JP6256496B2 - Crystallizer and crystallization method - Google Patents

Crystallizer and crystallization method Download PDF

Info

Publication number
JP6256496B2
JP6256496B2 JP2016041735A JP2016041735A JP6256496B2 JP 6256496 B2 JP6256496 B2 JP 6256496B2 JP 2016041735 A JP2016041735 A JP 2016041735A JP 2016041735 A JP2016041735 A JP 2016041735A JP 6256496 B2 JP6256496 B2 JP 6256496B2
Authority
JP
Japan
Prior art keywords
reaction vessel
fluid
seed material
contained
carrier fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016041735A
Other languages
Japanese (ja)
Other versions
JP2016165720A (en
Inventor
新司 小関
新司 小関
勝 福村
勝 福村
正俊 西出
正俊 西出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2016165720A publication Critical patent/JP2016165720A/en
Application granted granted Critical
Publication of JP6256496B2 publication Critical patent/JP6256496B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、各種流体の中に溶解している含有物質を、晶析により分離・濾過する晶析装置および晶析方法に関する。   The present invention relates to a crystallization apparatus and a crystallization method for separating and filtering a contained material dissolved in various fluids by crystallization.

各種流体の中に溶解している物質を分離・精製する方法のひとつとして、晶析により該物質を分離・濾過する方法がある。一般的に、晶析は、物質が溶解できる濃度を超えたところで溶解しきれずに析出する現象を利用したものであり、圧力・温度等を単独もしくは組み合わせて変化させることで実施する。なお、「晶析」は、本来、溶液から目的の含有物質を結晶化させるときに使用される用語であるが、ここでは流体から含有物質を得る反応を、総称して晶析と呼ぶことにする。   One method for separating and purifying substances dissolved in various fluids is a method for separating and filtering the substances by crystallization. In general, crystallization uses a phenomenon in which a substance cannot be completely dissolved when it exceeds a concentration at which the substance can be dissolved, and is performed by changing pressure, temperature, etc. alone or in combination. Note that “crystallization” is a term originally used when crystallizing a target substance from a solution. Here, the reaction of obtaining a substance from a fluid is generically called crystallization. To do.

晶析が用いられている産業分野としては、化学・石油分野には言うに及ばず、半導体および鉄鋼分野にも多々利用されている。   As an industrial field where crystallization is used, it is used not only in the chemical and petroleum fields but also in the semiconductor and steel fields.

非特許文献1には、液体中に結晶が発生する基本的な原理から、応用装置に至るまで詳細に記述されており、その中ではコハク酸結晶の晶析、KClの結晶成長および溶質の取り込み、KAl(SO4)2・12H2Oの成長等々が装置とともに述べられている。 Non-Patent Document 1 describes in detail from the basic principle that a crystal is generated in a liquid to an applied device, in which succinic acid crystallization, KCl crystal growth and solute uptake are described. The growth of KAl (SO 4 ) 2 · 12H 2 O and the like are described together with the apparatus.

このような晶析装置では、晶析反応が行われる反応容器の内壁に、含有物質の晶析物が堆積するという問題がある。含有物質が壁面で凝集・凝固すると、壁面に付着して留まり、さらにその上に含有物質が堆積し、大きな塊に成長して装置の詰まりを発生させる原因となる。特に含有物質が液相で壁面に接触した後に凝固した場合は、壁面に強固に付着することで、装置の詰まりを招き、頻繁に堆積物を除去するためのメンテナンスが必要となる。   In such a crystallization apparatus, there is a problem that a crystallization product of the contained material is deposited on the inner wall of the reaction vessel in which the crystallization reaction is performed. When the contained material aggregates and solidifies on the wall surface, it stays attached to the wall surface, and further, the contained material accumulates on the wall surface and grows into a large lump, causing clogging of the device. In particular, when the contained material is solidified after contacting the wall surface in the liquid phase, the material adheres firmly to the wall surface, leading to clogging of the device and frequent maintenance for removing deposits.

このような問題に対し、特許文献1では、反応容器の流入口から堆積防止用流体を噴出すると共に、反応容器の側面から温度制御用流体を吹き込むことにより、反応容器の流入口および内壁に含有物質が凝集・凝固する現象を低減させる技術が開示されている。   In order to solve such a problem, in Patent Document 1, the deposition preventing fluid is ejected from the inflow port of the reaction vessel, and the temperature control fluid is blown from the side surface of the reaction vessel, so that it is contained in the inflow port and the inner wall of the reaction vessel. A technique for reducing the phenomenon of aggregation and solidification of a substance is disclosed.

WO2014/020854公報WO2014 / 020854

中井資、晶析工学 ケミカルエンジニアリング・シリーズ9、培風館、6〜51頁Nakai Susumu, Crystallization Engineering Chemical Engineering Series 9, Bafukan, pp. 6-51

しかしながら、特許文献1に開示された装置では、依然として、含有物質が反応容器の壁面に凝集・凝固するという問題がある。含有物質が反応容器の壁面に凝集・凝固しはじめると、含有物質が成長して壁面に大量に付着し、最悪の場合、反応容器内に詰りが発生する。そのため、反応容器内の清掃等を頻繁に行う必要がある。   However, the apparatus disclosed in Patent Document 1 still has a problem that the contained substance aggregates and solidifies on the wall surface of the reaction vessel. When the contained material starts to aggregate and solidify on the wall surface of the reaction vessel, the contained material grows and adheres to the wall surface in a large amount. In the worst case, clogging occurs in the reaction vessel. Therefore, it is necessary to frequently clean the inside of the reaction container.

本発明は、このような問題点に対してなされたものであり、反応容器の壁面への含有物質の凝集・凝固を抑制し、メンテナンス頻度を低減させることができる晶析装置および晶析方法を提供することを目的とする。   The present invention has been made for such a problem, and provides a crystallization apparatus and a crystallization method capable of suppressing aggregation and solidification of contained substances on the wall surface of a reaction vessel and reducing maintenance frequency. The purpose is to provide.

