JP2009120865A - Method and apparatus for enriching titanium powder in molten material - Google Patents

Method and apparatus for enriching titanium powder in molten material Download PDF

Info

Publication number
JP2009120865A
JP2009120865A JP2007292961A JP2007292961A JP2009120865A JP 2009120865 A JP2009120865 A JP 2009120865A JP 2007292961 A JP2007292961 A JP 2007292961A JP 2007292961 A JP2007292961 A JP 2007292961A JP 2009120865 A JP2009120865 A JP 2009120865A
Authority
JP
Japan
Prior art keywords
powder
melt
concentration
cacl
body part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007292961A
Other languages
Japanese (ja)
Other versions
JP4940109B2 (en
Inventor
Masahiko Hori
雅彦 堀
Makoto Yamaguchi
誠 山口
Tadashi Ogasawara
忠司 小笠原
Hideto Yoshida
英人 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Osaka Titanium Technologies Co Ltd
Original Assignee
Hiroshima University NUC
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC, Osaka Titanium Technologies Co Ltd filed Critical Hiroshima University NUC
Priority to JP2007292961A priority Critical patent/JP4940109B2/en
Priority to PCT/JP2008/069604 priority patent/WO2009063750A1/en
Publication of JP2009120865A publication Critical patent/JP2009120865A/en
Application granted granted Critical
Publication of JP4940109B2 publication Critical patent/JP4940109B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1268Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1295Refining, melting, remelting, working up of titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/02Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for enriching Ti powder in CaCl<SB>2</SB>-containing molten material containing Ti particles (powder) produced in the Ca-reduction of CaCl<SB>2</SB>-containing molten metal, especially TiCl<SB>4</SB>. <P>SOLUTION: The concentration in the CaCl<SB>2</SB>-containing molten material dispersed with the Ti powder is increased by a wet-type cyclone. This method is suitably applicable to the concentration of the Ti powder in the CaCl<SB>2</SB>-containing molten material containing the Ti powder produced with the Ca-reduction of TiCl<SB>4</SB>. As the wet-type cyclone, the Ti concentration in the molten salt can be made to high at the good recovering ratio by using the wet-type cyclone having 40-300 mm the diameter Dc of the body part 9 and the length L of the body part at 0.5-8 times of the above diameter. The enriching method can easily be performed by the enriching apparatus. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、CaCl2含有溶融物中に分散しているTi粉を液体サイクロンにより濃縮する溶融物中のTi粉濃縮方法および濃縮装置に関し、特に、Ca還元によるTiの製造方法を実施するにあたり、CaCl2含有溶融塩中に生成されたTi粉を濃縮してその濃度を高める溶融物中のTi粉濃縮方法および濃縮装置に関する。 The present invention relates to a Ti powder concentration method and concentration apparatus in a melt in which Ti powder dispersed in a CaCl 2 -containing melt is concentrated by a liquid cyclone, and in particular, in carrying out a method for producing Ti by Ca reduction. The present invention relates to a Ti powder concentration method and concentration apparatus in a melt that concentrates Ti powder produced in a CaCl 2 -containing molten salt to increase its concentration.

液中の懸濁物質を濃縮し、分離する技術は、液体が常温ないし数十℃程度の水や水が主体の溶液については既に確立されている。例えば、懸濁物質の沈降分離については、クラリファイヤ(清澄分離装置)、連続式シックナー等が廃水や上下水の処理などに広く適用されている。また、遠心分離についても、円筒型、分離板型の遠心沈降機や、デカンター型遠心沈降機等が多用されており、種々の産業分野で、生産工程における懸濁物質の除去・回収に顕著な効果を発揮している。   A technique for concentrating and separating suspended substances in a liquid has already been established for water whose temperature is from room temperature to several tens of degrees Celsius or a solution mainly composed of water. For example, for sedimentation and separation of suspended substances, clarifiers (continuous clarifiers), continuous thickeners, and the like are widely applied to the treatment of wastewater and water and sewage. As for centrifugal separation, cylindrical and separation plate centrifugal sedimentators, decanter centrifugal sedimentators, etc. are widely used, and are prominent in the removal and recovery of suspended solids in production processes in various industrial fields. It is effective.

一方、100℃を超える高温液中の懸濁物質を濃縮・分離する方法、装置としては、高温処理が可能なタイプのデカンター型遠心沈降機(単に、「デカンター」とも称される)が開発されている。   On the other hand, as a method and apparatus for concentrating / separating suspended substances in a high-temperature liquid exceeding 100 ° C., a decanter-type centrifugal sedimentator of a type capable of high-temperature treatment (simply called “decanter”) has been developed. ing.

デカンターは、例えば、図1に例示するように、円筒状の外筒1と表面にスクリュー3が取り付けられた内筒2を備え、外筒1、内筒2のいずれも、モーター4により毎分数千回の高速で回転するように構成されている。   For example, as illustrated in FIG. 1, the decanter includes a cylindrical outer cylinder 1 and an inner cylinder 2 with a screw 3 attached to the surface. Both the outer cylinder 1 and the inner cylinder 2 are driven by a motor 4 every minute. It is configured to rotate at high speed several thousand times.

固体粒子が懸濁した原液が原液供給口5からデカンター内に供給されると、外筒1、内筒2のいずれも高速回転しているので、原液は固体粒子6と清澄液7に分離されて外筒1の内壁へ押しやられ、固体粒子は壁面に圧密される。外筒1と内筒2の回転には若干の速度差があるので、外筒壁面に圧密された固体粒子6は内筒表面のスクリュー3により剥離されて原液供給口5側へ押し出され、固形物排出口8から排出される。また、固体粒子が除去された原液、すなわち清澄液は、図示するように、固形物排出口8とは反対側から外部へ排出される。なお、図1に例示したデカンターは横型であるが、縦型のものも開発されており、また、高温処理が可能なタイプのものも開発されている。   When the stock solution in which the solid particles are suspended is supplied from the stock solution supply port 5 into the decanter, both the outer cylinder 1 and the inner cylinder 2 rotate at a high speed, so that the stock solution is separated into the solid particles 6 and the clarified liquid 7. Then, it is pushed to the inner wall of the outer cylinder 1 and the solid particles are consolidated to the wall surface. Since there is a slight speed difference between the rotation of the outer cylinder 1 and the inner cylinder 2, the solid particles 6 consolidated on the wall surface of the outer cylinder are peeled off by the screw 3 on the inner cylinder surface and pushed out toward the stock solution supply port 5 side. It is discharged from the object discharge port 8. Moreover, the undiluted | stock solution from which the solid particle was removed, ie, a clarified liquid, is discharged | emitted from the opposite side to the solid discharge port 8 outside as shown in the figure. The decanter illustrated in FIG. 1 is a horizontal type, but a vertical type has been developed, and a type capable of high-temperature processing has also been developed.

