WO2007105616A1 - METHOD OF REMOVING/CONCENTRATING METAL-FOG-FORMING METAL PRESENT IN MOLTEN SALT, APPARATUS THEREFOR, AND PROCESS AND APPARATUS FOR PRODUCING Ti OR Ti ALLOY WITH THESE - Google Patents

METHOD OF REMOVING/CONCENTRATING METAL-FOG-FORMING METAL PRESENT IN MOLTEN SALT, APPARATUS THEREFOR, AND PROCESS AND APPARATUS FOR PRODUCING Ti OR Ti ALLOY WITH THESE Download PDF

Info

Publication number
WO2007105616A1
WO2007105616A1 PCT/JP2007/054633 JP2007054633W WO2007105616A1 WO 2007105616 A1 WO2007105616 A1 WO 2007105616A1 JP 2007054633 W JP2007054633 W JP 2007054633W WO 2007105616 A1 WO2007105616 A1 WO 2007105616A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten salt
metal
concentration
alloy
molten
Prior art date
Application number
PCT/JP2007/054633
Other languages
French (fr)
Japanese (ja)
Inventor
Tadashi Ogasawara
Makoto Yamaguchi
Original Assignee
Osaka Titanium Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006066132A external-priority patent/JP2007239073A/en
Priority claimed from JP2006065838A external-priority patent/JP4510769B2/en
Application filed by Osaka Titanium Technologies Co., Ltd. filed Critical Osaka Titanium Technologies Co., Ltd.
Priority to AU2007225815A priority Critical patent/AU2007225815A1/en
Priority to CA002645103A priority patent/CA2645103A1/en
Priority to EP07738118A priority patent/EP1995353A1/en
Priority to US12/224,843 priority patent/US20090114546A1/en
Priority to EA200870343A priority patent/EA200870343A1/en
Publication of WO2007105616A1 publication Critical patent/WO2007105616A1/en
Priority to NO20083515A priority patent/NO20083515L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/129Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds by dissociation, e.g. thermic dissociation of titanium tetraiodide, or by electrolysis or with the use of an electric arc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1268Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
    • C22B34/1272Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams reduction of titanium halides, e.g. Kroll process
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/02Electrolytic production, recovery or refining of metals by electrolysis of melts of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/26Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
    • C25C3/28Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium of titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium

Definitions

  • the present invention removes a metal fog forming metal dissolved in a molten salt containing a metal fog forming metal such as Ca or Na as a constituent component from the molten salt and forms the other metal fog forming material.
  • the present invention relates to a method for producing a T alloy and a manufacturing apparatus used therefor.
  • Metals such as Ti, Zr, Ta, Hf, and V are useful metals each having excellent properties. Force It is difficult to produce iron with a commonly used reducing agent such as C or A1. In addition, since these metals need to be separated from coexisting elements and impurities, they are usually refined through many processes such as solvent extraction, roasting, chlorination, etc. It is manufactured as a porcelain or salty porcelain by reducing it with a metal having a strong reducing power such as Mg, Al, Na, and Ca.
  • metal fog forming metal This kind of metal is here called “metal fog forming metal”.
  • Each of these metal fog forming metals is produced as a pure metal through various refining treatments from raw ores, and is used in various applications including use as the reducing agent.
  • chlorides and fluorides of these metals are often used alone as molten salts, or as multi-component molten salts containing other salts, especially as an industrial electrolytic bath. Widely used for salt electrolysis.
  • Metal fog forming metal can be used As an industrial process for producing metal Ti, the crawl method, in which TiCl is reduced with Mg, is common.
  • the supplied TiCl reacts as unreacted TiCl gas or insufficiently reduced TiCl gas.
  • the reaction is performed only in the vicinity of the liquid level of the molten Mg liquid in the reaction vessel, so the heat generation area is narrow. Therefore, if TiCl is supplied at high speed, the cooling will not be in time.
  • the generated Ti powder settles in an aggregated state, and during the sedimentation, it is sintered by the heat of the high-temperature melt and grows.
  • it is difficult to recover out of the reaction vessel. For this reason, metal Ti cannot be manufactured continuously, and productivity is hindered.
  • a method for reacting dissolved Ca and TiCl in a molten salt of C1 is described.
  • JP-A-2005-133196 discloses a method for effectively suppressing back reaction caused by electrolysis by using an alloy electrode (for example, Mg—Ca alloy electrode) as a cathode. Being! /
  • the inventors of the present invention are based on the OYIK method in terms of the basic configuration, and furthermore, a process for producing a metal T or Ti alloy that can be efficiently and stably operated on an industrial scale. The entire manufacturing process was examined with the intention of developing the above.
  • metal fog forming metals such as Ca and Na are used as an industrial electrolytic bath and various molten salts.
  • a molten salt containing a metal fog forming metal such as Ca and Na as a constituent component (for example, CaCl 2), and
  • the metal fog forming metal (Ca) is removed from the molten salt formed by the dissolution of the metal fog forming metal (Ca), and at the same time, the removed metal fog forming metal is replaced with another molten salt (the metal fog forming metal is a constituent component). It is an object of the present invention to provide a method for removing and increasing the concentration of metal fog-forming metal in a molten salt and an apparatus used therefor.
  • the present invention provides TiCl by Ca produced by electrolysis of molten CaCl, its
  • the purpose is to provide a T alloy and Ti alloy production method and production equipment used therefor that can be efficiently operated and that can be stably operated on an industrial scale.
  • the present invention has been made to solve the above-mentioned problems.
  • the contents of the present invention are "1. Method and apparatus for removing metal fog-forming metal in molten salt and increasing concentration", “2. Ca.” It is divided into “T and Ti alloy manufacturing method and apparatus including recovery process” and “3. T and Ti alloy manufacturing method and apparatus including Ca removal and concentration step”.
  • the present inventors examined the case where the metal fog forming metal is Ca. As a result, the molten salt (CaCl) is held in the treatment tank (this tank is referred to as A tank), and this molten salt is contacted thereon.
  • the molten alloy which is a common component of the A tank and the B tank, is connected and integrated, and the molten salt side electrode plate of the A tank becomes a positive electrode, and the molten salt side electrode plate of the B tank So that it becomes the pole
  • a voltage voltage less than the decomposition voltage of CaCl
  • TiCl reduction reaction Ti grain growth by Ti reduction Ca reduction
  • the metal fog forming metal concentration region of the metal fog forming metal removal and concentration tank and the metal fog forming metal removal region separated from the region include a metal fog forming metal-containing molten salt and the metal fog forming metal
  • the molten salt containing the metal fog forming metal is held in contact with the molten salt held in both of these regions, and the molten salt side electrode in the metal fog forming metal removing region is held.
  • Plate force S Apply a voltage lower than the decomposition voltage of the metal fog forming metal-containing molten salt so that the molten salt side in the metal fog forming metal concentration region becomes a positive pole, and melt in the metal fog forming metal removal region.
  • the metal fog forming metal dissolved in the salt is absorbed by the molten alloy to reduce its concentration, and at the same time, the melt in the metal fog forming metal concentration region is dissolved.
  • the metal-fog forming metal dissolved in the salt which is highly concentrated to remove and enrichment method Metarufo grayed forming metal in the molten salt to increase its density.
  • the "metal fog forming metal” means that the metal itself dissolves in a salt of a metal having a strong reducing power such as Ca, Li, Na, A1, etc. (for example, Ca dissolves in CaCl) At this time, it is a metal having a mist-like property called a metal mist.
  • metal fog-forming metal-containing molten salt is a molten salt containing a metal fog-forming metal as a component, and refers to, for example, molten CaCl, molten NaCl, and the like. Also, “Metal Pho
  • the metal fog forming metal is Ca
  • the molten CaCl or the molten CaCl is used to adjust the melting point, viscosity, etc.
  • a "molten alloy containing a metal fog-forming metal” is an alloy in a molten state in which a metal fog-forming metal is included as a component, and the case where the metal fog-forming metal is Ca is taken as an example. It refers to molten Mg—Ca alloy, molten Pb—Ca alloy, etc.
  • the electrodes for applying a voltage are the "electrode” and the "+ electrode” as described above, because the electrode is used on the premise of electrolysis of a bath salt (in this case, a molten salt). This is to avoid confusion with “anode)” and “cathode (forced sword)”.
  • the metal fog forming metal is Ca
  • the metal fog forming metal-containing molten salt is Ca-containing molten salt.
  • the metal fog forming metal is Ca
  • the metal fog forming metal-containing molten salt strength CaCl is used.
  • the “Ca-containing molten salt” refers to, for example, Ca CI CaF.
  • the applied voltage is less than 3.2 V
  • the applied voltage is managed by a specific numerical value, and Ca is rapidly absorbed into the molten alloy without decomposing CaCl.
  • the metal fog forming metal removal region holding the metal fog forming metal-containing molten salt having a reduced concentration of the metal fog forming metal, and the metal fog forming metal concentration region and the molten salt held in the metal fog forming metal removal region. Melting metal
  • the apparatus for removing and concentrating metal fog forming metal in molten salt having a metal fog forming metal removing and concentrating tank provided with a molten alloy holding region for holding a rufog forming metal-containing alloy.
  • the metal fog forming metal is Ca
  • the metal fog forming metal-containing molten salt is a Ca-containing molten salt.
  • the metal fog forming metal is Ca
  • the metal fog forming metal-containing molten salt force SCaCl is implemented.
  • the metal-fodder-forming metal-containing melt is in contact with each of the molten alloys containing metal fog-forming metal such as Ca and Na.
  • the metal fog forming metal dissolved in the molten salt containing salt can be removed and transferred into the other molten salt to increase its concentration.
  • This method can be easily and suitably performed by the apparatus of the present invention.
  • Ti dissolves in the salt and reacts with Ca generated by electrolysis in the electrolytic cell, and Ti may be deposited on the cathode surface, which may hinder the operation. There is also concern about the occurrence of TiC, which causes Ti contamination of C.
  • the present inventors suppress fluctuations in the Ca concentration of the molten salt charged into the reaction vessel, maintain it at a high concentration, and quickly recover the Ca in the molten salt sent to the electrolytic cell.
  • Various studies were conducted to remove Ca and suppress knock reaction.
  • the electrode rod on the molten alloy side is the electrode
  • the electrode rod on the molten salt side is the + electrode.
  • an adjustment vessel equipped with a Ca supply source is installed between the electrolytic cell and the reaction vessel, It was found that it is effective to use molten salt with increased Ca concentration by decomposition to introduce Ca into the adjustment tank and keep the Ca concentration constant and then use it for reduction. As a result, the Ca concentration of the molten salt is always maintained at a constant high concentration, and the reduction reaction can proceed efficiently. It was also found that a molten alloy with increased Ca concentration can be used as a Ca supply source for the adjustment tank by applying a voltage to the molten salt to absorb Ca.
  • the present inventors have conducted detailed studies on the shape of the electrolytic cell container of the main electrolytic cell, the electrode shape, the electrolysis conditions, the distance between the electrodes, and the like.
  • knock reaction is suppressed and high current efficiency is maintained, while Ca concentrated melt Only salt can be extracted effectively, and the strength of continuous treatment of a large amount of molten salt containing CaCl It was possible to increase the Ca supply rate to the reaction vessel.
  • a reduction step for producing a catalyst a separation step for separating the Ti particles or Ti alloy particles from the molten salt in the reaction vessel or outside the reaction vessel, and electrolysis of the molten salt extracted outside the reaction vessel
  • To generate Ca in the molten salt to increase the Ca concentration of the molten salt to return the Ca generated by the electrolysis alone or together with the molten salt into the reaction vessel, and to be separated in the separation step and
  • the molten salt sent to the electrolysis process is brought into contact with the molten alloy containing Ca and Mg, so that the electrode rod on the molten alloy side becomes the pole and the electrode rod on the molten salt side becomes the + pole.
  • molten salt containing CaCl means only molten CaCl or melting point of molten CaCl.
  • Metal chloride containing TiCl refers to TiCl only, or TiCl and V, Al, Cr, etc.
  • Ti alloy can be manufactured by using it.
  • Ca dissolved in 2 2 can be rapidly absorbed by the molten alloy.
  • the molten salt whose Ca concentration has been increased in the electrolysis step is introduced into an adjustment tank having a Ca supply source, and the molten salt is supplied as a Ca supply source. If the Ca concentration in the molten salt is made constant by contacting the molten salt and then sent to the reduction process, the Ca concentration of the molten salt introduced into the reaction vessel is always maintained at a constant high concentration, thereby reducing the efficiency of the reduction reaction. Well progress Can be run.
  • the molten alloy whose Ca concentration is increased by absorbing Ca in the Ca recovery step is used as a Ca supply source or a part thereof in the adjustment tank.
  • the removed Ca can be effectively used to suppress knock reaction.
  • An electrolytic cell for carrying out electrolysis in the molten salt to produce Ca on the cathode side, and the Ca produced by the electrolysis alone or together with the molten salt in the reaction vessel A return means to be introduced into the electrode, and the molten salt separated by the separation means and sent to the electrolytic cell in contact with a molten alloy containing Ca and Mg, while the electrode rod on the molten alloy side is the electrode, and the molten salt side electrode Apply a voltage less than the decomposition voltage of CaCl so that the rod becomes the + pole.
  • the T or Ti alloy manufacturing apparatus of (4) further includes a Ca supply source, and the molten salt in the electrolytic cell is introduced and brought into contact with the Ca supply source.
  • a Ca supply source any device having an adjustment tank for charging the molten salt into the reaction vessel after making the Ca concentration constant can be suitably used for the production method (3).
  • the Ca is dissolved in the molten salt, and the Ca is rapidly recovered to suppress back reaction during electrolysis of the molten salt.
  • high efficiency of Ca generation can be achieved.
  • the Ca concentration in the molten salt sent to the reduction process is increased, and in addition to increasing the efficiency of Ca generation, the reduction reaction of TiCl
  • a large amount of CaCl-containing molten salt can be continuously processed in the electrolysis process to obtain a reaction volume. It is possible to increase the rate of Ca supply to the vessel.
  • the present inventors suppress fluctuations in the Ca concentration of the molten salt charged into the reaction vessel and maintain it at a high concentration so that efficient and stable operation can be performed on an industrial scale.
  • various studies were conducted to quickly recover the Ca in the molten salt sent to the electrolytic cell, remove the Ca, and suppress knock reaction.
  • the electrode rod on the molten alloy side becomes the + electrode
  • the electrode rod on the molten salt side becomes the electrode
  • the molten alloy is integrated as a common component, and while the molten salt is in contact with the molten alloy, the electrode rod on one side of the molten salt becomes a positive electrode, and the electrode rod on the other side of the molten salt becomes an electrode.
  • a voltage voltage less than the decomposition voltage of CaCl
  • an adjustment tank equipped with a Ca supply source is installed between the electrolytic cell and the reaction vessel, It was found that it is effective to use molten salt with increased Ca concentration by decomposition to introduce Ca into the adjustment tank and keep the Ca concentration constant and then use it for reduction.
  • the present inventors electrolyzed the molten salt while flowing it in one direction near the cathode surface, and recovered the molten salt having an increased Ca concentration on the outlet side of the electrolytic cell, thereby knock reaction.
  • the method and apparatus for producing a soot or Ti alloy including the Ca removal and concentration step of the present invention is based on these findings! /, And has the following configurations (5) and (6): It becomes.
  • a reduction step for producing a catalyst a separation step for separating the Ti particles or Ti alloy particles from the molten salt in the reaction vessel or outside the reaction vessel, and electrolysis of the molten salt extracted outside the reaction vessel
  • To generate Ca in the molten salt to increase the Ca concentration of the molten salt to return the Ca generated by the electrolysis alone or together with the molten salt into the reaction vessel, and to be separated in the separation step and
  • molten salt containing CaCl and the “metal chloride containing TiCl” are the above-mentioned “2.
  • aT recovery process including recovery process is the same as in “Ti alloy manufacturing method”.
  • the molten salt whose Ca concentration has been increased in the electrolysis process is introduced into an adjustment tank having a Ca supply source, and the molten salt is brought into contact with the Ca supply source to make the Ca concentration of the molten salt constant, and then the reduction process. Therefore, the Ca concentration of the molten salt introduced into the reaction vessel can always be maintained at a constant high concentration, and the reduction reaction can proceed efficiently.
  • a Ca removal concentration device that sends molten salt in the Ca removal region, where the Ca concentration has been reduced by applying voltage, to the electrolysis process, and sends molten salt in the Ca concentration region, where the Ca concentration is increased, to the reduction process.
  • the T-fired machine is a Ti alloy production equipment.
  • the T or Ti alloy production apparatus further includes a Ca supply source, and the molten salt in the electrolytic cell is introduced and brought into contact with the Ca supply source to obtain the molten salt.
  • a Ca supply source any device having an adjustment tank for charging the molten salt into the reaction vessel after making the Ca concentration constant can be suitably used for the production method (5).
  • the Ca dissolved in the molten salt is quickly removed, and the back-reaction during the electrolysis of the molten salt is reduced. It can be suppressed to achieve high efficiency of Ca generation. Furthermore, at the same time as removing Ca, the Ca concentration in the molten salt sent to the reduction process is increased, and in addition to the high efficiency of Ca generation, the TiCl is reduced.
  • FIG. 1 is a diagram showing a schematic configuration example of the main part of the apparatus used when performing the method for removing and increasing the concentration of metal fog forming metal in molten salt according to the present invention.
  • Figure 2 shows the voltage applied between molten Mg-Ca alloy and molten CaCl and the flow between the two electrodes.
  • Fig. (A) shows CaCl not containing Ca.
  • FIG. 3 is a diagram showing a schematic configuration example of the main part of the apparatus used when carrying out the recovery method (that is, the removal method) of the metal fog-forming metal in the molten salt of the present invention.
  • FIG. 4 is a diagram showing a schematic configuration example of an apparatus used when carrying out the manufacturing method of T or Ti alloy including the Ca recovery step of the present invention.
  • FIG. 5 is a diagram showing another schematic configuration example of an apparatus used when carrying out the manufacturing method of T or Ti alloy including the Ca recovery step of the present invention.
  • FIG. 6 is a diagram showing a schematic configuration of an apparatus used for carrying out the method for producing a T or Ti alloy including the Ca removal concentration process of the present invention.
  • FIG. 7 is a diagram showing another schematic configuration example of an apparatus used for carrying out the method for producing a T or Ti alloy including the Ca removal concentration process of the present invention.
  • FIG. 1 is a diagram showing a schematic configuration example of the main part of the apparatus used when performing the method for removing and increasing the concentration of metal fog-forming metal in molten salt according to the present invention.
  • the configuration shown in the figure is the same as the Ca removal and concentration device 28 shown in FIGS. 6 and 7 described later, and the same reference numerals are used.
  • the metal fog forming metal is Ca
  • the molten salt containing the metal fog forming metal-containing molten salt is molten CaCl
  • the molten metal fog forming metal-containing alloy is molten Mg.
  • this apparatus has a Ca removal and concentration tank 28a.
  • molten CaCl is separated into a Ca concentration region 29 and a Ca removal region 30 by a partition wall 31. Hold in state
  • the molten Mg—Ca alloy 8 is held in contact with the molten salt held in the Ca concentration region 29 and the Ca removal region 30.
  • An electrode plate 33 for applying pressure is provided.
  • the electrode plate 7 is provided so that the electrode plate on the molten salt side in the Ca enriched region 29 becomes a pole.
  • the Ca enrichment region 29 and the Ca removal region 30 are separated by the partition wall 31, but the present invention is not necessarily limited thereto.
  • the two regions may be separated by separate tanks that can be individually removed.
  • the molten Mg—Ca alloy 8 is held on the molten salt held in both the regions 29 and 30 by contacting both the molten salts.
  • the molten salt side electrode plate 33 in the Ca removal region 30 is less than the decomposition voltage of CaCl so that the molten salt side electrode plate 33 becomes a positive electrode with respect to the molten salt side electrode plate 34 in the Ca concentration region 29. Applied voltage
  • the molten Mg-Ca alloy 8 existing in the vicinity of the contact portion with the molten salt in the Ca removal region 30 moves toward the molten salt side (+ pole side) in the Ca removal region 30. Since it functions as a negative electrode, the dissolved Ca moves to the molten Mg—Ca alloy 8 side and is absorbed as shown by the arrow in FIG. As a result, dissolved Ca in the Ca removal region 30 is removed, and the Ca concentration of the Mg—Ca alloy 8 increases.
  • the molten Mg—Ca alloy 8 in the vicinity of the contact portion with the molten salt in the Ca concentrated region 29 is relatively positive with respect to the molten salt side ( ⁇ polar side) in the Ca concentrated region 29. Function as. Therefore, Ca in the molten Mg—Ca alloy 8 moves to the molten salt side in the Ca enriched region 29, and the Ca concentration in the Ca enriched region 29 becomes higher and the concentration is increased.
  • the concentration of dissolved Ca in the Ca concentration region 29 can be increased at the same time as the dissolved Ca in the Ca removal region 30 is removed.
  • this simultaneous processing can be performed using an extremely simple apparatus in both shape and configuration. Easy to implement.
  • the applied voltage is less than the decomposition voltage of CaCl because of the decomposition of Ca by the decomposition of CaCl.
  • a metal such as iron is used for the electrode, and an insoluble electrode such as a graphite electrode is used for the + electrode.
  • Fig. 2 is a result of examination by the inventors of the present invention, and is a diagram schematically showing the relationship between the voltage applied between the molten Mg-Ca alloy and molten CaCl and the current flowing between the two electrodes. is there.
  • the limit current is such that Ca shifts from the molten salt side (+ pole side) to the molten alloy side (one pole side) (that is, Ca dissolved in CaCl is absorbed by the molten alloy). Because
  • the current value becomes smaller. According to the examination results of the present inventors, when the limiting current value was 0.14 A / cm 2 , the Ca concentration was about 0.01% by mass.
  • the force that varies depending on the use of the molten salt obtained by the method for removing a metal fog-forming metal from the molten salt of the present invention and increasing the concentration, for example, the applied voltage is CaC 1