本発明は、上記の目的を達成するために、以下のような特徴を有している。
[1] 反応容器に流体を供給し、反応容器内の温度及び圧力のうち少なくとも1つを変化させて、流体の含有物質を晶析させる晶析装置において、
一端から流体が供給され、他端から流体が排出される円筒状の反応容器と、
反応容器の側面から、種物質となる固体粒子を含んだキャリア流体を反応容器内に供給する種物質供給手段と、を備える晶析装置。
[2] 反応容器の出側に設けられ、反応容器から排出された流体から、晶析した含有物質を回収して、含有物質を回収した後の流体を排出する回収手段をさらに備え、
種物質供給手段は、回収手段から排出された流体の一部を、該種物質となる固体粒子を含んだキャリア流体として反応容器内に供給する[1]に記載の晶析装置。
[3] 種物質供給手段が種物質となる粒径1000μm以下の固体粒子を含んだキャリア流体を反応容器内に供給する[1]又は[2]に記載の晶析装置。
[4] 反応容器に流体を供給し、反応容器内の温度及び圧力のうち少なくとも1つを変化させて、流体の含有物質を晶析させる晶析方法において、
円筒状の反応容器一端から流体を供給し、
反応容器の側面から、種物質となる固体粒子を含んだキャリア流体を反応容器内に供給して、反応容器内の温度及び圧力のうち少なくとも1つを変化させる晶析方法。
[5] 反応容器の他端から排出された流体から、晶析した含有物質を回収し、
含有物質を回収した流体の一部を、該種物質となる固体粒子を含んだキャリア流体として反応容器の側壁から供給する[4]に記載の晶析方法。
[6] 種物質となる粒径1000μm以下の固体粒子を含んだキャリア流体を反応容器内に供給する[4]又は[5]に記載の晶析方法。
[7] 浸珪により珪素鋼板を製造するプロセスにおいて用いられる[4]から[6]までのいずれか一つに記載の晶析方法。
In order to achieve the above object, the present invention has the following features.
[1] In a crystallization apparatus for supplying a fluid to a reaction vessel and changing at least one of temperature and pressure in the reaction vessel to crystallize a substance contained in the fluid.
A cylindrical reaction vessel in which fluid is supplied from one end and fluid is discharged from the other end;
A crystallizer comprising: a seed material supply means for supplying a carrier fluid containing solid particles as a seed material into the reaction container from a side surface of the reaction container.
[2] provided on the outlet side of the reaction vessel, further comprising a recovery means for recovering the crystallized contained material from the fluid discharged from the reaction vessel and discharging the fluid after collecting the contained material;
The seed substance supply unit supplies the part of the fluid discharged from the recovery unit into the reaction vessel as a carrier fluid containing solid particles to be the seed substance, according to [1].
[3] The crystallization apparatus according to [1] or [2], wherein the seed material supply means supplies the carrier fluid containing solid particles having a particle size of 1000 μm or less, which becomes the seed material, into the reaction vessel.
[4] In a crystallization method in which a fluid is supplied to a reaction vessel and at least one of temperature and pressure in the reaction vessel is changed to crystallize a substance contained in the fluid.
Supply fluid from one end of cylindrical reaction vessel,
A crystallization method in which at least one of temperature and pressure in the reaction vessel is changed by supplying a carrier fluid containing solid particles as a seed material into the reaction vessel from the side of the reaction vessel.
[5] From the fluid discharged from the other end of the reaction vessel, the crystallized contained material is recovered,
The crystallization method according to [4], wherein a part of the fluid from which the contained material is recovered is supplied from the side wall of the reaction vessel as a carrier fluid containing solid particles as the seed material.
[6] The crystallization method according to [4] or [5], wherein a carrier fluid containing solid particles having a particle size of 1000 μm or less that serves as a seed material is supplied into the reaction vessel.
[7] The crystallization method according to any one of [4] to [6], which is used in a process for producing a silicon steel sheet by siliconization.

本発明に係る晶析装置および晶析方法によれば、反応容器の側面から、種物質となる固体粒子を含んだキャリア流体を反応容器内に供給することで、含有物質の壁面への凝集・凝固を抑制し、メンテナンス頻度を低減させることができる。   According to the crystallization apparatus and the crystallization method of the present invention, the carrier fluid containing the solid particles as the seed material is supplied into the reaction vessel from the side surface of the reaction vessel, thereby aggregating the contained material on the wall surface. Solidification can be suppressed and maintenance frequency can be reduced.

本発明の実施の形態に係る晶析装置の構成を示す図である。It is a figure which shows the structure of the crystallization apparatus which concerns on embodiment of this invention. 壁面付着量に及ぼす種物質粒子径の影響を示す図である。It is a figure which shows the influence of the seed material particle diameter which acts on the wall surface adhesion amount. 本発明の実施の形態に係る晶析装置の他の構成を示す図である。It is a figure which shows the other structure of the crystallization apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る晶析装置(図1に示される晶析装置)の構成を示す説明図である。It is explanatory drawing which shows the structure of the crystallization apparatus (crystallization apparatus shown by FIG. 1) which concerns on embodiment of this invention.

以下、添付した図面を参照し、本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明の実施の形態1に係る晶析装置1の構成を示す図である。まず、本発明の概要について説明する。晶析装置1は、反応容器2内の温度及び圧力のうち少なくとも1つを変化させて、供給された流体10に含有されている含有物質を晶析させ、その晶析物を回収する装置である。   FIG. 1 is a diagram showing a configuration of a crystallization apparatus 1 according to Embodiment 1 of the present invention. First, an outline of the present invention will be described. The crystallization apparatus 1 is an apparatus for changing the temperature and pressure in the reaction vessel 2 to crystallize the contained material contained in the supplied fluid 10 and recovering the crystallized product. is there.