このような構造の高温処理用のデカンターを使用すれば、数百℃を超える高温液中の懸濁物質の濃縮、分離が可能である。   If a decanter for high temperature treatment having such a structure is used, it is possible to concentrate and separate suspended substances in a high temperature liquid exceeding several hundred degrees Celsius.

例えば、特許文献1には、Caが溶解した溶融CaCl2中のCaにTiCl4を反応させてTi粒を生成させる、Ca還元によるTiの製造方法が記載されているが、溶融CaCl2中に生成したTi粒を分離する工程で、高温での処理が可能な高温デカンターが使用されている。 For example, Patent Document 1, Ca is to generate Ti particles by reacting TiCl 4 to Ca in the molten CaCl 2 dissolved, but method for producing Ti through reduction by Ca are described, in the molten CaCl 2 A high-temperature decanter that can be processed at a high temperature is used in the step of separating the generated Ti grains.

しかし、前記図1に示したように、デカンターには、高速回転する駆動部が存在するので、高温下で稼働させた場合、駆動部の磨耗が激しい。そのため、処理量が増大すると、長時間の連続操業が困難になるという問題がある。   However, as shown in FIG. 1, the decanter has a drive unit that rotates at a high speed. Therefore, when the decanter is operated at a high temperature, the drive unit is heavily worn. Therefore, there is a problem that when the processing amount increases, continuous operation for a long time becomes difficult.

特開2007−84847号公報JP 2007-84847 A

上記の、高温下では大量の溶融物を長時間にわたり連続的に処理することが困難であるという問題は、高速回転する駆動部が存在するデカンターを使用する限り、Ca還元によるTiの製造時に溶融CaCl2中に生成したTi粒(生成当初は微粒で粉状を呈するので、以下、「チタン粉」と記す)を分離する場合に限らず、一般に、CaCl2含有溶融物中に分散しているTi粉を濃縮し、最終的にはこれを分離する場合に共通する問題である。 The problem that it is difficult to continuously process a large amount of the melt for a long time at a high temperature is that when the decanter having a drive unit that rotates at a high speed is used, melting occurs during the production of Ti by Ca reduction. Ti particles generated in CaCl 2 (initially formed as fine particles and thus powdery, hereinafter referred to as “titanium powder”) are not limited to separation, but are generally dispersed in a CaCl 2 -containing melt. This is a common problem when the Ti powder is concentrated and finally separated.

本発明の目的は、CaCl2含有溶融物中のTi粉を濃縮する方法、特に、Ca還元によるTiの製造方法を実施する際に、還元反応容器から導出された、TiCl4の還元により生成したTi粉が含まれているCaCl2含有溶融物中のTi粉を濃縮する方法および装置を提供することにある。 An object of the present invention is produced by reduction of TiCl 4 derived from a reduction reaction vessel when performing a method of concentrating Ti powder in a CaCl 2 -containing melt, particularly a method of producing Ti by Ca reduction. The object is to provide a method and an apparatus for concentrating Ti powder in a CaCl 2 -containing melt containing Ti powder.

本発明者らは、上記の問題が高速回転する駆動部の存在にあることに鑑み、機械的な駆動部を持たず、高温のCaCl2含有溶融物中に分散しているTi粉を濃縮できる装置として液体サイクロンの採用を試みた。 In view of the above problem in the existence of a drive unit that rotates at high speed, the present inventors can concentrate Ti powder dispersed in a high-temperature CaCl 2 -containing melt without a mechanical drive unit. An attempt was made to adopt a hydrocyclone as a device.

液体サイクロンは遠心力を利用した固液分離装置の一つであり、一般的な液体サイクロンは、常温付近で、比重差が大きいものを分級する場合に使用されることが多い。液体サイクロンの形状は、上方が円筒状(胴体部)で、下方が逆円錐状をなしているものが一般的である。機械的な駆動部を持たず、胴体部の上部側面に、接線方向に導入される原液自身の渦流によって遠心力場がつくられ、原液中の固体粒子が胴体部および円錐部の外周方向へ濃縮される。   A liquid cyclone is one of solid-liquid separation devices using centrifugal force, and a general liquid cyclone is often used when classifying those having a large specific gravity difference around room temperature. In general, the shape of the hydrocyclone is a cylindrical shape (body portion) on the upper side and an inverted conical shape on the lower side. Without a mechanical drive, a centrifugal force field is created on the upper side of the body by the vortex flow of the undiluted solution introduced in the tangential direction, and solid particles in the undiluted solution concentrate in the outer direction of the body and cone. Is done.

この液体サイクロンを、TiCl4の還元により生成したTi粉が含まれている、約850℃のCaCl2含有溶融物中のTi粉の濃縮に適用したところ、0.1m3/h以上の流量で、1時間、支障なく連続処理することができた。さらに、液体サイクロンの胴体部の直径Dcと胴体部長さLの比(L/Dc)を0.5以上8以下に規定することにより、Ti粉の回収率を80%以上に高め得ることが判明した。 When this liquid cyclone was applied to the concentration of Ti powder in a CaCl 2 -containing melt at about 850 ° C. containing Ti powder produced by the reduction of TiCl 4 , the flow rate was 0.1 m 3 / h or more. Continuous processing was possible for 1 hour without any problem. Furthermore, it was found that the recovery rate of Ti powder can be increased to 80% or more by defining the ratio (L / Dc) of the diameter Dc of the body part of the hydrocyclone and the body length L to 0.5 or more and 8 or less. did.

本発明はこのような知見に基づいてなされたもので、その要旨は、下記(1)のCaCl2含有溶融物中のTi粉濃縮方法、および(2)の濃縮装置にある。 The present invention has been made on the basis of such findings, and the gist of the present invention is the following (1) a method for concentrating Ti powder in a CaCl 2 -containing melt and (2) a concentrating device.

(1)液中にTi粉が分散しているCaCl2含有溶融物のTi濃度を液体サイクロンによって高めることを特徴とする溶融物中のTi粉濃縮方法。 (1) A method for concentrating Ti powder in a melt, wherein the Ti concentration of a CaCl 2 -containing melt in which Ti powder is dispersed in a liquid is increased by a liquid cyclone.

前記の「CaCl2含有溶融物」とは、溶融CaCl2のみ、または、溶融CaCl2に、融点の低下、粘性等の調整のためのKCl、CaF2等を加えた溶融物である。以下、単に「溶融物」または「溶融CaCl2」ともいう。なお、「Ti濃度」は、単位質量の溶融物中に分散しているTi粉の質量を濃度(kg/kg)と表示したものである。 The “CaCl 2 -containing melt” mentioned above is a melt obtained by adding only molten CaCl 2 , or KCl, CaF 2 or the like for adjusting the melting point, viscosity, etc. to molten CaCl 2 . Hereinafter, it is also simply referred to as “melt” or “molten CaCl 2 ”. The “Ti concentration” is a mass (kg / kg) of Ti powder dispersed in a unit mass of melt.