  • the limit current value decreases as the Ca concentration of the molten salt decreases. Therefore, in order to rapidly decrease the Ca concentration and increase the Ca removal efficiency, the melting current in the Ca removal region is reduced. It is desirable to increase the contact area between the salt and the molten alloy. Since the same amount of current as that flowing in the Ca removal region flows also in the Ca concentration region, it is desirable to reduce the resistance by increasing the contact area in the Ca concentration region as well.
  • the metal fog forming metal is Ca and the metal fog forming metal-containing molten salt is a Ca-containing molten salt
  • the metal fog forming metal is Ca.
  • the metal fog-forming metal is limited to Ca.
  • TiCl is performed with a molten salt interposed.
  • the applied voltage is less than 3.2 V (that is, the decomposition voltage of CaCl
  • Ca can be removed as low voltage).
  • the applied voltage is controlled by specific numerical values, and the molten salt side electrode plate and molten alloy side electrode plate that do not decompose CaCl are used.
  • the lower limit is not limited.
  • the apparatus for removing and concentrating metal fog-forming metal in molten salt according to the present invention comprises the main components shown in FIG. 1, and the method for removing and concentrating metal fog-forming metal according to the present invention described above. Can be carried out easily and preferably.
  • FIG. 3 is a diagram showing a schematic configuration example of the main part of the apparatus used when carrying out the recovery method (that is, the removal method) of the metal fog-forming metal in the molten salt according to the present invention.
  • the configuration shown in FIG. 3 is the same as the Ca recovery means 5 shown in FIGS. 4 and 5 described later, and the same reference numerals are used.
  • the metal fog forming metal is Ca
  • the molten salt containing the metal fog forming metal-containing molten salt is molten CaCl
  • the molten metal fog forming metal is molten metal fog forming metal.
  • the contained alloys are indicated as molten Mg-Ca alloys, and these indications are used in the following explanation.
  • the Ca recovery means 5 has a Ca recovery tank 6, in which molten CaCl 7 is held, on which molten Mg—Ca alloy 8 is stored. Keep in contact with molten salt 7
  • the electrode rod 9 inserted into the molten salt 7 constitutes the + pole
  • the electrode rod 10 inserted into the molten Mg—Ca alloy 8 constitutes the pole.
  • the molten Mg—Ca alloy 8 is held on the molten salt 7 in contact with the molten salt 7.
  • the electrode rod 10 inserted into the molten Mg—Ca alloy 8 is a negative electrode
  • the electrode rod 9 inserted into the molten salt 7 is a positive electrode.
  • the molten Mg-Ca alloy 8 present in the vicinity of the contact portion with the molten salt 7 in the Ca recovery tank 6 is relatively to the molten salt side (+ pole side) in the Ca removal tank 6. Since it functions as a pole, dissolved Ca moves to the molten Mg—Ca alloy 8 side and is absorbed, as shown by the arrow in FIG. As a result, dissolved Ca in the Ca removal tank 6 is recovered (removed).
  • FIG. 4 is a diagram showing a schematic configuration example of an apparatus used when carrying out the manufacturing method of T or Ti alloy including the Ca recovery step of the present invention. In the figure, only TiCl is used as a raw material.
  • this apparatus holds a molten salt containing CaCl and dissolving Ca
  • Reaction vessel 1 separation means 2 for separating the Ti particles generated in the molten salt by molten salt force, and electrolysis of the molten salt after the Ti particles are separated to generate Ca on the cathode side
  • An electrolytic cell 3 for causing the reaction to occur, and a return to introduce Ca generated by electrolysis into the reaction vessel 1
  • Means 4 and Ca recovery means 5 for removing Ca dissolved and dissolved in the molten salt separated by the separation means and sent to the electrolytic cell.
  • the Ca recovery means 5 illustrated in FIG. 4 shows the main part thereof, and the molten salt 7 separated by the separation means 2 is introduced into the Ca recovery tank 6, and Ca and Mg are added thereon.
  • a molten alloy (including “melted Mg—Ca alloy” or simply “molten alloy”) 8 is retained.
  • the electrode rod 9 inserted into the molten salt 7 constitutes the + pole, and the electrode rod 10 inserted into the molten Mg—Ca alloy 8 constitutes the negative electrode.
  • the electrolytic cell 3 has a long pipe (cylindrical) shape that holds a molten salt containing CaCl.
  • a molten salt supply port 14 is provided at one end (bottom plate 13) in the direction, and a molten salt discharge port 16 is provided at the other end (upper lid 15).
  • the surface of the anode 11 and the surface of the cathode 12 are opposed to each other in a substantially vertical direction, and a diaphragm 17 is provided between the anode 11 and the cathode 12 for suppressing the passage of Ca generated by the electrolysis of the molten salt.
  • a cooler 18 is attached to the outer surface of the anode 11.
  • a decanter type centrifugal sedimentator (high temperature decanter) 19 and a separation tank 20 are used as the separation means 2, in the apparatus shown in FIG. 4, a decanter type centrifugal sedimentator (high temperature decanter) 19 and a separation tank 20 are used.
  • Ti grains are generated in the molten salt. That is, the “reduction process”.
  • the molten salt is not held in a stationary state in the reaction vessel 1, but is held while gradually flowing down from the upper side of the reaction vessel 1, while TiCl which is a raw material is Is reduced by Ca in the molten salt to produce Ti grains.
  • TiCl as raw material
  • metal chlorides for example, salts of V, Al, Cr, etc.
  • these metal salts are also reduced by Ca.
  • Ti alloy particles can be generated by adding, and finally Ti alloy can be manufactured [0104] Ti particles generated in the reduction step are separated from the molten salt in a "separation step".
  • Separation of the molten salt strength of Ti grains can be performed in a reaction vessel by using an appropriate reaction vessel, but in this case, a batch system is used. Therefore, in order to increase productivity, for example, a molten salt in which Ca is dissolved is continuously supplied using a reaction vessel of the type shown in FIG. 4, and Ti particles produced are extracted out of the reaction vessel. It is better to separate from the molten salt outside the container.
  • the decanter type centrifugal sedimentator is a type of centrifugal separator in which a suspended substance is centrifugally settled by rotating a rotating cylinder at a high speed, which enables high-speed processing and high dehydration performance.
  • a type capable of high temperature treatment has also been developed and can be applied as a high temperature decanter 19 in this separation process.
  • the Ti grains extracted from the high temperature decanter 19 are heated and melted by the plasma irradiated from the plasma torch 22 in the separation tank 20 and poured into the vertical mold 23 to become a Ti ingot 24.
  • the molten salt having a reduced Ca concentration separated by the high temperature decanter 19 is sent to a “Ca recovery step”. That is, while introducing the molten salt into the Ca recovery tank 6 and bringing it into contact with the molten Mg—Ca alloy 8, a voltage is applied so that the electrode rod on the molten alloy side becomes a pole and the electrode rod on the molten salt side becomes a + pole. Apply. The applied voltage at this time is less than the decomposition voltage of CaCl.
  • the Ca dissolved in the CaCl is quickly absorbed by the molten alloy.
  • the molten salt with a reduced Ca concentration can be quickly sent to the electrolysis process. Since the Ca concentration in the molten salt decreases, knock reaction is suppressed.
  • a metal such as iron is used for the electrode, and an insoluble electrode such as a graphite electrode is used for the + electrode! /.
  • the limiting current is due to the transition of Ca from the molten salt side (+ pole side) to the molten alloy side (one pole side), and its magnitude is dissolved in CaCl.
  • the limiting current decreases as the Ca concentration decreases. According to the results of studies by the present inventors, when the limiting current density is 0.14 AZcm 2 , the Ca concentration is about 0.01% by mass.
  • the limiting current decreases as the Ca concentration of the molten salt decreases. Therefore, in order to rapidly decrease the Ca concentration and increase the Ca removal (recovery) efficiency, a Ca recovery tank must be installed. It is desirable to increase the contact area between molten salt 7 and molten Mg—Ca alloy 8 by increasing the size.
  • the applied voltage is reduced by removing Ca by setting the applied voltage to less than 3.2 V (that is, a voltage lower than the decomposition voltage of CaCl).
  • the applied voltage By applying a potential difference between the electrode rods, Ca can be rapidly absorbed into the molten alloy. Even if the applied voltage is small, there is an effect of removing Ca, so the lower limit is not limited. However, in order to effectively remove Ca, it is desirable that the applied voltage be 0.01 V or higher.
  • the molten salt whose Ca concentration has decreased in the Ca recovery process is sent to the “electrolysis process” where it is electrolyzed to produce Ca, and the Ca concentration of the molten salt is increased.
  • molten salt is introduced between the cathode 12 and the diaphragm 17 of the electrolytic cell 3 and held. Since the electrolytic cell 3 has a shape that is long in one direction (in the example shown in the drawing, it is elongated V in the vertical direction and a pipe (cylindrical) shape), the molten salt is fed from one end of the electrolytic cell 3 to the anode 11 and the cathode 12. By supplying continuously or intermittently, a flow rate in one direction is given to the molten salt near the surface of the cathode 12, and the molten salt can flow in one direction near the surface of the cathode 12. Although the supply of the molten salt is normally performed continuously, the supply of the molten salt may be interrupted intermittently, that is, the supply of the molten salt may be temporarily stopped or continued again.
  • the molten salt is electrolyzed. While the molten salt flows in one direction near the surface of the cathode 12 and electrolyzes to produce Ca on the cathode surface, the electrolytic cell 3 is long and shaped in one direction. In the example shown in Fig. 4, the distance between the anode 11 and the cathode 12 is relatively narrow in order to keep the electrolysis voltage low, so the Ca concentration is reduced by the molten salt and electrolysis near the molten salt supply port 14 where the Ca concentration is low. Increased molten salt outlet Mixing with molten salt near 16 Only molten salt enriched with Ca can be effectively extracted.
  • the method of extracting the direction force is also used, but conversely, it is also possible to supply the upper force of the electrolytic cell 3 and extract from the lower side.
  • the anode surface and the cathode surface face each other in a substantially vertical direction, while the molten salt near the cathode surface is given a unidirectional flow velocity.
  • the flow direction of the molten salt is the vertical direction, and the chlorine gas generated on the anode side floats easily and is easy to recover.
  • cooler heat exchanger
  • the heat removal efficiency is further increased.
  • the cooler 18 installed so as to surround the anode 11 is this example.
  • Ca produced by electrolysis in the electrolysis step is introduced into the reaction vessel alone or together with the molten salt through a "returning step".
  • an electrolytic cell equipped with a structure that can recover Ca generated by electrolyzing the molten salt as it is, that is, Ca alone (including a state where a very small amount of molten salt is mixed in Ca) is used.
  • Ca alone including a state where a very small amount of molten salt is mixed in Ca
  • the generated Ca is transferred as it is to the vicinity of the reaction vessel without using the molten salt as a Ca transfer medium, and is dissolved in the separately prepared molten salt in the reaction vessel.
  • This system can be expected to reduce the cost required for transportation.
  • the produced Ca can be put into the reaction vessel as it is and reacted with TiCl.
  • Fig. 5 is a diagram showing another schematic configuration example of an apparatus used when carrying out the manufacturing method of T or Ti alloy including the Ca recovery step of the present invention.
  • the molten salt in the electrolytic cell 3 is further introduced and brought into contact with a Ca supply source to make the Ca concentration of the molten salt constant, and then the molten salt is added.
  • a Ca supply source to make the Ca concentration of the molten salt constant, and then the molten salt is added.
  • This is an apparatus provided with an adjusting tank 25 for charging into the reaction vessel 1.
  • the production method shown in FIG. 5 is the same as the production method of the T or Ti alloy of the present invention, in which "a molten salt whose Ca concentration has been increased in the electrolytic process is introduced into a regulating tank having a Ca supply source. The molten salt is brought into contact with the Ca supply source to make the Ca concentration of the molten salt constant, and then sent to the reduction process.
  • the molten salt enriched with Ca extracted from the electrolytic cell 3 is introduced into the adjustment tank 25 and brought into contact with the Ca supply source 26 to thereby melt the molten salt. After making Ca concentration of salt 27 constant, it can be charged into reaction vessel 1. In other words, this is a method in which the treatment in the adjustment tank 25 is incorporated in the return process.
  • the Ca concentration of the molten salt in which Ca is concentrated in the electrolysis process varies with slight variations in the electrolysis conditions in the electrolytic cell 3. Therefore, when the molten salt that has been subjected to electrolytic treatment in the electrolytic cell 3 is directly charged into the reaction vessel 1, the Ca concentration is not always maintained constant. The current efficiency may decrease due to the cryoaction, and the efficiency of the reduction reaction of TiCl may be reduced to enable stable operation.
  • the molten salt having an increased Ca concentration using the electrolytic cell 3 in the electrolysis step is introduced into the adjustment tank 25 having a Ca supply source 26 and brought into contact with the Ca supply source 26, thereby causing the melting. After making the Ca concentration of the salt constant, it can be used to reduce TiCl in the reduction step.
  • the amount of the molten salt separated from the Ti particles in the separation tank 20 is very small compared to the flow rate of the molten salt introduced from the electrolytic tank 3 to the reaction vessel 1 via the adjustment tank 25. Therefore, as described above, the reaction vessel 1 may be returned directly. However, as shown in FIG. 3, it is desirable to introduce it into the reaction vessel 1 after introducing it into the adjusting tank 25 to make the Ca concentration constant.
  • molten metal Ca or Ca such as molten Mg-Ca alloy is relatively high.
  • a molten alloy containing a high content can be used.
  • the Ca concentration is increased and molten metal Ca or molten Mg—Ca alloy or the like is suspended on the molten salt 27 introduced into the adjustment tank 25, and the Ca supply source 26 and the molten salt 27 are brought into contact with each other.
  • the Ca concentration of the molten salt 27 is less than its saturation solubility, Ca can be supplied from the Ca supply source 26 to the molten salt 27, and the Ca concentration can be maintained at a concentration close to the saturation solubility.
  • the Ca concentration of the molten salt 27 is the saturation solubility and the precipitated metallic Ca is also mixed, the metallic Ca floats and separates in the adjustment tank 25 due to the specific gravity difference, and the Ca concentration is saturated.
  • the concentration can be kept near the solubility.
  • the temperature of the molten salt 27 when it is extracted from the adjustment tank 25 is controlled to be constant, the Ca concentration can be controlled to a constant concentration in the vicinity of the saturation solubility at that temperature.
  • the adjustment tank 25 is installed and extracted from the electrolytic cell 3.
  • molten salt having a Ca concentration of a constant concentration in the vicinity of its saturation solubility is charged into the reaction vessel 1, and TiCl
  • the production method of the present invention defines the Ca supply source of the adjustment tank shown in Fig. 5 and states that "a molten alloy in which the Ca concentration is increased by absorbing Ca in the Ca recovery process is added to the Ca of the adjustment tank. Use as a source or part of it ”method.
  • the molten alloy 8 in which the Ca concentration is increased by absorbing Ca in the Ca recovery step (Ca recovery means 5) is transferred to the adjustment tank 25, and the Ca supply source 26 Used as The entire Ca supply source 26 is treated as a molten alloy transferred from the Ca recovery process and is quantitatively used. If less, it may be used as part of the Ca source 26. In any case, Ca removed from the molten salt separated by the high-temperature decanter 19 and sent to the electrolysis process to suppress knock reaction can be used effectively.
  • the apparatus for producing the T or Ti alloy of the present invention is an apparatus used in carrying out the method for producing the T or Ti alloy including the Ca recovery step described above, and the schematic configuration thereof is as described above. This is shown in Figure 4. The operation of each part is also as described above. If this apparatus is used, the method for producing T or Ti alloy of the present invention (including the embodiment la) can be suitably implemented.
  • a method and apparatus for producing a T alloy or Ti alloy including a Ca removal and concentration step
  • FIG. 6 is a diagram showing a schematic configuration of an apparatus used for carrying out the method for producing a T or Ti alloy including the Ca removal concentration process of the present invention. Again, only TiCl as raw material
  • This apparatus is an apparatus in which a Ca removal and concentration apparatus is installed in place of the Ca recovery means in the apparatus shown in Fig. 4 and the transfer route of the molten salt is changed accordingly.
  • the Ca removing and concentrating device 28 is shown in its main part, and has a Ca removing and concentrating tank 28a. In this tank 28a, molten CaCl is separated by a partition wall 31 into a Ca concentrating region 29 and a Ca removing region. To 30
  • the molten Mg—Ca alloy 8 is held in contact with the molten salt held in the Ca concentration region 29 and the Ca removal region 30.
  • Electrode plate 33 for forming a positive electrode with respect to electrode plate 34 on the molten salt side in Ca-concentrated region 29 It is provided as follows.
  • the force configuration in which the Ca concentration region 29 and the Ca removal region 30 are separated by the partition wall 31 is not necessarily limited to this.
  • the two regions may be separated by separate tanks that can be individually removed.
  • the electrode plate 33 provided on the molten salt side in the Ca removal region 30 is a positive electrode with respect to the electrode plate 34 provided on the molten salt side in the Ca concentration region 29. Then, a voltage lower than the decomposition voltage of CaCl is applied through the electrode plate 33 and the electrode plate 34.
  • the molten Mg-Ca alloy 32 present in the vicinity of the contact portion with the molten salt in the Ca removal region 30 moves toward the molten salt side (+ pole side) in the Ca removal region 30. Since it functions as a pole, the dissolved Ca moves to the molten Mg—Ca alloy 32 side and is absorbed as shown by the arrow in the Ca removal and concentration tank 28a in Fig. 6. Is done. As a result, dissolved Ca in the Ca removal region 30 is removed, and the Ca concentration of the Mg—Ca alloy 32 increases.
  • the molten Mg—Ca alloy 32 in the vicinity of the contact portion with the molten salt in the Ca-concentrated region 29 has a positive polarity relative to the molten salt side (the negative electrode side) in the Ca-concentrated region 29. Function as. Therefore, Ca in the molten Mg—Ca alloy 32 moves to the molten salt side in the Ca enriched region 29, and the Ca concentration in the Ca enriched region 29 increases.
  • the dissolved Ca in the Ca removal region 30 is removed, and at the same time, The concentration of dissolved Ca in area 29 can be increased.
  • the Ca removing and concentrating device 28 having the main configuration shown in FIG. 6 is used, this simultaneous processing can be easily carried out using a very simple device in both shape and configuration. .
  • the voltage to be applied is less than the decomposition voltage of CaCl.
  • the electrode As the electrode for applying the voltage, the electrode is a metal such as iron as in the case of the electrode rod attached to the Ca recovery tank 6 (shown in FIGS. 4 and 5), and the + electrode is a graphite electrode. Use an insoluble electrode such as! /.
  • the Ca removal and concentration treatment is performed in this way, and the Ca dissolved in the molten salt in the Ca removal region 30 is removed, and the molten salt in the Ca concentration region 29 is removed. Ca concentration increases.
  • the path Lc provided between the path La and the path Lb is a path for achieving a quantitative balance between the molten salt in the Ca removal region 30 and the molten salt in the Ca concentration region 29.
  • the amount of molten salt separated by the high-temperature decanter 19 is overwhelmingly larger than the amount of adhered molten salt separated by the separation tank 22, so that the melting in the Ca removal region 30 can be achieved only by the route La and the route Lb.
  • the balance between the amount of salt and the amount of molten salt in the Ca concentration region 29 cannot be achieved, and the Ca removal and concentration device 28 cannot continuously remove and concentrate Ca. Therefore, a part of the molten salt separated by the high temperature decanter 19 is sent to the Ca concentration region 29 through the path Lc, and the above treatment is continuously performed.
  • the molten salt from which Ca has been removed by the Ca removing and concentrating device 28 is sent to the “electrolysis process”, but since Ca has been removed, it is said that Ca in the molten salt reacts with chlorine generated by electrolysis. Slow back reaction is suppressed, and Ca can be efficiently generated by electrolysis.
  • Ca produced by electrolysis in the electrolysis step is introduced into the reaction vessel alone or together with the molten salt through a "returning step".
  • the Ca removal concentration apparatus 28 sets the applied voltage to be less than 3.2 V (that is, a voltage lower than the decomposition voltage of CaCl).
  • the lower limit of the applied voltage is not limited, but it is desirable that the applied voltage be 0.01 V or higher in order to effectively remove Ca.
  • Fig. 7 is a diagram showing another schematic configuration example of an apparatus used when carrying out the manufacturing method of T or Ti alloy including the Ca removal and concentration step of the present invention.
  • the molten salt in the electrolytic cell 3 is further introduced and brought into contact with a Ca supply source to make the Ca concentration of the molten salt constant, and then the molten salt is added.
  • a Ca supply source to make the Ca concentration of the molten salt constant, and then the molten salt is added.
  • This is an apparatus provided with an adjusting tank 25 for charging into the reaction vessel 1.
  • the method for producing the T or Ti alloy of the present invention is as follows: "Introduce a molten salt whose Ca concentration has been increased in the electrolysis step into an adjustment tank having a Ca supply source, and bring the molten salt into contact with the Ca supply source. It is desirable to use a method in which the Ca concentration of the molten salt is made constant and then sent to the reduction process.
  • the apparatus for producing T or Ti alloy of the present invention is an apparatus used for carrying out the method for producing T or Ti alloy including the Ca removal and concentration step described above, and has a schematic configuration, The operation of each part is as shown in FIG. If this apparatus is used, the method for producing a T alloy or Ti alloy including the Ca removal concentration process of the present invention can be suitably carried out.
  • the metal fog-forming metal dissolved in the molten salt containing the metal fog-forming metal-containing molten salt is removed, and the other It can be transferred into molten salt to increase its concentration.
  • This method can be easily and suitably performed by the apparatus of the present invention.
  • the method for producing Ti or Ti alloy of the present invention dissolves in the molten salt sent to the electrolytic cell, and quickly removes (recovers) the Ca, so that the Ca at the time of electrolysis of the molten salt is obtained. Highly efficient generation can be achieved. At the same time as removing (recovering) Ca, the Ca concentration in the molten salt sent to the reaction vessel is increased, and in addition to the high efficiency of Ca generation, the efficiency of the TiCl reduction reaction
  • the method for producing the T and Ti alloy of the present invention and the production apparatus of the present invention that can easily and suitably carry out this method can produce the T and Ti alloy by Ca reduction. Can be used effectively.