例えば、このような晶析装置1は、流体10に、環境問題上、外部にそのまま排出できない含有物質が含まれている場合に、流体10から含有物質を回収するために用いられる。   For example, such a crystallization apparatus 1 is used for recovering a contained substance from the fluid 10 when the contained substance cannot be discharged to the outside as it is due to environmental problems.

晶析装置1は、反応容器2内の温度及び圧力のうち少なくとも1つを変化させる、図示されない制御装置および機能を有している。この晶析装置1では、キャリア流体を反応容器2内に供給することで、反応容器2内の温度及び圧力のうち少なくとも1つを変化させて、流体10に含有されている含有物質を晶析させて、含有物質を回収する。   The crystallizer 1 has a control device and a function (not shown) that change at least one of the temperature and pressure in the reaction vessel 2. In the crystallization apparatus 1, the carrier fluid is supplied into the reaction vessel 2, thereby changing at least one of the temperature and pressure in the reaction vessel 2 to crystallize the contained material contained in the fluid 10. To recover the contained material.

最初に、流体10が気体であるとして説明を行う。また、含有物質が、高温では気体であるが、低温(例えば室温)では固体となる物質であり、反応容器2内の温度制御を行う場合を例に説明する。   First, description will be made assuming that the fluid 10 is a gas. Further, the case where the contained substance is a gas at a high temperature but becomes a solid at a low temperature (for example, room temperature) and temperature control in the reaction vessel 2 is performed will be described as an example.

含有物質を含んだ流体10は、反応容器2内に導入される。このとき、流体10は、含有物質と反応しない種類の気体であれば、使用可能である。また、流体10が反応容器2に導入されるときは、含有物質が気体の状態を維持できる程度に十分高温である。   The fluid 10 containing the contained material is introduced into the reaction vessel 2. At this time, if the fluid 10 is a kind of gas that does not react with the contained substance, it can be used. Further, when the fluid 10 is introduced into the reaction vessel 2, the temperature is high enough that the contained substance can maintain a gaseous state.

次に流体10の温度を、高温から温度を下げていく場合、温度が下がるにつれて含有物質が凝縮、凝固し、固体として析出する。凝縮、凝固する温度は物質により異なるが、いずれにせよ、反応容器2内の壁面に固体として析出すると、析出した固体を基点として含有物質が成長していくため、流体10が供給され続けると、壁面には大量の含有物質が付着することになる。   Next, when the temperature of the fluid 10 is decreased from a high temperature, the contained material condenses and solidifies as the temperature decreases, and precipitates as a solid. The temperature at which condensation and solidification vary depending on the substance, but in any case, when the solid substance is deposited on the wall surface in the reaction vessel 2, the contained substance grows based on the precipitated solid. A large amount of contained material adheres to the wall surface.

ここで、反応容器2内の含有物質の壁面付着を防ぐためには、含有物質を含んだ流体10が壁面に接触する前に、含有物質を空中で凝縮および凝固させることが有効である。含有物質が空中で凝縮および凝固すると粉末状となって速やかに落下するため、付着による詰まりを発生させることなく、容易に反応容器2の外へ排出することができる。そこで、本発明では、含有物質を反応容器2内で効率良く凝縮および凝固させるために、含有物質の凝集核となる固体物質である種物質をキャリア流体に混入し、このキャリア流体を、反応容器2の側面から、反応容器2内に供給している。   Here, in order to prevent the contained material in the reaction vessel 2 from adhering to the wall surface, it is effective to condense and solidify the contained material in the air before the fluid 10 containing the contained material contacts the wall surface. When the contained substance condenses and solidifies in the air, it quickly becomes a powder and falls quickly, so that it can be easily discharged out of the reaction vessel 2 without causing clogging due to adhesion. Therefore, in the present invention, in order to efficiently condense and solidify the contained material in the reaction vessel 2, a seed material that is a solid material that becomes an agglomeration nucleus of the contained material is mixed into the carrier fluid, and this carrier fluid is used as the reaction vessel. 2 is fed into the reaction vessel 2 from the side surface.

反応容器2の側面から種物質を含むキャリア流体を供給することで、種物質が反応容器2の側面から中央側に運ばれて、反応容器2内の中央付近で晶析を誘発し、壁面付着前に含有物質を固体として晶析させることが可能となる。   By supplying the carrier fluid containing the seed material from the side surface of the reaction vessel 2, the seed material is transported from the side surface of the reaction vessel 2 to the center side to induce crystallization near the center in the reaction vessel 2, and adhere to the wall surface. It becomes possible to crystallize the contained material as a solid before.

さらに、本発明では、種物質を含むキャリア流体として、流体10から晶析した含有物質が回収された後の流体の一部を、循環させて反応容器2に供給している。含有物質が回収された流体には、回収されずに残った含有物質が含まれているが、この残りの含有物質を種物質として利用することが出来る。 Furthermore, in the present invention, as the carrier fluid containing the seed material, a part of the fluid after the contained material crystallized from the fluid 10 is recovered is circulated and supplied to the reaction vessel 2. The flow bodies containing material was recovered, but contains residual-containing material without being recovered, it is possible to utilize this remaining-containing material as a seed material.

含有物質と異なる物質を種物質として用いると、反応容器2の出側で、含有物質と種物質とをさらに分離する工程が必要となるが、本発明では、反応容器2から排出された流体を循環させてキャリア流体として用い、キャリア流体に含まれる含有物質を種物質として用いることで、上述のような分離工程を増やすことなく、晶析効率を向上させることができる。   When a substance different from the contained substance is used as the seed substance, a step of further separating the contained substance and the seed substance on the exit side of the reaction container 2 is required. In the present invention, the fluid discharged from the reaction container 2 is used as the seed substance. It is possible to improve the crystallization efficiency without increasing the separation step as described above by using the carrier fluid as a carrier fluid by circulating it and using the contained substance contained in the carrier fluid as a seed material.