本発明のTi粉濃縮方法において、Ti粉がTiCl4のCa還元により生成されたTi粉であり、CaCl2含有溶融物が還元反応容器から導出された還元反応後の溶融物とする実施形態を採ることができる。すなわち、Ca還元によるTiの製造方法を実施するにあたり、CaCl2含有溶融塩中に生成されたTi粉を濃縮してその濃度を高めることができる。 In the Ti powder concentration method of the present invention, an embodiment in which the Ti powder is Ti powder produced by Ca reduction of TiCl 4 and the CaCl 2 -containing melt is a melt after the reduction reaction derived from the reduction reaction vessel. Can be taken. That is, in carrying out the method for producing Ti by Ca reduction, the concentration of the Ti powder produced in the CaCl 2 -containing molten salt can be increased.

本発明のTi粉濃縮方法において、液体サイクロンとして、胴体部の直径が40〜300mmであり、胴体部の長さが前記直径の0.5〜8倍である液体サイクロンを使用することとすれば、良好な回収率で溶融塩のTi濃度を高めることができる。なお、ここでいう「回収率」とは、液体サイクロンに導入される溶融物中のTi粉の質量(Win)に対する、円錐部下方から抜き出される溶融物中のTi粉質量(Wout)の百分率、すなわち、(Wout/Win)×100(%)である。 In the Ti powder concentration method of the present invention, if a liquid cyclone having a body part diameter of 40 to 300 mm and a body part length of 0.5 to 8 times the diameter is used as the liquid cyclone. The Ti concentration of the molten salt can be increased with a good recovery rate. The "recovery rate" here refers to the mass of Ti powder (W out ) in the melt extracted from below the conical portion with respect to the mass (W in ) of Ti powder in the melt introduced into the hydrocyclone. %, That is, (W out / W in ) × 100 (%).

(2)CaCl2含有溶融物中に分散しているTi粉を濃縮する装置であって、円筒状の胴体部の下部に逆円錐状の円錐部が接続され、前記胴体部の上部側面には溶融物の流入口が接線方向に設けられ、胴体部の上端面にはTi粉が除去された溶融物の排出口が設けられ、円錐部の下端には濃縮されたTi粉を含む溶融物の流出口が設けられた液体サイクロンを備え、前記胴体部の直径が40〜300mmであり、胴体部長さが胴体部直径の0.5〜8倍であることを特徴とする溶融物中のTi粉濃縮装置。 (2) An apparatus for concentrating Ti powder dispersed in a CaCl 2 -containing melt, wherein an inverted conical cone portion is connected to a lower portion of a cylindrical body portion, The melt inlet is provided in a tangential direction, the upper end surface of the fuselage is provided with a melt outlet from which Ti powder has been removed, and the lower end of the conical portion is provided with a molten Ti powder containing concentrated Ti powder. Ti powder in a melt comprising a liquid cyclone provided with an outlet, wherein the body portion has a diameter of 40 to 300 mm, and the body portion length is 0.5 to 8 times the body portion diameter. Concentrator.

ここでいう「円筒状の胴体部」は、垂直の胴体部に限定されず、胴体部の上端から下端にかけて、上端を含む水平面を基準として80°以上90°未満のテーパーが設けられたものであってもよい。   The “cylindrical body part” here is not limited to a vertical body part, and is provided with a taper of 80 ° or more and less than 90 ° from the upper end to the lower end of the body part with respect to a horizontal plane including the upper end. There may be.

本発明のTi粉濃縮装置において、前記溶融物の流入口が、該流入口の上端から胴体部上板の内面まで少なくとも2mmの間隔を保つように取り付けられていれば、胴体部内へ導入される溶融物と胴体部上板の内面との摩擦を緩和することができる。   In the Ti powder concentrator of the present invention, if the melt inlet is attached so as to maintain an interval of at least 2 mm from the upper end of the inlet to the inner surface of the upper plate of the fuselage, it is introduced into the fuselage. Friction between the melt and the inner surface of the upper body plate can be reduced.

本発明の溶融物中のTi粉濃縮方法は、機械的な駆動部のない液体サイクロンを用いる濃縮方法で、高温のCaCl2含有溶融物中に分散しているTi粉を、長時間にわたり、高い回収率で、支障なく連続して濃縮処理することが可能である。この方法は、Ca還元によるTiの製造時に、CaCl2含有溶融塩中に生成されたTi粉の濃縮に好適に適用することができる。 The Ti powder concentration method in the melt of the present invention is a concentration method using a liquid cyclone without a mechanical drive, and the Ti powder dispersed in the high-temperature CaCl 2 -containing melt is high for a long time. It is possible to carry out the concentration process continuously without any trouble with the recovery rate. This method can be suitably applied to the concentration of Ti powder produced in the CaCl 2 -containing molten salt during the production of Ti by Ca reduction.

液体サイクロンとして、胴体部の直径が40mm以上300mm以下であり、胴体部の長さが前記直径の0.5〜8倍である液体サイクロンを使用すれば、高いTi粉回収率が得られる。   When a hydrocyclone having a body part diameter of 40 mm or more and 300 mm or less and a body part length of 0.5 to 8 times the diameter is used as the hydrocyclone, a high Ti powder recovery rate can be obtained.

本発明のTi粉濃縮方法は、本発明のTi粉濃縮装置を用いて容易に実施することができる。   The Ti powder concentration method of the present invention can be easily carried out using the Ti powder concentration apparatus of the present invention.

本発明の溶融物中のTi粉濃縮方法は、液中にTi粉が分散しているCaCl2含有溶融物のTi濃度を液体サイクロンによって高める方法である。 The Ti powder concentration method in the melt of the present invention is a method for increasing the Ti concentration of a CaCl 2 -containing melt in which Ti powder is dispersed in a liquid by means of a liquid cyclone.

前記CaCl2含有溶融物の濃縮に液体サイクロンを用いるのは、液体サイクロンが機械的な駆動部を持たず、高温のCaCl2含有溶融物中に分散しているTi粉の濃縮処理を長時間にわたり連続的に行い得るからである。 The liquid cyclone is used for the concentration of the CaCl 2 -containing melt because the liquid cyclone does not have a mechanical driving unit and the concentration treatment of Ti powder dispersed in the high-temperature CaCl 2 -containing melt is performed for a long time. This is because it can be performed continuously.

図2は、本発明のTi粉濃縮方法を実施する際に使用される液体サイクロンの要部の概略構成例を示す図で、(a)は平面図、(b)は正面図である。   2A and 2B are diagrams showing a schematic configuration example of a main part of a hydrocyclone used when carrying out the Ti powder concentration method of the present invention, wherein FIG. 2A is a plan view and FIG. 2B is a front view.