Abstract

A method by which a metal-fog-forming metal dissolved in a molten salt comprising a molten salt containing the metal-fog-forming metal can be removed and transferred to another molten salt to heighten the concentration thereof. The method can hence be utilized as a means of treating molten salts in various fields of the mining and manufacturing industries where molten salts containing a metal-fog-forming metal such as calcium or sodium are handled. In particular, when the method is utilized in producing titanium through calcium reduction, the calcium dissolved in a molten salt to be sent to an electrolytic cell can be rapidly removed (recovered) and the efficiency of calcium generation during the electrolysis of the molten salt can be heightened. Consequently, calcium generation and TiCl4 reduction in the electrolysis of a molten salt can be efficiently conducted and a stable operation on an industrial scale is possible. Thus, the method can be effectively utilized in producing titanium or a titanium alloy through calcium reduction.

Description

明 細 書  Specification
溶融塩中メタルフォグ形成金属の除去、濃縮方法および装置、並びにこ れらを用いた Tiまたは Ti合金の製造方法および装置  Method and apparatus for removing and concentrating metal fog forming metal in molten salt, and method and apparatus for producing Ti or Ti alloy using the same
技術分野  Technical field
[0001] 本発明は、 Ca、 Na等のメタルフォグ形成金属を構成成分として含有する溶融塩に 溶解して!/ヽるメタルフォグ形成金属をその溶融塩から除去し、他方のメタルフォグ形 成金属含有溶融塩に移行させ、その濃度を高める溶融塩中メタルフォグ形成金属の 除去および高濃度化方法とそれに用いる装置、並びにその方法を用いて TiClを含  [0001] The present invention removes a metal fog forming metal dissolved in a molten salt containing a metal fog forming metal such as Ca or Na as a constituent component from the molten salt and forms the other metal fog forming material. A method for removing and increasing the concentration of metal fog-forming metal in molten salt, which is transferred to a metal-containing molten salt and increasing its concentration, an apparatus used therefor, and TiCl using the method.
4 む金属塩化物を Caにより還元処理し、金属 Tほたは Ti合金を製造する Tほたは Ti 合金の製造方法、およびそれに用いる製造装置に関する。  The present invention relates to a method for producing a T alloy and a manufacturing apparatus used therefor.
背景技術  Background art
[0002] Ti、 Zr、 Ta、 Hf、 Vなどの金属はそれぞれ優れた特性を備えた有用な金属である 力 通常用いられる Cや A1のような還元剤では製鍊が難しい。また、これらの金属は、 それと共存する同族元素や不純物等の分離が必要であるため、通常は、溶媒抽出、 焙焼、塩素化等、多くの工程を経て精製された後、それらの酸ィ匕物または塩ィ匕物とし 、これを Mgや、 Al、 Na、 Ca等の還元力の強い金属で還元することにより製造されて いる。  [0002] Metals such as Ti, Zr, Ta, Hf, and V are useful metals each having excellent properties. Force It is difficult to produce iron with a commonly used reducing agent such as C or A1. In addition, since these metals need to be separated from coexisting elements and impurities, they are usually refined through many processes such as solvent extraction, roasting, chlorination, etc. It is manufactured as a porcelain or salty porcelain by reducing it with a metal having a strong reducing power such as Mg, Al, Na, and Ca.
[0003] これら還元剤として使用される Ca、 Na、 Al、さらに Li等は、金属の塩化物にその金 属自身が溶解し (例えば、 CaClに Caが溶解)、その際、金属霧とよばれる霧状を呈  [0003] These reducing agents, such as Ca, Na, Al, and Li, dissolve themselves in metal chlorides (for example, Ca dissolves in CaCl). Mist
2  2
する性質を備えて 、る(このような金属を、ここでは「メタルフォグ形成金属」と 、う)。  (This kind of metal is here called "metal fog forming metal").
[0004] これらのメタルフォグ形成金属は、それぞれ、原料鉱石から種々の精製処理を経て 純金属として製造されており、前記の還元剤としての利用も含めて様々な用途に用 いられている。一方、これらの金属の塩化物、フッ化物等は、単独で溶融塩として、ま たは他の塩を含む多元系の溶融塩として使用されることも多ぐ特に、工業電解浴と して溶融塩電解に広く利用されている。 [0004] Each of these metal fog forming metals is produced as a pure metal through various refining treatments from raw ores, and is used in various applications including use as the reducing agent. On the other hand, chlorides and fluorides of these metals are often used alone as molten salts, or as multi-component molten salts containing other salts, especially as an industrial electrolytic bath. Widely used for salt electrolysis.
[0005] さらに、これらメタルフォグ形成金属の利用に関連して、 Tiを製造する際の TiClの [0005] Furthermore, in connection with the use of these metal fog forming metals, TiCl
4 還元剤に Caを使用する技術が提案されて ヽる。メタルフォグ形成金属を利用できる 金属 Tiの工業的な製法としては、 TiClを Mgにより還元するクロール法が一般的で 4 A technology that uses Ca as a reducing agent has been proposed. Metal fog forming metal can be used As an industrial process for producing metal Ti, the crawl method, in which TiCl is reduced with Mg, is common.
4  Four
ある。  is there.
[0006] 工業的に Tiを製造するクロール法では、還元工程一真空分離工程を経て金属 Ti が製造される。還元工程では、反応容器内で上方から供給される液体状の TiClが  [0006] In the crawl method for industrially producing Ti, metallic Ti is produced through a reduction process and a vacuum separation process. In the reduction process, liquid TiCl supplied from above in the reaction vessel
4 溶融 Mgにより還元され、粒子状の金属 Tiが生成し、逐次、下方へ沈降してスポンジ 状の金属 Tiが得られる。真空分離工程では、反応容器内のスポンジ状金属 Tiから未 反応の Mgおよび副生物である MgClが除去される。  4 Reduced by molten Mg, particulate metal Ti is generated, and then gradually sinks downward to obtain sponge-like metal Ti. In the vacuum separation process, unreacted Mg and by-product MgCl are removed from the spongy metal Ti in the reaction vessel.
2  2
[0007] クロール法による金属 Tiの製造では、高純度の製品を製造することが可能である。  [0007] In the production of metal Ti by the crawl method, it is possible to produce a high-purity product.
しかし、ノツチ式であるために製造コストが嵩み、製品価格が非常に高くなる。製造コ ストが嵩む原因の一つは、 TiClの供給速度を上げることが困難なことである。  However, since it is a Notch type, the manufacturing cost increases and the product price becomes very high. One reason for the increased manufacturing cost is that it is difficult to increase the supply rate of TiCl.
4  Four
[0008] その理由としては幾つか考えられる力 一つは、 TiClの供給速度を大きくしすぎる  [0008] There are several possible reasons for this. One is to increase the supply rate of TiCl too much
4  Four
と、沈降せず液面に残っている MgClに上方から TiClが供給されるようになるため、  Then, TiCl will be supplied from above to MgCl remaining on the liquid surface without settling,
2 4  twenty four
供給した TiClが未反応の TiClガスや還元が不十分な TiClガスなどとして反応容  The supplied TiCl reacts as unreacted TiCl gas or insufficiently reduced TiCl gas.
4 4 3 器外へ排出され、 TiClの利用効率が低下することである。  4 4 3 It is discharged to the outside of the vessel, and the utilization efficiency of TiCl decreases.
4  Four
[0009] また、クロール法では、反応容器内の溶融 Mg液の液面近傍だけで反応が行われ るため、発熱エリアが狭い。そのため、高速で TiClを供給すると冷却が間に合わなく  [0009] Further, in the crawl method, the reaction is performed only in the vicinity of the liquid level of the molten Mg liquid in the reaction vessel, so the heat generation area is narrow. Therefore, if TiCl is supplied at high speed, the cooling will not be in time.
4  Four
なることも、 TiClの供給速度が制限される大きな理由である。  This is also a major reason that the TiCl supply rate is limited.
4  Four
[0010] さらに、溶融 Mgの濡れ性 (粘着性)のため、生成した Ti粉が凝集した状態で沈降し 、沈降中にも高温の溶融液が有している熱により焼結して粒成長し、反応容器外へ 回収することが困難である。このため、金属 Tiの製造を連続的に行うことができず、生 産性が阻害される。  Furthermore, due to the wettability (adhesiveness) of molten Mg, the generated Ti powder settles in an aggregated state, and during the sedimentation, it is sintered by the heat of the high-temperature melt and grows. However, it is difficult to recover out of the reaction vessel. For this reason, metal Ti cannot be manufactured continuously, and productivity is hindered.
[0011] クロール法以外の Ti製造方法に関しては、米国特許第 2205854号公報に、 TiCl  [0011] Regarding Ti manufacturing methods other than the crawl method, US Pat. No. 2,205,854 discloses TiCl
4 の還元剤として Mg以外に例えば Caの使用が可能なことが記載されている。そして、 Caによる還元反応を用いた Tiの製造方法としては、米国特許第 4820339号公報に 、反応容器内に CaClの溶融塩を保持し、その溶融塩中に上方から金属 Ca粉末を  For example, it is described that Ca can be used as a reducing agent in addition to Mg. As a method for producing Ti using a reduction reaction with Ca, US Pat. No. 4,820,339 discloses a method in which a molten salt of CaCl is held in a reaction vessel, and metallic Ca powder is placed in the molten salt from above.
2  2
供給して、溶融塩中に Caを溶け込ませると共に、下方から TiClガスを供給して、 Ca  Supply and dissolve Ca in the molten salt, and supply TiCl gas from below
4  Four
C1の溶融塩中で溶解 Caと TiClを反応させる方法が記載されている。  A method for reacting dissolved Ca and TiCl in a molten salt of C1 is described.
2 4  twenty four
[0012] し力しながら、上記米国特許第 4820339号公報に記載された方法は、還元剤とし て使用する金属 Caの粉末が極めて高価で、これを購入して使用すると、製造コストは クロール法よりも高価となるので、工業的な Ti製造法としては成立し得ない。カロえて、 反応性が強い Caは取り扱いが非常に難しぐこのことも、 Ca還元による Ti製造方法 の工業ィ匕を阻害する大きな要因になっている。 However, the method described in the above-mentioned US Pat. No. 4,820,339 uses the reducing agent as a reducing agent. The metal Ca powder used is extremely expensive, and if purchased and used, the manufacturing cost is higher than that of the crawl method, so it cannot be established as an industrial Ti manufacturing method. It is difficult to handle Ca, which is highly reactive, and this is also a major factor that hinders the industrial process of Ti production by Ca reduction.
[0013] さらに別の Ti製造方法としては、米国特許第 2845386号公報に、 TiClを経由せ [0013] As another Ti manufacturing method, US Pat. No. 2,845,386 discloses that TiCl is used.
4 ず、 TiOを Caにより直接還元するオルソンの方法が記載されている。この方法は、 First, Olson's method of directly reducing TiO with Ca is described. This method
2 2
酸化物直接還元法の一種である。しかし、この方法では高価な高純度の TiOを使用  It is a kind of direct oxide reduction method. However, this method uses expensive high-purity TiO
2 しなければならない。  2 must be done.
[0014] 一方、本発明者らは、 Ca還元による Ti製造方法を工業的に確立するためには、還 元反応で消費される溶融塩中の Caを経済的に補充する必要があると考え、特開 20 05— 133195号公報および特開 2005— 133196号公報【こお!ヽて、溶融 CaClの  [0014] On the other hand, the present inventors consider that it is necessary to economically replenish Ca in the molten salt consumed in the reduction reaction in order to industrially establish a Ti production method by Ca reduction. , JP 20 05-133195 and JP 2005-133196 [Koh!
2 電気分解により生成する Caを利用すると共に、この Caを循環使用する方法、すなわ ち「OYIK法 (ォーイツク法)」を提案した。  2 In addition to using Ca produced by electrolysis, we proposed a method of circulating this Ca, that is, the “OYIK method”.
[0015] 上記特開 2005— 133195号公報では、電気分解により Caが生成、補充され、 Ca リッチとなった溶融 CaClを反応容器に導入し、 Ca還元による Ti粒の生成に使用す [0015] In JP-A-2005-133195, Ca is generated and replenished by electrolysis, and Ca-rich molten CaCl is introduced into a reaction vessel and used to generate Ti particles by Ca reduction.
2  2
る方法が記載され、上記特開 2005— 133196号公報では、さらに、陰極として合金 電極 (例えば、 Mg— Ca合金電極)を用いることにより、電解に伴うバックリアクション を効果的に抑制する方法が示されて!/、る。  JP-A-2005-133196 discloses a method for effectively suppressing back reaction caused by electrolysis by using an alloy electrode (for example, Mg—Ca alloy electrode) as a cathode. Being! /
発明の開示  Disclosure of the invention
[0016] 前述の通り、クロール法以外の Ti製造方法について、従来から多くの研究開発が 行われてきた。特に本発明者らが提案した前記 OYIK法では、 TiClの還元反応に  [0016] As described above, much research and development has been conducted on Ti production methods other than the crawl method. In particular, in the OYIK method proposed by the present inventors, the reduction reaction of TiCl
4  Four
伴 、溶融塩中の Caが消費される力 その溶融塩を電気分解すれば溶融塩中に Ca が生成し、こうして得られた Caを還元反応に再使用すれば、外部からの Ca補充が不 要になり、し力も、 Caを単独で取り出す必要がないので、経済性が向上する。  At the same time, the power to consume Ca in the molten salt. Electrolysis of the molten salt produces Ca in the molten salt, and the reuse of Ca thus obtained in the reduction reaction eliminates external Ca supplementation. The cost is improved, since it is not necessary to extract Ca alone.
[0017] そこで、本発明者らは、基本的な構成はこの OYIK法に立脚し、さらに、工業的規 模で、効率よぐ安定した操業を行い得る金属 Tほたは Ti合金の製造プロセスの開 発を企図して、製造工程全般に亘り検討を加えた。  [0017] Therefore, the inventors of the present invention are based on the OYIK method in terms of the basic configuration, and furthermore, a process for producing a metal T or Ti alloy that can be efficiently and stably operated on an industrial scale. The entire manufacturing process was examined with the intention of developing the above.
[0018] 本発明は、 Ca、 Na等のメタルフォグ形成金属が工業電解浴を始め、各種の溶融塩 の構成成分として広く使用されていることに鑑みなされたものであり、 Ca、 Na等のメタ ルフォグ形成金属を構成成分として含有する溶融塩 (例えば、 CaCl )を含み、且つ [0018] In the present invention, metal fog forming metals such as Ca and Na are used as an industrial electrolytic bath and various molten salts. And a molten salt containing a metal fog forming metal such as Ca and Na as a constituent component (for example, CaCl 2), and
2  2
このメタルフォグ形成金属(Ca)が溶解して ヽる溶融塩からメタルフォグ形成金属(Ca )を除去すると同時に、この除去したメタルフォグ形成金属を他の溶融塩 (前記メタル フォグ形成金属を構成成分として含有する溶融塩)に移行させることができる溶融塩 中メタルフォグ形成金属の除去および高濃度化方法と、それに用いる装置を提供す ることを目的としている。  The metal fog forming metal (Ca) is removed from the molten salt formed by the dissolution of the metal fog forming metal (Ca), and at the same time, the removed metal fog forming metal is replaced with another molten salt (the metal fog forming metal is a constituent component). It is an object of the present invention to provide a method for removing and increasing the concentration of metal fog-forming metal in a molten salt and an apparatus used therefor.
[0019] さらに、本発明は、溶融 CaClの電気分解により生成する Caによって TiCl、その [0019] Further, the present invention provides TiCl by Ca produced by electrolysis of molten CaCl, its
2 4 他の金属塩化物を還元する Ca還元による金属 Tiまたは Ti合金の製造にお 、て、 Ti C1、その他の金属塩化物の還元反応、さらには溶融塩の電気分解による Caの生成 2 4 Reduction of other metal chlorides In the production of metal Ti or Ti alloys by Ca reduction, reduction of Ti C1 and other metal chlorides, as well as formation of Ca by electrolysis of molten salts
4 Four
を効率よく行わせ、且つ工業的規模で、安定した操業が可能な Tほたは Ti合金の製 造方法、およびそれに用いられる製造装置を提供することを目的としている。  The purpose is to provide a T alloy and Ti alloy production method and production equipment used therefor that can be efficiently operated and that can be stably operated on an industrial scale.
[0020] 本発明は、上記の課題を解決するためになされたものであり、その内容を「1.溶融 塩中メタルフォグ形成金属の除去および高濃度化方法とその装置」、「2. Ca回収ェ 程を含む Tほたは Ti合金の製造方法およびその装置」および「3. Ca除去濃縮工程 を含む Tほたは Ti合金の製造方法およびその装置」に区分して説明する。  [0020] The present invention has been made to solve the above-mentioned problems. The contents of the present invention are "1. Method and apparatus for removing metal fog-forming metal in molten salt and increasing concentration", "2. Ca." It is divided into “T and Ti alloy manufacturing method and apparatus including recovery process” and “3. T and Ti alloy manufacturing method and apparatus including Ca removal and concentration step”.
[0021] 1.溶融塩中メタルフォグ形成金属の除去および高濃度化方法とその装置  [0021] 1. Method and apparatus for removing and increasing concentration of metal fog forming metal in molten salt
本発明者らは、メタルフォグ形成金属が Caである場合について検討した。その結果 、処理槽 (これを、 A槽とする)に溶融塩 (CaCl )を保持し、その上にこの溶融塩と接  The present inventors examined the case where the metal fog forming metal is Ca. As a result, the molten salt (CaCl) is held in the treatment tank (this tank is referred to as A tank), and this molten salt is contacted thereon.
2  2
触させて Caを含む溶融合金 (溶融 Mg— Ca合金)を保持し、溶融合金側の電極板が 極、溶融塩側の電極板が +極となるように、しかも CaClの分解電圧未満の電圧を  Touch and hold molten alloy containing Ca (molten Mg-Ca alloy) so that the electrode plate on the molten alloy side becomes the pole and the electrode plate on the molten salt side becomes the + pole, and the voltage is less than the decomposition voltage of CaCl The
2  2
印加することにより、溶融塩中に溶解している Caを溶融合金に速やかに吸収させ、 除去できることを見出した。  It was found that the Ca dissolved in the molten salt can be quickly absorbed by the molten alloy and removed by application.
[0022] これに対し、溶融合金側の電極板が +極、溶融塩側の電極板が 極となるように C aClの分解電圧未満の電圧を印加すると (これを、 B槽とする)、 Caが溶融合金側か[0022] On the other hand, when a voltage lower than the decomposition voltage of CaCl is applied so that the molten alloy side electrode plate is a + electrode and the molten salt side electrode plate is an electrode (this is referred to as B tank), Is Ca the molten alloy side?
2 2
ら溶融塩側へ移行する。  To the molten salt side.
[0023] さらに、前記 A槽と B槽に共通の構成要素である溶融合金を接続して一体とし、 A 槽の溶融塩側の電極板が +極となり、 B槽の溶融塩側の電極板が 極となるよう〖こ 電圧 (CaClの分解電圧未満の電圧)を印加したところ、 A槽の溶融塩中に溶解して[0023] Further, the molten alloy, which is a common component of the A tank and the B tank, is connected and integrated, and the molten salt side electrode plate of the A tank becomes a positive electrode, and the molten salt side electrode plate of the B tank So that it becomes the pole When a voltage (voltage less than the decomposition voltage of CaCl) is applied, it dissolves in the molten salt in tank A.
2 2
いる Caの除去 (溶融合金への吸収)と、溶融合金側から B槽の溶融塩側への Caの移 行を同時に行えることを知見した。すなわち、一方の溶融塩に溶解している Caの除 去と、他方の溶融塩に溶解している Caの高濃度化を所定の電圧を印加することによ り同時に且つ迅速に進行させ得ることが判明した。  It was found that the removal of Ca (absorption into the molten alloy) and the transfer of Ca from the molten alloy side to the molten salt side of the B tank can be performed simultaneously. That is, the removal of Ca dissolved in one molten salt and the concentration of Ca dissolved in the other molten salt can be simultaneously and rapidly advanced by applying a predetermined voltage. There was found.
[0024] そして、この方法を本発明者らが提案した前掲の OYIK法に適用すれば、溶融 Ca C1の電気分解時に生じ易 、 、わゆるバックリアクションを抑制して電気分解による C[0024] If this method is applied to the above-mentioned OYIK method proposed by the present inventors, it is easy to occur during the electrolysis of molten Ca C1, and the C by electrolysis is suppressed by suppressing the back reaction.
2 2
aの生成を効率よく行わせ、また、 TiClの還元反応 (TiClの Ca還元による Ti粒の生  a is generated efficiently, and TiCl reduction reaction (Ti grain growth by Ti reduction Ca reduction)
4 4  4 4
成)の効率アップにも有効であることを確認した。  It was confirmed that it is also effective for improving the efficiency of
[0025] この方法の OYIK法への適用に際しては、工業的規模で、効率よぐ安定した操業 を行い得るように、製造工程全般に亘り検討を加えて大きく改善、進化させたことから[0025] When this method was applied to the OYIK method, it has been greatly improved and evolved through a review of the entire manufacturing process so that efficient and stable operation can be performed on an industrial scale.
、 OYIK法の新たな展開といえ、例えば「OYIK— II法」ともいえる。 This is a new development of the OYIK method, for example, the “OYIK-II method”.
[0026] 本発明の溶融塩中メタルフォグ形成金属の除去および高濃度化方法とその装置は[0026] A method and apparatus for removing and increasing the concentration of metal fog forming metal in molten salt of the present invention
、このような知見並びに検討結果に基づいてなされたものであり、下記(1)および(2) の構成となる。 This has been made based on such findings and examination results, and has the following configurations (1) and (2).
[0027] (1)メタルフォグ形成金属除去濃縮槽のメタルフォグ形成金属濃縮領域およびこの 領域と隔てられたメタルフォグ形成金属除去領域に、メタルフォグ形成金属含有溶融 塩を含み且つ前記メタルフォグ形成金属が溶解した溶融塩を保持すると共に、これら 両領域に保持された溶融塩と接触させてメタルフォグ形成金属を含有する溶融合金 を保持し、前記メタルフォグ形成金属除去領域内の溶融塩側の電極板力 Sメタルフォ グ形成金属濃縮領域内の溶融塩側に対して +極となるように前記メタルフォグ形成 金属含有溶融塩の分解電圧未満の電圧を印加し、メタルフォグ形成金属除去領域 内の溶融塩中に溶解して ヽるメタルフォグ形成金属を前記溶融合金に吸収させてそ の濃度を低下させると同時に、メタルフォグ形成金属濃縮領域内の溶融塩中に溶解 しているメタルフォグ形成金属を高濃度化してその濃度を高める溶融塩中メタルフォ グ形成金属の除去および高濃度化方法である。  [0027] (1) The metal fog forming metal concentration region of the metal fog forming metal removal and concentration tank and the metal fog forming metal removal region separated from the region include a metal fog forming metal-containing molten salt and the metal fog forming metal The molten salt containing the metal fog forming metal is held in contact with the molten salt held in both of these regions, and the molten salt side electrode in the metal fog forming metal removing region is held. Plate force S Apply a voltage lower than the decomposition voltage of the metal fog forming metal-containing molten salt so that the molten salt side in the metal fog forming metal concentration region becomes a positive pole, and melt in the metal fog forming metal removal region. The metal fog forming metal dissolved in the salt is absorbed by the molten alloy to reduce its concentration, and at the same time, the melt in the metal fog forming metal concentration region is dissolved. The metal-fog forming metal dissolved in the salt which is highly concentrated to remove and enrichment method Metarufo grayed forming metal in the molten salt to increase its density.
[0028] ここで、「メタルフォグ形成金属」とは、例えば、 Ca、 Li、 Na、 A1等のように、還元力 が強ぐ金属の塩ィ匕物にその金属自身が溶解し (例えば、 CaClに Caが溶解)、その 際、金属霧とよばれる霧状を呈する性質を備えて 、る金属である。 [0028] Here, the "metal fog forming metal" means that the metal itself dissolves in a salt of a metal having a strong reducing power such as Ca, Li, Na, A1, etc. (for example, Ca dissolves in CaCl) At this time, it is a metal having a mist-like property called a metal mist.
[0029] 「メタルフォグ形成金属含有溶融塩」とは、メタルフォグ形成金属がその構成成分と して含まれた溶融塩で、例えば、溶融 CaCl、溶融 NaCl等をいう。また、「メタルフォ  The “metal fog-forming metal-containing molten salt” is a molten salt containing a metal fog-forming metal as a component, and refers to, for example, molten CaCl, molten NaCl, and the like. Also, “Metal Pho
2  2
グ形成金属含有溶融塩を含む溶融塩」とは、メタルフォグ形成金属が Caの場合を例 にとると、溶融 CaClのみ、または溶融 CaClに、融点の低下、粘性等の調整のため  For example, when the metal fog forming metal is Ca, only the molten CaCl or the molten CaCl is used to adjust the melting point, viscosity, etc.
2 2  twenty two
に CaF等をカ卩えた溶融塩である。  It is a molten salt with CaF etc.
2  2
[0030] 「メタルフォグ形成金属を含有する溶融合金」とは、メタルフォグ形成金属がその構 成成分として含まれた溶融状態の合金で、メタルフォグ形成金属が Caの場合を例に とると、溶融 Mg— Ca合金、溶融 Pb— Ca合金などを指す。  [0030] A "molten alloy containing a metal fog-forming metal" is an alloy in a molten state in which a metal fog-forming metal is included as a component, and the case where the metal fog-forming metal is Ca is taken as an example. It refers to molten Mg—Ca alloy, molten Pb—Ca alloy, etc.
[0031] なお、電圧を印加するための電極を、前記のように 極」、「 +極」としたのは、浴 塩 (ここでは、溶融塩)の電気分解を前提として用いられる「陽極 (アノード)」、「陰極( 力ソード)」との混同を避けるためである。  [0031] Note that the electrodes for applying a voltage are the "electrode" and the "+ electrode" as described above, because the electrode is used on the premise of electrolysis of a bath salt (in this case, a molten salt). This is to avoid confusion with “anode)” and “cathode (forced sword)”.
[0032] 上記(1)に記載の本発明のメタルフォグ形成金属の除去および高濃度化方法にお いて、メタルフォグ形成金属が Caであり、メタルフォグ形成金属含有溶融塩が Ca含 有溶融塩である場合を、実施形態とでき、さらに、上記(1)に記載の方法において、 メタルフォグ形成金属が Caであり、メタルフォグ形成金属含有溶融塩力CaClである  [0032] In the method for removing and increasing the concentration of a metal fog forming metal according to the present invention described in (1) above, the metal fog forming metal is Ca, and the metal fog forming metal-containing molten salt is Ca-containing molten salt. In the method described in (1) above, the metal fog forming metal is Ca, and the metal fog forming metal-containing molten salt strength CaCl is used.
2 場合を望ましい実施形態とできる。なお、前記の「Ca含有溶融塩」とは、例えば、 Ca CI CaF等をいう。  Two cases can be preferred embodiments. The “Ca-containing molten salt” refers to, for example, Ca CI CaF.
2 2  twenty two
[0033] 前記実施形態において、印加する電圧が 3. 2V未満であれば、印加する電圧を具 体的な数値で管理して、 CaClを分解させることなく Caを溶融合金に速やかに吸収  [0033] In the above embodiment, if the applied voltage is less than 3.2 V, the applied voltage is managed by a specific numerical value, and Ca is rapidly absorbed into the molten alloy without decomposing CaCl.
2  2
させることがでさる。  It can be done.
[0034] (2)メタルフォグ形成金属含有溶融塩を含み、且つこれに溶解している該メタルフ オダ形成金属が高濃度化された溶融塩を保持するメタルフォグ形成金属濃縮領域と 、前記メタルフォグ形成金属濃縮領域内の溶融塩側に対して +極となるように、電極 板を介して前記メタルフォグ形成金属含有溶融塩の分解電圧未満の電圧が印加さ れ、溶解して!/ヽる前記メタルフォグ形成金属の濃度が低下したメタルフォグ形成金属 含有溶融塩を保持するメタルフォグ形成金属除去領域と、メタルフォグ形成金属濃縮 領域およびメタルフォグ形成金属除去領域に保持された溶融塩と接触して溶融メタ ルフォグ形成金属含有合金を保持する溶融合金保持領域を備えるメタルフォグ形成 金属除去濃縮槽を有する溶融塩中メタルフォグ形成金属の除去および濃縮装置で ある。 [0034] (2) A metal fog forming metal concentration region containing a metal fog forming metal-containing molten salt and holding a molten salt in which the metal fog forming metal dissolved therein has a high concentration, and the metal fog A voltage less than the decomposition voltage of the molten salt containing metal fog forming metal is applied via the electrode plate so that it becomes a positive electrode with respect to the molten salt side in the formed metal concentration region, and it melts! The metal fog forming metal removal region holding the metal fog forming metal-containing molten salt having a reduced concentration of the metal fog forming metal, and the metal fog forming metal concentration region and the molten salt held in the metal fog forming metal removal region. Melting metal The apparatus for removing and concentrating metal fog forming metal in molten salt having a metal fog forming metal removing and concentrating tank provided with a molten alloy holding region for holding a rufog forming metal-containing alloy.