次に、本発明に係る晶析装置1の各構成について説明する。晶析装置1は、反応容器2と、回収装置3、ガス量制御装置4、とキャリア流体供給管5を有している。   Next, each structure of the crystallization apparatus 1 which concerns on this invention is demonstrated. The crystallizer 1 includes a reaction vessel 2, a recovery device 3, a gas amount control device 4, and a carrier fluid supply pipe 5.

反応容器2は、縦に設置された円筒形状を有している。反応容器2には、一端(上方)から流体10が供給され、他端(下方)から含有物質が晶析した晶析物11と流体10が排出される。反応容器2は、径が一定である円筒部2bと、円筒部2bの上下に設けられた上テーパー部2a、下テーパー部2cを有している。上テーパー部2aは、上方に向かって径が小さくなる。一方、下テーパー部2cは、下方になるにしたがって径が小さくなる。   The reaction vessel 2 has a cylindrical shape installed vertically. The reaction vessel 2 is supplied with the fluid 10 from one end (upper side), and the crystallized product 11 and the fluid 10 from which the contained substance is crystallized are discharged from the other end (lower side). The reaction vessel 2 has a cylindrical portion 2b having a constant diameter, and an upper tapered portion 2a and a lower tapered portion 2c provided above and below the cylindrical portion 2b. The upper tapered portion 2a has a diameter that decreases upward. On the other hand, the diameter of the lower tapered portion 2c decreases as it goes downward.

反応容器2の円筒部2bには、周方向に所定の間隔をおいて、種物質供給手段21が設けられている。種物質供給手段21は、種物質となる固体粒子を含んだキャリア流体を反応容器2内に供給する。種物質供給手段21は、キャリア流体が円筒部2bの内部を旋廻するように、噴き込み角度をつけてキャリア流体を噴射する。このようにキャリア流体を噴出することで、旋廻流を発生させ、流体10を円筒部2b内に留める時間を長くし、晶析反応の反応時間を長くしている。また、種物質供給手段21は、種物質が混入されたキャリア流体を反応容器2の側面から供給することで、種物質を反応容器2の中央付近まで運びこみ、反応容器2の側壁よりも中央の空中で晶析を誘発する。   A seed material supply means 21 is provided in the cylindrical portion 2b of the reaction vessel 2 at a predetermined interval in the circumferential direction. The seed material supply means 21 supplies a carrier fluid containing solid particles as a seed material into the reaction vessel 2. The seed material supply means 21 injects the carrier fluid at an injection angle so that the carrier fluid rotates inside the cylindrical portion 2b. By ejecting the carrier fluid in this manner, a whirling flow is generated, the time for retaining the fluid 10 in the cylindrical portion 2b is lengthened, and the reaction time for the crystallization reaction is lengthened. The seed substance supply means 21 carries the seed substance to the vicinity of the center of the reaction container 2 by supplying a carrier fluid mixed with the seed substance from the side surface of the reaction container 2, so that the seed substance is supplied to the center of the reaction container 2. Induces crystallization in the air.

種物質供給手段21によるキャリア流体の噴き込み角度、噴き込み量、速度は、晶析反応効率の向上、さらには晶析物11の付着・堆積を防止するよう調整する必要がある。しかし、特に噴き込みの角度、速度、量は各々の晶析装置に依存するため、一概にいえるものではなく、晶析装置ごとに決定する必要がある。   The injection angle, injection amount, and speed of the carrier fluid by the seed material supply means 21 need to be adjusted so as to improve the crystallization reaction efficiency and to prevent the crystallization product 11 from adhering or depositing. However, since the injection angle, speed, and amount depend on the respective crystallizers, they cannot be generally specified and must be determined for each crystallizer.

回収装置3は、反応容器2の出側に設けられ、反応容器2から排出された晶析物11を回収するとともに、晶析物11を回収した後の流体を排出する。回収装置3は、例えばスクリューコンベアにより構成される。具体的には、回収装置3は、スクリュー軸31と、スクリュー軸31に沿って取り付けられた螺旋状の板部材32を有している。回収装置3は、スクリュー軸31を回転させることにより、螺旋状の板部材32に沿って、晶析物11を紙面左側から右側に搬送する。回収装置3の一方の端部には、反応容器2に接続される導入口があり、他方の端部には、晶析物11を回収する排出口が設けられている。晶析物11は導入口から回収装置3に導入され、スクリューコンベアで搬送されて排出口から回収される。   The recovery device 3 is provided on the outlet side of the reaction vessel 2 and collects the crystallized product 11 discharged from the reaction vessel 2 and discharges the fluid after recovering the crystallized product 11. The collection device 3 is configured by, for example, a screw conveyor. Specifically, the recovery device 3 includes a screw shaft 31 and a spiral plate member 32 attached along the screw shaft 31. The collection device 3 rotates the screw shaft 31 to convey the crystallized material 11 from the left side to the right side along the spiral plate member 32. One end of the recovery device 3 has an introduction port connected to the reaction vessel 2, and the other end is provided with a discharge port for recovering the crystallized product 11. The crystallized substance 11 is introduced into the recovery device 3 from the introduction port, conveyed by a screw conveyor, and recovered from the discharge port.