図2に示すように、この液体サイクロンは、上方が円筒状で、胴体部9を構成し、下方が逆円錐状で、円錐部10を構成している。胴体部9の上部側面には、Ti粉が分散している溶融物を胴体部9に対して接線方向に導入するための溶融物流入口11が取り付けられ、上端面には、Ti粉が分離された後の溶融物を排出するための排出口12が設けられている。また、円錐部10の下端には、Ti粉が濃縮された溶融物を取り出すための溶融物流出口13が取り付けられている。   As shown in FIG. 2, the hydrocyclone has a cylindrical shape on the upper side and forms a body portion 9, and a lower portion has an inverted conical shape and forms a conical portion 10. A melt flow inlet 11 for introducing a melt in which Ti powder is dispersed in a tangential direction with respect to the body portion 9 is attached to the upper side surface of the body portion 9, and Ti powder is separated on the upper end surface. A discharge port 12 is provided for discharging the molten material. Further, a melt flow outlet 13 for taking out a melt in which Ti powder is concentrated is attached to the lower end of the conical portion 10.

溶融物流入口11を経て胴体部9に導入されたTi粉を含む溶融物は、胴体部9内で渦流を形成しつつ円錐部10側へ流下する間に、渦流による遠心力で、Ti粉は胴体部9および円錐部10の外周方向へ濃縮され、溶融物流出口13から流出する。一方、Ti粉が分離された後の溶融物は排出口12から排出される。   While the melt containing Ti powder introduced into the body portion 9 through the melt flow inlet 11 flows down to the conical portion 10 side while forming a vortex in the body portion 9, the Ti powder is caused by centrifugal force due to the vortex flow. It is concentrated in the outer peripheral direction of the body portion 9 and the cone portion 10 and flows out from the melt flow outlet 13. On the other hand, the melt after the Ti powder is separated is discharged from the discharge port 12.

溶融物の温度は特に限定されないが、望ましくは、650〜1050℃である。サイクロンは機械的な駆動部を持たないが、内部に強い渦流が形成されることもあって、温度が望ましい上限である1050℃を超えると、耐食性の点で長期間の使用に耐える材料が限定される。また、望ましい下限を650℃とするのは、通常使用される溶融物(CaCl2含有溶融物)の温度が650℃程度以上であることによるものである。 Although the temperature of a melt is not specifically limited, Desirably, it is 650-1050 degreeC. Although the cyclone does not have a mechanical drive, a strong vortex may be formed inside, and if the temperature exceeds the desirable upper limit of 1050 ° C, the material that can withstand long-term use is limited in terms of corrosion resistance. Is done. Moreover, the reason why the desirable lower limit is set to 650 ° C. is that the temperature of a normally used melt (CaCl 2 -containing melt) is about 650 ° C. or more.

本発明のTi粉濃縮方法において、Ti粉がTiCl4のCa還元により生成されたTi粉であり、CaCl2含有溶融物が還元反応容器から導出された還元反応後の溶融物であることとする実施形態を採ることができる。 In the Ti powder concentration method of the present invention, the Ti powder is a Ti powder generated by Ca reduction of TiCl 4 , and the CaCl 2 -containing melt is a melt after the reduction reaction derived from the reduction reaction vessel. Embodiments can be taken.

前掲の特許文献1に記載されるように、Ca還元によるTiの製造方法では、還元工程でCaCl2を含み且つCaが溶解した溶融塩中のCaにTiCl4を反応させて前記溶融塩中にTi粒(粉)を生成させ、この還元工程に続く分離工程で、前記溶融塩中に生成されたTi粉を前記溶融塩から分離する。この実施形態は、上記Ca還元によるTiの製造方法の分離工程において適用し得る方法であり、還元工程で生成されたTi粉が分散している溶融塩を液体サイクロンで処理することによって溶融塩のTi濃度を高めることができる。 As described in Patent Document 1 described above, in the method for producing Ti by Ca reduction, TiCl 4 is reacted with Ca in the molten salt containing CaCl 2 and dissolved in the reduction step, and the molten salt is dissolved in the molten salt. Ti particles (powder) are generated, and Ti powder generated in the molten salt is separated from the molten salt in a separation step subsequent to the reduction step. This embodiment is a method that can be applied in the separation step of the Ti production method by the Ca reduction, and the molten salt in which the Ti powder produced in the reduction step is dispersed is treated with a liquid cyclone to form a molten salt. Ti concentration can be increased.

具体的に例示すると、Ca還元によるTiの製造時に、還元工程で生成されるTi粉の濃度は、通常0.8〜1.2質量%であり、液体サイクロンによって濃縮することにより、5〜12質量%に高めることができる。濃縮倍率で表すと、通常10倍程度で、濃縮の目的を十分に果たすことができる。   Specifically, when Ti is produced by Ca reduction, the concentration of Ti powder produced in the reduction step is usually 0.8 to 1.2% by mass, and it is 5 to 12 by concentrating with a liquid cyclone. The mass can be increased. When expressed in terms of concentration ratio, it is usually about 10 times, and the purpose of concentration can be sufficiently achieved.

この本発明のTi粉濃縮方法において、液体サイクロンとして、胴体部の直径Dc(図2参照)が40〜300mmであり、胴体部の長さL(図2参照)が前記直径Dcの0.5〜8倍(すなわち、L/Dc=0.5〜8)である液体サイクロンを使用することが望ましい。   In this Ti powder concentration method of the present invention, the diameter Dc (see FIG. 2) of the body portion is 40 to 300 mm as the hydrocyclone, and the length L (see FIG. 2) of the body portion is 0.5 of the diameter Dc. It is desirable to use a hydrocyclone that is ˜8 times (ie, L / Dc = 0.5-8).

液体サイクロンの望ましい形状(胴体部の直径Dcと胴体部の長さLにより特徴づけられる形状)を前記のように規定するのは、それによってTi粉の濃縮、分離を効果的に行い、Tiの回収率を向上させることができるからである。媒体である溶融塩は水に比べて粘性が高く、Ti粒も衝突により造粒されたもので空隙率が高いため、媒体とTi粒の比重差が小さいなど、Ti粒の濃縮、分離は困難であるが、このように液体サイクロンの形状を規定することにより、後述する実施例に示すように、80%以上の良好なTi回収率で溶融塩のTi濃度を高めることができる。より望ましいL/Dcの範囲は、2〜5であり、このような形状の液体サイクロンを使用すれば、Tiの回収率は95%以上となる。   The desired shape of the hydrocyclone (the shape characterized by the diameter Dc of the body part and the length L of the body part) is defined as described above, thereby effectively concentrating and separating Ti powder, This is because the recovery rate can be improved. Molten salt, which is a medium, has a higher viscosity than water, and Ti particles are also granulated by collision and have a high porosity. Therefore, it is difficult to concentrate and separate Ti particles due to a small difference in specific gravity between the medium and Ti particles. However, by defining the shape of the liquid cyclone as described above, the Ti concentration of the molten salt can be increased with a good Ti recovery rate of 80% or more, as shown in the examples described later. A more desirable range of L / Dc is 2 to 5, and when a liquid cyclone having such a shape is used, the Ti recovery rate is 95% or more.