[0035] 同様に、上記(2)に記載の本発明のメタルフォグ形成金属の除去および濃縮装置 において、メタルフォグ形成金属が Caであり、メタルフォグ形成金属含有溶融塩が C a含有溶融塩である場合や、さらに、上記(2)に記載の装置において、メタルフォグ形 成金属が Caであり、メタルフォグ形成金属含有溶融塩力 SCaClである場合を実施形  [0035] Similarly, in the apparatus for removing and concentrating a metal fog forming metal according to the present invention described in (2) above, the metal fog forming metal is Ca, and the metal fog forming metal-containing molten salt is a Ca-containing molten salt. In some cases, or in the apparatus described in (2) above, the metal fog forming metal is Ca, and the metal fog forming metal-containing molten salt force SCaCl is implemented.
2  2
態とできる。  I can do it.
[0036] 本発明の溶融塩中メタルフォグ形成金属の除去および高濃度化方法によれば、 C a、 Na等のメタルフォグ形成金属を含有する溶融合金にそれぞれ接触する、メタルフ オダ形成金属含有溶融塩を含む溶融塩に溶解しているメタルフォグ形成金属を除去 して他方の溶融塩中へ移行させ、その濃度を高めることができる。この方法は、本発 明の装置により容易に、且つ好適に実施することができる。  [0036] According to the method for removing and increasing the concentration of metal fog-forming metal in the molten salt of the present invention, the metal-fodder-forming metal-containing melt is in contact with each of the molten alloys containing metal fog-forming metal such as Ca and Na. The metal fog forming metal dissolved in the molten salt containing salt can be removed and transferred into the other molten salt to increase its concentration. This method can be easily and suitably performed by the apparatus of the present invention.
[0037] 2. Ca回収工程を含む Tほたは Ti合金の製造方法およびその装置  [0037] 2. Manufacturing method and apparatus for T-fired Ti alloy including Ca recovery process
工業的規模で、安定した操業で Tほたは Ti合金を製造するには、 TiCl、その他の  To manufacture T or Ti alloys on an industrial scale with stable operation, TiCl, other
4 金属塩ィ匕物の還元反応、および溶融塩の電気分解による Caの生成を効率よく行わ せ、且つ操業の安定ィ匕を図るためには、 TiClを還元する反応容器内に投入する Ca  4 In order to efficiently perform the reduction reaction of metal salt and the production of Ca by electrolysis of molten salt and to stabilize the operation, the Ca put into the reaction vessel for reducing TiCl
4  Four
C1含有溶融塩中の Caの高濃度化と、濃度の変動抑制、並びに反応容器外へ抜き High concentration of Ca in molten salt containing C1, suppression of fluctuations in concentration, and removal from the reaction vessel
2 2
出され、電解槽へ導入される溶融塩中の Caの除去(回収)が重要である。また、工業 的規模での Tiの製造を可能とするためには、反応容器への Caの供給速度の増大( 換言すれば、電解工程における大量の CaCl含有溶融塩の連続処理)が必要であ  It is important to remove (recover) Ca from the molten salt that is discharged and introduced into the electrolytic cell. Also, in order to be able to produce Ti on an industrial scale, it is necessary to increase the supply rate of Ca to the reaction vessel (in other words, continuous treatment of a large amount of molten CaCl-containing salt in the electrolysis process).
2  2
る。  The
[0038] 反応容器に投入する溶融塩の Ca濃度が低すぎる場合は、未反応の TiClガスが  [0038] When the Ca concentration of the molten salt charged into the reaction vessel is too low, unreacted TiCl gas is generated.
4 槽外へ排出される。さらに、 TiCl、 TiCl等の低級塩ィ匕チタンのガスが生成して溶融  4 Drained out of the tank. Furthermore, TiCl, TiCl and other lower salt titanium gas is generated and melted.
3 2  3 2
塩に溶け込み、電解槽内で電気分解により生成する Caとの反応により Tiが生成し、 陰極表面に析出して操業に支障を来すおそれがある。また、 Tiの C汚染の原因とな る TiCの発生なども危惧される。  Ti dissolves in the salt and reacts with Ca generated by electrolysis in the electrolytic cell, and Ti may be deposited on the cathode surface, which may hinder the operation. There is also concern about the occurrence of TiC, which causes Ti contamination of C.
[0039] 一方、溶融塩の Ca濃度が高すぎる場合は、反応容器力も抜き出される溶融塩中に 多量の Caが含まれ、分離工程で Caが蒸発し、損失となる。 [0039] On the other hand, when the Ca concentration of the molten salt is too high, the reaction vessel power is also extracted in the molten salt. A large amount of Ca is contained, and Ca is evaporated and lost in the separation process.
[0040] また、分離工程で Tiが分離された後の溶融塩を電解槽へ戻したときに、溶融塩中 の Caと電気分解により生成した塩素が反応する、 V、わゆるノックリアクションが起こり 、電流効率が低下するが、溶融塩中の Ca濃度が高いとバックリアクションによる電流 効率の低下も大きい。さらに、ノ ックリアクションに伴う反応熱により電解槽内の溶融 塩 (浴塩)の温度の均一性が乱され、浴塩の温度制御に支障を来すおそれもある。  [0040] Furthermore, when the molten salt after Ti is separated in the separation step is returned to the electrolytic cell, Ca in the molten salt reacts with chlorine generated by electrolysis. V, a so-called knock reaction occurs. However, the current efficiency decreases, but if the Ca concentration in the molten salt is high, the current efficiency is also greatly decreased by back reaction. In addition, the reaction heat accompanying the knock reaction may disturb the temperature uniformity of the molten salt (bath salt) in the electrolytic cell, which may hinder the temperature control of the bath salt.
[0041] そこで、本発明者らは、反応容器に投入する溶融塩の Ca濃度の変動を抑制し、且 つ高濃度に維持すると共に、電解槽へ送られる溶融塩中の Caを速やかに回収して Caを除去し、ノ ックリアクションを抑制するために種々検討を重ねた。  [0041] Therefore, the present inventors suppress fluctuations in the Ca concentration of the molten salt charged into the reaction vessel, maintain it at a high concentration, and quickly recover the Ca in the molten salt sent to the electrolytic cell. Various studies were conducted to remove Ca and suppress knock reaction.
[0042] その結果、電解槽へ送られる溶融塩を、 Caを含む溶融合金 (溶融 Mg— Ca合金) に接触させつつ、溶融合金側の電極棒が 極、溶融塩側の電極棒が +極となるよう に電圧を印加し、しカゝもその印加電圧を CaClの分解電圧未満とすることにより、溶  [0042] As a result, while the molten salt sent to the electrolytic cell is in contact with a molten alloy containing Ca (molten Mg-Ca alloy), the electrode rod on the molten alloy side is the electrode, and the electrode rod on the molten salt side is the + electrode. By applying a voltage so that the voltage is less than the decomposition voltage of CaCl.
2  2
融塩中に溶解して ヽる Caを溶融合金に速やかに吸収させ、回収できることを見出し た。これによつて、電解槽へ送られる溶融塩中の Ca濃度を低下させ、溶融塩の電気 分解時におけるバックリアクションを抑制し、 Caの生成を効率よく行わせることができ る。  It was found that Ca dissolved in molten salt can be quickly absorbed and recovered by the molten alloy. As a result, the Ca concentration in the molten salt sent to the electrolytic cell can be reduced, the back reaction during the electrolysis of the molten salt can be suppressed, and Ca can be generated efficiently.
[0043] 一方、反応容器に投入する溶融塩の Ca濃度の変動を抑制し、高濃度に維持する ためには、電解槽と反応容器の間に Ca供給源を備える調整槽を設置し、電気分解 により Caを生成させて Ca濃度を高めた溶融塩を調整槽に導入して Ca濃度を一定と した後、還元に用いるのが効果的であることを知見した。これにより溶融塩の Ca濃度 を常に一定の高濃度に維持し、還元反応を効率よく進行させることができる。また、溶 融塩に電圧を印カロして Caを吸収させ、 Ca濃度が高められた溶融合金を調整槽の C a供給源として使用できることも判明した。  [0043] On the other hand, in order to suppress the fluctuation of the Ca concentration of the molten salt charged into the reaction vessel and maintain it at a high concentration, an adjustment vessel equipped with a Ca supply source is installed between the electrolytic cell and the reaction vessel, It was found that it is effective to use molten salt with increased Ca concentration by decomposition to introduce Ca into the adjustment tank and keep the Ca concentration constant and then use it for reduction. As a result, the Ca concentration of the molten salt is always maintained at a constant high concentration, and the reduction reaction can proceed efficiently. It was also found that a molten alloy with increased Ca concentration can be used as a Ca supply source for the adjustment tank by applying a voltage to the molten salt to absorb Ca.
[0044] さらに、本発明者らは、主電解槽の電解槽容器の形状、電極形状、電解条件、極 間距離等につ!、て詳細な検討を行った結果、溶融塩を陰極表面近傍で一方向に流 しつつ電気分解して電解槽の出側で Ca濃度が高まった溶融塩を回収することにより 、 ノックリアクションを抑制して高電流効率を維持すると共に、 Caが濃化した溶融塩 のみを効果的に取り出すことができ、し力も、大量の CaCl含有溶融塩の連続処理が 可能で、反応容器への Caの供給速度を増大させ得ることを知見した。 [0044] Furthermore, the present inventors have conducted detailed studies on the shape of the electrolytic cell container of the main electrolytic cell, the electrode shape, the electrolysis conditions, the distance between the electrodes, and the like. By collecting molten salt with increased Ca concentration on the outlet side of the electrolytic cell while flowing in one direction at the same time, knock reaction is suppressed and high current efficiency is maintained, while Ca concentrated melt Only salt can be extracted effectively, and the strength of continuous treatment of a large amount of molten salt containing CaCl It was possible to increase the Ca supply rate to the reaction vessel.
[0045] 本発明の Ca回収工程を含む Ήまたは Ti合金の製造方法およびその装置は、これ らの知見に基づ!/、てなされたものであり、下記(3)および (4)の構成となる。 [0045] The method and apparatus for producing a soot or Ti alloy including the Ca recovery step of the present invention and its apparatus are based on these findings! The configurations of (3) and (4) below It becomes.
[0046] (3) CaClを含み且つ Caが溶解した溶融塩を反応容器内に保持し、その溶融塩中 (3) A molten salt containing CaCl and dissolving Ca is held in a reaction vessel, and the molten salt
2  2
の Caに TiClを含む金属塩化物を反応させて前記溶融塩中に Ti粒または Ti合金粒  Ti particles or Ti alloy particles in the molten salt by reacting CaCl with metal chloride containing TiCl
4  Four
を生成させる還元工程と、前記反応容器内または反応容器外で前記 Ti粒または Ti 合金粒を溶融塩から分離する分離工程と、前記反応容器外へ抜き出された溶融塩 を電気分解して Caを生成させることにより、溶融塩の Ca濃度を高める電解工程と、前 記電気分解により生成された Caを単独または溶融塩と共に前記反応容器内へ導入 する戻し工程と、前記分離工程で分離され前記電解工程へ送られる溶融塩を、 Caと Mgを含む溶融合金に接触させつつ、溶融合金側の電極棒が 極、溶融塩側の電 極棒が +極となるよう〖こ CaClの分解電圧未満の電圧を印加することにより溶融塩中  A reduction step for producing a catalyst, a separation step for separating the Ti particles or Ti alloy particles from the molten salt in the reaction vessel or outside the reaction vessel, and electrolysis of the molten salt extracted outside the reaction vessel To generate Ca in the molten salt to increase the Ca concentration of the molten salt, to return the Ca generated by the electrolysis alone or together with the molten salt into the reaction vessel, and to be separated in the separation step and The molten salt sent to the electrolysis process is brought into contact with the molten alloy containing Ca and Mg, so that the electrode rod on the molten alloy side becomes the pole and the electrode rod on the molten salt side becomes the + pole. Less than the decomposition voltage of CaCl In molten salt by applying a voltage of
2  2
に溶解して ヽる Caを溶融合金に吸収させ、 Ca濃度が低下した溶融塩を電解工程へ 送る Ca回収工程を含む Ήまたは Ti合金の製造方法である。  This is a method for producing a soot or Ti alloy that includes a Ca recovery step in which the molten alloy dissolves Ca that is dissolved in the molten alloy and the molten salt having a reduced Ca concentration is sent to the electrolysis process.
[0047] ここで、「CaClを含む溶融塩」とは、溶融 CaClのみ、または、溶融 CaClに、融点 [0047] Here, "molten salt containing CaCl" means only molten CaCl or melting point of molten CaCl.
2 2 2 の低下、粘性等の調整のために CaF等を加えた溶融塩である。以下、単に「溶融塩  2 2 2 This is a molten salt with CaF added to adjust the decrease and viscosity. Below, simply “molten salt
2  2
」、「溶融 CaCl」ともいう。  ", Also called" molten CaCl ".
2  2
[0048] 「TiClを含む金属塩化物」とは、 TiClのみ、または、 TiClと、 V、 Al、 Cr等、 Tiに  [0048] "Metal chloride containing TiCl" refers to TiCl only, or TiCl and V, Al, Cr, etc.
4 4 4  4 4 4
合金成分として加えようとする他の金属の塩化物との混合物をいう。他の金属塩化物 も TiClの還元と同時に Caにより還元されるので、 TiClを含む金属塩化物を原料と It refers to a mixture with the chloride of another metal to be added as an alloy component. Other metal chlorides are also reduced by Ca simultaneously with the reduction of TiCl, so the metal chloride containing TiCl is used as the raw material.
4 4 4 4
して使用することにより、 Ti合金の製造ができる。  Ti alloy can be manufactured by using it.
[0049] 上記(3)の Tiまたは Ti合金の製造方法において、印加する電圧が 3. 2V未満であ れば、印加する電圧を具体的な数値で管理して、 CaClを分解させることなく CaCl  [0049] In the manufacturing method of Ti or Ti alloy of (3) above, if the applied voltage is less than 3.2 V, the applied voltage is controlled by a specific numerical value, and CaCl is decomposed without decomposing CaCl.
2 2 中に溶解した Caを溶融合金に速やかに吸収させることができる。  Ca dissolved in 2 2 can be rapidly absorbed by the molten alloy.
[0050] 上記(3)の Tiまたは Ti合金の製造方法にぉ 、て、電解工程で Ca濃度を高めた溶 融塩を、 Ca供給源を有する調整槽に導入して溶融塩を Ca供給源に接触させること により溶融塩の Ca濃度を一定とした後、還元工程へ送ることとすれば、反応容器内 へ導入する溶融塩の Ca濃度を常に一定の高濃度に維持して還元反応を効率よく進 行させることができる。 [0050] According to the method for producing Ti or Ti alloy described in (3) above, the molten salt whose Ca concentration has been increased in the electrolysis step is introduced into an adjustment tank having a Ca supply source, and the molten salt is supplied as a Ca supply source. If the Ca concentration in the molten salt is made constant by contacting the molten salt and then sent to the reduction process, the Ca concentration of the molten salt introduced into the reaction vessel is always maintained at a constant high concentration, thereby reducing the efficiency of the reduction reaction. Well progress Can be run.
[0051] 上記(3)の製造方法にぉ 、て、前記の Ca回収工程で Caを吸収して Ca濃度が高め られた前記溶融合金を、前記調整槽の Ca供給源またはその一部として用いることと すれば、ノ ックリアクションを抑制するために除去した Caを有効に利用することができ るので望ましい。  [0051] According to the manufacturing method of (3) above, the molten alloy whose Ca concentration is increased by absorbing Ca in the Ca recovery step is used as a Ca supply source or a part thereof in the adjustment tank. In other words, it is desirable because the removed Ca can be effectively used to suppress knock reaction.
[0052] (4) CaClを含み且つ Caが溶解した溶融塩を保持し、前記溶融塩中に供給される  [0052] (4) A molten salt containing CaCl and dissolving Ca is retained and supplied into the molten salt.
2  2
TiClを含む金属塩化物を前記 Caと反応させて Ti粒または Ti合金粒を生成させるた To produce Ti grains or Ti alloy grains by reacting TiCl-containing metal chloride with Ca
4 Four
めの反応容器と、前記溶融塩中に生成された Ti粒または Ti合金粒を溶融塩から分 離するための分離手段と、前記 Ti粒または Ti合金粒が分離された後の溶融塩を保 持し、陽極と陰極を備え、該溶融塩中で電気分解を行って陰極側に Caを生成させる ための電解槽と、前記電気分解により生成された Caを単独または溶融塩と共に前記 反応容器内へ導入する戻し手段と、前記分離手段で分離され前記電解槽へ送られ る溶融塩を、 Caと Mgを含む溶融合金に接触させつつ、溶融合金側の電極棒が 極、溶融塩側の電極棒が +極となるように CaClの分解電圧未満の電圧を印加して  A reaction vessel for separating the Ti grains or Ti alloy grains formed in the molten salt from the molten salt, and the molten salt after the Ti grains or Ti alloy grains are separated. An electrolytic cell for carrying out electrolysis in the molten salt to produce Ca on the cathode side, and the Ca produced by the electrolysis alone or together with the molten salt in the reaction vessel A return means to be introduced into the electrode, and the molten salt separated by the separation means and sent to the electrolytic cell in contact with a molten alloy containing Ca and Mg, while the electrode rod on the molten alloy side is the electrode, and the molten salt side electrode Apply a voltage less than the decomposition voltage of CaCl so that the rod becomes the + pole.
2  2
溶融塩中に溶解している Caを溶融合金に吸収させ、 Ca濃度が低下した溶融塩を電 解槽へ送る Ca回収手段とを有する Tほたは Ti合金の製造装置である。  This is a T alloy manufacturing equipment that has a Ca recovery means that absorbs Ca dissolved in the molten salt into the molten alloy and sends the molten salt with reduced Ca concentration to the electrolytic bath.
[0053] 上記 (4)の Tほたは Ti合金の製造装置が、さらに、 Ca供給源を備え、前記電解槽 内の溶融塩を導入して Ca供給源と接触させることにより当該溶融塩の Ca濃度を一定 とした後、その溶融塩を前記反応容器へ投入するための調整槽を有するものであれ ば、前記(3)の製造方法の実施に好適に使用できる。  [0053] The T or Ti alloy manufacturing apparatus of (4) further includes a Ca supply source, and the molten salt in the electrolytic cell is introduced and brought into contact with the Ca supply source. Any device having an adjustment tank for charging the molten salt into the reaction vessel after making the Ca concentration constant can be suitably used for the production method (3).
[0054] 本発明の Ca回収工程を含む Ήまたは Ti合金の製造方法によれば、溶融塩中に溶 解して 、る Caを速やかに回収し、溶融塩の電気分解時におけるバックリアクションを 抑制して Ca生成の高効率ィ匕を図ることができる。さらに、 Caを回収すると同時に、還 元工程へ送る溶融塩の Ca濃度を高め、 Ca生成の高効率化に加え、 TiClの還元反  [0054] According to the method for producing a soot or Ti alloy including the Ca recovery step of the present invention, the Ca is dissolved in the molten salt, and the Ca is rapidly recovered to suppress back reaction during electrolysis of the molten salt. Thus, high efficiency of Ca generation can be achieved. In addition, at the same time as recovering Ca, the Ca concentration in the molten salt sent to the reduction process is increased, and in addition to increasing the efficiency of Ca generation, the reduction reaction of TiCl
4 応の効率ィ匕に寄与することができる。  4 It can contribute to the efficiency of response.
[0055] また、 Ca供給源を備える調整槽を用いて反応容器に投入する溶融塩の Ca濃度の 変動を抑制し、且つ高濃度に維持して、 TiClの還元反応を効率よく行わせることが  [0055] Further, it is possible to suppress the fluctuation of the Ca concentration of the molten salt charged into the reaction vessel using the adjustment tank equipped with the Ca supply source and maintain it at a high concentration to efficiently perform the TiCl reduction reaction.
4  Four
でき、さらに、電解工程において大量の CaCl含有溶融塩を連続処理して、反応容 器への Caの供給速度を増大させることが可能である。 In addition, a large amount of CaCl-containing molten salt can be continuously processed in the electrolysis process to obtain a reaction volume. It is possible to increase the rate of Ca supply to the vessel.
[0056] 3. Ca除去濃縮工程を含む Tほたは Ti合金の製造方法およびその装置 [0056] 3. Manufacturing method and apparatus for T-fired Ti alloy including Ca removal and concentration step
さらに、本発明者らは、工業的規模で、効率の良い、安定した操業が可能になるよ うに、反応容器に投入する溶融塩の Ca濃度の変動を抑制し、且つ高濃度に維持す ると共に、電解槽へ送られる溶融塩中の Caを速やかに回収して Caを除去し、ノ ック リアクションを抑制するために種々検討を重ねた。  Furthermore, the present inventors suppress fluctuations in the Ca concentration of the molten salt charged into the reaction vessel and maintain it at a high concentration so that efficient and stable operation can be performed on an industrial scale. At the same time, various studies were conducted to quickly recover the Ca in the molten salt sent to the electrolytic cell, remove the Ca, and suppress knock reaction.
[0057] その結果、溶融合金側の電極棒が +極、溶融塩側の電極棒が 極となるように Ca[0057] As a result, the electrode rod on the molten alloy side becomes the + electrode, and the electrode rod on the molten salt side becomes the electrode.
C1の分解電圧未満の電圧を印加すると Caが溶融合金側から溶融塩側へ移行するWhen a voltage lower than the decomposition voltage of C1 is applied, Ca shifts from the molten alloy side to the molten salt side.
2 2
ので、溶融合金を共通の構成要素として一体とし、溶融塩をこの溶融合金に接触さ せつつ、一方の溶融塩側の電極棒が +極となり、他方の溶融塩側の電極棒が 極 となるように電圧 (CaClの分解電圧未満の電圧)を印加したところ、前記一方の溶融  Therefore, the molten alloy is integrated as a common component, and while the molten salt is in contact with the molten alloy, the electrode rod on one side of the molten salt becomes a positive electrode, and the electrode rod on the other side of the molten salt becomes an electrode. When a voltage (voltage less than the decomposition voltage of CaCl) is applied,
2  2
塩中に溶解して ヽる Caの溶融合金による吸収と、溶融合金側から他方の溶融塩側 への Caの移行を同時に行えることが判明した。  It was found that the absorption of Ca dissolved in the salt by the molten alloy and the migration of Ca from the molten alloy side to the other molten salt side can be performed simultaneously.
[0058] すなわち、一方の溶融塩に溶解している Caの除去と、他方の溶融塩に溶解してい る Caの高濃度化を所定の電圧を印加することにより同時に且つ迅速に進行させるこ とができることを明らかにした。  [0058] That is, the removal of Ca dissolved in one molten salt and the concentration of Ca dissolved in the other molten salt are simultaneously and rapidly advanced by applying a predetermined voltage. Made it clear that
[0059] 一方、反応容器に投入する溶融塩の Ca濃度の変動を抑制し、高濃度に維持する ためには、電解槽と反応容器の間に Ca供給源を備える調整槽を設置し、電気分解 により Caを生成させて Ca濃度を高めた溶融塩を調整槽に導入して Ca濃度を一定と した後、還元に用いるのが効果的であることを知見した。  [0059] On the other hand, in order to suppress the fluctuation of the Ca concentration of the molten salt charged into the reaction vessel and maintain it at a high concentration, an adjustment tank equipped with a Ca supply source is installed between the electrolytic cell and the reaction vessel, It was found that it is effective to use molten salt with increased Ca concentration by decomposition to introduce Ca into the adjustment tank and keep the Ca concentration constant and then use it for reduction.
[0060] これにより溶融塩の Ca濃度を常に一定の高濃度に維持し、還元反応を効率よく進 行させることができる。また、溶融塩に電圧を印加して Caを吸収させ、 Ca濃度が高め られた溶融合金を調整槽の Ca供給源として使用できることも判明した。  [0060] This allows the Ca concentration of the molten salt to be always maintained at a constant high concentration, and the reduction reaction to proceed efficiently. It was also found that a molten alloy with an increased Ca concentration can be used as a Ca supply source for the adjustment tank by applying a voltage to the molten salt to absorb Ca.
[0061] さらに、本発明者らは、溶融塩を陰極表面近傍で一方向に流しつつ電気分解して 電解槽の出側で Ca濃度が高まった溶融塩を回収することにより、ノ ックリアクションを 抑制して高電流効率を維持すると共に、 Caが濃化した溶融塩のみを効果的に取り出 すことができ、し力も、大量の CaCl含有溶融塩の連続処理が可能で、反応容器へ  [0061] Further, the present inventors electrolyzed the molten salt while flowing it in one direction near the cathode surface, and recovered the molten salt having an increased Ca concentration on the outlet side of the electrolytic cell, thereby knock reaction. In addition to maintaining high current efficiency, it is possible to effectively remove only the Ca-concentrated molten salt, and it is possible to continuously process a large amount of CaCl-containing molten salt into the reaction vessel.
2  2
の Caの供給速度を増大させ得ることを知見した。 [0062] 本発明の Ca除去濃縮工程を含む Ήまたは Ti合金の製造方法およびその装置は、 これらの知見に基づ!/、てなされたものであり、下記(5)および(6)の構成となる。 It has been found that the Ca supply rate can be increased. [0062] The method and apparatus for producing a soot or Ti alloy including the Ca removal and concentration step of the present invention is based on these findings! /, And has the following configurations (5) and (6): It becomes.
[0063] (5) CaClを含み且つ Caが溶解した溶融塩を反応容器内に保持し、その溶融塩中 [0063] (5) A molten salt containing CaCl and dissolving Ca is held in a reaction vessel, and the molten salt
2  2
の Caに TiClを含む金属塩化物を反応させて前記溶融塩中に Ti粒または Ti合金粒  Ti particles or Ti alloy particles in the molten salt by reacting CaCl with metal chloride containing TiCl
4  Four
を生成させる還元工程と、前記反応容器内または反応容器外で前記 Ti粒または Ti 合金粒を溶融塩から分離する分離工程と、前記反応容器外へ抜き出された溶融塩 を電気分解して Caを生成させることにより、溶融塩の Ca濃度を高める電解工程と、前 記電気分解により生成された Caを単独または溶融塩と共に前記反応容器内へ導入 する戻し工程と、前記分離工程で分離され前記電解工程へ送られる溶融塩を保持 する Ca除去領域内の溶融塩側の電極板が、この領域と隔てられ、前記還元工程へ 送られる溶融塩を保持する Ca濃縮領域内の溶融塩側の電極板に対して +極となる ように CaClの分解電圧未満の電圧を印加することにより、 Caの濃度が低下した Ca  A reduction step for producing a catalyst, a separation step for separating the Ti particles or Ti alloy particles from the molten salt in the reaction vessel or outside the reaction vessel, and electrolysis of the molten salt extracted outside the reaction vessel To generate Ca in the molten salt to increase the Ca concentration of the molten salt, to return the Ca generated by the electrolysis alone or together with the molten salt into the reaction vessel, and to be separated in the separation step and The molten salt side electrode plate in the Ca removal region that holds the molten salt sent to the electrolysis process is separated from this region, and the molten salt side electrode in the Ca concentration region that holds the molten salt sent to the reduction step By applying a voltage lower than the decomposition voltage of CaCl so as to be a positive electrode to the plate, the Ca concentration decreased.
2  2
除去領域内の溶融塩を電解工程へ送り、 Caが高濃度化された Ca濃縮領域内の溶 融塩を還元工程へ送る Ca除去濃縮工程を含む Tほたは Ti合金の製造方法である。  This is a T alloy or Ti alloy manufacturing method that includes a Ca removal concentration process in which the molten salt in the removal area is sent to the electrolysis process, and the molten salt in the Ca concentration area in which the Ca concentration is increased is sent to the reduction process.
[0064] ここで、「CaClを含む溶融塩」、および「TiClを含む金属塩化物」とは、前記「2. C Here, the “molten salt containing CaCl” and the “metal chloride containing TiCl” are the above-mentioned “2. C