ガス量制御装置4には、晶析物11を回収した後の流体が供給されている。ガス量制御装置4は、晶析物11を回収した後の流体の一部を分離して、キャリア流体供給管5を介して種物質供給手段21に供給する。この分離された流体は、キャリア流体として機能する。また、ガス量制御装置4は、キャリア流体の流量を調節する。キャリア流体には、晶析物11として回収しきれなかった含有物質が残っているが、この残りの含有物質が、種物質となる固体粒子として機能する。   The gas amount control device 4 is supplied with the fluid after recovering the crystallized product 11. The gas amount control device 4 separates a part of the fluid after recovering the crystallized substance 11 and supplies it to the seed material supply means 21 via the carrier fluid supply pipe 5. This separated fluid functions as a carrier fluid. In addition, the gas amount control device 4 adjusts the flow rate of the carrier fluid. In the carrier fluid, the contained material that could not be recovered as the crystallized substance 11 remains, but the remaining contained material functions as solid particles serving as a seed material.

排気される流体に含まれている回収しきれなかった含有物質の回収には、フィルタや遠心分離など、通常用いられている手段によって、取り除く。   In order to recover the contained substances contained in the exhausted fluid that could not be recovered, they are removed by a commonly used means such as a filter or centrifugal separation.

なお、図3に示すように、キャリア流体供給管5の途中に、キャリア流体を供給するキャリア流体供給装置6や種物質を供給する種物質供給装置7を必要に応じて別途設置してもよい。   As shown in FIG. 3, a carrier fluid supply device 6 for supplying a carrier fluid and a seed material supply device 7 for supplying a seed material may be separately installed in the middle of the carrier fluid supply pipe 5 as necessary. .

このように、本発明では、反応容器2に、種物質となる固体粒子を含むキャリア流体を反応容器2の側面から供給することで、反応容器2の側面よりも中央での晶析を促し、含有物質の反応容器2の壁面への凝集・凝固を抑制し、メンテナンス頻度を低減させることができる。   As described above, in the present invention, by supplying a carrier fluid containing solid particles as a seed material to the reaction vessel 2 from the side surface of the reaction vessel 2, crystallization is promoted at the center rather than the side surface of the reaction vessel 2, Aggregation and coagulation of the contained substances on the wall surface of the reaction vessel 2 can be suppressed, and the maintenance frequency can be reduced.

また、本発明では、反応容器2から排出された流体の一部を循環させてキャリア流体として用い、キャリア流体に含まれる含有物質を種物質として用いることで、反応容器2の出側にて晶析物11と種物質を分離させる工程を設けることなく、晶析効率を向上させることができる。   Further, in the present invention, a part of the fluid discharged from the reaction vessel 2 is circulated and used as a carrier fluid, and the contained substance contained in the carrier fluid is used as a seed material, so that a crystal is produced on the outlet side of the reaction vessel 2. Crystallization efficiency can be improved without providing a step of separating the precipitate 11 and the seed material.

上記の説明は、反応容器2内の温度を変化させていく場合の例であるが、圧力を変化させる場合も全く同様である。圧力を変化させる場合、反応容器2の入り口側で高圧に、出口側で低圧になるように反応容器2を構成する。圧力が下がると含有物質の流体10に対する溶解度が低くなるので、含有物質が凝縮、凝固するようになる。   The above explanation is an example in the case where the temperature in the reaction vessel 2 is changed, but the same is true when the pressure is changed. When changing the pressure, the reaction vessel 2 is configured to have a high pressure on the inlet side of the reaction vessel 2 and a low pressure on the outlet side. When the pressure is lowered, the solubility of the contained substance in the fluid 10 is lowered, so that the contained substance is condensed and solidified.

温度の変化と圧力の変化を併用してもよい。   A change in temperature and a change in pressure may be used in combination.

また、流体10が含有物質と同一の物質であっても、全く同様に本発明を適用することが出来る。   Moreover, even if the fluid 10 is the same substance as the contained substance, the present invention can be applied in exactly the same manner.

なお、含有物質を含む流体が液体である場合、含有物質を含む流体と同じ流体をキャリア流体として用いることが好ましい。その際に晶析をコントロールする物質等を添加しても良い。たとえば、液体に溶解しないセラミックの微粒子等を種物質として流体に混入させてもよい。液体の場合でも、噴き込み角度、噴き込み量、速度の良好な範囲を、数値解析、実験等を用いて決定していく必要がある。   When the fluid containing the contained substance is a liquid, it is preferable to use the same fluid as the fluid containing the contained substance as the carrier fluid. At that time, a substance for controlling crystallization may be added. For example, ceramic fine particles that do not dissolve in the liquid may be mixed into the fluid as a seed material. Even in the case of a liquid, it is necessary to determine a good range of the injection angle, the injection amount, and the velocity using numerical analysis, experiments, and the like.

種物質の径があまりに大きいと自重により即座に落下するために、キャリア流体に混じって飛散させることができない。安定してキャリア流体と混合飛散する種物質の径の上限は、キャリア流体の流量および流速にもよるが約1000μmである。また、種物質は小径で粒の数が多いほど、拡散して晶析を促す効果が高いため、粒径の下限は設けなくてもよいが、本発明による晶析物の形成状況を考慮すれば、種物質の粒径の下限は、約0.01μmである。尚、キャリア流体に含まれる種物質の粒径の大きさの調節は、キャリア流体を適当なフィルタに通すことにより行うことができる。粒径は、例えばふるい分け法(JIS8801)により求めることができる。   If the diameter of the seed material is too large, it will drop immediately due to its own weight, so it cannot be scattered in the carrier fluid. The upper limit of the diameter of the seed material that is stably mixed and scattered with the carrier fluid is about 1000 μm although it depends on the flow rate and flow velocity of the carrier fluid. In addition, since the seed material has a smaller diameter and a larger number of grains, the effect of diffusing and promoting crystallization is higher. Therefore, there is no need to set a lower limit of the grain size, but the formation state of the crystallized product according to the present invention is considered. For example, the lower limit of the particle size of the seed material is about 0.01 μm. The adjustment of the particle size of the seed material contained in the carrier fluid can be performed by passing the carrier fluid through an appropriate filter. The particle size can be determined, for example, by a sieving method (JIS8801).