本発明のTi粉濃縮方法を実施するに際しては、溶融塩を液体サイクロンに導入する際の入口流量を、サイクロンの形状に応じて0.1〜60m3/hとすることが望ましい。TiCl4のCa還元により生成されたTi粉は、生成当初はきわめて微細であり、衝突を繰り返して細かい粒状にまで造粒されているので、剪断によるTi粒の破壊(微細化)が生じやすいサイクロン入口で流量(さらには、流速)を適切に調整することによりTi粒の微細化を防止し、濃縮の効率を高めることができる。 In carrying out the Ti powder concentration method of the present invention, it is desirable that the inlet flow rate when the molten salt is introduced into the liquid cyclone is 0.1 to 60 m 3 / h depending on the shape of the cyclone. The Ti powder generated by Ca reduction of TiCl 4 is very fine at the beginning of generation, and is repeatedly granulated into fine particles by repeated collisions. Therefore, the cyclone is liable to cause destruction (miniaturization) of Ti particles due to shearing. By appropriately adjusting the flow rate (and further the flow rate) at the inlet, the Ti particles can be prevented from being refined and the concentration efficiency can be increased.

液体サイクロンによる連続処理の過程で、濃縮後のTi粉の濃度を所定濃度に制御するには、液体サイクロンに所定の流量の溶融塩を供給することが必要になる。溶融塩が常温であれば、流量制御を行う方法として流量調整バルブを使用することが可能であるが、高温の溶融塩を処理する場合、微量な流量を調整するバルブがない。   In order to control the concentration of the Ti powder after concentration to a predetermined concentration in the course of the continuous treatment with the hydrocyclone, it is necessary to supply a molten salt at a predetermined flow rate to the liquid cyclone. If the molten salt is at room temperature, a flow rate adjusting valve can be used as a method for controlling the flow rate. However, when processing a high-temperature molten salt, there is no valve for adjusting a very small flow rate.

これに対しては、円錐部下端の溶融塩流出口の断面積と胴体部上端面の排出口の断面積の比率と、液体サイクロンに供給される溶融塩の流量との関係を基にして、前記断面積の比率を適正にする方法、この断面積比率の適正化と高温バルブを併用する方法、高温バルブを複数個使用する方法等により対処して、前記溶融塩の流量を調節することが可能なので、これらの方法を適宜採用して流量制御を行うことが望ましい。具体的には、高温バルブとして、例えば開閉式のボールバルブを使用し、前記断面積比率を適正化することにより大きく制御(粗調整)した流量をボールバルブで微調整する方法、ボールバルブを複数個取り付け、順番に少しずつ制御する方法などが適用できる。   For this, based on the relationship between the ratio of the cross-sectional area of the molten salt outlet at the lower end of the conical part and the cross-sectional area of the outlet of the upper end surface of the body part, and the flow rate of the molten salt supplied to the liquid cyclone, It is possible to adjust the flow rate of the molten salt by coping with the method of making the ratio of the cross-sectional area appropriate, the method of using the high-temperature valve together with the optimization of the cross-sectional area ratio, the method of using a plurality of high-temperature valves, etc. Therefore, it is desirable to control the flow rate by appropriately adopting these methods. Specifically, for example, an open / close ball valve is used as a high temperature valve, and a flow rate that is largely controlled (roughly adjusted) by optimizing the cross-sectional area ratio is finely adjusted by the ball valve. A method of attaching individual pieces and controlling them little by little in order can be applied.

また、液体サイクロンの円錐部下端の流出口から高温で高濃度のTi粒を含む溶融塩が流出してくるため、Ti粒の付着による流出口の詰まりが生じる場合があるが、Tiの濃縮を予め制御して、流出口から抜き出される溶融塩のTi濃度の上限を定めておくことにより、Ti粒の付着による詰まりを回避することができる。一般的には、液体サイクロンの入側溶融塩中のTi濃度を0.3〜3質量%とし、出側溶融塩中のTi濃度を30質量%以下とすることが望ましい。   In addition, since molten salt containing high-concentration Ti particles flows out from the outlet at the lower end of the conical portion of the hydrocyclone, the outlet may become clogged due to adhesion of Ti particles. By controlling in advance and determining the upper limit of the Ti concentration of the molten salt drawn out from the outlet, clogging due to adhesion of Ti particles can be avoided. In general, it is desirable that the Ti concentration in the inlet side molten salt of the liquid cyclone is 0.3 to 3% by mass, and the Ti concentration in the outlet side molten salt is 30% by mass or less.

さらに、液体サイクロンに導入される溶融塩の流量(入側流量)に対する円錐部下端の流出口からの流量(アンダーフローの流量)の比、つまり、アンダーフローの流量比を、0.05以上0.40以下、通常は0.1程度とすることが望ましい。   Furthermore, the ratio of the flow rate (underflow flow rate) from the outlet at the lower end of the conical portion to the flow rate of molten salt introduced into the hydrocyclone (inlet flow rate), that is, the flow rate ratio of underflow is 0.05 or more and 0. .40 or less, usually about 0.1.

以上説明した本発明のTi粉濃縮方法によれば、機械的な駆動部のない液体サイクロンを用いて、長時間にわたり、連続して濃縮処理することが可能であり、高温のCaCl2含有溶融物中に分散しているTi粉、さらには、Ca還元によるTiの製造時に、CaCl2含有溶融塩中に生成されたTi粉を濃縮することができる。 According to the Ti powder concentration method of the present invention described above, a high-temperature CaCl 2 -containing melt can be continuously concentrated for a long time using a liquid cyclone without a mechanical drive. The Ti powder dispersed therein, and further, Ti powder produced in the CaCl 2 -containing molten salt can be concentrated during the production of Ti by Ca reduction.

