会社 Resin composition

Similar Documents

Publication Publication Date Title
JP2006045486A (en) Thermoplastic resin composition
JP2007211206A (en) Thermoplastic resin composition
JP2009079196A (en) Styrene-modified polylactic acid resin, thermoplastic resin composition comprising the same and molded body
JP5014665B2 (en) Thermoplastic resin composition
JP5200281B2 (en) Thermoplastic resin composition
JP2008246954A (en) Thermoplastic resin molded article
JP2006045485A (en) Thermoplastic resin composition
JP2010059279A (en) Thermoplastic resin composition
JP2009179675A (en) Thermoplastic resin composition
JP5188729B2 (en) Thermoplastic resin composition
JP5017818B2 (en) Polylactic acid-based thermoplastic resin composition and molded article thereof
JP5232503B2 (en) Thermoplastic resin composition
JP4530123B2 (en) Thermoplastic resin composition
JP2007126535A (en) Polylactic acid-based thermoplastic resin composition and its molded article
JP2007291171A (en) Thermoplastic resin composition
JP2009197079A (en) Thermoplastic resin composition
JP2009066915A (en) Multilayer film or sheet
JP2009019083A (en) Thermoplastic resin composition
JP5583884B2 (en) Thermoplastic resin composition
JP2008056774A (en) Thermoplastic resin composition
JP2010053316A (en) Thermoplastic resin composition
JP5214955B2 (en) Thermoplastic resin composition
JP5154765B2 (en) Thermoplastic resin composition and molded article thereof
JP2008214585A (en) Ecological thermoplastic resin composition
JP2006241417A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Effective date: 20111021

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20111220

Free format text: JAPANESE INTERMEDIATE CODE: A02