2 4  twenty four
a回収工程を含む Tほたは Ti合金の製造方法」の場合と同様である。  aT recovery process including recovery process is the same as in “Ti alloy manufacturing method”.
[0065] 上記(5)の Tiまたは Ti合金の製造方法において、印加する電圧が 3. 2V未満であ れば、印加する電圧を具体的な数値で管理して、 CaClを分解させることなく CaCl [0065] In the manufacturing method of Ti or Ti alloy of (5) above, if the applied voltage is less than 3.2 V, the applied voltage is controlled by a specific numerical value, and CaCl is decomposed without decomposing CaCl.
2 2 中に溶解した Caを溶融合金に速やかに吸収させることができる。また、電解工程で C a濃度を高めた溶融塩を、 Ca供給源を有する調整槽に導入して溶融塩を Ca供給源 に接触させることにより溶融塩の Ca濃度を一定とした後、還元工程へ送ることとすれ ば、反応容器内へ導入する溶融塩の Ca濃度を常に一定の高濃度に維持して還元 反応を効率よく進行させることができる。  Ca dissolved in 2 2 can be rapidly absorbed by the molten alloy. In addition, the molten salt whose Ca concentration has been increased in the electrolysis process is introduced into an adjustment tank having a Ca supply source, and the molten salt is brought into contact with the Ca supply source to make the Ca concentration of the molten salt constant, and then the reduction process. Therefore, the Ca concentration of the molten salt introduced into the reaction vessel can always be maintained at a constant high concentration, and the reduction reaction can proceed efficiently.
[0066] (6) CaClを含み且つ Caが溶解した溶融塩を保持し、前記溶融塩中に供給される [0066] (6) A molten salt containing CaCl and dissolving Ca is retained and supplied into the molten salt.
2  2
TiClを含む金属塩化物を前記 Caと反応させて Ti粒または Ti合金粒を生成させるた To produce Ti grains or Ti alloy grains by reacting TiCl-containing metal chloride with Ca
4 Four
めの反応容器と、前記溶融塩中に生成された Ti粒または Ti合金粒を溶融塩から分 離するための分離手段と、前記 Ti粒または Ti合金粒が分離された後の溶融塩を保 持し、陽極と陰極を備え、該溶融塩中で電気分解を行って陰極側に Caを生成させる ための電解槽と、前記電気分解により生成された Caを単独または溶融塩と共に前記 反応容器内へ導入する戻し手段と、前記分離工程で分離され前記電解工程へ送ら れる溶融塩を保持する Ca除去領域と、この領域と隔てられ、前記還元工程へ送られ る溶融塩を保持する Ca濃縮領域を有し、 Ca濃縮領域内の溶融塩側の電極板に対し て Ca除去領域内の溶融塩側の電極板が +極となるように CaClの分解電圧未満の A reaction vessel for separating the Ti grains or Ti alloy grains formed in the molten salt from the molten salt, and the molten salt after the Ti grains or Ti alloy grains are separated. Holding an anode and a cathode, and performing electrolysis in the molten salt to produce Ca on the cathode side An electrolytic cell, a return means for introducing Ca generated by the electrolysis alone or together with the molten salt into the reaction vessel, and a Ca removal for holding the molten salt separated in the separation step and sent to the electrolysis step And a Ca-concentrated region that is separated from this region and retains the molten salt sent to the reduction step, and has a molten salt side in the Ca removal region with respect to the molten salt side electrode plate in the Ca concentrated region. Less than the decomposition voltage of CaCl so that the electrode plate of
2  2
電圧を印加することにより Caの濃度が低下した Ca除去領域内の溶融塩を電解工程 へ送り、 Caが高濃度化された Ca濃縮領域内の溶融塩を還元工程へ送る Ca除去濃 縮装置を有する Tほたは Ti合金の製造装置である。  A Ca removal concentration device that sends molten salt in the Ca removal region, where the Ca concentration has been reduced by applying voltage, to the electrolysis process, and sends molten salt in the Ca concentration region, where the Ca concentration is increased, to the reduction process. The T-fired machine is a Ti alloy production equipment.
[0067] 上記 (6)の Tほたは Ti合金の製造装置が、さらに、 Ca供給源を備え、前記電解槽 内の溶融塩を導入して Ca供給源と接触させることにより当該溶融塩の Ca濃度を一定 とした後、その溶融塩を前記反応容器へ投入するための調整槽を有するものであれ ば、前記(5)の製造方法の実施に好適に使用できる。  [0067] The T or Ti alloy production apparatus according to (6) further includes a Ca supply source, and the molten salt in the electrolytic cell is introduced and brought into contact with the Ca supply source to obtain the molten salt. Any device having an adjustment tank for charging the molten salt into the reaction vessel after making the Ca concentration constant can be suitably used for the production method (5).
[0068] 本発明の Ca除去濃縮工程を含む Ήまたは Ti合金の製造方法によれば、溶融塩中 に溶解して 、る Caを速やかに除去し、溶融塩の電気分解時におけるバックリアクショ ンを抑制して Ca生成の高効率ィ匕を図ることができる。さらに、 Caを除去すると同時に 、還元工程へ送る溶融塩の Ca濃度を高め、 Ca生成の高効率ィ匕に加え、 TiClの還  [0068] According to the method for producing a cocoon or Ti alloy including the Ca removal and concentration step of the present invention, the Ca dissolved in the molten salt is quickly removed, and the back-reaction during the electrolysis of the molten salt is reduced. It can be suppressed to achieve high efficiency of Ca generation. Furthermore, at the same time as removing Ca, the Ca concentration in the molten salt sent to the reduction process is increased, and in addition to the high efficiency of Ca generation, the TiCl is reduced.
4 元反応の効率ィ匕に寄与することができる。  This can contribute to the efficiency of the four-way reaction.
[0069] また、 Ca供給源を備える調整槽を用いて反応容器に投入する溶融塩の Ca濃度の 変動を抑制し、且つ高濃度に維持して、 TiCl  [0069] Further, by using a regulating tank equipped with a Ca supply source, the fluctuation of the Ca concentration of the molten salt charged into the reaction vessel is suppressed and maintained at a high concentration, so that TiCl
4の還元反応を効率よく行わせることが でき、さらに、電解工程において大量の CaCl含有溶融塩を連続処理して、反応容  4 can be efficiently performed, and a large amount of CaCl-containing molten salt is continuously treated in the electrolysis process to obtain a reaction volume.
2  2
器への Caの供給速度を増大させることが可能である。  It is possible to increase the rate of Ca supply to the vessel.
図面の簡単な説明  Brief Description of Drawings
[0070] 図 1は、本発明の溶融塩中メタルフォグ形成金属の除去および高濃度化方法を実 施する際に用いられる装置要部の概略構成例を示す図である。  FIG. 1 is a diagram showing a schematic configuration example of the main part of the apparatus used when performing the method for removing and increasing the concentration of metal fog forming metal in molten salt according to the present invention.
図 2は、溶融 Mg— Ca合金および溶融 CaClの間に印加する電圧と両極間に流れ  Figure 2 shows the voltage applied between molten Mg-Ca alloy and molten CaCl and the flow between the two electrodes.
2  2
る電流との関係を模式的に示す図であり、同図(a)は CaClに Caが含まれていない  Fig. (A) shows CaCl not containing Ca.
2  2
場合 (Ca添加前)を示す図であり、同図(b)は含まれて ヽる場合 (Ca添加後)を示す 図である。 図 3は、本発明の溶融塩中メタルフォグ形成金属の回収方法 (すなわち、除去方法 )を実施する際に用いられる装置要部の概略構成例を示す図である。 (B) is a diagram showing the case (after Ca addition). FIG. 3 is a diagram showing a schematic configuration example of the main part of the apparatus used when carrying out the recovery method (that is, the removal method) of the metal fog-forming metal in the molten salt of the present invention.
図 4は、本発明の Ca回収工程を含む Tほたは Ti合金の製造方法を実施する際に 用いられる装置の概略構成例を示す図である。  FIG. 4 is a diagram showing a schematic configuration example of an apparatus used when carrying out the manufacturing method of T or Ti alloy including the Ca recovery step of the present invention.
図 5は、本発明の Ca回収工程を含む Tほたは Ti合金の製造方法を実施する際に 用いられる装置の他の概略構成例を示す図である。  FIG. 5 is a diagram showing another schematic configuration example of an apparatus used when carrying out the manufacturing method of T or Ti alloy including the Ca recovery step of the present invention.
図 6は、本発明の Ca除去濃縮工程を含む Tほたは Ti合金の製造方法を実施する 際に用いられる装置の概略構成を示す図である。  FIG. 6 is a diagram showing a schematic configuration of an apparatus used for carrying out the method for producing a T or Ti alloy including the Ca removal concentration process of the present invention.
図 7は、本発明の Ca除去濃縮工程を含む Tほたは Ti合金の製造方法を実施する 際に用いられる装置の他の概略構成例を示す図である。  FIG. 7 is a diagram showing another schematic configuration example of an apparatus used for carrying out the method for producing a T or Ti alloy including the Ca removal concentration process of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0071] 以下に、本発明の具体的な内容を「1.溶融塩中メタルフォグ形成金属の除去およ び高濃度化方法とその装置」、「2. Ca回収工程を含む Tほたは Ti合金の製造方法 およびその装置」および「3. Ca除去濃縮工程を含む Tほたは Ti合金の製造方法お よびその装置」に区分して説明する。以下では、メタルフォグ形成金属が Caの場合を 例に挙げて述べる。 [0071] In the following, the specific contents of the present invention are described in "1. Method and apparatus for removing metal fog-forming metal in molten salt and its concentration" and "2. The explanation is divided into “Ti alloy manufacturing method and apparatus” and “3. T including Ti removal process and Ti alloy manufacturing method and apparatus”. In the following, the case where the metal fog forming metal is Ca is described as an example.
[0072] 1.溶融塩中メタルフォグ形成金属の除去および高濃度化方法とその装置  [0072] 1. Method and apparatus for removing and increasing concentration of metal fog forming metal in molten salt
図 1は、本発明の溶融塩中メタルフォグ形成金属の除去および高濃度化方法を実 施する際に用いられる装置要部の概略構成例を示す図である。図示する構成は、後 述する図 6および図 7に示す Ca除去濃縮装置 28と同一構成であり、使用する符号を 同じとした。また、図 1では、メタルフォグ形成金属を Ca、メタルフォグ形成金属含有 溶融塩を含む溶融塩を溶融 CaCl、溶融メタルフォグ形成金属含有合金を溶融 Mg  FIG. 1 is a diagram showing a schematic configuration example of the main part of the apparatus used when performing the method for removing and increasing the concentration of metal fog-forming metal in molten salt according to the present invention. The configuration shown in the figure is the same as the Ca removal and concentration device 28 shown in FIGS. 6 and 7 described later, and the same reference numerals are used. In FIG. 1, the metal fog forming metal is Ca, the molten salt containing the metal fog forming metal-containing molten salt is molten CaCl, and the molten metal fog forming metal-containing alloy is molten Mg.
2  2
Ca合金と表示しており、以下の説明ではそれらの表示を用いた。  It is indicated as Ca alloy, and those indications are used in the following explanation.
[0073] 図 1に示すように、この装置は、 Ca除去濃縮槽 28aを有し、この槽 28a内には、溶 融 CaClが隔壁 31により Ca濃縮領域 29と Ca除去領域 30に隔てられた状態で保持[0073] As shown in FIG. 1, this apparatus has a Ca removal and concentration tank 28a. In this tank 28a, molten CaCl is separated into a Ca concentration region 29 and a Ca removal region 30 by a partition wall 31. Hold in state
2 2
され、その上に、溶融 Mg— Ca合金 8が Ca濃縮領域 29および Ca除去領域 30に保 持された溶融塩と接触した状態で保持されて!ヽる。  On top of this, the molten Mg—Ca alloy 8 is held in contact with the molten salt held in the Ca concentration region 29 and the Ca removal region 30.
[0074] さらに、前記 Ca除去濃縮槽 28aの底部には、 Ca除去領域 30内の溶融塩側が Ca 濃縮領域 29内の溶融塩側に対して +極側〖こなるよう〖こ CaClの分解電圧未満の電 [0074] Further, at the bottom of the Ca removal and concentration tank 28a, the molten salt side in the Ca removal region 30 is Ca. Concentration zone 29
2  2
圧を印加するための電極板 33が設けられている。通常は、図示したように、 Ca濃縮 領域 29内の溶融塩側の電極板が 極になるように電極板 7が設けられる。なお、図 示した例では、 Ca濃縮領域 29と Ca除去領域 30が隔壁 31により隔てられているが、 必ずしもこれに限定されない。例えば、個々に取り外し可能な別々の槽により両領域 を隔てる構成としてもよい。  An electrode plate 33 for applying pressure is provided. Usually, as shown in the figure, the electrode plate 7 is provided so that the electrode plate on the molten salt side in the Ca enriched region 29 becomes a pole. In the illustrated example, the Ca enrichment region 29 and the Ca removal region 30 are separated by the partition wall 31, but the present invention is not necessarily limited thereto. For example, the two regions may be separated by separate tanks that can be individually removed.
[0075] 図 1に示した装置を使用し、溶融塩中メタルフォグ形成金属である Caの除去および 高濃度化方法を実施するには、先ず、 Ca除去濃縮槽 28aの Ca濃縮領域 29と、隔壁 31によりこの領域 29と隔てられた Ca除去領域 30に、 Caが溶解した溶融 CaClを保  [0075] Using the apparatus shown in Fig. 1, in order to carry out a method for removing and increasing the concentration of Ca, which is a metal fog forming metal in molten salt, first, a Ca concentration region 29 of a Ca removal concentration tank 28a, The Ca removal region 30 separated from this region 29 by the partition wall 31 retains molten CaCl in which Ca is dissolved.
2 持する。さらに、これら両領域 29、 30に保持された溶融塩の上に当該両溶融塩と接 触させて溶融 Mg— Ca合金 8を保持する。  2 Hold. Further, the molten Mg—Ca alloy 8 is held on the molten salt held in both the regions 29 and 30 by contacting both the molten salts.
[0076] 続いて、前記 Ca除去領域 30内の溶融塩側の電極板 33が Ca濃縮領域 29内の溶 融塩側の電極板 34に対して +極となるように、 CaClの分解電圧未満の電圧を印加 [0076] Subsequently, the molten salt side electrode plate 33 in the Ca removal region 30 is less than the decomposition voltage of CaCl so that the molten salt side electrode plate 33 becomes a positive electrode with respect to the molten salt side electrode plate 34 in the Ca concentration region 29. Applied voltage
2  2
する。  To do.
[0077] この電圧の印加により、 Ca除去領域 30内の溶融塩との接触部近傍に存在する溶 融 Mg— Ca合金 8は Ca除去領域 30内の溶融塩側(+極側)に対して相対的には— 極として機能するので、溶解している Caは、図 1に矢印を付して示したように、溶融 M g— Ca合金 8側へ移行し、吸収される。その結果、 Ca除去領域 30内の溶解 Caが除 去され、 Mg— Ca合金 8の Ca濃度が高くなる。  [0077] By applying this voltage, the molten Mg-Ca alloy 8 existing in the vicinity of the contact portion with the molten salt in the Ca removal region 30 moves toward the molten salt side (+ pole side) in the Ca removal region 30. Since it functions as a negative electrode, the dissolved Ca moves to the molten Mg—Ca alloy 8 side and is absorbed as shown by the arrow in FIG. As a result, dissolved Ca in the Ca removal region 30 is removed, and the Ca concentration of the Mg—Ca alloy 8 increases.
[0078] 一方、 Ca濃縮領域 29内の溶融塩との接触部近傍の溶融 Mg— Ca合金 8は Ca濃 縮領域 29内の溶融塩側(—極側)に対して相対的には +極として機能する。したが つて、溶融 Mg— Ca合金 8の Caは Ca濃縮領域 29内の溶融塩側へ移行し、 Ca濃縮 領域 29内の Ca濃度が高くなり、高濃度化される。  [0078] On the other hand, the molten Mg—Ca alloy 8 in the vicinity of the contact portion with the molten salt in the Ca concentrated region 29 is relatively positive with respect to the molten salt side (−polar side) in the Ca concentrated region 29. Function as. Therefore, Ca in the molten Mg—Ca alloy 8 moves to the molten salt side in the Ca enriched region 29, and the Ca concentration in the Ca enriched region 29 becomes higher and the concentration is increased.
[0079] このように、 Ca除去領域 30内の溶融塩側の電極板が Ca濃縮領域 2内の溶融塩側 の電極板に対して +極となるように CaClの分解電圧未満の電圧を印加することによ  [0079] In this way, a voltage lower than the decomposition voltage of CaCl is applied so that the molten salt side electrode plate in the Ca removal region 30 becomes a positive electrode with respect to the molten salt side electrode plate in the Ca concentration region 2. By doing
2  2
つて、 Ca除去領域 30内の溶解 Caを除去すると同時に、 Ca濃縮領域 29内の溶解 Ca の濃度を高めることができる。し力も、図 1に示した要部構成を有する装置を用いれ ば、この同時処理を、形状、構成のいずれに関しても極めて簡素な装置を用いて容 易に実施することができる。 Therefore, the concentration of dissolved Ca in the Ca concentration region 29 can be increased at the same time as the dissolved Ca in the Ca removal region 30 is removed. However, if the apparatus having the main part configuration shown in FIG. 1 is used, this simultaneous processing can be performed using an extremely simple apparatus in both shape and configuration. Easy to implement.
[0080] 前記印加する電圧を CaClの分解電圧未満とするのは、 CaClの分解による Caの  [0080] The applied voltage is less than the decomposition voltage of CaCl because of the decomposition of Ca by the decomposition of CaCl.
2 2  twenty two
生成を回避するためである。  This is to avoid generation.
前記の電圧を印加するための電極としては、 極は鉄等の金属、 +極は黒鉛電極 等の不溶性電極を用いるのがよ!/、。  As the electrode for applying the voltage, a metal such as iron is used for the electrode, and an insoluble electrode such as a graphite electrode is used for the + electrode.
[0081] 実際の操業に際しては、以下に述べる Caの溶融塩側(+極側)から溶融合金側( 極側)への移行に起因して観測される「限界電流」を目安 (指標)として、前記溶解[0081] In actual operation, the “limit current” observed due to the transition from the molten salt side (+ pole side) to the molten alloy side (pole side) described below is used as a guideline (index). The dissolution
Caの除去および高濃度化の程度を判断し、操業管理することが可能である。 It is possible to judge the degree of Ca removal and concentration and manage the operation.
[0082] 図 2は、本発明者らの実験による検討結果であり、溶融 Mg— Ca合金および溶融 C aClの間に印加する電圧と両極間に流れる電流との関係を模式的に示す図である。 [0082] Fig. 2 is a result of examination by the inventors of the present invention, and is a diagram schematically showing the relationship between the voltage applied between the molten Mg-Ca alloy and molten CaCl and the current flowing between the two electrodes. is there.
2  2
(a)は CaClに Caが含まれて!/、な!/、場合(Ca添カ卩前)、(b)は含まれて!/、る場合(Ca  (a) Ca is contained in CaCl! /, Na! /, case (before Ca addition), (b) is included! /, (Ca
2  2
添加後)である。  After addition).
[0083] 図示するように、 Caが含まれて 、な 、場合は、印加電圧を上げても電流は流れな い(図 2 (a)参照)。しかし、 Caを添加すると、僅かの電圧をカ卩えただけで微小の電流 が流れ始め、印加電圧が CaClの分解電圧 Vb (3. 2V)の近傍に達するまでほぼ  [0083] As shown in the figure, when Ca is contained, no current flows even when the applied voltage is increased (see FIG. 2 (a)). However, when Ca is added, a small amount of current begins to flow even if only a small voltage is applied, and the applied voltage reaches almost the CaCl decomposition voltage Vb (3.2 V).
2 一 定の電流 (これを、「限界電流」という)が流れる。さらに電圧を上げていくと、 CaCl  2 A constant current (this is called “limit current”) flows. When the voltage is further increased, CaCl
2が 電気分解されるため電流値は急激に増大する(図 2 (b) )。  Since 2 is electrolyzed, the current value increases rapidly (Fig. 2 (b)).
[0084] 前記の限界電流は、 Caが溶融塩側(+極側)から溶融合金側(一極側)へ移行す る(つまり、 CaClに溶解している Caが溶融合金により吸収される)ことによるもので、 [0084] The limit current is such that Ca shifts from the molten salt side (+ pole side) to the molten alloy side (one pole side) (that is, Ca dissolved in CaCl is absorbed by the molten alloy). Because
2  2
その大きさは CaClに溶解している Caの濃度に依存し、 Ca濃度が低下するほど限界  Its size depends on the concentration of Ca dissolved in CaCl, and is limited as the Ca concentration decreases.
2  2
電流値は小さくなる。本発明者らの検討結果によると、限界電流値が 0. 14A/cm2 のとき、 Ca濃度は 0. 01質量%程度であった。 The current value becomes smaller. According to the examination results of the present inventors, when the limiting current value was 0.14 A / cm 2 , the Ca concentration was about 0.01% by mass.
[0085] したがって、前述した本発明の溶融塩中メタルフォグ形成金属の除去および高濃 度化方法により得られる溶融塩の用途により異なる力 例えば、印加する電圧を CaC 1 [0085] Accordingly, the force that varies depending on the use of the molten salt obtained by the method for removing a metal fog-forming metal from the molten salt of the present invention and increasing the concentration, for example, the applied voltage is CaC 1
2の分解電圧未満に設定し、限界電流値が徐々に低下して予め定めた電流密度に 達した時点で処理を終了するような操業を行うことも可能である。  It is also possible to perform an operation such that the process is terminated when the limit current value is gradually decreased to reach a predetermined current density by setting the decomposition voltage to less than 2.
[0086] 前述のように、限界電流値は溶融塩の Ca濃度が低下するほど小さくなるので、 Ca 濃度を迅速に低下させ、 Caの除去効率を高めためには、 Ca除去領域における溶融 塩と溶融合金の接触面積を大きくすることが望ましい。なお、 Ca除去領域で流れる電 流と同量の電流が Ca濃縮領域でも流れるので、 Ca濃縮領域における前記接触面積 も同様に大きくして抵抗を少なくするのが望ましい。 [0086] As described above, the limit current value decreases as the Ca concentration of the molten salt decreases. Therefore, in order to rapidly decrease the Ca concentration and increase the Ca removal efficiency, the melting current in the Ca removal region is reduced. It is desirable to increase the contact area between the salt and the molten alloy. Since the same amount of current as that flowing in the Ca removal region flows also in the Ca concentration region, it is desirable to reduce the resistance by increasing the contact area in the Ca concentration region as well.
[0087] 本発明の方法にぉ 、て、『メタルフォグ形成金属が Caであり、メタルフォグ形成金属 含有溶融塩が Ca含有溶融塩である』場合であり、さらに『メタルフォグ形成金属が Ca であり、メタルフォグ形成金属含有溶融塩力 SCaClである』場合が望ましい実施形態 [0087] According to the method of the present invention, there is a case where "the metal fog forming metal is Ca and the metal fog forming metal-containing molten salt is a Ca-containing molten salt", and further, "the metal fog forming metal is Ca. Preferred embodiment where metal fog forming metal-containing molten salt power SCaCl
2  2
である。  It is.
[0088] これらの実施形態のいずれも、メタルフォグ形成金属を Caに限定したものであるが 、メタルフォグ形成金属の利用という観点力 みて、溶融塩を介在させて行う TiClの  [0088] In any of these embodiments, the metal fog-forming metal is limited to Ca. However, from the viewpoint of utilization of the metal fog-forming metal, TiCl is performed with a molten salt interposed.
4 Four
Ca還元による金属 Tiの製造が一つの有望な分野と考えられるからであり、さらに溶 融塩を比較的安価で取り扱いも容易な CaClに限定することができる。 This is because the production of metallic Ti by Ca reduction is considered as one promising field, and the molten salt can be limited to CaCl, which is relatively inexpensive and easy to handle.
2  2
[0089] 本発明の方法では、『印加する電圧を 3. 2V未満(つまり、 CaClの分解電圧よりも  [0089] In the method of the present invention, “the applied voltage is less than 3.2 V (that is, the decomposition voltage of CaCl
2  2
低い電圧)』として Caを除去することができる。これにより、印加電圧を具体的な数値 で管理し、 CaClを分解させることなぐ溶融塩側の電極板と溶融合金側の電極板の  Ca can be removed as low voltage). As a result, the applied voltage is controlled by specific numerical values, and the molten salt side electrode plate and molten alloy side electrode plate that do not decompose CaCl are used.
2  2
間に電位差を与えて Caを溶融合金へ速やかに吸収させることができる。  By applying a potential difference between them, Ca can be rapidly absorbed into the molten alloy.
[0090] このとき、印加電圧は僅かであっても Caの除去効果があるので、その下限は限定し ない。しかし、効果的に Caを除去するためには、印加電圧を 0. 01V以上とすること が望ましい。 [0090] At this time, even if the applied voltage is small, there is an effect of removing Ca, so the lower limit is not limited. However, to remove Ca effectively, it is desirable to set the applied voltage to 0.01 V or higher.
[0091] 本発明の溶融塩中メタルフォグ形成金属の除去および濃縮装置は、前記の図 1〖こ 示す構成要部からなり、前述した本発明のメタルフォグ形成金属の除去および高濃 度化方法を容易且つ好適に実施することができる。  The apparatus for removing and concentrating metal fog-forming metal in molten salt according to the present invention comprises the main components shown in FIG. 1, and the method for removing and concentrating metal fog-forming metal according to the present invention described above. Can be carried out easily and preferably.
[0092] 図 3は、本発明の溶融塩中メタルフォグ形成金属の回収方法 (すなわち、除去方法 )を実施する際に用いられる装置要部の概略構成例を示す図である。図 3に示す構 成は、後述する図 4および図 5に示す Ca回収手段 5と同一構成であり、使用する符号 を同じとした。前記図 1の場合と同様に、図 3でも、メタルフォグ形成金属を Ca、メタル フォグ形成金属含有溶融塩を含む溶融塩を溶融 CaCl、溶融メタルフォグ形成金属  FIG. 3 is a diagram showing a schematic configuration example of the main part of the apparatus used when carrying out the recovery method (that is, the removal method) of the metal fog-forming metal in the molten salt according to the present invention. The configuration shown in FIG. 3 is the same as the Ca recovery means 5 shown in FIGS. 4 and 5 described later, and the same reference numerals are used. As in the case of FIG. 1, in FIG. 3, the metal fog forming metal is Ca, the molten salt containing the metal fog forming metal-containing molten salt is molten CaCl, and the molten metal fog forming metal.
2  2
含有合金を溶融 Mg— Ca合金と表示しており、以下の説明ではそれらの表示を用い [0093] 図 3に示すように、 Ca回収手段 5は、 Ca回収槽 6を有し、この回収槽 6内には、溶融 CaCl 7が保持され、その上に、溶融 Mg— Ca合金 8が溶融塩 7と接触した状態で保The contained alloys are indicated as molten Mg-Ca alloys, and these indications are used in the following explanation. [0093] As shown in FIG. 3, the Ca recovery means 5 has a Ca recovery tank 6, in which molten CaCl 7 is held, on which molten Mg—Ca alloy 8 is stored. Keep in contact with molten salt 7
2 2
持されている。溶融塩 7に挿入された電極棒 9は +極を、溶融 Mg— Ca合金 8に挿入 された電極棒 10は 極を構成している。  It is held. The electrode rod 9 inserted into the molten salt 7 constitutes the + pole, and the electrode rod 10 inserted into the molten Mg—Ca alloy 8 constitutes the pole.
[0094] 図 3に示した Ca回収手段 5を使用してメタルフォグ形成金属である Caを回収するに は、先ず、 Ca回収槽 6に、 Caが溶解した溶融 CaClを保持する。さらに、この保持さ In order to recover Ca, which is a metal fog forming metal, using the Ca recovery means 5 shown in FIG. 3, first, molten CaCl in which Ca is dissolved is held in the Ca recovery tank 6. Furthermore, this hold
2  2
れた溶融塩 7の上に溶融塩 7と接触させて溶融 Mg— Ca合金 8を保持する。  The molten Mg—Ca alloy 8 is held on the molten salt 7 in contact with the molten salt 7.
[0095] 続いて、前記溶融 Mg— Ca合金 8に挿入された電極棒 10がー極で、前記溶融塩 7 に挿入された電極棒 9が +極となるように、 CaClの分解電圧未満の電圧を印加する [0095] Subsequently, the electrode rod 10 inserted into the molten Mg—Ca alloy 8 is a negative electrode, and the electrode rod 9 inserted into the molten salt 7 is a positive electrode. Apply voltage
2  2