本発明の溶融物中のTi粉濃縮装置は、CaCl2含有溶融物中に分散しているTi粉を濃縮する装置であって、円筒状の胴体部の下部に逆円錐状の円錐部が接続され、前記胴体部の上部側面には溶融物の流入口が接線方向に設けられ、胴体部の上端面にはTi粉が除去された溶融物の排出口が設けられ、円錐部の下端には濃縮されたTi粉を含む溶融物の流出口が設けられた液体サイクロンを備え、前記胴体部の直径が40〜300mmであり、胴体部長さが胴体部直径の0.5〜8倍であることを特徴とする溶融物中のTi粉濃縮装置である。 The Ti powder concentration device in the melt of the present invention is a device for concentrating Ti powder dispersed in the CaCl 2 -containing melt, and an inverted conical cone portion is connected to the lower portion of the cylindrical body portion. A melt inlet is provided in the tangential direction on the upper side surface of the body portion, a melt discharge port from which Ti powder is removed is provided on the upper end surface of the body portion, and a lower end of the cone portion is provided on the lower end of the cone portion. A liquid cyclone provided with an outlet for a melt containing concentrated Ti powder is provided, the diameter of the body part is 40 to 300 mm, and the body part length is 0.5 to 8 times the body part diameter. An apparatus for concentrating Ti powder in a melt characterized by

前記図2に概略構成を例示した液体サイクロンは、本発明のTi粉濃縮装置の主要部を構成する液体サイクロンの一例を示す図である。その構成および作用は前述のとおりである。   The liquid cyclone schematically illustrated in FIG. 2 is a diagram showing an example of a liquid cyclone constituting the main part of the Ti powder concentrating device of the present invention. Its configuration and operation are as described above.

本発明のTi粉濃縮装置において、「円筒状の胴体部」とは、図2に示した垂直の胴体部9に限定されず、胴体部の上端から下端にかけて、上端を含む水平面を基準として80°以上90°未満のテーパーが設けられたものであってもよい。円筒状の胴体部をこのように定義したのは、前記テーパーが設けられた胴体部を有する液体サイクロンにおいても、垂直の胴体部の液体サイクロンにおけると同様の効果が得られるからである。   In the Ti powder concentrator of the present invention, the “cylindrical body part” is not limited to the vertical body part 9 shown in FIG. 2, and is 80 on the basis of the horizontal plane including the upper end from the upper end to the lower end of the body part. A taper of not less than 90 ° and less than 90 ° may be provided. The reason why the cylindrical body portion is defined in this manner is that the liquid cyclone having the body portion provided with the taper can obtain the same effect as the liquid cyclone of the vertical body portion.

図2中に示したDc(胴体部の直径)に対するL(胴体部の長さ)の比(L/Dc)が0.5〜8、より望ましくは、2〜5であれば、前述のように、Ti粉の濃縮、分離を効果的に行ってTiの回収率を向上させることができる。   If the ratio (L / Dc) of L (the length of the body part) to Dc (the diameter of the body part) shown in FIG. 2 is 0.5 to 8, more preferably 2 to 5, as described above In addition, the concentration and separation of Ti powder can be effectively performed to improve the Ti recovery rate.

本発明のTi粉濃縮装置において、溶融物流入口が、該流入口の上端から胴体部上板の内面まで少なくとも2mmの間隔を保つように取り付けられていることが望ましい。   In the Ti powder concentrating device of the present invention, it is desirable that the melt flow inlet is attached so as to maintain an interval of at least 2 mm from the upper end of the inlet to the inner surface of the upper body plate.

図3は、溶融物流入口の胴体部上部側面への取り付け部近傍(図2(a)の波線で囲んだ部分)の縦断面を模式的に示す図である。   FIG. 3 is a view schematically showing a longitudinal section of the vicinity of the attachment portion (the portion surrounded by the wavy line in FIG. 2A) of the melt flow inlet at the upper side of the body portion.

図3に示すように、溶融物流入口11が、その上端tと胴体部上板14の内面14aとの間隔dを保つように、胴体部9の上部側面に取り付けられている。この間隔dが少なくとも2mmであれば、その間の溶融物は流動が緩慢で、いわばその部分に保持された状態になっているので、溶融物流入口11を経由して胴体部内へ高速で導入される溶融物と胴体部上板14の内面14aとが直接接触することがなく、両者の接触に伴う摩擦が著しく緩和される。これによって、液体サイクロンへの溶融物の供給時におけるエネルギーロスを回避し、胴体部上板14への高温溶融物による擦過作用を抑制することができる。   As shown in FIG. 3, the melt flow inlet 11 is attached to the upper side surface of the body portion 9 so as to maintain a distance d between the upper end t and the inner surface 14 a of the body portion upper plate 14. If the distance d is at least 2 mm, the melt in the meantime has a slow flow, so to speak, is held in that portion, so that it is introduced into the body portion via the melt flow inlet 11 at a high speed. There is no direct contact between the melt and the inner surface 14a of the fuselage unit upper plate 14, and the friction caused by the contact between both is remarkably reduced. Thereby, energy loss at the time of supplying the melt to the liquid cyclone can be avoided, and the rubbing action by the high-temperature melt on the body part upper plate 14 can be suppressed.

本発明のTi粉濃縮装置の要部を構成する液体サイクロンの材質としては、高温の、しかも渦流を形成するCaCl2含有溶融物に対して耐食性を有し、かつ高温での強度を備えた材料が望ましく、例えば、オーステナイト系ステンレス鋼が望ましく、SUS304、SUS316等が使用できる。 As a material of the liquid cyclone constituting the main part of the Ti powder concentrator of the present invention, a material having corrosion resistance to a high-temperature CaCl 2 -containing melt that forms a vortex and having high-temperature strength For example, austenitic stainless steel is desirable, and SUS304, SUS316, etc. can be used.

この本発明のTi粉濃縮装置を使用すれば、前記本発明のTi粉濃縮方法を容易に実施することができる。   If this Ti powder concentration apparatus of this invention is used, the Ti powder concentration method of the said this invention can be implemented easily.

直径(Dc)、および胴体部長さ(L)を種々変化させた液体サイクロンを使用し、Ca還元によるTi製造の際に、還元工程で生成したTi粒を含む溶融CaCl2を対象として、1時間継続して処理するTiの濃縮試験を行い、L/Dc(つまり、液体サイクロンの形状)とTi回収率の関係を調査した。 Using a hydrocyclone with various changes in diameter (Dc) and body length (L), when producing Ti by Ca reduction, target molten CaCl 2 containing Ti particles generated in the reduction process for 1 hour A concentration test of Ti to be continuously processed was performed, and the relationship between L / Dc (that is, the shape of the hydrocyclone) and the Ti recovery rate was investigated.

なお、比較のために、前記図1に例示した構成の高温処理用のデカンターを使用し、同様の試験、調査を行った。   For comparison, the same tests and investigations were performed using a decanter for high temperature treatment having the configuration illustrated in FIG.