本発明に係る晶析装置および晶析方法は、浸珪により珪素鋼板を製造するプロセス(例えば、連続浸珪ライン)に用いることが特に好ましい。具体的には、珪素を含有する鋼板を連続浸珪ラインで製造する際には、副産物としてFeCl2を含むガスが産生する。このFeCl2を含むガスを、流体10として本発明に係る晶析装置および晶析方法で処理することにより、反応容器の壁面への含有物質の凝集・凝固を抑制しつつ晶析処理を行うことができる。 The crystallization apparatus and the crystallization method according to the present invention are particularly preferably used for a process (for example, continuous siliconization line) for producing a silicon steel sheet by siliconization. Specifically, when a steel sheet containing silicon is produced by a continuous siliconization line, a gas containing FeCl 2 is produced as a by-product. The gas containing FeCl 2 is treated as the fluid 10 by the crystallization apparatus and the crystallization method according to the present invention, thereby performing the crystallization treatment while suppressing the aggregation and solidification of the contained substances on the wall of the reaction vessel. Can do.

図1に示す装置を用いて、FeCl2の分離・回収実験を行った。FeCl2の凝固点は677℃、沸点は1023℃である。 Using the apparatus shown in FIG. 1, separation / recovery experiment of FeCl 2 was performed. FeCl 2 has a freezing point of 677 ° C and a boiling point of 1023 ° C.

本発明例では、流体10として、FeCl2(気体)を含有した窒素ガスを温度1200℃、流量500Nm3/hで反応容器2の上から投入した。キャリア流体としては、晶析物11を回収した残りの流体を用い、種物質供給手段21から常温で550Nm3/h投入した。他の本発明例では、キャリア流体であるN2の代わりに、Ar、又はN2とArの混合ガスを用いて同様に実験を行い、種物質であるFeCl2の代わりにAl2O3又はCuOを使用して同様に実験を行った。 In the example of the present invention, nitrogen gas containing FeCl 2 (gas) was introduced as the fluid 10 from above the reaction vessel 2 at a temperature of 1200 ° C. and a flow rate of 500 Nm 3 / h. As the carrier fluid, the remaining fluid from which the crystallized product 11 was recovered was used and charged at 550 Nm 3 / h from the seed material supply means 21 at room temperature. In another example of the present invention, the same experiment was performed using Ar or a mixed gas of N 2 and Ar instead of N 2 which is a carrier fluid, and Al 2 O 3 instead of FeCl 2 which is a seed material. A similar experiment was performed using CuO.

表1に実験結果を示す。   Table 1 shows the experimental results.

Figure 0006256496
Figure 0006256496

種物質を投入しなかった従来例のNo.1に比べ、種物質を投入したNo.2〜12では壁面付着量が減少していることが分かる。すなわち、本発明を適用することで、壁面への塩化鉄の付着を低減させることができ、粉状の塩化鉄を装置外で回収できたことが分かる。また、壁面付着量はキャリア流体の種類によらず、ほぼ同等であった。どの種物質を使用した場合においても、付着量が低減することから、晶析効率は、種物質の種類にはよらないといえる。   No. of the conventional example which did not throw in a seed material. Compared with No. 1, No. 1 into which the seed material was introduced. In 2-12, it turns out that the amount of wall surface adhesion has decreased. That is, it can be seen that by applying the present invention, the adhesion of iron chloride to the wall surface can be reduced, and powdered iron chloride can be recovered outside the apparatus. Moreover, the wall surface adhesion amount was almost the same regardless of the type of carrier fluid. It can be said that the crystallization efficiency does not depend on the type of seed material, since the amount of adhesion is reduced regardless of which seed material is used.

次に種物質の粒径を0.5〜1500μmに変更して実験を行った。このとき投入する種物質の重量は粒子径によらず0.003kg/s一定とした。すなわち、粒径を変更した場合は、同時に投入する粒子の数も変更した。粒子の粒径は、キャリアガスを装置内に投入する前の流路にフィルタを設けることにより調整した。本発明に使用した装置は、操業に伴い徐々にFeCl2が装置内に堆積して、晶析効率を低下させるため、定期的にFeCl2を除去するためのメンテナンスが必要となる。種物質を投入せずに操業した場合は4日に一回のペースでメンテナンスを実施しており、操業を圧迫する。本発明においては、メンテナンス間隔を10日以上に延長できるような粒径の範囲を特に適正な範囲とした。メンテナンス間隔が10日以上であれば、効率を落とすことなく、操業を行うことができる。 Next, the experiment was performed by changing the particle size of the seed material to 0.5 to 1500 μm. At this time, the weight of the seed material to be added was fixed to 0.003 kg / s regardless of the particle diameter. That is, when the particle size was changed, the number of particles to be simultaneously added was also changed. The particle size of the particles was adjusted by providing a filter in the flow path before introducing the carrier gas into the apparatus. In the apparatus used in the present invention, FeCl 2 gradually accumulates in the apparatus with the operation, and the crystallization efficiency is lowered. Therefore, maintenance for periodically removing FeCl 2 is required. When operation is carried out without introducing seed materials, maintenance is carried out once every four days, putting pressure on the operation. In the present invention, the range of the particle size that can extend the maintenance interval to 10 days or more is set to a particularly appropriate range. If the maintenance interval is 10 days or more, operation can be performed without reducing efficiency.

図2に壁面付着量に及ぼす種物質粒子径の影響を示す。図2では、表1に示される例のうち、番号2及び7〜12の結果を示す。種物質の粒径が小さいほど壁面付着量が減少した。これは、粒子径が小さく数が多いほどキャリア流体中および反応容器2内で拡散しやすいために、塩化鉄の凝集を促進できるためと考えられる。尚、前記したメンテナンス間隔を10日以上に延長できるような壁面付着量の上限は、約1200g/日であった。   FIG. 2 shows the influence of the seed material particle size on the wall surface adhesion amount. FIG. 2 shows the results of numbers 2 and 7 to 12 among the examples shown in Table 1. The smaller the seed material particle size, the lower the wall deposition. This is presumably because the aggregation of iron chloride can be promoted because the smaller the particle size and the greater the number, the easier it is to diffuse in the carrier fluid and in the reaction vessel 2. In addition, the upper limit of the wall surface adhesion amount that can extend the maintenance interval described above to 10 days or more was about 1200 g / day.

表1に装置のメンテナンス間隔の調査結果を示す。なお、種物質を用いなかった比較例(表1のNo.1)では、装置のメンテナンスを4日に一回のペースで行っていた。しかし、本発明を適用すると含有物質の壁面付着量が減少し、装置を停止して装置内を清掃・メンテナンスする回数を削減することができ、運転効率が大幅に向上した。特に、メンテナンス間隔を10日以上に延ばすことができる種物質の粒径は、1000μm以下であった。   Table 1 shows the survey results of the maintenance intervals of the equipment. In the comparative example (No. 1 in Table 1) in which no seed material was used, the maintenance of the apparatus was performed once every four days. However, when the present invention is applied, the wall surface adhesion amount of the contained substance is reduced, the number of times of stopping and cleaning / maintening the inside of the apparatus can be reduced, and the operation efficiency is greatly improved. In particular, the particle size of the seed material that can extend the maintenance interval to 10 days or more was 1000 μm or less.

1 晶析装置
2 反応容器
2a 上テーパー部
2b 円筒部
2c 下テーパー部
21 種物質供給手段
3 回収装置
31 スクリュー軸
32 板部材
4 ガス量制御装置
5 キャリア流体供給管
6 キャリア流体供給装置
7 種物質供給装置
8 種物質
10 流体
11 晶析物
DESCRIPTION OF SYMBOLS 1 Crystallizer 2 Reaction container 2a Upper taper part 2b Cylindrical part 2c Lower taper part 21 Seed substance supply means 3 Recovery apparatus 31 Screw shaft 32 Plate member 4 Gas amount control apparatus 5 Carrier fluid supply pipe 6 Carrier fluid supply apparatus 7 Seed substance Supply device 8 Species substance 10 Fluid 11 Crystallized product

Claims (7)

反応容器に流体を供給し、反応容器内の温度及び圧力のうち少なくとも1つを変化させて、流体の含有物質を晶析させる晶析装置において、
上方側の一端から流体が供給され、下方側の他端から流体が排出される縦に設置された円筒状の反応容器と、
反応容器の側面から、種物質となる固体粒子を含んだキャリア流体を反応容器内に供給する種物質供給手段と、を備え
前記種物質供給手段は、反応容器の側面の周方向に所定の間隔をおいて設けられ、前記キャリア流体が反応容器の内部を旋廻するように噴き込み角度をつけて前記キャリア流体を噴射する、晶析装置。
In a crystallization apparatus for supplying a fluid to a reaction vessel and changing at least one of temperature and pressure in the reaction vessel to crystallize a substance contained in the fluid.
A vertically installed cylindrical reaction vessel in which fluid is supplied from one end on the upper side and fluid is discharged from the other end on the lower side ;
A seed material supply means for supplying a carrier fluid containing solid particles as a seed material into the reaction container from the side of the reaction container ,
The seed material supply means is provided at a predetermined interval in the circumferential direction of the side surface of the reaction vessel, and injects the carrier fluid at an injection angle so that the carrier fluid rotates inside the reaction vessel. Crystallizer.
反応容器の出側に設けられ、反応容器から排出された流体から、晶析した含有物質を回収して、含有物質を回収した後の流体を排出する回収手段をさらに備え、
種物質供給手段は、回収手段から排出された流体の一部を、該種物質となる固体粒子を含んだキャリア流体として反応容器内に供給する請求項1に記載の晶析装置。
Provided on the outlet side of the reaction vessel, further comprising a collection means for collecting the crystallized contained material from the fluid discharged from the reaction vessel and discharging the fluid after collecting the contained material;
The crystallization apparatus according to claim 1, wherein the seed substance supply means supplies a part of the fluid discharged from the recovery means into the reaction vessel as a carrier fluid containing solid particles as the seed substance.
種物質供給手段が種物質となる粒径1000μm以下の固体粒子を含んだキャリア流体を反応容器内に供給する請求項1又は2に記載の晶析装置。   The crystallization apparatus according to claim 1 or 2, wherein the seed material supply means supplies a carrier fluid containing solid particles having a particle size of 1000 µm or less as a seed material into the reaction vessel. 反応容器に流体を供給し、反応容器内の温度及び圧力のうち少なくとも1つを変化させて、流体の含有物質を晶析させる晶析方法において、
縦に設置された円筒状の反応容器の上方側の一端から流体を供給し、
反応容器の側面から、種物質となる固体粒子を含んだキャリア流体を反応容器の側面の周方向に所定の間隔をおいて設けられた種物質供給手段によって反応容器の内部を旋廻するように噴き込み角度をつけて反応容器内に供給して、反応容器内の温度及び圧力のうち少なくとも1つを変化させる晶析方法。
In a crystallization method in which a fluid is supplied to a reaction vessel and at least one of temperature and pressure in the reaction vessel is changed to crystallize a substance contained in the fluid.
Supply fluid from one end on the upper side of a cylindrical reaction vessel installed vertically ,
A carrier fluid containing solid particles as a seed material is sprayed from the side surface of the reaction vessel so that the inside of the reaction vessel is rotated by a seed material supply means provided at a predetermined interval in the circumferential direction of the side surface of the reaction vessel. A crystallization method in which at least one of a temperature and a pressure in the reaction vessel is changed by supplying it into the reaction vessel at an included angle .
反応容器の下方側の他端から排出された流体から、晶析した含有物質を回収し、
含有物質を回収した流体の一部を、該種物質となる固体粒子を含んだキャリア流体として反応容器の側から供給する請求項4に記載の晶析方法。
From the fluid discharged from the other end on the lower side of the reaction vessel, the crystallized contained material is recovered,
Some of the fluid was recovered containing material, crystallization method according to claim 4 supplied from the side surface of the reaction vessel as a carrier fluid containing solid particles as a seed material.
種物質となる粒径1000μm以下の固体粒子を含んだキャリア流体を反応容器内に供給する請求項4又は5に記載の晶析方法。   The crystallization method according to claim 4 or 5, wherein a carrier fluid containing solid particles having a particle size of 1000 µm or less as a seed material is supplied into the reaction vessel. 浸珪により珪素鋼板を製造する際に発生するガス中のFeCl 2 を晶析する請求項4から6までのいずれか一項に記載の晶析方法。 The crystallization method according to any one of claims 4 to 6 , wherein FeCl 2 in a gas generated when a silicon steel sheet is produced by siliconization is crystallized .
JP2016041735A 2015-03-06 2016-03-04 Crystallizer and crystallization method Active JP6256496B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015044329 2015-03-06
JP2015044329 2015-03-06

Publications (2)

Publication Number Publication Date
JP2016165720A JP2016165720A (en) 2016-09-15
JP6256496B2 true JP6256496B2 (en) 2018-01-10

Family

ID=56897914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016041735A Active JP6256496B2 (en) 2015-03-06 2016-03-04 Crystallizer and crystallization method

Country Status (1)

Country Link
JP (1) JP6256496B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108905266B (en) * 2018-07-27 2021-01-22 海南金海浆纸业有限公司 Device for removing chloride and potassium ions in alkali ash
CN114669076B (en) * 2022-03-30 2023-03-28 上海东庚化工技术有限公司 Micro-melt crystallization and falling film crystallization combined material purification system and method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2580635A (en) * 1947-06-19 1952-01-01 Du Pont Condensation of vapors
FR2213929B1 (en) * 1973-01-16 1975-10-31 Rhone Progil
JPH05186473A (en) * 1992-01-06 1993-07-27 Kawasaki Steel Corp Collection of pyromellitic anhydride
JP2817604B2 (en) * 1993-12-17 1998-10-30 日本鋼管株式会社 Exhaust gas treatment method in gas phase siliconizing equipment for steel sheet
JP2000024639A (en) * 1998-07-07 2000-01-25 Japan Organo Co Ltd Evaporating and concentrating method of sulfuric acid- containing waste water and device therefor
JP4669624B2 (en) * 2001-03-30 2011-04-13 オルガノ株式会社 Crystallization reactor equipped with evaporative concentration means of treated water
JP4097910B2 (en) * 2001-05-08 2008-06-11 株式会社荏原製作所 Method and apparatus for removing phosphorus
JP4025037B2 (en) * 2001-08-02 2007-12-19 株式会社荏原製作所 Dephosphorization method and apparatus
WO2004067139A1 (en) * 2003-01-31 2004-08-12 Ebara Corporation Method and apparatus for removing ion in fluid by crystallization
US7914600B2 (en) * 2007-01-22 2011-03-29 Materials & Electrochemical Research Corp. Continuous production of titanium by the metallothermic reduction of TiCl4
KR101661054B1 (en) * 2012-08-03 2016-09-28 제이에프이 스틸 가부시키가이샤 Crystallizer and crystallization method

Also Published As

Publication number Publication date
JP2016165720A (en) 2016-09-15

Similar Documents

Publication Publication Date Title
TWI231772B (en) Apparatus for the preparation of crystals
JP6256496B2 (en) Crystallizer and crystallization method
JP2003534129A5 (en)
JP5008215B2 (en) Crystallization method and apparatus
MXPA06012086A (en) Process for separating one or more solids from water miscible fluids and an apparatus therefor.
US7425273B2 (en) Method and apparatus for processing a suspension
JP6191722B2 (en) Crystallizer and crystallization method
TWI603918B (en) Process for producing ammonium sulfate crystals
JPS59209607A (en) Crystallizing and separating apparatus of substance mixture
US8414843B2 (en) Forced-circulation crystallizer
WO2012064046A2 (en) Apparatus for manufacturing fine powder of high purity silicon.
US2164111A (en) Apparatus and method for treating granular materials with flowing liquids
JP5260019B2 (en) Method for producing granular sodium iodide
JP5289686B2 (en) Storage silo of adamantane granules and method for discharging adamantane granules
JP2011072998A (en) Crystallization method and apparatus
JP6740992B2 (en) Crystallizer
RU2325208C2 (en) Method of treatment by liquid for fine-grained and powder-like materials and apparatus for its implementation
JP4940109B2 (en) Method and apparatus for concentrating Ti powder in melt
JP2022160487A (en) Treatment apparatus of liquid to be treated and treatment method of liquid to be treated
RU2591962C1 (en) Granulator
CN117479988A (en) Tank for purification device
JP2020122183A (en) Method for recovering valuable metal powder from resist waste liquid, and valuable metal powder recovering device
CN109052508A (en) A kind of lacquer spraying technique gives up water purifying means and purification method
JP2017087122A (en) Water treatment apparatus
JP2006056783A (en) Ethylene carbonate purification method, purification apparatus and carrier device for crystal purification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171120

R150 Certificate of patent or registration of utility model

Ref document number: 6256496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250