。この電圧の印加により、 Ca回収槽 6内の溶融塩 7との接触部近傍に存在する溶融 Mg— Ca合金 8は Ca除去槽 6内の溶融塩側(+極側)に対して相対的には—極とし て機能するので、溶解している Caは、図 3に矢印を付して示したように、溶融 Mg— C a合金 8側へ移行し、吸収される。その結果、 Ca除去槽 6内の溶解 Caが回収(除去) される。  . By applying this voltage, the molten Mg-Ca alloy 8 present in the vicinity of the contact portion with the molten salt 7 in the Ca recovery tank 6 is relatively to the molten salt side (+ pole side) in the Ca removal tank 6. Since it functions as a pole, dissolved Ca moves to the molten Mg—Ca alloy 8 side and is absorbed, as shown by the arrow in FIG. As a result, dissolved Ca in the Ca removal tank 6 is recovered (removed).
[0096] 以下に、本発明の前記図 1に示すメタルフォグ形成金属の除去および高濃度化方 法の適用例について、後述する「3. Ca除去濃縮工程を含む Tほたは Ti合金の製造 方法およびその装置」で説明する。また、本発明の前記図 3に示すメタルフォグ形成 金属の回収方法の適用例について、後述する「2. Ca回収工程を含む Tほたは Ti合 金の製造方法およびその装置」で説明する。  [0096] In the following, an example of application of the method for removing and increasing the concentration of metal fog forming metal shown in Fig. 1 of the present invention will be described later in "3. Method and apparatus ". Further, an application example of the method for recovering metal fog forming metal shown in FIG. 3 of the present invention will be described in “2. Method of manufacturing T alloy including Ca recovery step and apparatus thereof” described later.
[0097] 2. Ca回収工程を含む Tほたは Ti合金の製造方法およびその装置  [0097] 2. Method and apparatus for manufacturing T-fired Ti alloy including Ca recovery process
図 4は、本発明の Ca回収工程を含む Tほたは Ti合金の製造方法を実施する際に 用いられる装置の概略構成例を示す図である。同図では、原料として TiClのみを用  FIG. 4 is a diagram showing a schematic configuration example of an apparatus used when carrying out the manufacturing method of T or Ti alloy including the Ca recovery step of the present invention. In the figure, only TiCl is used as a raw material.
4 Four
V、た場合につ!、て示して!/、る。 V, let me show you!
[0098] 図 4に示すように、この装置は、 CaClを含み且つ Caが溶解した溶融塩を保持し、 [0098] As shown in FIG. 4, this apparatus holds a molten salt containing CaCl and dissolving Ca,
2  2
前記溶融塩中に供給される TiClを前記 Caと反応させて Ti粒を生成させるための反  Reaction to generate Ti grains by reacting TiCl supplied in the molten salt with the Ca
4  Four
応容器 1と、前記溶融塩中に生成された Ti粒を溶融塩力 分離するための分離手段 2と、前記 Ti粒が分離された後の溶融塩を電気分解して陰極側に Caを生成させるた めの電解槽 3と、電気分解により生成された Caを前記反応容器 1内へ導入する戻し 手段 4と、前記分離手段で分離され前記電解槽へ送られる溶融塩中に溶解して!/ヽる Caを除去するための Ca回収手段 5と、を有している。 Reaction vessel 1, separation means 2 for separating the Ti particles generated in the molten salt by molten salt force, and electrolysis of the molten salt after the Ti particles are separated to generate Ca on the cathode side An electrolytic cell 3 for causing the reaction to occur, and a return to introduce Ca generated by electrolysis into the reaction vessel 1 Means 4 and Ca recovery means 5 for removing Ca dissolved and dissolved in the molten salt separated by the separation means and sent to the electrolytic cell.
[0099] 図 4に例示した Ca回収手段 5はその要部を示したものであり、 Ca回収槽 6に前記分 離手段 2で分離された溶融塩 7が導入され、その上に Caと Mgを含む溶融合金 (「溶 融 Mg— Ca合金」、または単に「溶融合金」ともいう) 8が保持されている。溶融塩 7に 挿入された電極棒 9は +極を、溶融 Mg - Ca合金 8に挿入された電極棒 10は—極を 構成している。 [0099] The Ca recovery means 5 illustrated in FIG. 4 shows the main part thereof, and the molten salt 7 separated by the separation means 2 is introduced into the Ca recovery tank 6, and Ca and Mg are added thereon. A molten alloy (including “melted Mg—Ca alloy” or simply “molten alloy”) 8 is retained. The electrode rod 9 inserted into the molten salt 7 constitutes the + pole, and the electrode rod 10 inserted into the molten Mg—Ca alloy 8 constitutes the negative electrode.
[0100] 電解槽 3は、 CaClを含有する溶融塩を保持する一方向に長い配管(円筒)形状の  [0100] The electrolytic cell 3 has a long pipe (cylindrical) shape that holds a molten salt containing CaCl.
2  2
電解槽容器 3aと、前記電解槽容器 3aの長手方向に沿って当該容器 3a内に配置さ れた同じく円筒形状の陽極 11、および円柱状の陰極 12を有し、前記電解槽容器 3a の長手方向の一方の端部 (底盤 13)に溶融塩供給口 14が設けられ、他方の端部( 上蓋 15)には溶融塩抜き出し口 16が設けられている。陽極 11表面と陰極 12表面が 対向して略垂直方向に配置され、さらに、陽極 11と陰極 12の間に、溶融塩の電解で 生成した Caの通過を抑制するための隔膜 17が設けられている。また、陽極 11の外 面には冷却器 18が取り付けられている。  An electrolytic cell container 3a; a cylindrical anode 11 disposed in the container 3a along the longitudinal direction of the electrolytic cell container 3a; and a columnar cathode 12; the longitudinal direction of the electrolytic cell container 3a A molten salt supply port 14 is provided at one end (bottom plate 13) in the direction, and a molten salt discharge port 16 is provided at the other end (upper lid 15). The surface of the anode 11 and the surface of the cathode 12 are opposed to each other in a substantially vertical direction, and a diaphragm 17 is provided between the anode 11 and the cathode 12 for suppressing the passage of Ca generated by the electrolysis of the molten salt. Yes. A cooler 18 is attached to the outer surface of the anode 11.
[0101] また、分離手段 2として、図 4に示した装置では、デカンター型遠心沈降機 (高温デ カンター) 19および分離槽 20が用いられている。  [0101] Further, as the separation means 2, in the apparatus shown in FIG. 4, a decanter type centrifugal sedimentator (high temperature decanter) 19 and a separation tank 20 are used.
[0102] 図 4に示した装置を使用して、本発明の Tiまたは Ti合金の製造方法を実施するに は、先ず、電解槽 3から戻し手段 4を介して供給される溶融塩を、反応容器 1内に保 持し、その溶融塩中の Caに、 TiCl供給口 21から供給した TiClを反応させ、前記溶  [0102] To carry out the Ti or Ti alloy production method of the present invention using the apparatus shown in Fig. 4, first, the molten salt supplied from the electrolytic cell 3 via the return means 4 is reacted. TiCl supplied from the TiCl supply port 21 is reacted with Ca in the molten salt held in the container 1, and the molten salt is reacted.
4 4  4 4
融塩中に Ti粒を生成させる。すなわち、「還元工程」である。  Ti grains are generated in the molten salt. That is, the “reduction process”.
[0103] この還元工程では、溶融塩は反応容器 1内に静止した状態で保持されるのではな ぐ反応容器 1の上方から下方へ徐々に流下しつつ保持され、その間に、原料である TiClが溶融塩中の Caにより還元されて Ti粒が生成する。なお、原料として TiClを [0103] In this reduction step, the molten salt is not held in a stationary state in the reaction vessel 1, but is held while gradually flowing down from the upper side of the reaction vessel 1, while TiCl which is a raw material is Is reduced by Ca in the molten salt to produce Ti grains. TiCl as raw material
4 4 含む金属塩化物(例えば、 V、 Al、 Cr等の塩ィ匕物)を用いた場合は、前述したように、 それらの金属塩ィ匕物も Caにより還元されるので、 TiClに予め所定量の金属塩ィ匕物 4 4 When using metal chlorides (for example, salts of V, Al, Cr, etc.), as mentioned above, these metal salts are also reduced by Ca. Predetermined amount of metal salt
4  Four
を加えておくことにより Ti合金粒を生成させ、最終的に Ti合金を製造することができる [0104] 前記還元工程で生成した Ti粒は、「分離工程」で溶融塩から分離される。 Ti alloy particles can be generated by adding, and finally Ti alloy can be manufactured [0104] Ti particles generated in the reduction step are separated from the molten salt in a "separation step".
Ti粒の溶融塩力ゝらの分離は、適切な反応容器を用いることによって反応容器内で も行うことができるが、その場合はバッチ方式となる。したがって、生産性を高めるた めには、例えば、前記図 4に示した型式の反応容器を用いて Caが溶解した溶融塩を 連続的に供給し、生成する Ti粒を反応容器外へ抜き取って容器外で溶融塩からの 分離を行うのがよい。  Separation of the molten salt strength of Ti grains can be performed in a reaction vessel by using an appropriate reaction vessel, but in this case, a batch system is used. Therefore, in order to increase productivity, for example, a molten salt in which Ca is dissolved is continuously supplied using a reaction vessel of the type shown in FIG. 4, and Ti particles produced are extracted out of the reaction vessel. It is better to separate from the molten salt outside the container.
[0105] 分離工程では、図 4に示した装置による場合、最初、高温デカンター 19で Ti粒を溶 融塩から分離回収し、次 、で分離槽 20で Ti粒に付着して 、る溶融塩を除去する。  In the separation process, in the case of the apparatus shown in FIG. 4, first, Ti particles are separated and recovered from the molten salt by the high-temperature decanter 19 and then adhered to the Ti particles by the separation tank 20 in the molten salt. Remove.
[0106] デカンター型遠心沈降機は回転円筒を高速回転させることにより懸濁物質を遠心 沈降させるタイプの遠心分離機で、高速処理が可能で、かつ高い脱水性能を有して いる。高温処理が可能なタイプのものも開発されており、この分離工程で高温デカン ター 19として適用することが可能である。  [0106] The decanter type centrifugal sedimentator is a type of centrifugal separator in which a suspended substance is centrifugally settled by rotating a rotating cylinder at a high speed, which enables high-speed processing and high dehydration performance. A type capable of high temperature treatment has also been developed and can be applied as a high temperature decanter 19 in this separation process.
[0107] 高温デカンター 19から抜き出された Ti粒は、分離槽 20でプラズマトーチ 22から照 射されるプラズマにより加熱溶融され、铸型 23に流し込まれ、 Tiインゴット 24となる。  The Ti grains extracted from the high temperature decanter 19 are heated and melted by the plasma irradiated from the plasma torch 22 in the separation tank 20 and poured into the vertical mold 23 to become a Ti ingot 24.
[0108] 一方、 Ti粒から分離された溶融塩 (これを、「付着溶融塩」 t ヽぅ)には、 Tiの微粒子 が混入している恐れがある。そのため、この付着溶融塩を電解工程へ戻すと問題が 生じる可能性があるので、図 4に示すように、反応容器 1内へ戻すのが望ましい。カロ えて、付着溶融塩には Caがある程度残存しているため、 Caの有効活用の面からも反 応容器 1内へ戻すことが合理的である。  [0108] On the other hand, there is a possibility that Ti fine particles are mixed in the molten salt separated from the Ti grains (this "adhered molten salt" t ヽ ぅ). For this reason, there is a possibility that a problem may occur if this adhered molten salt is returned to the electrolysis process, so it is desirable to return it to the reaction vessel 1 as shown in FIG. In addition, since Ca remains in the adhered molten salt to some extent, it is reasonable to return it to the reaction vessel 1 from the viewpoint of effective utilization of Ca.
[0109] 前記高温デカンター 19で分離された Ca濃度の低下した溶融塩は、「Ca回収工程」 へ送られる。すなわち、前記溶融塩を Ca回収槽 6に導入し、溶融 Mg— Ca合金 8に 接触させつつ、溶融合金側の電極棒が 極、溶融塩側の電極棒が +極となるよう〖こ 電圧を印加する。このときの印加電圧は、 CaClの分解電圧未満とする。これによつ  The molten salt having a reduced Ca concentration separated by the high temperature decanter 19 is sent to a “Ca recovery step”. That is, while introducing the molten salt into the Ca recovery tank 6 and bringing it into contact with the molten Mg—Ca alloy 8, a voltage is applied so that the electrode rod on the molten alloy side becomes a pole and the electrode rod on the molten salt side becomes a + pole. Apply. The applied voltage at this time is less than the decomposition voltage of CaCl. This
2  2
て、 CaClを分解させずに、 CaClに溶解している Caを速やかに溶融合金に吸収さ  Thus, without dissolving the CaCl, the Ca dissolved in the CaCl is quickly absorbed by the molten alloy.
2 2  twenty two
せ、 Ca濃度が低下した溶融塩を迅速に電解工程へ送ることが可能となる。溶融塩中 の Ca濃度が低下して 、るので、ノ ックリアクションは抑制される。  As a result, the molten salt with a reduced Ca concentration can be quickly sent to the electrolysis process. Since the Ca concentration in the molten salt decreases, knock reaction is suppressed.
[0110] 前記の電圧を印加するための電極としては、 極は鉄等の金属、 +極は黒鉛電極 等の不溶性電極を用いるのがよ!/、。 [0111] 前記図 2に示すように、限界電流は、 Caが溶融塩側(+極側)から溶融合金側(一 極側)へ移行することによるもので、その大きさは CaClに溶解している Caの濃度に [0110] As an electrode for applying the voltage, a metal such as iron is used for the electrode, and an insoluble electrode such as a graphite electrode is used for the + electrode! /. [0111] As shown in Fig. 2, the limiting current is due to the transition of Ca from the molten salt side (+ pole side) to the molten alloy side (one pole side), and its magnitude is dissolved in CaCl. The concentration of Ca
2  2
依存し、 Ca濃度が低下するほど限界電流は小さくなる。そして、本発明者らの検討 結果によると、限界電流密度が 0. 14AZcm2のとき、 Ca濃度は 0. 01質量%程度で めつに。 The limiting current decreases as the Ca concentration decreases. According to the results of studies by the present inventors, when the limiting current density is 0.14 AZcm 2 , the Ca concentration is about 0.01% by mass.
[0112] 前述のように、限界電流は溶融塩の Ca濃度が低下するほど小さくなるので、 Ca濃 度を迅速に低下させ、 Caの除去(回収)効率を高めためには、 Ca回収槽を大型化し て溶融塩 7と溶融 Mg— Ca合金 8の接触面積を大きくすることが望ま 、。  [0112] As described above, the limiting current decreases as the Ca concentration of the molten salt decreases. Therefore, in order to rapidly decrease the Ca concentration and increase the Ca removal (recovery) efficiency, a Ca recovery tank must be installed. It is desirable to increase the contact area between molten salt 7 and molten Mg—Ca alloy 8 by increasing the size.
[0113] 本発明の Tほたは Ti合金の製造方法では、『印加する電圧を 3. 2V未満(つまり、 CaClの分解電圧よりも低い電圧)』として Caを除去することにより、印加電圧を具体 [0113] In the method for producing T or Ti alloy of the present invention, the applied voltage is reduced by removing Ca by setting the applied voltage to less than 3.2 V (that is, a voltage lower than the decomposition voltage of CaCl). Concrete
2 2
的な数値で管理し、 CaClを分解させることなぐ溶融塩側の電極棒と溶融合金側の  Controlled by the numerical values, the electrode rod on the molten salt side and the molten alloy side without decomposing CaCl
2  2
電極棒の間に電位差を与えて Caを溶融合金へ速やかに吸収させることができる。印 加電圧は僅かであっても Caの除去効果があるので、その下限は限定しない。しかし 、効果的に Caを除去するためには、印加電圧を 0. 01V以上とすることが望ましい。  By applying a potential difference between the electrode rods, Ca can be rapidly absorbed into the molten alloy. Even if the applied voltage is small, there is an effect of removing Ca, so the lower limit is not limited. However, in order to effectively remove Ca, it is desirable that the applied voltage be 0.01 V or higher.
[0114] Ca回収工程で Ca濃度が低下した溶融塩は「電解工程」へ送られ、電気分解されて Caが生成され、溶融塩の Ca濃度が高められる。  [0114] The molten salt whose Ca concentration has decreased in the Ca recovery process is sent to the “electrolysis process” where it is electrolyzed to produce Ca, and the Ca concentration of the molten salt is increased.
[0115] すなわち、図 4に示すように、先ず、溶融塩を電解槽 3の陰極 12と隔膜 17の間に投 入し、保持する。電解槽 3は一方向に長い形状(図示した例では、垂直方向に細長 V、配管(円筒)形状)を有して 、るので、溶融塩を電解槽 3の一端から陽極 11と陰極 12の間に連続的または断続的に供給することにより、陰極 12表面近傍の溶融塩に 一方向の流速を与え、溶融塩を陰極 12表面近傍で一方向に流すことが可能となる。 溶融塩の供給は、通常は連続的に行うが、後工程等との関係で、断続的に、つまり 溶融塩の供給を一次停止したり、再度続けたりしてもよい。  That is, as shown in FIG. 4, first, molten salt is introduced between the cathode 12 and the diaphragm 17 of the electrolytic cell 3 and held. Since the electrolytic cell 3 has a shape that is long in one direction (in the example shown in the drawing, it is elongated V in the vertical direction and a pipe (cylindrical) shape), the molten salt is fed from one end of the electrolytic cell 3 to the anode 11 and the cathode 12. By supplying continuously or intermittently, a flow rate in one direction is given to the molten salt near the surface of the cathode 12, and the molten salt can flow in one direction near the surface of the cathode 12. Although the supply of the molten salt is normally performed continuously, the supply of the molten salt may be interrupted intermittently, that is, the supply of the molten salt may be temporarily stopped or continued again.
[0116] 続いて、溶融塩を電気分解する。溶融塩を陰極 12表面近傍で一方向に流しつつ 電気分解して陰極表面で Caを生成させるのであるが、電解槽 3は一方向に長 、形 状を有しており、さら〖こ、図 4に示した例では、電解電圧を低く抑えるために陽極 11と 陰極 12間の距離を比較的狭くしているので、 Ca濃度が低い溶融塩供給口 14付近 の溶融塩と電解により Ca濃度が高まった溶融塩抜き出し口 16付近の溶融塩との混 合を防止して、 Caが濃化した溶融塩のみを効果的に抜き出すことができる。 [0116] Subsequently, the molten salt is electrolyzed. While the molten salt flows in one direction near the surface of the cathode 12 and electrolyzes to produce Ca on the cathode surface, the electrolytic cell 3 is long and shaped in one direction. In the example shown in Fig. 4, the distance between the anode 11 and the cathode 12 is relatively narrow in order to keep the electrolysis voltage low, so the Ca concentration is reduced by the molten salt and electrolysis near the molten salt supply port 14 where the Ca concentration is low. Increased molten salt outlet Mixing with molten salt near 16 Only molten salt enriched with Ca can be effectively extracted.
[0117] なお、図 4に例示した電解槽では、 CaClを電解槽 3の下方カも槽 3内に供給し、上 [0117] In the electrolytic cell illustrated in Fig. 4, CaCl is also supplied to the lower cell of the electrolytic cell 3 into the
2  2
方力も抜き出す方式を採っているが、逆に、電解槽 3の上方力も供給し、下方から抜 き出す方式を採用することも可能である。  The method of extracting the direction force is also used, but conversely, it is also possible to supply the upper force of the electrolytic cell 3 and extract from the lower side.
[0118] この方法で用いる電解槽では、陽極表面および陰極表面が対向して略垂直方向 に配置されており、一方、陰極表面近傍の溶融塩には一方向の流速が与えられてい るので、その溶融塩の流れ方向は縦方向であり、陽極側で発生する塩素ガスは容易 に浮上するので回収しやす 、。  [0118] In the electrolytic cell used in this method, the anode surface and the cathode surface face each other in a substantially vertical direction, while the molten salt near the cathode surface is given a unidirectional flow velocity. The flow direction of the molten salt is the vertical direction, and the chlorine gas generated on the anode side floats easily and is easy to recover.
[0119] この電解槽を用いて溶融塩の電気分解を実施するに際しては、大量の溶融塩を連 続して処理するので、電解槽では抜熱を効果的に行うことが望ましい。具体的には、 例えば、陰極の中心部に冷却器を設置して、反応熱を陰極内部力 抜熱することが 望ましい。冷却器としては、例えばチューブ状の熱交^^が好適である。  [0119] When electrolysis of molten salt is carried out using this electrolytic cell, a large amount of molten salt is continuously processed, so it is desirable to effectively remove heat in the electrolytic cell. Specifically, for example, it is desirable to install a cooler at the center of the cathode to extract reaction heat from the cathode. As the cooler, for example, a tube-shaped heat exchanger is suitable.
[0120] 陽極側にも冷却器 (熱交翻)を設置すると抜熱効率はさらに高くなる。前記図 4に 示した電解槽において、陽極 11を取り巻くように設置した冷却器 18はこの例である。  [0120] If a cooler (heat exchanger) is also installed on the anode side, the heat removal efficiency is further increased. In the electrolytic cell shown in FIG. 4, the cooler 18 installed so as to surround the anode 11 is this example.
[0121] 電解工程で電気分解により生成された Caは、単独または溶融塩と共に「戻し工程」 を経て前記反応容器内へ導入される。  [0121] Ca produced by electrolysis in the electrolysis step is introduced into the reaction vessel alone or together with the molten salt through a "returning step".
[0122] 図 4に示した装置を用いる場合は、電解槽で Ca濃度が高められた溶融塩が得られ るので、 Caは溶融塩と共に戻し工程を経て反応容器内へ導入される。  [0122] When the apparatus shown in Fig. 4 is used, a molten salt with an increased Ca concentration is obtained in the electrolytic cell, so Ca is introduced into the reaction vessel through a returning step together with the molten salt.
しかし、溶融塩を電気分解して生成させる Caをそのまま、つまり、 Ca単独で (ただし 、 Caに極僅かの溶融塩が混在した状態を含む)回収することができる構成を備えた 電解槽を用いれば、本発明の Tほたは Ti合金の製造方法において、電気分解により 生成された Caを溶融塩に溶解させて反応容器内へ導入する実施形態を採ることが 可能である。  However, an electrolytic cell equipped with a structure that can recover Ca generated by electrolyzing the molten salt as it is, that is, Ca alone (including a state where a very small amount of molten salt is mixed in Ca) is used. For example, in the method for producing a T alloy or Ti alloy of the present invention, it is possible to adopt an embodiment in which Ca produced by electrolysis is dissolved in a molten salt and introduced into a reaction vessel.
[0123] すなわち、戻し工程で、 Caの移送媒体として溶融塩を利用せずに、生成させた Ca をそのまま反応容器の近傍まで移送し、そこで別に準備した溶融塩に溶解させ、反 応容器内へ導入する方式で、移送に要するコストの低減が期待できる。  [0123] That is, in the returning step, the generated Ca is transferred as it is to the vicinity of the reaction vessel without using the molten salt as a Ca transfer medium, and is dissolved in the separately prepared molten salt in the reaction vessel. This system can be expected to reduce the cost required for transportation.
[0124] さらに、生成させた Caをそのまま反応容器内に投入して TiClと反応させることが可  [0124] Furthermore, the produced Ca can be put into the reaction vessel as it is and reacted with TiCl.
4  Four
能な反応容器を使用すれば、 Caを単独で反応容器内へ導入する実施形態を採用 することも可會である。 If an efficient reaction vessel is used, the embodiment that introduces Ca alone into the reaction vessel is adopted. It is also possible to do.
[0125] 図 5は、本発明の Ca回収工程を含む Tほたは Ti合金の製造方法を実施する際に 用いられる装置の他の概略構成例を示す図である。  [0125] Fig. 5 is a diagram showing another schematic configuration example of an apparatus used when carrying out the manufacturing method of T or Ti alloy including the Ca recovery step of the present invention.
この装置は、前記図 4に示した装置において、さらに、電解槽 3内の溶融塩を導入 して Ca供給源と接触させることにより該溶融塩の Ca濃度を一定とした後、その溶融 塩を前記反応容器 1へ投入するための調整槽 25が設けられている装置である。  In this apparatus shown in FIG. 4, the molten salt in the electrolytic cell 3 is further introduced and brought into contact with a Ca supply source to make the Ca concentration of the molten salt constant, and then the molten salt is added. This is an apparatus provided with an adjusting tank 25 for charging into the reaction vessel 1.
[0126] 図 5に示す製造方法は、本発明の Tほたは Ti合金の製造方法において、『電解ェ 程で Ca濃度を高めた溶融塩を、 Ca供給源を有する調整槽に導入して溶融塩を Ca 供給源に接触させることにより溶融塩の Ca濃度を一定とした後、還元工程へ送る』方 法である。  [0126] The production method shown in FIG. 5 is the same as the production method of the T or Ti alloy of the present invention, in which "a molten salt whose Ca concentration has been increased in the electrolytic process is introduced into a regulating tank having a Ca supply source. The molten salt is brought into contact with the Ca supply source to make the Ca concentration of the molten salt constant, and then sent to the reduction process.
[0127] 前記図 5に示した装置を使用すれば、電解槽 3から抜き出された Caが濃化した溶 融塩を調整槽 25に導入して Ca供給源 26と接触させることにより該溶融塩 27の Ca濃 度を一定とした後、反応容器 1内へ投入することができる。すなわち、戻し工程に調 整槽 25での処理を組み込んだ方法である。  If the apparatus shown in FIG. 5 is used, the molten salt enriched with Ca extracted from the electrolytic cell 3 is introduced into the adjustment tank 25 and brought into contact with the Ca supply source 26 to thereby melt the molten salt. After making Ca concentration of salt 27 constant, it can be charged into reaction vessel 1. In other words, this is a method in which the treatment in the adjustment tank 25 is incorporated in the return process.
[0128] 電解工程で Caが濃化された溶融塩の Ca濃度は、電解槽 3での電解条件の若干の 変動に伴い変動する。そのため、電解槽 3で電解処理を施した溶融塩を直接反応容 器 1に投入すると、 Ca濃度が必ずしも常時一定には維持されないので、前述したよう に、低級塩ィ匕チタンの生成、ノ ックリアクションによる電流効率の低下などが生じるこ とがあり、また、 TiClの還元反応の効率を低下させ、安定した操業ができに《なる  [0128] The Ca concentration of the molten salt in which Ca is concentrated in the electrolysis process varies with slight variations in the electrolysis conditions in the electrolytic cell 3. Therefore, when the molten salt that has been subjected to electrolytic treatment in the electrolytic cell 3 is directly charged into the reaction vessel 1, the Ca concentration is not always maintained constant. The current efficiency may decrease due to the cryoaction, and the efficiency of the reduction reaction of TiCl may be reduced to enable stable operation.
4  Four
場合がある。  There is a case.
[0129] そこで、前記電解工程で電解槽 3を用いて Ca濃度を高めた溶融塩を、 Ca供給源 2 6を有する調整槽 25に導入して該 Ca供給源 26に接触させることにより前記溶融塩の Ca濃度を一定とした後、還元工程で TiClの還元に用いることができる。  [0129] Therefore, the molten salt having an increased Ca concentration using the electrolytic cell 3 in the electrolysis step is introduced into the adjustment tank 25 having a Ca supply source 26 and brought into contact with the Ca supply source 26, thereby causing the melting. After making the Ca concentration of the salt constant, it can be used to reduce TiCl in the reduction step.
4  Four
[0130] なお、分離槽 20で Ti粒から分離された付着溶融塩は、流量が電解槽 3から調整槽 25を経て反応容器 1へ導入される溶融塩の流量と比較して極僅かであるため、前述 したように、直接反応容器 1内へ戻してもよい。しかし、図 3に示すように、ー且調整槽 25に導入して Ca濃度を一定にした後に反応容器 1へ導入するのが望ましい。  [0130] The amount of the molten salt separated from the Ti particles in the separation tank 20 is very small compared to the flow rate of the molten salt introduced from the electrolytic tank 3 to the reaction vessel 1 via the adjustment tank 25. Therefore, as described above, the reaction vessel 1 may be returned directly. However, as shown in FIG. 3, it is desirable to introduce it into the reaction vessel 1 after introducing it into the adjusting tank 25 to make the Ca concentration constant.
[0131] Ca供給源 26としては、溶融金属 Caや、溶融 Mg— Ca合金のような Caを比較的高 い含有率で含む溶融合金を使用することができる。 [0131] As the Ca supply source 26, molten metal Ca or Ca such as molten Mg-Ca alloy is relatively high. A molten alloy containing a high content can be used.
すなわち、前記の Ca濃度が高められ、調整槽 25に導入された溶融塩 27の上に溶 融金属 Caまたは溶融 Mg— Ca合金等を浮遊させ、これら Ca供給源 26と溶融塩 27と を接触させておく。これにより、溶融塩 27の Ca濃度がその飽和溶解度未満であれば 、 Ca供給源 26から Caが溶融塩 27へ供給されて、 Ca濃度を飽和溶解度近傍の濃度 に維持することができる。  That is, the Ca concentration is increased and molten metal Ca or molten Mg—Ca alloy or the like is suspended on the molten salt 27 introduced into the adjustment tank 25, and the Ca supply source 26 and the molten salt 27 are brought into contact with each other. Let me. Thus, if the Ca concentration of the molten salt 27 is less than its saturation solubility, Ca can be supplied from the Ca supply source 26 to the molten salt 27, and the Ca concentration can be maintained at a concentration close to the saturation solubility.
[0132] また、溶融塩 27の Ca濃度がその飽和溶解度であって、析出した金属 Caも混在し ている場合は、調整槽 25内で比重差により金属 Caが浮上分離し、 Ca濃度を飽和溶 解度近傍の濃度に保つことができる。さらに、調整槽 25から抜き出す際の溶融塩 27 の温度を一定に制御すれば、 Ca濃度をその温度における飽和溶解度近傍の一定 濃度に制御することが可能となる。  [0132] In addition, when the Ca concentration of the molten salt 27 is the saturation solubility and the precipitated metallic Ca is also mixed, the metallic Ca floats and separates in the adjustment tank 25 due to the specific gravity difference, and the Ca concentration is saturated. The concentration can be kept near the solubility. Furthermore, if the temperature of the molten salt 27 when it is extracted from the adjustment tank 25 is controlled to be constant, the Ca concentration can be controlled to a constant concentration in the vicinity of the saturation solubility at that temperature.
[0133] したがって、電解槽 3で Caが濃化した溶融塩の Ca濃度が飽和溶解度である力、そ れ未満である力を問わず、調整槽 25を設置してそれに電解槽 3から抜き出された溶 融塩を導入することにより、 Ca濃度をその飽和溶解度近傍の一定濃度とした溶融塩 を反応容器 1に投入し、 TiClの  [0133] Therefore, regardless of the strength at which the Ca concentration of the molten salt in which Ca is concentrated in the electrolytic cell 3 is the saturation solubility or less, the adjustment tank 25 is installed and extracted from the electrolytic cell 3. By introducing the molten salt thus prepared, molten salt having a Ca concentration of a constant concentration in the vicinity of its saturation solubility is charged into the reaction vessel 1, and TiCl
4 還元反応を効率よく行わせ、安定した操業をすること ができる。  4 The reduction reaction can be performed efficiently and stable operation is possible.
[0134] ただし、電解槽 3で Ca濃度が飽和溶解度を超えるまで電解すると、電解槽 3の内部 で金属 Caが析出し、電解槽の閉塞などのトラブルの原因となるおそれがある。したが つて、電解槽 3で Ca濃度を高める際には、飽和溶解度を超えず、その直前まで Ca濃 度を高めるように制御しつつ電解し、 Caが高濃度ではあるが飽和溶解度未満の溶融 塩を調整槽 25に導入して Ca供給源 26に接触させ、 Ca濃度を飽和溶解度近傍の一 定濃度とするような操業を行うことが望まし 、。  [0134] However, if electrolysis is performed in the electrolytic cell 3 until the Ca concentration exceeds the saturation solubility, metallic Ca is deposited inside the electrolytic cell 3, which may cause troubles such as blockage of the electrolytic cell. Therefore, when increasing the Ca concentration in the electrolytic cell 3, the electrolysis was performed while controlling the Ca concentration to be increased until just before that, so that the melting of Ca was high but less than the saturation solubility. It is desirable to perform an operation in which salt is introduced into the adjustment tank 25 and brought into contact with the Ca supply source 26 so that the Ca concentration becomes a constant concentration in the vicinity of the saturation solubility.
[0135] 本発明の製造方法は、前記図 5に示す調整槽の Ca供給源を規定し、『Ca回収ェ 程で Caを吸収して Ca濃度が高められた溶融合金を、調整槽の Ca供給源またはその 一部として用いる』方法とするのが望ま 、。  [0135] The production method of the present invention defines the Ca supply source of the adjustment tank shown in Fig. 5 and states that "a molten alloy in which the Ca concentration is increased by absorbing Ca in the Ca recovery process is added to the Ca of the adjustment tank. Use as a source or part of it ”method.
[0136] すなわち、前記図 5に示すように、 Ca回収工程(Ca回収手段 5)で Caを吸収して Ca 濃度が高められた溶融合金 8を、調整槽 25へ移送し、 Ca供給源 26として用いる。前 記 Ca供給源 26の全部を Ca回収工程カゝら移送した溶融合金としてもょ ヽし、量的に 少ない場合は、 Ca供給源 26の一部に用いてもよい。いずれにしても、高温デカンタ 一 19で分離され、電解工程へ送られる溶融塩から、ノックリアクションを抑制するた めに除去した Caを有効に利用することができる。 That is, as shown in FIG. 5, the molten alloy 8 in which the Ca concentration is increased by absorbing Ca in the Ca recovery step (Ca recovery means 5) is transferred to the adjustment tank 25, and the Ca supply source 26 Used as The entire Ca supply source 26 is treated as a molten alloy transferred from the Ca recovery process and is quantitatively used. If less, it may be used as part of the Ca source 26. In any case, Ca removed from the molten salt separated by the high-temperature decanter 19 and sent to the electrolysis process to suppress knock reaction can be used effectively.
[0137] 本発明の Tほたは Ti合金の製造装置は、前述した Ca回収工程を含む Tほたは Ti 合金の製造方法を実施する際に用いられる装置であり、その概略の構成は前記図 4 に示したものである。各部の作用も前述の通りであり、この装置を用いれば、本発明 の Tほたは Ti合金の製造方法 (実施形態 laを含む)を好適に実施することができる。  [0137] The apparatus for producing the T or Ti alloy of the present invention is an apparatus used in carrying out the method for producing the T or Ti alloy including the Ca recovery step described above, and the schematic configuration thereof is as described above. This is shown in Figure 4. The operation of each part is also as described above. If this apparatus is used, the method for producing T or Ti alloy of the present invention (including the embodiment la) can be suitably implemented.
[0138] 3. Ca除去濃縮工程を含む Tほたは Ti合金の製造方法およびその装置  [0138] 3. A method and apparatus for producing a T alloy or Ti alloy including a Ca removal and concentration step
図 6は、本発明の Ca除去濃縮工程を含む Tほたは Ti合金の製造方法を実施する 際に用いられる装置の概略構成を示す図である。ここでも、原料として TiClのみを  FIG. 6 is a diagram showing a schematic configuration of an apparatus used for carrying out the method for producing a T or Ti alloy including the Ca removal concentration process of the present invention. Again, only TiCl as raw material
4 用いた場合について説明する。  4 Explain the case of using it.
[0139] この装置は、前記図 4に示した装置において、 Ca回収手段に替えて Ca除去濃縮 装置を設置し、それに伴!、溶融塩の移送経路を変更した装置である。 [0139] This apparatus is an apparatus in which a Ca removal and concentration apparatus is installed in place of the Ca recovery means in the apparatus shown in Fig. 4 and the transfer route of the molten salt is changed accordingly.
すなわち、図 6に示すように、 CaClを含み且つ Caが溶解した溶融塩を保持し、前  That is, as shown in FIG. 6, the molten salt containing CaCl and dissolving Ca is retained.
2  2
記溶融塩中に供給される TiClを前記 Caと反応させて Ti粒を生成させるための反応  Reaction to produce Ti grains by reacting TiCl supplied in molten salt with Ca
4  Four
容器 1と、前記溶融塩中に生成された Ti粒を溶融塩力 分離するための分離手段 2 と、前記 Ti粒が分離された後の溶融塩を電気分解して陰極側に Caを生成させるため の電解槽 3と、電気分解により生成された Caを前記反応容器 1内へ導入する戻し手 段 4と、分離手段 (高温デカンター)で分離され前記電解槽 3へ送られる溶融塩中に 溶解して!/、る Caを除去すると同時に、分離手段 (分離槽)で分離され前記反応容器 1へ導入される溶融塩中に溶解して ヽる Caを高濃度化するための Ca除去濃縮装置 28と、を有して ヽる。  A container 1; separation means 2 for separating molten salt force of Ti particles formed in the molten salt; and electrolysis of the molten salt after the Ti particles are separated to generate Ca on the cathode side The electrolytic cell 3 for the electrolysis, the return means 4 for introducing Ca generated by the electrolysis into the reaction vessel 1, and the molten salt separated by the separating means (high temperature decanter) and sent to the electrolytic cell 3 ! /, Ca removal and concentration device for increasing the concentration of Ca dissolved in the molten salt separated in the separation means (separation tank) and introduced into the reaction vessel 1 at the same time as removing Ca And 28.
[0140] 前記の Ca除去濃縮装置 28はその要部を示したもので、 Ca除去濃縮槽 28aを有し 、この槽 28a内には、溶融 CaClが隔壁 31により Ca濃縮領域 29と Ca除去領域 30に  [0140] The Ca removing and concentrating device 28 is shown in its main part, and has a Ca removing and concentrating tank 28a. In this tank 28a, molten CaCl is separated by a partition wall 31 into a Ca concentrating region 29 and a Ca removing region. To 30
2  2
隔てられた状態で保持され、その上に、 Ca濃縮領域 29および Ca除去領域 30に保 持された溶融塩と接触した状態で溶融 Mg— Ca合金 8が保持されている。  The molten Mg—Ca alloy 8 is held in contact with the molten salt held in the Ca concentration region 29 and the Ca removal region 30.
[0141] さらに、前記 Ca除去領域 30の底部には、 CaClの分解電圧未満の電圧を印加す [0141] Furthermore, a voltage lower than the decomposition voltage of CaCl is applied to the bottom of the Ca removal region 30.
2  2
るための電極板 33が Ca濃縮領域 29内の溶融塩側の電極板 34に対して +極となる ように設けられている。なお、図示した例では、 Ca濃縮領域 29と Ca除去領域 30が隔 壁 31により隔てられている力 構成は必ずしもこれに限定されない。例えば、個々に 取り外し可能な別々の槽により両領域を隔てることとしてもよい。 Electrode plate 33 for forming a positive electrode with respect to electrode plate 34 on the molten salt side in Ca-concentrated region 29 It is provided as follows. In the illustrated example, the force configuration in which the Ca concentration region 29 and the Ca removal region 30 are separated by the partition wall 31 is not necessarily limited to this. For example, the two regions may be separated by separate tanks that can be individually removed.
[0142] 図 6に示した装置を使用して前記(2)に記載の Tほたは Ti合金の製造方法を実施 するに際し、「還元工程」、「分離工程」、「電解工程」および「戻し工程」における操作 は、基本的には前記図 4に示した装置を使用する場合と同じである。原料として TiCl を含む金属塩ィ匕物を用いれば、最終的には Ti合金を製造することができることに関[0142] In carrying out the method for producing the T or Ti alloy described in (2) above using the apparatus shown in Fig. 6, the "reduction process", "separation process", "electrolysis process" and " The operation in the “returning step” is basically the same as the case of using the apparatus shown in FIG. If a metal salt containing TiCl is used as a raw material, it will ultimately be possible to produce a Ti alloy.
4 Four
しても同様である。  Even so, it is the same.
[0143] 前記図 4に示した装置を使用する場合と異なるのは、分離工程で Ti粒力 分離され た溶融塩の移送先と、そこでの処理である。すなわち、前記高温デカンター 19で分 離された Ca濃度の低下した溶融塩は、図 4に示すように、経路 Laを経て Ca除去濃 縮装置 28に設けられて 、る Ca除去濃縮槽 28aの Ca除去領域 30へ送られ、一方、 分離槽 22で Ti粒カゝら分離された付着溶融塩は、経路 Lbを経て Ca除去濃縮槽 28a の Ca濃縮領域 29へ送られる。  [0143] What is different from the case of using the apparatus shown in Fig. 4 is the destination of the molten salt separated by Ti grain force in the separation step and the treatment there. That is, as shown in FIG. 4, the molten salt having a reduced Ca concentration separated by the high temperature decanter 19 is provided in the Ca removal / concentration device 28 via the route La as shown in FIG. On the other hand, the adhering molten salt separated from the Ti particles in the separation tank 22 is sent to the Ca concentration area 29 of the Ca removal concentration tank 28a via the path Lb.
[0144] ここでは、前記 Ca除去領域 30内の溶融塩側に設けられた電極板 33が Ca濃縮領 域 29内の溶融塩側に設けられた電極板 34に対して +極となるように、電極板 33お よび電極板 34を介して CaClの分解電圧未満の電圧を印加する。  [0144] Here, the electrode plate 33 provided on the molten salt side in the Ca removal region 30 is a positive electrode with respect to the electrode plate 34 provided on the molten salt side in the Ca concentration region 29. Then, a voltage lower than the decomposition voltage of CaCl is applied through the electrode plate 33 and the electrode plate 34.
2  2
[0145] この電圧の印加により、 Ca除去領域 30内の溶融塩との接触部近傍に存在する溶 融 Mg— Ca合金 32は Ca除去領域 30内の溶融塩側(+極側)に対して相対的には —極として機能するので、溶解している Caは、図 6の Ca除去濃縮槽 28a内に矢印を 付して示したように、溶融 Mg— Ca合金 32側へ移行し、吸収される。その結果、 Ca除 去領域 30内の溶解 Caが除去され、 Mg— Ca合金 32の Ca濃度が高くなる。  [0145] By applying this voltage, the molten Mg-Ca alloy 32 present in the vicinity of the contact portion with the molten salt in the Ca removal region 30 moves toward the molten salt side (+ pole side) in the Ca removal region 30. Since it functions as a pole, the dissolved Ca moves to the molten Mg—Ca alloy 32 side and is absorbed as shown by the arrow in the Ca removal and concentration tank 28a in Fig. 6. Is done. As a result, dissolved Ca in the Ca removal region 30 is removed, and the Ca concentration of the Mg—Ca alloy 32 increases.
[0146] 一方、 Ca濃縮領域 29内の溶融塩との接触部近傍の溶融 Mg— Ca合金 32は Ca濃 縮領域 29内の溶融塩側(—極側)に対して相対的には +極として機能する。したが つて、溶融 Mg— Ca合金 32の Caは Ca濃縮領域 29内の溶融塩側へ移行し、 Ca濃縮 領域 29内の Ca濃度が高くなる。  [0146] On the other hand, the molten Mg—Ca alloy 32 in the vicinity of the contact portion with the molten salt in the Ca-concentrated region 29 has a positive polarity relative to the molten salt side (the negative electrode side) in the Ca-concentrated region 29. Function as. Therefore, Ca in the molten Mg—Ca alloy 32 moves to the molten salt side in the Ca enriched region 29, and the Ca concentration in the Ca enriched region 29 increases.
[0147] このように、 Ca除去濃縮槽 28a内の電極板 33に CaClの分解電圧未満の電圧を  [0147] In this way, a voltage lower than the decomposition voltage of CaCl is applied to the electrode plate 33 in the Ca removal concentration tank 28a.
2  2
印加することによって、 Ca除去領域 30内の溶解 Caを除去すると同時に、 Ca濃縮領 域 29内の溶解 Caの濃度を高めることができる。し力も、図 6に示した要部構成を有す る Ca除去濃縮装置 28を用いれば、この同時処理を、形状、構成のいずれに関しても 極めて簡素な装置を用いて容易に実施することができる。 By applying this, the dissolved Ca in the Ca removal region 30 is removed, and at the same time, The concentration of dissolved Ca in area 29 can be increased. However, if the Ca removing and concentrating device 28 having the main configuration shown in FIG. 6 is used, this simultaneous processing can be easily carried out using a very simple device in both shape and configuration. .
[0148] 前記印加する電圧を CaClの分解電圧未満とするのは、 CaClの分解による Caの [0148] The voltage to be applied is less than the decomposition voltage of CaCl.
2 2  twenty two
生成を回避するためである。  This is to avoid generation.
前記の電圧を印加するための電極としては、前述した Ca回収槽 6 (前記図 4、図 5 に示す)に取り付ける電極棒の場合と同様に、 極は鉄等の金属、 +極は黒鉛電極 等の不溶性電極を用いるのがよ!/、。  As the electrode for applying the voltage, the electrode is a metal such as iron as in the case of the electrode rod attached to the Ca recovery tank 6 (shown in FIGS. 4 and 5), and the + electrode is a graphite electrode. Use an insoluble electrode such as! /.
[0149] Ca除去濃縮装置 28では、このようにして Caの除去と濃縮処理が行われ、 Ca除去 領域 30内の溶融塩に溶解している Caは除去され、 Ca濃縮領域 29内の溶融塩の Ca 濃度が上昇する。 [0149] In the Ca removal concentration device 28, the Ca removal and concentration treatment is performed in this way, and the Ca dissolved in the molten salt in the Ca removal region 30 is removed, and the molten salt in the Ca concentration region 29 is removed. Ca concentration increases.
[0150] なお、経路 Laと経路 Lbの間に設けられている経路 Lcは、 Ca除去領域 30内の溶融 塩と Ca濃縮領域 29内の溶融塩の量的バランスをとるための経路である。すなわち、 高温デカンター 19で分離された溶融塩の量は分離槽 22で分離された付着溶融塩 の量に比べて圧倒的に多いので、経路 Laと経路 Lbによるのみでは Ca除去領域 30 内の溶融塩量と Ca濃縮領域 29内の溶融塩量のバランスがとれず、 Ca除去濃縮装 置 28で Caの除去および濃縮処理を連続的に行うことができない。そのため、高温デ カンター 19で分離された溶融塩の一部を経路 Lcを通して Ca濃縮領域 29へ送り、前 記処理を連続的に行うのである。  [0150] The path Lc provided between the path La and the path Lb is a path for achieving a quantitative balance between the molten salt in the Ca removal region 30 and the molten salt in the Ca concentration region 29. In other words, the amount of molten salt separated by the high-temperature decanter 19 is overwhelmingly larger than the amount of adhered molten salt separated by the separation tank 22, so that the melting in the Ca removal region 30 can be achieved only by the route La and the route Lb. The balance between the amount of salt and the amount of molten salt in the Ca concentration region 29 cannot be achieved, and the Ca removal and concentration device 28 cannot continuously remove and concentrate Ca. Therefore, a part of the molten salt separated by the high temperature decanter 19 is sent to the Ca concentration region 29 through the path Lc, and the above treatment is continuously performed.
[0151] Ca除去濃縮装置 28で Caが除去された溶融塩は「電解工程」へ送られるが、 Caが 除去されているので、溶融塩中の Caと電気分解により生成した塩素が反応するいわ ゆるバックリアクションが抑制され、電気分解による Caの生成を効率よく行わせること ができる。  [0151] The molten salt from which Ca has been removed by the Ca removing and concentrating device 28 is sent to the “electrolysis process”, but since Ca has been removed, it is said that Ca in the molten salt reacts with chlorine generated by electrolysis. Slow back reaction is suppressed, and Ca can be efficiently generated by electrolysis.
[0152] また、 Ca濃縮領域 29内の溶融塩は還元工程へ戻されるが、付着溶融塩に残存し ている Caは高濃度化され、 Ca濃度が高められているので、 TiClの還元反応の効率  [0152] Although the molten salt in the Ca concentration region 29 is returned to the reduction process, the Ca remaining in the adhered molten salt is increased in concentration and the Ca concentration is increased. Efficiency
4  Four
アップに有効である。  It is effective for up.
[0153] 電解工程で電気分解により生成された Caは、単独または溶融塩と共に「戻し工程」 を経て前記反応容器内へ導入される。 [0154] 本発明の Tほたは Ti合金の製造方法では、 Ca除去濃縮装置 28において、『印加 する電圧を 3. 2V未満(つまり、 CaClの分解電圧よりも低い電圧)』として Ca除去領 [0153] Ca produced by electrolysis in the electrolysis step is introduced into the reaction vessel alone or together with the molten salt through a "returning step". [0154] In the method for producing the T or Ti alloy of the present invention, the Ca removal concentration apparatus 28 sets the applied voltage to be less than 3.2 V (that is, a voltage lower than the decomposition voltage of CaCl).
2  2
域 30内の溶解 Caを除去すると同時に、 Ca濃縮領域 29内の溶解 Caの濃度を高める のが望ましい。このとき、印加電圧の下限は限定しないが、効果的に Caを除去するた めには、印加電圧を 0. 01V以上とすることが望ましい。  It is desirable to increase the concentration of dissolved Ca in the Ca enriched region 29 at the same time as the dissolved Ca in the region 30 is removed. At this time, the lower limit of the applied voltage is not limited, but it is desirable that the applied voltage be 0.01 V or higher in order to effectively remove Ca.
[0155] 図 7は、本発明の Ca除去濃縮工程を含む Tほたは Ti合金の製造方法を実施する 際に用いられる装置の他の概略構成例を示す図である。  [0155] Fig. 7 is a diagram showing another schematic configuration example of an apparatus used when carrying out the manufacturing method of T or Ti alloy including the Ca removal and concentration step of the present invention.
この装置は、前記図 6に示した装置において、さらに、電解槽 3内の溶融塩を導入 して Ca供給源と接触させることにより該溶融塩の Ca濃度を一定とした後、その溶融 塩を前記反応容器 1へ投入するための調整槽 25が設けられている装置である。  In this apparatus shown in FIG. 6, the molten salt in the electrolytic cell 3 is further introduced and brought into contact with a Ca supply source to make the Ca concentration of the molten salt constant, and then the molten salt is added. This is an apparatus provided with an adjusting tank 25 for charging into the reaction vessel 1.
[0156] 本発明の Tほたは Ti合金の製造方法は、『電解工程で Ca濃度を高めた溶融塩を、 Ca供給源を有する調整槽に導入して溶融塩を Ca供給源に接触させることにより溶 融塩の Ca濃度を一定とした後、還元工程へ送る』方法とするのが望ま 、。  [0156] The method for producing the T or Ti alloy of the present invention is as follows: "Introduce a molten salt whose Ca concentration has been increased in the electrolysis step into an adjustment tank having a Ca supply source, and bring the molten salt into contact with the Ca supply source. It is desirable to use a method in which the Ca concentration of the molten salt is made constant and then sent to the reduction process.
[0157] 本発明の Tほたは Ti合金の製造装置は、前述した Ca除去濃縮工程を含む Tほた は Ti合金の製造方法を実施する際に用いられる装置であり、その概略の構成、各部 の作用は前記図 6に示したとおりである。この装置を用いれば、本発明の Ca除去濃 縮工程を含む Tほたは Ti合金の製造方法を好適に実施することができる。  [0157] The apparatus for producing T or Ti alloy of the present invention is an apparatus used for carrying out the method for producing T or Ti alloy including the Ca removal and concentration step described above, and has a schematic configuration, The operation of each part is as shown in FIG. If this apparatus is used, the method for producing a T alloy or Ti alloy including the Ca removal concentration process of the present invention can be suitably carried out.
[0158] 以上説明した「2. Ca回収工程を含む Tほたは Ti合金の製造方法」および「3. Ca 除去濃縮工程を含む Tほたは Ti合金の製造方法」を実施するに際し、塩化工程を付 加し、生成される TiClを原料として反応容器内での Tiの生成反応に使用する実施  [0158] In carrying out the above-described "2. Method for producing T alloy including Ca recovery step" and "3. Method for producing T alloy including Ca removal and concentration step", chloride was applied. The process is added and the TiCl produced is used as a raw material for the Ti production reaction in the reaction vessel.
4  Four
形態を採ることができる。  Can take form.
[0159] すなわち、前述した電解工程では、溶融塩の電気分解に伴って陽極側に塩素 (C1 [0159] That is, in the electrolysis process described above, chlorine (C1
2 2
)が副生するが、この C1は酸ィ匕チタン (TiO )と反応して TiClを生成するので、 Tほ ), But this C1 reacts with titanium oxide (TiO) to produce TiCl.
2 2 4  2 2 4
たは Ti合金の製造において、溶融塩の電気分解に伴って陽極側に生成する C1をチ  In the manufacture of Ti alloys, C1 generated on the anode side as the molten salt is electrolyzed
2 タン鉱石に反応させて TiClを生成させ、蒸留精製後、この TiClを原料として使用  2 React with tan ore to produce TiCl, use this TiCl as a raw material after distillation purification
4 4  4 4
する。  To do.
[0160] Ti合金を製造する場合には、前記塩化工程で、 TiOと、 Tiに合金成分として加え  [0160] When manufacturing a Ti alloy, in the chlorination step, TiO and Ti are added as alloy components.
2  2
ようとする金属の酸化物との混合物に前記陽極側に生成する C1を反応させて TiCl を含む金属塩化物を生成させ、これを原料として用いればょ 、。 C1 generated on the anode side is reacted with a mixture of metal oxides to be reacted with TiCl If you produce a metal chloride containing, and use it as a raw material.
[0161] このような実施形態を採用すれば、溶融塩の電気分解に伴って副生する C1を有効  [0161] If such an embodiment is adopted, C1 produced as a by-product with the electrolysis of the molten salt is effectively used.
2 に利用し、製造プロセスにおいて、 C1の循環使用が可能である。  It is possible to recycle C1 in the manufacturing process.
2  2
産業上の利用の可能性  Industrial applicability
[0162] 本発明の溶融塩中メタルフォグ形成金属の除去および高濃度化方法によれば、メ タルフォグ形成金属含有溶融塩を含む溶融塩に溶解しているメタルフォグ形成金属 を除去して他方の溶融塩中へ移行させ、その濃度を高めることができる。この方法は 、本発明の装置により容易に且つ好適に実施することができる。  [0162] According to the method for removing and increasing the concentration of metal fog-forming metal in the molten salt of the present invention, the metal fog-forming metal dissolved in the molten salt containing the metal fog-forming metal-containing molten salt is removed, and the other It can be transferred into molten salt to increase its concentration. This method can be easily and suitably performed by the apparatus of the present invention.
[0163] したがって、溶融塩中メタルフォグ形成金属の除去および高濃度化方法およびそ の装置は、 Ca、 Na等のメタルフォグ形成金属含有溶融塩を取り扱う鉱工業の諸分野 において、溶融塩の処理手段の一つとして利用することが期待できる。特に、 Ca還 元による Tiの製造において有効に利用することができる。  [0163] Accordingly, a method and apparatus for removing and increasing the concentration of metal fog-forming metal in molten salt and a device for treating the molten salt in various fields of the mining industry that handle metal fog-forming metal-containing molten salts such as Ca and Na. It can be expected to be used as one of these. In particular, it can be used effectively in the production of Ti by Ca reduction.
[0164] 本発明の Tiまたは Ti合金の製造方法によれば、電解槽へ送られる溶融塩中に溶 解して 、る Caを速やかに除去(回収)し、溶融塩の電気分解時における Ca生成の高 効率ィ匕を図ることができる。また、 Caを除去(回収)すると同時に反応容器へ送られる 溶融塩の Ca濃度を高め、前記 Ca生成の高効率ィ匕に加え、 TiClの還元反応の効率  [0164] According to the method for producing Ti or Ti alloy of the present invention, it dissolves in the molten salt sent to the electrolytic cell, and quickly removes (recovers) the Ca, so that the Ca at the time of electrolysis of the molten salt is obtained. Highly efficient generation can be achieved. At the same time as removing (recovering) Ca, the Ca concentration in the molten salt sent to the reaction vessel is increased, and in addition to the high efficiency of Ca generation, the efficiency of the TiCl reduction reaction
4  Four
化に寄与することができ、調整槽を用いれば、反応容器に投入する溶融塩の Ca濃 度の変動を抑制し、高濃度に維持することができる。さらに、電解工程において大量 の CaCl含有溶融塩を連続処理して、反応容器への Caの供給速度を増大させること If the adjustment tank is used, fluctuations in the Ca concentration of the molten salt charged into the reaction vessel can be suppressed and maintained at a high concentration. Furthermore, a large amount of CaCl-containing molten salt is continuously processed in the electrolysis process to increase the Ca supply rate to the reaction vessel.
2 2
ができ、これにより、溶融塩の電気分解時における Ca生成、 TiClの還元を効率よく  This enables efficient Ca generation and reduction of TiCl during the electrolysis of molten salt.
4  Four
行わせ、工業的規模での安定した操業が可能となる。  This allows stable operation on an industrial scale.
[0165] したがって、本発明の Tほたは Ti合金の製造方法、およびこの方法を容易に且つ 好適に実施することができる本発明の製造装置は、 Ca還元による Tほたは Ti合金の 製造に有効に利用することができる。  [0165] Therefore, the method for producing the T and Ti alloy of the present invention and the production apparatus of the present invention that can easily and suitably carry out this method can produce the T and Ti alloy by Ca reduction. Can be used effectively.

Claims

請求の範囲 The scope of the claims
[1] メタルフォグ形成金属除去濃縮槽のメタルフォグ形成金属濃縮領域およびこの領 域と隔てられたメタルフォグ形成金属除去領域に、メタルフォグ形成金属含有溶融塩 を含み且つ前記メタルフォグ形成金属が溶解した溶融塩を保持するとともに、これら 両領域に保持された溶融塩と接触させてメタルフォグ形成金属を含有する溶融合金 を保持し、前記メタルフォグ形成金属除去領域内の溶融塩側の電極板力 Sメタルフォ グ形成金属濃縮領域内の溶融塩側に対して +極となるように前記メタルフォグ形成 金属含有溶融塩の分解電圧未満の電圧を印加し、メタルフォグ形成金属除去領域 内の溶融塩中に溶解して ヽるメタルフォグ形成金属を前記溶融合金に吸収させてそ の濃度を低下させると同時に、メタルフォグ形成金属濃縮領域内の溶融塩中に溶解 しているメタルフォグ形成金属を高濃度化することを特徴とする溶融塩中メタルフォグ 形成金属の除去および高濃度化方法。  [1] The metal fog forming metal concentration region of the metal fog forming metal removal and concentration tank and the metal fog forming metal removal region separated from the region include the metal fog forming metal-containing molten salt and the metal fog forming metal is dissolved. The molten salt containing the metal fog forming metal is held in contact with the molten salt held in both regions, and the electrode plate force on the molten salt side in the metal fog forming metal removal region is held. Apply a voltage that is less than the decomposition voltage of the molten metal-containing molten salt so that it is positive with respect to the molten salt side in the S-metal fog forming metal concentration region, and in the molten salt in the metal fog formed metal removal region The metal fog forming metal dissolved in the metal is absorbed by the molten alloy to reduce its concentration, and at the same time, the molten metal in the metal fog forming metal concentration region is melted. Removal and enrichment method for a metal-fog forming metal in the molten salt, characterized by a high concentration of a metal-fog forming metal dissolved in the.
[2] 前記メタルフォグ形成金属が Caであり、前記メタルフォグ形成金属含有溶融塩が C a含有溶融塩であることを特徴とする請求項 1に記載の溶融塩中メタルフォグ形成金 属の除去および高濃度化方法。  [2] The removal of the metal fog forming metal in the molten salt according to claim 1, wherein the metal fog forming metal is Ca and the metal fog forming metal-containing molten salt is a Ca-containing molten salt. And high concentration method.
[3] 前記メタルフォグ形成金属が Caであり、メタルフォグ形成金属含有溶融塩力CaCl  [3] The metal fog-forming metal is Ca, and the metal fog-forming metal-containing molten salt strength CaCl
2 であることを特徴とする請求項 1または 2に記載の溶融塩中メタルフォグ形成金属の 除去および高濃度化方法。  The method for removing and increasing the concentration of a metal fog-forming metal in a molten salt according to claim 1 or 2, wherein the concentration is 2.
[4] 印加する電圧が 3. 2V未満であることを特徴とする請求項 3に記載の溶融塩中メタ ルフォグ形成金属の除去および高濃度化方法。 [4] The method for removing and increasing the concentration of metal fog-forming metal in the molten salt according to claim 3, wherein the applied voltage is less than 3.2V.
[5] CaClを含み且つ Caが溶解した溶融塩を反応容器内に保持し、その溶融塩中の [5] Hold the molten salt containing CaCl and dissolved in the reaction vessel,
2  2
Caに TiClを含む金属塩化物を反応させて前記溶融塩中に Ti粒または Ti合金粒を  By reacting a metal chloride containing TiCl with Ca, Ti particles or Ti alloy particles are formed in the molten salt.
4  Four
生成させる還元工程と、前記反応容器内または反応容器外で前記 Ti粒または Ti合 金粒を溶融塩から分離する分離工程と、前記反応容器外へ抜き出された溶融塩を 電気分解して Caを生成させることにより、溶融塩の Ca濃度を高める電解工程と、前 記電気分解により生成された Caを単独または溶融塩と共に前記反応容器内へ導入 する戻し工程と、前記分離工程で分離され前記電解工程へ送られる溶融塩を、 Caと Mgを含む溶融合金に接触させつつ、溶融合金側の電極棒が 極、溶融塩側の電 極棒が +極となるよう〖こ CaClの分解電圧未満の電圧を印加することにより溶融塩中 A reduction step for generating, a separation step for separating the Ti particles or Ti alloy particles from the molten salt in the reaction vessel or outside the reaction vessel, and electrolysis of the molten salt drawn out of the reaction vessel To generate Ca in the molten salt to increase the Ca concentration of the molten salt, to return the Ca generated by the electrolysis alone or together with the molten salt into the reaction vessel, and to be separated in the separation step and While the molten salt sent to the electrolysis process is in contact with the molten alloy containing Ca and Mg, the electrode rod on the molten alloy side is the electrode on the molten salt side. In order to make the pole a positive pole, apply a voltage lower than the decomposition voltage of CaCl in the molten salt.
2  2
に溶解して ヽる Caを溶融合金に吸収させ、 Ca濃度が低下した溶融塩を電解工程へ 送る Ca回収工程を含むことを特徴とする Tほたは Ti合金の製造方法。  A method for producing a T alloy or Ti alloy, characterized by including a Ca recovery step in which the molten alloy is absorbed by the molten alloy and the molten salt having a reduced Ca concentration is sent to the electrolysis step.
[6] CaClを含み且つ Caが溶解した溶融塩を反応容器内に保持し、その溶融塩中の [6] Hold the molten salt containing CaCl and dissolved in the reaction vessel,
2  2
Caに TiClを含む金属塩化物を反応させて前記溶融塩中に Ti粒または Ti合金粒を  By reacting a metal chloride containing TiCl with Ca, Ti particles or Ti alloy particles are formed in the molten salt.
4  Four
生成させる還元工程と、前記反応容器内または反応容器外で前記 Ti粒または Ti合 金粒を溶融塩から分離する分離工程と、前記反応容器外へ抜き出された溶融塩を 電気分解して Caを生成させることにより、溶融塩の Ca濃度を高める電解工程と、前 記電気分解により生成された Caを単独または溶融塩と共に前記反応容器内へ導入 する戻し工程と、前記分離工程で分離され前記電解工程へ送られる溶融塩を保持 する Ca除去領域内の溶融塩側の電極板が、この領域と隔てられ、前記還元工程へ 送られる溶融塩を保持する Ca濃縮領域内の溶融塩側の電極板に対して +極となる ように CaClの分解電圧未満の電圧を印加することにより、 Caの濃度が低下した Ca  A reduction step for generating, a separation step for separating the Ti particles or Ti alloy particles from the molten salt in the reaction vessel or outside the reaction vessel, and electrolysis of the molten salt drawn out of the reaction vessel To generate Ca in the molten salt to increase the Ca concentration of the molten salt, to return the Ca generated by the electrolysis alone or together with the molten salt into the reaction vessel, and to be separated in the separation step and The molten salt side electrode plate in the Ca removal region that holds the molten salt sent to the electrolysis process is separated from this region, and the molten salt side electrode in the Ca concentration region that holds the molten salt sent to the reduction step By applying a voltage less than the decomposition voltage of CaCl so that it becomes a positive electrode to the plate, the Ca concentration decreased.
2  2
除去領域内の溶融塩を電解工程へ送り、 Caが高濃度化された Ca濃縮領域内の溶 融塩を還元工程へ送る Ca除去濃縮工程を含むことを特徴とする Tほたは Ti合金の 製造方法。  It includes a Ca removal and concentration step that sends the molten salt in the removal region to the electrolysis process and sends the molten salt in the Ca concentration region where the Ca concentration is increased to the reduction step. Production method.
[7] 印加する電圧が 3. 2V未満であることを特徴とする請求項 5または 6に記載の Tほ たは Ti合金の製造方法。  7. The method for producing a T or Ti alloy according to claim 5 or 6, wherein the applied voltage is less than 3.2V.
[8] 前記電解工程で Ca濃度を高めた溶融塩を、 Ca供給源を有する調整槽に導入して 溶融塩を Ca供給源に接触させることにより溶融塩の Ca濃度を一定とした後、還元ェ 程へ送ることを特徴とする請求項 5〜7のいずれかに記載の Tiまたは Ti合金の製造 方法。 [8] The molten salt whose Ca concentration has been increased in the electrolysis step is introduced into an adjustment tank having a Ca supply source, and the molten salt is brought into contact with the Ca supply source to make the Ca concentration of the molten salt constant, followed by reduction. The method for producing Ti or a Ti alloy according to any one of claims 5 to 7, wherein the method is sent to the process.
[9] 前記 Ca回収工程で Caを吸収して Ca濃度が高められた前記溶融合金を、 Ca供給 源を備え、前記電解槽内の溶融塩を導入して Ca供給源と接触させることにより該溶 融塩の Ca濃度を一定とした後、その溶融塩を前記反応容器へ投入するための調整 槽の Ca供給源またはその一部として用いることを特徴とする請求項 5に記載の Tiま たは Ti合金の製造方法。  [9] The molten alloy whose Ca concentration has been increased by absorbing Ca in the Ca recovery step is provided with a Ca supply source, and the molten salt in the electrolytic cell is introduced and brought into contact with the Ca supply source. 6. The Ti or the Ti according to claim 5, wherein the molten salt is used as a Ca supply source or a part thereof in an adjustment tank for introducing the molten salt into the reaction vessel after the Ca concentration of the molten salt is made constant. Is a manufacturing method of Ti alloy.
[10] メタルフォグ形成金属含有溶融塩を含み、且つこれに溶解している該メタルフォグ 形成金属が高濃度化された溶融塩を保持するメタルフォグ形成金属濃縮領域と、前 記メタルフォグ形成金属濃縮領域と隔てられ、メタルフォグ形成金属濃縮領域内の溶 融塩側に対して +極となるように、電極板を介して前記メタルフォグ形成金属含有溶 融塩の分解電圧未満の電圧が印加され、溶解して!/、る前記メタルフォグ形成金属の 濃度が低下したメタルフォグ形成金属含有溶融塩を保持するメタルフォグ形成金属 除去領域と、メタルフォグ形成金属濃縮領域およびメタルフォグ形成金属除去領域 に保持された溶融塩と接触して溶融メタルフォグ形成金属含有合金を保持する溶融 合金保持領域を備えるメタルフォグ形成金属除去濃縮槽を有することを特徴とする 溶融塩中メタルフォグ形成金属の除去および濃縮装置。 [10] Metal fog forming metal fog containing and containing a metal-containing molten salt The metal fog forming metal concentration region holding the molten salt with a high concentration of forming metal and the metal fog forming metal concentration region are separated from the molten salt side in the metal fog forming metal concentration region. As a result, a voltage lower than the decomposition voltage of the molten salt containing the metal fog forming metal is applied via the electrode plate, and the metal fog forming metal is reduced in concentration by being dissolved! Metal Fog Forming Metal Removal Area that Holds Contained Molten Salt, Molten Alloy Holding that Holds Molten Metal Fog Forming Metal Containing Alloy in Contact with Molten Salt Held in Metal Fog Forming Metal Concentration Area and Metal Fog Forming Metal Removal Area An apparatus for removing and concentrating metal fog-forming metal in molten salt, comprising a metal fog-forming metal removing and concentration tank having a region.
[11] 前記メタルフォグ形成金属が Caであり、前記メタルフォグ形成金属含有溶融塩が C a含有溶融塩であることを特徴とする請求項 10に記載の溶融塩中メタルフォグ形成 金属の除去および濃縮装置。  [11] The removal of the metal fog-forming metal in the molten salt according to claim 10, wherein the metal fog-forming metal is Ca and the metal fog-forming metal-containing molten salt is a Ca-containing molten salt. Concentrator.
[12] 前記メタルフォグ形成金属が Caであり、前記メタルフォグ形成金属含有溶融塩が C aClであることを特徴とする請求項 10または 11に記載の溶融塩中メタルフォグ形成 12. The metal fog formation in the molten salt according to claim 10 or 11, wherein the metal fog forming metal is Ca and the metal fog forming metal-containing molten salt is CaCl.
2 2
金属の除去および濃縮装置。  Metal removal and concentration equipment.
[13] CaClを含み且つ Caが溶解した溶融塩を保持し、前記溶融塩中に供給される TiC  [13] TiC containing CaCl and containing a molten salt in which Ca is dissolved and supplied to the molten salt
2  2
1を含む金属塩ィ匕物を前記 Caと反応させて Ti粒または Ti合金粒を生成させるための To react Ti with metal salt containing 1 to produce Ti grains or Ti alloy grains
4 Four
反応容器と、前記溶融塩中に生成された Ti粒または Ti合金粒を溶融塩から分離す るための分離手段と、前記 Ti粒または Ti合金粒が分離された後の溶融塩を保持し、 陽極と陰極を備え、該溶融塩中で電気分解を行って陰極側に Caを生成させるため の電解槽と、前記電気分解により生成された Caを単独または溶融塩と共に前記反応 容器内へ導入する戻し手段と、前記分離手段で分離され前記電解槽へ送られる溶 融塩を、 Caと Mgを含む溶融合金に接触させつつ、溶融合金側の電極棒が 極、溶 融塩側の電極棒が +極となるように CaClの分解電圧未満の電圧を印加して溶融塩  Holding a reaction vessel, separation means for separating Ti particles or Ti alloy particles generated in the molten salt from the molten salt, and the molten salt after the Ti particles or Ti alloy particles are separated; An electrolytic cell comprising an anode and a cathode, for electrolysis in the molten salt to generate Ca on the cathode side, and Ca generated by the electrolysis introduced alone or together with the molten salt into the reaction vessel While the molten salt separated by the return means and sent to the electrolytic cell is brought into contact with the molten alloy containing Ca and Mg, the electrode rod on the molten alloy side is the electrode, and the electrode rod on the molten salt side is Apply a voltage less than the decomposition voltage of CaCl
2  2
中に溶解して ヽる Caを溶融合金に吸収させ、 Ca濃度が低下した溶融塩を電解槽へ 送る Ca回収手段とを有することを特徴とする Tほたは Ti合金の製造装置。  An apparatus for producing a T alloy or Ti alloy, characterized in that it has a Ca recovery means that absorbs Ca dissolved in the molten alloy into the molten alloy and sends molten salt with reduced Ca concentration to the electrolytic cell.
[14] CaClを含み且つ Caが溶解した溶融塩を保持し、前記溶融塩中に供給される TiC [14] TiC containing CaCl and containing molten salt in which Ca is dissolved and supplied to the molten salt
2  2
1を含む金属塩ィ匕物を前記 Caと反応させて Ti粒または Ti合金粒を生成させるための 反応容器と、前記溶融塩中に生成された Ti粒または Ti合金粒を溶融塩から分離す るための分離手段と、前記 Ti粒または Ti合金粒が分離された後の溶融塩を保持し、 陽極と陰極を備え、該溶融塩中で電気分解を行って陰極側に Caを生成させるため の電解槽と、前記電気分解により生成された Caを単独または溶融塩と共に前記反応 容器内へ導入する戻し手段と、前記分離工程で分離され前記電解工程へ送られる 溶融塩を保持する Ca除去領域と、この領域と隔てられ、前記還元工程へ送られる溶 融塩を保持する Ca濃縮領域を有し、 Ca濃縮領域内の溶融塩側の電極板に対して C a除去領域内の溶融塩側の電極板が +極となるように CaClの分解電圧未満の電圧 To react Ti with metal salt containing 1 to produce Ti grains or Ti alloy grains Holding a reaction vessel, separation means for separating Ti particles or Ti alloy particles generated in the molten salt from the molten salt, and the molten salt after the Ti particles or Ti alloy particles are separated; An electrolytic cell comprising an anode and a cathode, for electrolysis in the molten salt to generate Ca on the cathode side, and Ca generated by the electrolysis introduced alone or together with the molten salt into the reaction vessel A return means, a Ca removal region that holds the molten salt separated in the separation step and sent to the electrolysis step, and a Ca concentration region that holds the molten salt that is separated from this region and sent to the reduction step. A voltage lower than the decomposition voltage of CaCl so that the molten salt side electrode plate in the Ca removal region becomes a positive pole with respect to the molten salt side electrode plate in the Ca concentration region
2  2
を印加することにより Caの濃度が低下した Ca除去領域内の溶融塩を電解工程へ送 り、 Caが高濃度化された Ca濃縮領域内の溶融塩を還元工程へ送る Ca除去濃縮装 置を有することを特徴とする Tほたは Ti合金の製造装置。  The Ca removal concentration device that sends the molten salt in the Ca removal region where the Ca concentration is reduced to the electrolysis process, and sends the molten salt in the Ca concentration region where the Ca concentration is increased to the reduction step. It has a T-fired Ti alloy production equipment.
[15] さらに、 Ca供給源を備え、前記電解槽内の溶融塩を導入して Ca供給源と接触させ ることにより該溶融塩の Ca濃度を一定とした後、その溶融塩を前記反応容器へ投入 するための調整槽を有することを特徴とする請求項 13または 14に記載の Tiまたは Ti 合金の製造装置。 [15] Further, a Ca supply source is provided, and after the molten salt in the electrolytic cell is introduced and brought into contact with the Ca supply source, the Ca concentration of the molten salt is made constant, and then the molten salt is added to the reaction vessel. 15. The Ti or Ti alloy manufacturing apparatus according to claim 13 or 14, further comprising an adjustment tank for charging into the tank.
[16] さらに、 Ca供給源を備え、前記電解槽内の溶融塩を導入して Ca供給源と接触させ ることにより該溶融塩の Ca濃度を一定とした後、その溶融塩を前記反応容器へ投入 するための調整槽を有し、前記調整槽の Ca供給源またはその一部として、前記 Ca 回収手段で Ca濃度が高められた前記溶融合金が用いられることを特徴とする請求 項 13に記載の Tほたは Ti合金の製造装置。  [16] Furthermore, a Ca supply source is provided, and after the molten salt in the electrolytic cell is introduced and brought into contact with the Ca supply source, the Ca concentration of the molten salt is made constant, and then the molten salt is added to the reaction vessel. The molten alloy having a Ca concentration increased by the Ca recovery means is used as a Ca supply source or a part of the Ca supply source of the adjustment tank. The T firefly described is a Ti alloy manufacturing equipment.
PCT/JP2007/054633 2006-03-10 2007-03-09 METHOD OF REMOVING/CONCENTRATING METAL-FOG-FORMING METAL PRESENT IN MOLTEN SALT, APPARATUS THEREFOR, AND PROCESS AND APPARATUS FOR PRODUCING Ti OR Ti ALLOY WITH THESE WO2007105616A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2007225815A AU2007225815A1 (en) 2006-03-10 2007-03-09 Method of removing/concentrating metal-fog-forming metal present in molten salt, apparatus therefor, and process and apparatus for producing Ti or Ti alloy by use of them
CA002645103A CA2645103A1 (en) 2006-03-10 2007-03-09 Method of removing/concentrating metal-fog-forming metal present in molten salt, apparatus therefor, and process and apparatus for producing ti or ti alloy by use of them
EP07738118A EP1995353A1 (en) 2006-03-10 2007-03-09 METHOD OF REMOVING/CONCENTRATING METAL-FOG-FORMING METAL PRESENT IN MOLTEN SALT, APPARATUS THEREFOR, AND PROCESS AND APPARATUS FOR PRODUCING Ti OR Ti ALLOY BY USE OF THEM
US12/224,843 US20090114546A1 (en) 2006-03-10 2007-03-09 Method for Removing/Concentrating Metal-Fog-Forming Metal Present in Molten Salt, Apparatus Thereof, and Process and Apparatus for Producing Ti or Ti Alloy by use of them
EA200870343A EA200870343A1 (en) 2006-03-10 2007-03-09 METHOD OF REMOVAL / CONCENTRATION OF METAL FORMING METAL MIST IN A SALT MELAY, A DEVICE FOR ITS IMPLEMENTATION, AND A PROCESS AND DEVICE FOR THE PRODUCTION OF Ti OR Ti-GO ALLOY WITH THEIR APPLICATION
NO20083515A NO20083515L (en) 2006-03-10 2008-08-13 Process for removing / concentrating metal roofing metal present in salt melt, apparatus therefor, and process and apparatus for preparing Ti alloy using thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-066132 2006-03-10
JP2006066132A JP2007239073A (en) 2006-03-10 2006-03-10 Method for removing and concentrating metal-fog-forming metal in molten salt, and apparatus therefor
JP2006-065838 2006-03-10
JP2006065838A JP4510769B2 (en) 2006-03-10 2006-03-10 Manufacturing method and apparatus for Ti or Ti alloy

Publications (1)

Publication Number Publication Date
WO2007105616A1 true WO2007105616A1 (en) 2007-09-20

Family

ID=38509439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054633 WO2007105616A1 (en) 2006-03-10 2007-03-09 METHOD OF REMOVING/CONCENTRATING METAL-FOG-FORMING METAL PRESENT IN MOLTEN SALT, APPARATUS THEREFOR, AND PROCESS AND APPARATUS FOR PRODUCING Ti OR Ti ALLOY WITH THESE

Country Status (7)

Country Link
US (1) US20090114546A1 (en)
EP (1) EP1995353A1 (en)
AU (1) AU2007225815A1 (en)
CA (1) CA2645103A1 (en)
EA (1) EA200870343A1 (en)
NO (1) NO20083515L (en)
WO (1) WO2007105616A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063750A1 (en) * 2007-11-12 2009-05-22 Osaka Titanium Technologies Co., Ltd. Method and apparatus for concentrating ti powder in molten material
RU2504591C2 (en) * 2011-08-12 2014-01-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования Уральский федеральный университет им. первого Президента России Б.Н. Ельцина ELECTROLYSIS UNIT FOR SATURATION OF CaCl2 MELT WITH CALCIUM

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084847A (en) * 2005-09-20 2007-04-05 Sumitomo Titanium Corp METHOD AND DEVICE FOR PRODUCING Ti
CN113430578B (en) * 2021-07-15 2022-10-04 浙江睿曦绿业新材料科技有限公司 Sodium and lithium removing device and method for aluminum electrolysis electrolyte

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2205854A (en) 1937-07-10 1940-06-25 Kroll Wilhelm Method for manufacturing titanium and alloys thereof
US2845386A (en) 1954-03-16 1958-07-29 Du Pont Production of metals
US4820339A (en) 1985-05-17 1989-04-11 Cerex Production of metal powders by reduction of metal salts in fused bath
JP2005133195A (en) 2003-10-10 2005-05-26 Sumitomo Titanium Corp METHOD OF PRODUCING Ti OR Ti ALLOY THROUGH CIRCULATION OF Ca SOURCE
JP2005133196A (en) 2003-10-10 2005-05-26 Sumitomo Titanium Corp METHOD OF PRODUCING Ti OR Ti ALLOY THROUGH CIRCULATION OF MOLTEN SALT

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2835567A (en) * 1954-11-22 1958-05-20 Du Pont Method of producing granular refractory metal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2205854A (en) 1937-07-10 1940-06-25 Kroll Wilhelm Method for manufacturing titanium and alloys thereof
US2845386A (en) 1954-03-16 1958-07-29 Du Pont Production of metals
US4820339A (en) 1985-05-17 1989-04-11 Cerex Production of metal powders by reduction of metal salts in fused bath
JP2005133195A (en) 2003-10-10 2005-05-26 Sumitomo Titanium Corp METHOD OF PRODUCING Ti OR Ti ALLOY THROUGH CIRCULATION OF Ca SOURCE
JP2005133196A (en) 2003-10-10 2005-05-26 Sumitomo Titanium Corp METHOD OF PRODUCING Ti OR Ti ALLOY THROUGH CIRCULATION OF MOLTEN SALT

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063750A1 (en) * 2007-11-12 2009-05-22 Osaka Titanium Technologies Co., Ltd. Method and apparatus for concentrating ti powder in molten material
JP2009120865A (en) * 2007-11-12 2009-06-04 Osaka Titanium Technologies Co Ltd Method and apparatus for enriching titanium powder in molten material
RU2504591C2 (en) * 2011-08-12 2014-01-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования Уральский федеральный университет им. первого Президента России Б.Н. Ельцина ELECTROLYSIS UNIT FOR SATURATION OF CaCl2 MELT WITH CALCIUM

Also Published As

Publication number Publication date
US20090114546A1 (en) 2009-05-07
AU2007225815A1 (en) 2007-09-20
EA200870343A1 (en) 2009-02-27
EP1995353A1 (en) 2008-11-26
CA2645103A1 (en) 2007-09-20
NO20083515L (en) 2008-10-06

Similar Documents

Publication Publication Date Title
WO2005080642A1 (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY BY REDUCTION OF Ca
WO2005080643A1 (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY BY Ca REDUCTION
WO2007026565A1 (en) METHOD FOR ELECTROLYSIS OF MOLTEN SALT, ELECTROLYTIC CELL, AND PROCESS FOR PRODUCING Ti USING SAID METHOD
JP4510769B2 (en) Manufacturing method and apparatus for Ti or Ti alloy
WO2007105616A1 (en) METHOD OF REMOVING/CONCENTRATING METAL-FOG-FORMING METAL PRESENT IN MOLTEN SALT, APPARATUS THEREFOR, AND PROCESS AND APPARATUS FOR PRODUCING Ti OR Ti ALLOY WITH THESE
WO2007034645A1 (en) PROCESS FOR PRODUCING Ti AND APPARATUS THEREFOR
US2864749A (en) Process for the production of titanium metal
JP4347089B2 (en) Method for producing Ti or Ti alloy by Ca reduction
CN104480498B (en) Molten-salt electrolysis cathode deposition separation method and separation equipment
JP2004052003A (en) Method and apparatus for producing niobium powder or tantalum powder
JP2008088513A (en) METHOD FOR MANUFACTURING Ti PARTICLE OR Ti-ALLOY PARTICLE, AND METHOD AND EQUIPMENT FOR MANUFACTURING METAL Ti OR Ti ALLOY
CN106702438A (en) Method for treating molten salt electrolysis cathode deposits through pyrogenic process
US2831802A (en) Production of subdivided metals
JP2006124813A (en) METHOD AND APPARATUS FOR PRODUCING Ti BY Ca REDUCTION
WO2005035806A1 (en) METHOD FOR PRODUCING Ti OR Ti ALLOY THROUGH REDUCTION BY Ca
JP2007239073A (en) Method for removing and concentrating metal-fog-forming metal in molten salt, and apparatus therefor
JP2008308738A (en) METHOD FOR MANUFACTURING METAL Ti OR Ti ALLOY
JP2009132970A (en) Method for granulating metal particle, and method for separating metal particle in molten salt
JP2006274340A (en) METHOD FOR PRODUCING Ti OR Ti ALLOY
JP2008144280A (en) METHOD FOR MANUFACTURING Ti GRAIN OR Ti-ALLOY GRAIN, AND METHOD AND DEVICE FOR MANUFACTURING METAL Ti OR Ti ALLOY
EP1876248A1 (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY, AND PULL-UP ELECTROLYSIS METHOD APPLICABLE TO SAID PROCESS
Murphy et al. Recovery of Lead from Galena by a Leach Electrolysis Procedure
JP4227113B2 (en) Pull-up electrolysis method
JP2003096588A (en) Method of manufacturing high-purity metal magnesium and method of manufacturing high-purity titanium
JP5533600B2 (en) Exhaust gas treatment equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738118

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007225815

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007738118

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12224843

Country of ref document: US

Ref document number: 2645103

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200780008574.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200870343

Country of ref document: EA