調査に際しては、液体サイクロンに導入する溶融塩の流量を0.11〜12.0m3/hの範囲で変化させた。また、本実施例で対象として用いた溶融塩のTi濃度は、1質量%とした。濃縮処理を行った後のアンダーフローのTi濃度は10質量%程度で、濃縮倍率で10倍程度であった。液体サイクロンの入側流量に対するアンダーフローの流量の比(アンダーフロー流量比)は、Tiの回収率で変わるが、0.1程度であった。 In the investigation, the flow rate of the molten salt introduced into the liquid cyclone was changed in the range of 0.11 to 12.0 m 3 / h. Further, the Ti concentration of the molten salt used as an object in this example was set to 1% by mass. The Ti concentration in the underflow after the concentration treatment was about 10% by mass, and the concentration rate was about 10 times. The ratio of the underflow flow rate to the inlet flow rate of the hydrocyclone (underflow flow rate ratio) varied with the recovery rate of Ti, but was about 0.1.

調査結果を表1に示す。   The survey results are shown in Table 1.

Figure 2009120865
Figure 2009120865

表1から明らかなように、液体サイクロンを使用することにより、75%以上の比較的高い回収率でTi粒を濃縮することができた。   As can be seen from Table 1, by using a hydrocyclone, Ti particles could be concentrated at a relatively high recovery rate of 75% or more.

これに対して、高温処理用のデカンターを使用した場合は、処理量が0.1m3/h未満のときには1時間の連続処理ができたが、処理量が0.1m3/h以上になると処理が困難であった。 On the other hand, when the decanter for high temperature treatment was used, when the treatment amount was less than 0.1 m 3 / h, continuous treatment for 1 hour was possible, but when the treatment amount became 0.1 m 3 / h or more. Processing was difficult.

表1に示した実施例1〜23のうちでは、本発明で望ましい範囲として規定するL/Dcが0.5〜8の条件を満たす実施例1〜21では、Ti回収率が80%以上であった。なお、実施例22は胴体部が短く、実施例23は胴体部が長いためアンダーフロー流量比が不足し、いずれもTi回収率が若干低かった。   Among Examples 1 to 23 shown in Table 1, in Examples 1 to 21 that satisfy the condition that L / Dc defined as a desirable range in the present invention is 0.5 to 8, the Ti recovery rate is 80% or more. there were. In Example 22, the trunk part was short, and in Example 23, the trunk part was long. Therefore, the underflow flow rate ratio was insufficient, and in all cases, the Ti recovery rate was slightly low.

また、L/Dcが2〜5の、より望ましい条件を満たす実施例1および2、実施例8〜13、ならびに実施例17〜21では、94%以上の高いTi回収率が得られた。   In Examples 1 and 2, Examples 8 to 13, and Examples 17 to 21 that satisfy a more desirable condition with L / Dc of 2 to 5, a high Ti recovery rate of 94% or more was obtained.

上記実施例では、継続処理の試験時間を1時間としたが、液体サイクロン自体には機械的な駆動部がなく、摩耗の問題が起こらないので、より長期にわたる連続処理にも十分対応できると考えられる。   In the above embodiment, the test time of the continuous treatment is 1 hour. However, since the hydrocyclone itself has no mechanical drive and no problem of wear occurs, it is considered that the continuous treatment for a longer period can be sufficiently handled. It is done.

本発明の溶融物中のTi粉濃縮方法は、機械的な駆動部のない液体サイクロンを用いる濃縮方法で、高温のCaCl2含有溶融物中に分散しているTi粉の濃縮、さらには、Ca還元によるTiの製造時に、CaCl2含有溶融塩中に生成されたTi粉の濃縮に好適に適用することができ、長時間にわたり、高い回収率で、連続して濃縮処理することが可能である。胴体部の直径が40〜300mmであり、胴体部の長さが前記直径の0.5〜8倍であるという条件を満たす液体サイクロンを使用すれば、高いTi粉回収率が得られる。 The method for concentrating Ti powder in the melt of the present invention is a concentration method using a liquid cyclone without a mechanical drive unit, concentrating Ti powder dispersed in a high-temperature CaCl 2 -containing melt, It can be suitably applied to the concentration of Ti powder produced in CaCl 2 -containing molten salt during the production of Ti by reduction, and can be continuously concentrated at a high recovery rate over a long period of time. . If a liquid cyclone that satisfies the condition that the diameter of the body part is 40 to 300 mm and the length of the body part is 0.5 to 8 times the diameter is used, a high Ti powder recovery rate can be obtained.

本発明のTi粉濃縮方法は、本発明のTi粉濃縮装置を用いて容易に実施することができる。   The Ti powder concentration method of the present invention can be easily carried out using the Ti powder concentration apparatus of the present invention.

したがって、本発明の溶融物中のTi粉濃縮方法および濃縮装置は、特に、Ca還元によりTiを製造する際に、有効に利用することができる。   Therefore, the Ti powder concentration method and concentration apparatus in the melt of the present invention can be effectively used particularly when Ti is produced by Ca reduction.

デカンターの要部の概略構成例を示す図である。It is a figure which shows the schematic structural example of the principal part of a decanter. 液体サイクロンの要部の概略構成例を示す図で、(a)は平面図、(b)は正面図である。It is a figure which shows the schematic structural example of the principal part of a hydrocyclone, (a) is a top view, (b) is a front view. 液体サイクロンの胴体部上部側面への溶融物流入口の取り付け部近傍を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the attachment part vicinity of the melt flow inlet to the trunk | drum upper part side surface of a hydrocyclone.

符号の説明Explanation of symbols

1:外筒
2:内筒
3:スクリュー
4:モーター
5:原液供給口
6:固体粒子
7:清澄液
8:固形物排出口
9:胴体部
10:円錐部
11:溶融物流入口
12:排出口
13:溶融物流出口
14:胴体部上板
1: Outer cylinder 2: Inner cylinder 3: Screw 4: Motor 5: Stock solution supply port 6: Solid particles 7: Clarified liquid 8: Solid matter discharge port 9: Body portion 10: Conical portion 11: Melt flow inlet 12: Discharge port 13: Melt flow outlet 14: Body upper plate

Claims (5)

液中にTi粉が分散しているCaCl2含有溶融物のTi濃度を液体サイクロンによって高めることを特徴とする溶融物中のTi粉濃縮方法。 A method for concentrating Ti powder in a melt, characterized in that the Ti concentration of a CaCl 2 -containing melt in which Ti powder is dispersed in a liquid is increased by a liquid cyclone. Ti粉がTiCl4のCa還元により生成されたTi粉であり、CaCl2含有溶融物が還元反応容器から導出された還元反応後の溶融物であることを特徴とする請求項1に記載の溶融物中のTi粉濃縮方法。 2. The melt according to claim 1, wherein the Ti powder is Ti powder produced by Ca reduction of TiCl 4 , and the CaCl 2 -containing melt is a melt after the reduction reaction derived from the reduction reaction vessel. A method for concentrating Ti powder in a product. 液体サイクロンとして、胴体部の直径が40〜300mmであり、胴体部の長さが前記直径の0.5〜8倍である液体サイクロンを使用することを特徴とする請求項1に記載の溶融物中のTi粉濃縮方法。   2. The melt according to claim 1, wherein a liquid cyclone having a body part diameter of 40 to 300 mm and a body part length of 0.5 to 8 times the diameter is used as the liquid cyclone. Inside Ti powder concentration method. CaCl2含有溶融物中に分散しているTi粉を濃縮する装置であって、
円筒状の胴体部の下部に逆円錐状の円錐部が接続され、前記胴体部の上部側面には溶融物の流入口が接線方向に設けられ、胴体部の上端面にはTi粉が除去された溶融物の排出口が設けられ、円錐部の下端には濃縮されたTi粉を含む溶融物の流出口が設けられた液体サイクロンを備え、
前記胴体部の直径が40〜300mmであり、胴体部長さが胴体部直径の0.5〜8倍であることを特徴とする溶融物中のTi粉濃縮装置。
An apparatus for concentrating Ti powder dispersed in a CaCl 2 -containing melt,
An inverted conical conical part is connected to the lower part of the cylindrical body part, a melt inlet is provided tangentially on the upper side surface of the body part, and Ti powder is removed from the upper end surface of the body part. Provided with a liquid cyclone provided with an outlet for the melt containing concentrated Ti powder at the lower end of the conical portion,
An apparatus for concentrating Ti powder in a melt, wherein the body portion has a diameter of 40 to 300 mm and a body portion length of 0.5 to 8 times the body portion diameter.
前記溶融物の流入口が、該流入口の上端から胴体部上板の内面まで少なくとも2mmの間隔を保つように取り付けられていることを特徴とする請求項4に記載の溶融物中のTi粉濃縮装置。   5. The Ti powder in the melt according to claim 4, wherein the melt inlet is attached so as to maintain an interval of at least 2 mm from the upper end of the inlet to the inner surface of the upper body plate. Concentrator.
JP2007292961A 2007-11-12 2007-11-12 Method and apparatus for concentrating Ti powder in melt Expired - Fee Related JP4940109B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007292961A JP4940109B2 (en) 2007-11-12 2007-11-12 Method and apparatus for concentrating Ti powder in melt
PCT/JP2008/069604 WO2009063750A1 (en) 2007-11-12 2008-10-29 Method and apparatus for concentrating ti powder in molten material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007292961A JP4940109B2 (en) 2007-11-12 2007-11-12 Method and apparatus for concentrating Ti powder in melt

Publications (2)

Publication Number Publication Date
JP2009120865A true JP2009120865A (en) 2009-06-04
JP4940109B2 JP4940109B2 (en) 2012-05-30

Family

ID=40638602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007292961A Expired - Fee Related JP4940109B2 (en) 2007-11-12 2007-11-12 Method and apparatus for concentrating Ti powder in melt

Country Status (2)

Country Link
JP (1) JP4940109B2 (en)
WO (1) WO2009063750A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105616A1 (en) * 2006-03-10 2007-09-20 Osaka Titanium Technologies Co., Ltd. METHOD OF REMOVING/CONCENTRATING METAL-FOG-FORMING METAL PRESENT IN MOLTEN SALT, APPARATUS THEREFOR, AND PROCESS AND APPARATUS FOR PRODUCING Ti OR Ti ALLOY WITH THESE
WO2008041407A1 (en) * 2006-10-03 2008-04-10 Osaka Titanium Technologies Co., Ltd. METHOD FOR PRODUCTION OF Ti GRANULE OR Ti ALLOY GRANULE, METHOD FOR PRODUCTION OF METAL Ti OR Ti ALLOY, AND PRODUCTION APPARATUS
JP2008264638A (en) * 2007-04-17 2008-11-06 Sanyo Kagi Kofun Yugenkoshi Automatic spread combustion cyclone type reactor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105616A1 (en) * 2006-03-10 2007-09-20 Osaka Titanium Technologies Co., Ltd. METHOD OF REMOVING/CONCENTRATING METAL-FOG-FORMING METAL PRESENT IN MOLTEN SALT, APPARATUS THEREFOR, AND PROCESS AND APPARATUS FOR PRODUCING Ti OR Ti ALLOY WITH THESE
WO2008041407A1 (en) * 2006-10-03 2008-04-10 Osaka Titanium Technologies Co., Ltd. METHOD FOR PRODUCTION OF Ti GRANULE OR Ti ALLOY GRANULE, METHOD FOR PRODUCTION OF METAL Ti OR Ti ALLOY, AND PRODUCTION APPARATUS
JP2008264638A (en) * 2007-04-17 2008-11-06 Sanyo Kagi Kofun Yugenkoshi Automatic spread combustion cyclone type reactor

Also Published As

Publication number Publication date
JP4940109B2 (en) 2012-05-30
WO2009063750A1 (en) 2009-05-22

Similar Documents

Publication Publication Date Title
JP4056131B2 (en) Aggregation reactor
US20110067568A1 (en) Apparatus and method for mechanical deaeration
CA2447095A1 (en) Methods for reducing entrainment of solids and liquids
JPH0236301B2 (en)
AU2012296191B2 (en) Deaeration apparatus and method
KR20160125226A (en) Centrifugal separator and method for sludge separating using the same
JP4940109B2 (en) Method and apparatus for concentrating Ti powder in melt
JP2009050825A (en) Magnetic granule separator
JP2008088513A (en) METHOD FOR MANUFACTURING Ti PARTICLE OR Ti-ALLOY PARTICLE, AND METHOD AND EQUIPMENT FOR MANUFACTURING METAL Ti OR Ti ALLOY
JP2016140862A (en) Vertical filtration concentrator, and concentration equipment and concentration method using the same
JP2007244995A (en) Treatment equipment of digestion sludge
JP6256496B2 (en) Crystallizer and crystallization method
CN109225687A (en) A kind of hydrocyclone of cone slotting structure
JP6513460B2 (en) Separation filtration system and separation filtration method
RU2529350C1 (en) Centrifugal-segregation concentrator
JP2000288327A (en) Liquid treatment apparatus
JP4775913B2 (en) Cyclone filter
JP3871440B2 (en) Concentrated agglomeration reactor
CN104984567B (en) Mud-scraping device for ring-shaped pond
US3905546A (en) Centrifugal extractor
JP2013208587A (en) Separation device, and separation method
JP2008144280A (en) METHOD FOR MANUFACTURING Ti GRAIN OR Ti-ALLOY GRAIN, AND METHOD AND DEVICE FOR MANUFACTURING METAL Ti OR Ti ALLOY
CN207153273U (en) A kind of device for improving magnesium sulfate quality
CN211099605U (en) G-F solid-liquid partition system in rotary drum
EP3017871A1 (en) Apparatus for classifying particulate material

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees