JP2009102705A - Plasma etching apparatus, method for manufacturing magnetic recording medium, and magnetic recording medium - Google Patents

Plasma etching apparatus, method for manufacturing magnetic recording medium, and magnetic recording medium Download PDF

Info

Publication number
JP2009102705A
JP2009102705A JP2007276518A JP2007276518A JP2009102705A JP 2009102705 A JP2009102705 A JP 2009102705A JP 2007276518 A JP2007276518 A JP 2007276518A JP 2007276518 A JP2007276518 A JP 2007276518A JP 2009102705 A JP2009102705 A JP 2009102705A
Authority
JP
Japan
Prior art keywords
substrate
conductor
processed
pair
etched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007276518A
Other languages
Japanese (ja)
Other versions
JP5175519B2 (en
Inventor
Makoto Satake
真 佐竹
Kenji Maeda
賢治 前田
Masaru Izawa
勝 伊澤
Katanobu Yokogawa
賢悦 横川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007276518A priority Critical patent/JP5175519B2/en
Publication of JP2009102705A publication Critical patent/JP2009102705A/en
Application granted granted Critical
Publication of JP5175519B2 publication Critical patent/JP5175519B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma etching apparatus which can treat both sides of a material to be etched by efficiently applying a bias to both faces thereof regardless of a material of a substrate, when plasma-treating both faces of the material to be etched such as a magnetic recording medium, and to provide a method therefor. <P>SOLUTION: In a plasma etching apparatus which has a pair of conductors for applying a high-frequency power to the approximately annular material to be etched, and etches both faces of the approximately annular material to be etched by sandwiching the inside edge of the approximately annular material to be etched with the pair of conductors, this plasma etching apparatus makes both faces of the approximately annular material to be etched electrically conduct, by using a conductor-connecting member installed in one of the pair of the conductors. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、プラズマエッチング装置及び磁気記録媒体の製造方法及び磁気記録媒体に係り、特に、磁気記録媒体の両面に凹凸パターンで形成されている磁気記録層を形成するのに適したプラズマエッチング装置及びそれを用いた磁気記録媒体の製造方法及び磁気記録媒体に関する。   The present invention relates to a plasma etching apparatus, a method for manufacturing a magnetic recording medium, and a magnetic recording medium, and more particularly to a plasma etching apparatus suitable for forming a magnetic recording layer formed with a concavo-convex pattern on both sides of a magnetic recording medium, and The present invention relates to a method of manufacturing a magnetic recording medium using the same and a magnetic recording medium.

ハードディスク装置は、円環状の磁気記録媒体を高速で回転させ、磁気ヘッドによりディジタル信号を記録・再生している。従来、磁気記録媒体として、表面が非常に平坦な円環状のアルミニウム基板、もしくはガラス基板に、磁性体をスパッタリング等により蒸着して、水平記録方式の連続磁性膜を形成する方法が行なわれている。記録密度の上昇に伴い、磁気記録媒体に対し、記録層を構成する磁性体の微粒子化、磁性体材料の変更、磁性体の積層構造の工夫、垂直記録方式の採用等により、面記録密度の向上が図られてきた。   A hard disk device rotates an annular magnetic recording medium at a high speed and records / reproduces a digital signal by a magnetic head. 2. Description of the Related Art Conventionally, as a magnetic recording medium, a method of forming a horizontal recording type continuous magnetic film by depositing a magnetic material on an annular aluminum substrate or glass substrate having a very flat surface by sputtering or the like has been performed. . As the recording density increases, the surface recording density of the magnetic recording medium can be reduced by making the magnetic material composing the recording layer finer, changing the magnetic material, devising the laminated structure of the magnetic material, adopting the perpendicular recording method, etc. Improvements have been made.

しかるに、媒体に起因したノイズやクロストーク、熱ゆらぎ耐性等の問題により、既存の記録媒体では記録密度向上の限界が見え始めた。そこで、磁気記録層にトラックピッチに対応する周期的な凹凸を設ける事により、さらなる記録密度向上を実現できる磁気記録媒体、いわゆるディスクリートトラックメディアや、パターンドメディア等の記録媒体が提案されている(例えば、特許文献1参照)。   However, due to problems such as noise, crosstalk, and thermal fluctuation resistance caused by the medium, the limit of improvement in recording density has begun to appear with existing recording media. Therefore, magnetic recording media that can realize further improvement in recording density by providing periodic irregularities corresponding to the track pitch in the magnetic recording layer, recording media such as so-called discrete track media and patterned media have been proposed ( For example, see Patent Document 1).

また、特許文献2には、ハードディスクに用いられるような略円環状の被エッチング材料の表裏両面に凹凸加工を施す装置が開示されている。   Further, Patent Document 2 discloses an apparatus that performs concavo-convex processing on both front and back surfaces of a substantially annular material to be etched such as that used for a hard disk.

特開平9−97419号公報JP-A-9-97419 特開平10−324980号公報JP-A-10-324980

磁気記録媒体は、媒体一枚あたりの記録容量を上げるために媒体の表裏両面を記録層として用いている。したがって、ディスクリートトラックメディアやパターンドメディアも、表裏両面に凹凸加工を施す必要が生じる。   The magnetic recording medium uses both the front and back surfaces of the medium as recording layers in order to increase the recording capacity per medium. Therefore, the discrete track media and the patterned media also need to be processed with irregularities on both the front and back sides.

マスクを施された基板もしくは基板に堆積させた非磁性体膜もしくは磁性体をエッチングする方法としては、ウェットエッチングや、プラズマエッチング、イオンビームエッチング、イオンミリング、中性ビームエッチング等のドライエッチングが考えられる。特に、半導体デバイスの製造で広く用いられているプラズマエッチング技術は、量産性まで考慮した、基板もしくは基板に堆積させた非磁性体膜もしくは磁性体の凹凸加工への応用が期待できる。   As a method for etching a masked substrate or a non-magnetic film or magnetic material deposited on the substrate, wet etching, dry etching such as plasma etching, ion beam etching, ion milling, or neutral beam etching is considered. It is done. In particular, plasma etching technology widely used in the manufacture of semiconductor devices can be expected to be applied to a substrate, a nonmagnetic film deposited on a substrate, or uneven processing of a magnetic material, taking mass productivity into consideration.

特許文献2に開示された被エッチング材料の表裏両面に凹凸加工を施す装置は、図17に示すように、略円環状の被エッチング材料105の内縁を台盤2201と抑え盤2202で挟持し、台盤2201に電力を給電することで、該被エッチング材料の両面をエッチングするようになっている。   As shown in FIG. 17, the apparatus for performing uneven processing on both the front and back surfaces of the material to be etched disclosed in Patent Document 2 sandwiches the inner edge of the substantially circular material to be etched 105 with a base plate 2201 and a restraining plate 2202, By supplying electric power to the base plate 2201, both surfaces of the material to be etched are etched.

しかし、図17に記載のプラズマプラズマエッチング装置では、被エッチング材料105の内縁を台盤2201と抑え盤2202で挟持した際に、台盤2201と抑え盤2202の間に軸方向の隙間Dが生じているため、被エッチング材料内部の基板を通してのみ被エッチング材料両面を電気的に導通できる。そのため、基板の材質にアルミニウムなどの導電体材料を用いた場合は、基板を介して被エッチング材料両面を電気的に導通する経路ができるが、基板の材質にガラス等の絶縁体材料を用いた場合、被エッチング材料両面を電気的に導通する経路をつくることができず、エッチング電力が印加された片側の面2203にしかエッチング電力を印加することができないと考えられる。 However, in the plasma plasma etching apparatus shown in FIG. 17, when the inner edge of the material to be etched 105 is sandwiched between the base plate 2201 and the holding plate 2202, there is an axial gap D 2 between the base plate 2201 and the holding plate 2202. Therefore, both surfaces of the material to be etched can be electrically conducted only through the substrate inside the material to be etched. Therefore, when a conductive material such as aluminum is used as the material of the substrate, there is a path for electrically conducting both sides of the material to be etched through the substrate, but an insulating material such as glass is used as the material of the substrate. In this case, it is considered that a path for electrically conducting both sides of the material to be etched cannot be formed, and the etching power can be applied only to the one surface 2203 to which the etching power is applied.

本発明の目的は、磁気記録媒体のような被エッチング材料の表裏両面へのプラズマ処理を行う際、基板の材質に関わらず被エッチング材料両表面に効率よくバイアスを印加し、両面処理ができるプラズマエッチング装置及びそれを用いた磁気記録媒体の製造方法及び磁気記録媒体を提供することにある。   An object of the present invention is to perform plasma treatment on both surfaces of a material to be etched, such as a magnetic recording medium, by efficiently applying a bias to both surfaces of the material to be etched regardless of the material of the substrate. An etching apparatus, a method of manufacturing a magnetic recording medium using the same, and a magnetic recording medium are provided.

本発明の代表的なものの一例を示せば以下の通りである。即ち、本発明のプラズマエッチング装置は、真空容器内に対向して配置された一対の電極と、該一対の電極間に配置され略円環状の被処理基板の内孔の縁付近を挟持する一対の基板支持部材と、前記一対の電極と前記被処理基板の両面間にプロセスガスを供給するガス供給手段と、前記各基板支持部材に設けられ前記一対の電極と前記被処理基板の両面間に高周波電力を印加する一対の導電体部材とを有し、一方の前記導電体部材の先端付近に導電体接続部材が設置されており、該導電体接続部材は前記被処理基板が前記一対の基板支持部材に保持された状態で該被処理基板の前記内孔を介して他方の前記導電体部材と接触し得るように構成されていることを特徴とする。   An example of a representative one of the present invention is as follows. In other words, the plasma etching apparatus of the present invention includes a pair of electrodes disposed opposite to each other in a vacuum vessel, and a pair sandwiching the vicinity of the edge of the inner hole of the substantially annular substrate to be processed disposed between the pair of electrodes. A substrate support member, a gas supply means for supplying a process gas between both surfaces of the pair of electrodes and the substrate to be processed, and a gap between both surfaces of the pair of electrodes and the substrate to be processed provided on each substrate support member A pair of conductor members for applying high-frequency power, and a conductor connection member is installed near the tip of one of the conductor members, and the substrate to be processed is the pair of substrates. It is configured to be able to come into contact with the other conductor member through the inner hole of the substrate to be processed while being held by a support member.

本発明によれば、該略円環状の被エッチング材料の内縁を一対の導電体で挟持した際に、一対の導電体の一方に設置された導電体接続部材を介し、一対の導電体を電気的に導通させることができる。これにより、たとえ基板の材質にガラス等の絶縁体材料を用いた場合でも、被エッチング材料両面は一対の導電体と導電体接続部材を介し電気的に導通する経路ができる。そのため、基板両面に効率よくエッチング電力を印加することが可能となる。   According to the present invention, when the inner edge of the substantially annular material to be etched is sandwiched between a pair of conductors, the pair of conductors are electrically connected via the conductor connecting member installed on one of the pair of conductors. Can be conducted electrically. Thereby, even when an insulating material such as glass is used as the material of the substrate, both surfaces of the material to be etched can be electrically connected through the pair of conductors and the conductor connecting member. Therefore, it is possible to efficiently apply etching power to both surfaces of the substrate.

また、前記導電体接続部材が導電体部材間の隙間に合わせて変形する機能を有することで、被エッチング材料の両面が一対の導電体部材と導電体接続部材を介し電気的に導通する経路は確実なものとなり、基板両面に確実に効率よく電力を印加することができる。   Further, since the conductor connecting member has a function of deforming in accordance with a gap between the conductor members, a path through which both surfaces of the material to be etched are electrically connected via the pair of conductor members and the conductor connecting member is Thus, power can be reliably and efficiently applied to both sides of the substrate.

本発明の代表的な実施例によれば、該略円環状の被エッチング材料に高周波電力を印加する一対の導電体部材、該導電体部材がそれぞれ設置された一対の基板支持部材を有し、略円環状の被エッチング材料の内縁を一対の導電体部材で挟持することで、略円環状の被エッチング材料の両面をエッチングするプラズマエッチング装置において、前記一対の導電体部材のうち一方に導電体接続部材が設置されている。   According to a typical embodiment of the present invention, a pair of conductor members for applying high-frequency power to the substantially annular material to be etched, a pair of substrate support members on which the conductor members are respectively installed, In a plasma etching apparatus for etching both surfaces of a substantially annular material to be etched by sandwiching the inner edge of the substantially annular material to be etched between a pair of conductor members, a conductor is provided as one of the pair of conductor members. A connecting member is installed.

また、前記導電体接続部材は基板面鉛直方向に伸縮する機能を有しており、略円環状の被エッチング材料の内縁を一対の導電体部材で挟持した際に、導電体間の隙間にあわせて該導電体接続部材が変形することができる。   The conductor connecting member has a function of expanding and contracting in the vertical direction of the substrate surface. When the inner edge of the substantially annular material to be etched is sandwiched between a pair of conductor members, the conductor connecting member is aligned with the gap between the conductors. Thus, the conductor connecting member can be deformed.

これにより、たとえ基板の材質にガラス等の絶縁体材料を用いた場合でも、被エッチング材料両面は一対の導電体と導電体接続部材を介し電気的に導通する経路ができるため、基板両面に効率よくエッチング電力を印加することが可能となる。   As a result, even when an insulating material such as glass is used as the material of the substrate, both surfaces of the material to be etched can be electrically connected through a pair of conductors and a conductor connecting member. It becomes possible to apply etching power well.

なお、磁気記録層の周期的な凹凸パターンを形成するプロセスは、大まかに二種類に分類できる。一つ目は、基板に磁性体を蒸着したものに所望のマスクを施し、非マスク部の磁性体を直接エッチングする方法である。もう一つは、基板自体もしくは、基板に堆積させた窒化シリコンや酸化シリコン等の非磁性体膜に所望のマスクを施し、該基板自体もしくは、基板に堆積させた非磁性体膜にエッチングにより凹凸加工を施したものに、磁性体を蒸着させる方法である。   The process for forming the periodic uneven pattern of the magnetic recording layer can be roughly classified into two types. The first is a method in which a desired mask is applied to a substrate obtained by depositing a magnetic material, and the magnetic material in the non-mask portion is directly etched. The other is to apply a desired mask to the substrate itself or a non-magnetic film such as silicon nitride or silicon oxide deposited on the substrate, and to etch the substrate itself or the non-magnetic film deposited on the substrate by etching. In this method, a magnetic material is deposited on the processed material.

本明細書では、「基板」、「基板に堆積させた非磁性体膜もしくは磁性体」、「基板に堆積させた非磁性体膜上もしくは磁性体上に形成されたマスク」の3者を含め被処理基板もしくは被エッチング材料と称する。   In this specification, including "the substrate", "the non-magnetic film or magnetic material deposited on the substrate" and "the mask formed on the non-magnetic film or magnetic material deposited on the substrate" It is called a substrate to be processed or a material to be etched.

また、被処理基板に対するプラズマエッチングは、減圧された処理室に処理用のガスを導入し、平板アンテナやコイル状アンテナ等を介して、処理室にソース電源より高周波電力を投入することで該ガスをプラズマ化し、これにより発生したイオンやラジカルを被エッチング材料に照射することにより進行する。プラズマ源には、プラズマを発生させる方式の違いにより、有磁場マイクロ波タイプ、誘導結合(ICP:Inductively Coupled Plasma)タイプ、容量結合(CCP: Capacitively Coupled Plasma)タイプ等、様々な方式が存在している。   In addition, plasma etching on a substrate to be processed is performed by introducing a processing gas into a decompressed processing chamber and supplying high frequency power from a source power source to the processing chamber via a flat plate antenna or a coiled antenna. It progresses by making plasma into plasma and irradiating the material to be etched with ions and radicals generated thereby. There are various types of plasma sources, such as magnetic field microwave type, inductively coupled plasma (ICP) type, and capacitively coupled (CCP) type, depending on the method of generating plasma. Yes.

さらに、被エッチング材料を載置する電極に高周波バイアスを印加することにより、プラズマ中のイオンを積極的に被エッチング材料に引き込む事ができ、これによりエッチング速度の向上や、垂直加工性の向上が実現できる。該高周波バイアスは、プラズマ生成に用いられるソース電源の周波数よりも一桁から三桁低い周波数を用いる事が多い。
以下、図面を用いて発明の実施例を説明する。
Furthermore, by applying a high-frequency bias to the electrode on which the material to be etched is placed, ions in the plasma can be actively drawn into the material to be etched, thereby improving the etching rate and improving the vertical workability. realizable. The high frequency bias often uses a frequency that is one to three orders of magnitude lower than the frequency of the source power supply used for plasma generation.
Embodiments of the invention will be described below with reference to the drawings.

本発明の第一の実施例を図1ないし図2で説明する。図1は、板アンテナ型のプラズマエッチング装置の縦断面図を示す。図2は、図1の支持部材部分の横断面図である。
真空容器101内には、一対の平行平板電極100が相対向する位置に設置されている。一対の平板電極の半径方向の中心付近には、可動式基板支持部材102と固定式基板支持部材103とが対向して設置されている。可動式基板支持部材102は、平板電極100を貫通しさらに真空ベローズ104を通して真空容器の外に飛出した構造をしており、基板面鉛直方向、つまり矢印(a)の方向に可動できる。被処理基板すなわち中央に内孔を有する略円環状の被エッチング材料105は、内孔の縁付近が可動式基板支持部材102と固定式基板支持部材103の間に挟まれることで機械的に固定される。また、可動式基板支持部材102に設けられた導電体接続部材106と、可動式基板支持部材102及び固定式基板支持部材103に設けられた一対の導電体部材とを介して、被エッチング材料105の両面が電気的に接続される。一対の平板電極100には、被エッチング材料の両面に対向して配置されガス分散機能を有するシャワープレート110が設けられている。真空容器101を構成する壁部材はアースに接続されており、従って、一対の平板電極100もアースに接続されている。また、真空容器101内は真空排気手段で真空排気される。
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view of a plate antenna type plasma etching apparatus. FIG. 2 is a cross-sectional view of the support member portion of FIG.
In the vacuum vessel 101, a pair of parallel plate electrodes 100 are installed at positions facing each other. A movable substrate support member 102 and a fixed substrate support member 103 are disposed opposite each other in the vicinity of the center in the radial direction of the pair of flat plate electrodes. The movable substrate support member 102 has a structure that penetrates the flat plate electrode 100 and further jumps out of the vacuum vessel through the vacuum bellows 104, and is movable in the vertical direction of the substrate surface, that is, in the direction of the arrow (a). The to-be-processed substrate, that is, the substantially annular material to be etched 105 having an inner hole in the center, is mechanically fixed by sandwiching the periphery of the inner hole between the movable substrate support member 102 and the fixed substrate support member 103. Is done. In addition, the material to be etched 105 is connected via a conductor connecting member 106 provided on the movable substrate support member 102 and a pair of conductor members provided on the movable substrate support member 102 and the fixed substrate support member 103. Are electrically connected. The pair of flat plate electrodes 100 is provided with a shower plate 110 disposed opposite to both surfaces of the material to be etched and having a gas dispersion function. The wall member constituting the vacuum vessel 101 is connected to the ground, and thus the pair of flat plate electrodes 100 are also connected to the ground. Further, the inside of the vacuum vessel 101 is evacuated by a vacuum evacuation means.

ソース電源107から供給されたソース電力は、固定式基板支持部材103内部の高周波伝達経路109、導電体接続部材106を通り、被エッチング材料105の両面から電磁波として放出される。この電磁波により、ガス供給手段からマスフローコントローラー120を介して一対のシャワープレート110から被エッチング材料105の両面に均一に導入されたプロセスガスがプラズマ化される。また、バイアス電源108から供給されたバイアス電力は、固定式基板支持部材103内部の高周波伝達経路109、導電体接続部材106を通り、被エッチング材料105の両面に印加される。このバイアス電力により、被エッチング材料の両面とシャワープレート110の空間に生成されたプラズマ中のイオンを被エッチング材料に積極的に引き込むことができ、被エッチング材料の両面を一度にエッチングすることが可能となる。   The source power supplied from the source power source 107 passes through the high-frequency transmission path 109 and the conductor connecting member 106 inside the fixed substrate support member 103 and is emitted as electromagnetic waves from both surfaces of the material to be etched 105. By this electromagnetic wave, the process gas introduced uniformly from the pair of shower plates 110 to both surfaces of the material to be etched 105 via the mass flow controller 120 from the gas supply means is turned into plasma. The bias power supplied from the bias power source 108 is applied to both surfaces of the material to be etched 105 through the high-frequency transmission path 109 and the conductor connection member 106 inside the fixed substrate support member 103. By this bias power, ions in the plasma generated in both surfaces of the material to be etched and the space of the shower plate 110 can be actively drawn into the material to be etched, and both surfaces of the material to be etched can be etched at once. It becomes.

ソース電源107は、被エッチング材料105の両面にプラズマを生成するためのソース電力を印加するための電源であり、10MHz以上200MHz以下が望ましい。また、バイアス電源108は、被エッチング材料両面に生成されたプラズマ中のイオンを積極的に被エッチング材料に引き込むためのバイアス電力を印加するための電源であり、100kHz以上10MHz未満が望ましい。   The source power source 107 is a power source for applying source power for generating plasma on both surfaces of the material to be etched 105, and is preferably 10 MHz to 200 MHz. The bias power source 108 is a power source for applying a bias power for actively drawing ions in plasma generated on both surfaces of the material to be etched into the material to be etched, and is preferably 100 kHz or more and less than 10 MHz.

ソース電源107と被エッチング材料105は、第一の整合器112を介して接続されている。第一の整合器112は、ソース電源107から供給されたソース電力の反射を抑える機能に加え、ソース電力のみを通過させるハイパスフィルターの機能を有している。このハイパスフィルターの機能により、バイアス電源108から供給されバイアス電力がソース電源107に流入するのを防ぐことができる。また、バイアス電源108と被エッチング材料105は第二の整合器113を介して接続されており、第二の整合器113はバイアス電源108から供給されたバイアス電力の反射を抑える機能に加え、バイアス電力のみを通過させるローパスフィルターの機能を有している。前記ローパスフィルターの機能により、ソース電源107から供給したソース電力がバイアス電源108に流入するのを防ぐことができる。   The source power source 107 and the material to be etched 105 are connected via the first matching unit 112. The first matching unit 112 has a function of a high-pass filter that allows only the source power to pass in addition to the function of suppressing reflection of the source power supplied from the source power source 107. This high-pass filter function can prevent the bias power supplied from the bias power source 108 from flowing into the source power source 107. The bias power source 108 and the material to be etched 105 are connected via a second matching unit 113. The second matching unit 113 has a function of suppressing reflection of bias power supplied from the bias power source 108, as well as a bias. It has the function of a low-pass filter that allows only power to pass through. With the function of the low-pass filter, the source power supplied from the source power source 107 can be prevented from flowing into the bias power source 108.

なお、図1では、プラズマ中に発生したイオンを積極的に被エッチング材料に引き込むため、バイアス電源108よりバイアス電力を印加しているが、プラズマ中に発生したイオンを積極的に被エッチング材料に引き込む必要がないプラズマ処理をおこなう場合、バイアス電源108及び第二の整合器113はなくてもよい。この場合、第一の整合器112はソース電源107から供給されたソース電力の反射を抑える機能のみを有する。   In FIG. 1, bias power is applied from the bias power supply 108 in order to actively attract ions generated in the plasma to the material to be etched. However, ions generated in the plasma are positively applied to the material to be etched. In the case of performing plasma processing that does not need to be drawn, the bias power source 108 and the second matching unit 113 may be omitted. In this case, the first matching unit 112 has only a function of suppressing reflection of the source power supplied from the source power source 107.

ガス供給手段からシャワープレート110を介して導入されたプロセスガスは、このシャワープレートにより被エッチング材料両面に均一に供給される。また、シャワープレート110は、平板電極100と接触する導電体真空容器101を通してアースに接続されている。シャワープレートがアースに接続されていることで、被エッチング材料105とシャワープレート110の間にプラズマを閉じ込めることができる。これにより被エッチング材料両表面上に均一にプラズマを作製することができ、基板両面を均一に加工することが可能となる。   The process gas introduced from the gas supply means through the shower plate 110 is uniformly supplied to both surfaces of the material to be etched by the shower plate. Further, the shower plate 110 is connected to the ground through a conductor vacuum vessel 101 that is in contact with the plate electrode 100. Since the shower plate is connected to the ground, the plasma can be confined between the material to be etched 105 and the shower plate 110. As a result, plasma can be produced uniformly on both surfaces of the material to be etched, and both surfaces of the substrate can be processed uniformly.

そのためシャワープレートは、導電性やプラズマ耐性が高く、プラズマに長時間さらされても異物や汚染などの要因とならない材質でできていることが望ましい。すなわち、アルミニウム、各種アルミ合金、チタン合金、ステンレス、ボロンドープシリコン等が好ましい。もしくはアルミニウム等の金属表面にアルマイト処理を施したり、アルミナ、イットリア等の溶射膜を形成したりした物も好ましい。   Therefore, it is desirable that the shower plate is made of a material that has high conductivity and plasma resistance and does not cause foreign matter or contamination even if exposed to plasma for a long time. That is, aluminum, various aluminum alloys, titanium alloys, stainless steel, boron-doped silicon and the like are preferable. Or the thing which performed the alumite process to metal surfaces, such as aluminum, or formed thermal spraying films, such as an alumina and a yttria, is also preferable.

図2に示したように、真空容器101はゲートバルブ115を介して搬入出室114に接続されている。被エッチング材料105は、基板搬送ロボットの基板搬送部材で保持され、搬入出室114から真空容器101に至る搬入出経路117を経て可動式基板支持部材102と固定式基板支持部材103の間へ搬入されるように構成されている。なお、処理済みの被エッチング材料105は、基板搬送部材で保持され、搬入出室114へ搬出される。   As shown in FIG. 2, the vacuum vessel 101 is connected to the carry-in / out chamber 114 via the gate valve 115. The material to be etched 105 is held by the substrate transfer member of the substrate transfer robot, and is transferred between the movable substrate support member 102 and the fixed substrate support member 103 via the transfer route 117 from the load / unload chamber 114 to the vacuum vessel 101. It is configured to be. The processed material to be etched 105 is held by the substrate transport member and is carried out to the carry-in / out chamber 114.

図1に戻って、プラズマエッチング装置はコントローラ(図示略)を備えている。また、可動式基板支持部材102または固定式基板支持部材103のどちらか一方には、熱電対もしくは蛍光温度計などの温度計測器が備わっており、被エッチング材料105の温度を計測し、コントローラを介してソース電源107及びバイアス電源108にフィードバックすることで、ソース電源107およびバイアス電源108からの供給電力を制御することができる。つまり、計測した基板温度がある設定値を超えた場合は、ソース電源107から供給されるソース電力及びバイアス電源108から供給されるバイアス電力を一旦停止し、被エッチング材料両面に生成された放電を中止させる。一定時間放電を中止することで、被エッチング材料が設定温度以下に冷えたのを確認した後、再びソース電源107及びバイアス電源108から電力を供給し、被エッチング材料両面で放電を開始する。前記のような間欠放電を繰り返すことで、被エッチング材料の温度上昇を抑制しつつ、被エッチング材料に所定の加工を施すことができる。   Returning to FIG. 1, the plasma etching apparatus includes a controller (not shown). In addition, either one of the movable substrate support member 102 and the fixed substrate support member 103 is provided with a temperature measuring instrument such as a thermocouple or a fluorescence thermometer, and measures the temperature of the material to be etched 105 to control the controller. The power supplied from the source power source 107 and the bias power source 108 can be controlled by feeding back to the source power source 107 and the bias power source 108. That is, when the measured substrate temperature exceeds a certain set value, the source power supplied from the source power source 107 and the bias power supplied from the bias power source 108 are temporarily stopped, and the discharge generated on both surfaces of the material to be etched is stopped. Stop it. After confirming that the material to be etched has cooled below the set temperature by stopping the discharge for a certain time, power is again supplied from the source power source 107 and the bias power source 108, and discharge is started on both surfaces of the material to be etched. By repeating the intermittent discharge as described above, the material to be etched can be subjected to predetermined processing while suppressing the temperature rise of the material to be etched.

また、予め被エッチング材料をある設定温度以上にしてエッチングをしたい場合は、エッチングを施したい膜をほとんどエッチングしないガス、例えばHe、Ar、Xeガス等の希ガスを用いたプラズマを生成し、目標温度まで基板温度を上昇させた後、所定のプラズマ処理を施す。前記エッチングを施したい膜をほとんどエッチングしないガスで生成したプラズマにより基板温度を上昇させる方法において、被エッチング膜をほとんどエッチングさせないためにはバイアス電力を印加せずにプラズマ処理をおこなうことが望ましい。   In addition, if the material to be etched is to be etched at a predetermined temperature or higher in advance, plasma using a rare gas such as He, Ar, or Xe gas that hardly etches the film to be etched is generated, and the target is generated. After raising the substrate temperature to the temperature, a predetermined plasma treatment is performed. In the method of raising the substrate temperature by plasma generated by a gas that hardly etches the film to be etched, it is desirable to perform plasma treatment without applying bias power in order to hardly etch the film to be etched.

なお、被エッチング材料の温度を計測する手段に関しては、被エッチング材料の温度を計測しソース電源107およびバイアス電源108へのフィードバック制御ができるものであれば、その温度計測手段や方法は問わない。   Note that any means for measuring the temperature of the material to be etched can be used as long as the temperature of the material to be etched can be measured and feedback control to the source power source 107 and the bias power source 108 can be performed.

次に、可動式基板支持部材102と固定式基板支持部材103の具体的な構成例について、図3(図3A,図3B,図3C)で説明する。   Next, a specific configuration example of the movable substrate support member 102 and the fixed substrate support member 103 will be described with reference to FIG. 3 (FIGS. 3A, 3B, and 3C).

まず、図3Aに、可動式基板支持部材102と固定式基板支持部材103で被エッチング材料105を挟持した際の断面の拡大図を示す。   First, FIG. 3A shows an enlarged view of a cross section when the material to be etched 105 is sandwiched between the movable substrate support member 102 and the fixed substrate support member 103.

可動式基板支持部材102における被エッチング材料と接触する面には第一の導電体部材201が設置されており、固定式基板支持部材103における被エッチング材料と接触する面には第二の導電体部材202が設置されている。第一の導電体部材201及び第二の導電体部材202は、ソース電源及びバイアス電源から供給された電力を効率よく基板に印加するため、導電性が高い材質でできていることが望ましい。   A first conductor member 201 is provided on the surface of the movable substrate support member 102 that contacts the material to be etched, and a second conductor is provided on the surface of the fixed substrate support member 103 that contacts the material to be etched. A member 202 is installed. The first conductor member 201 and the second conductor member 202 are preferably made of a highly conductive material in order to efficiently apply power supplied from the source power source and the bias power source to the substrate.

第二の導電体部材202は、第二の導電体部材202の一部に接続された高周波伝達経路109を介し、ソース電源107及びバイアス電源108と接続されている。また、第一の導電体部材201には、導電体接続部材106が設置されており、可動式基板支持部材102と固定式基板支持部材103で被エッチング材料105を挟持した際に、該導電体接続部材106が第二の導電体部材202と接触する構造になっている。   The second conductor member 202 is connected to the source power source 107 and the bias power source 108 via the high-frequency transmission path 109 connected to a part of the second conductor member 202. Further, the first conductor member 201 is provided with a conductor connecting member 106, and when the material to be etched 105 is sandwiched between the movable substrate support member 102 and the fixed substrate support member 103, the conductor is connected to the first conductor member 201. The connection member 106 is in contact with the second conductor member 202.

図3Bは、図3Aの状態における導電体接続部材106を被エッチング材料105の横方向から見た拡大図である。119は被エッチング材料105の内孔である。   FIG. 3B is an enlarged view of the conductor connecting member 106 in the state of FIG. 3A as viewed from the lateral direction of the material to be etched 105. Reference numeral 119 denotes an inner hole of the material to be etched 105.

図3B、図3Aから明らかな通り、導電体接続部材106は、例えば、平バネまたは板バネまたはコイルスプリング状の部材のような構造を有しており、かつ、被エッチング材料105の内孔119に出入り可能な大きさとなっている。   As is apparent from FIGS. 3B and 3A, the conductor connecting member 106 has a structure such as a flat spring, a leaf spring, or a coil spring-like member, and the inner hole 119 of the material to be etched 105. It is the size that can enter and exit.

かかる構成とすることで、たとえ基板の材質にガラス等の絶縁体材料を用いた場合でも、被エッチング材料両面は第二の導電体部材202、導電体接続部材106、第一の導電体部材201を介し電気的に導通する経路を作ることができ、ソース電源107及びバイアス電源108から供給された高周波電力を被エッチング材料両面に効率よく印加することができる。   With this configuration, even when an insulating material such as glass is used as the material of the substrate, both surfaces of the material to be etched are the second conductive member 202, the conductive connecting member 106, and the first conductive member 201. A high-frequency power supplied from the source power source 107 and the bias power source 108 can be efficiently applied to both surfaces of the material to be etched.

導電体接続部材106は基板面鉛直方向、つまり矢印( b )の方向に伸縮する機能を有している。被エッチング材料両面に高周波電力を効率よく印加するための電気的導通経路を確実に作るためには、第一の導電体部材201を被エッチング材料105と接触させたとき、導電体接続部材106と第二の接合部材202を隙間なく確実に接触することが求められる。導電体接続部材106が第一の導電体部材201と第二の導電体部材202の間隔に合わせて伸縮する機能を有していることで、該伸縮機能により導電体接続部材106と第二の導電体部材202を確実に接触させることができ、被エッチング材料の両面に高周波電力を効率よく印加するための電気的導通経路を確実に形成することができる。   The conductor connecting member 106 has a function of expanding and contracting in the direction perpendicular to the substrate surface, that is, in the direction of the arrow (b). In order to reliably create an electrical conduction path for efficiently applying high-frequency power to both surfaces of the material to be etched, when the first conductor member 201 is brought into contact with the material to be etched 105, the conductor connecting member 106 and It is required that the second bonding member 202 is reliably brought into contact with no gap. Since the conductor connecting member 106 has a function of expanding and contracting in accordance with the distance between the first conductor member 201 and the second conductor member 202, the conductor connecting member 106 and the second conductor connecting member 106 can be expanded and contracted by the expanding and contracting function. The conductor member 202 can be reliably brought into contact, and an electrical conduction path for efficiently applying high-frequency power to both surfaces of the material to be etched can be reliably formed.

次に、図3Cに可動式基板支持部材102と固定式基板支持部材103で被エッチング材料105の内縁を挟持し、図3Aの状態にする直前の断面図を示す。   Next, FIG. 3C shows a cross-sectional view immediately before the inner edge of the material to be etched 105 is sandwiched between the movable substrate support member 102 and the fixed substrate support member 103 and the state shown in FIG. 3A is obtained.

図3Cに示すように、可動式基板支持部材102と固定式基板支持部材103で被エッチング材料105の内縁を挟持する前に、可動式基板支持部材102上の第一の導電体部材201に設置された導電体接続部材106が第二の導電体部材202と接触する構造になっている。その後、被エッチング材料105を挟持するために可動式基板支持部材103が矢印(a)の方向に可動するのに合わせて、第一の導電体部材201と被エッチング材料105が接触するまで導電体接続部材106が基板面鉛直方向、即ち矢印(i)の方向に縮むことで、導電体接続部材106と第二の導電体部材202を接触させたまま、第一の導電体部材201と被エッチング材料105を接触させ、被エッチング材料105を挟持することができる。かかる構成とすることで、導電体接続部材106と第二の導電体部材202を接触させたまま、第一の導電体部材201と被エッチング材料105を確実に接触させることができ、被エッチング材料両面は第二の導電体部材202、導電体接続部材106、第一の導電体部材201を介し電気的に導通する経路を確実に作ることができる。   As shown in FIG. 3C, before the inner edge of the material to be etched 105 is sandwiched between the movable substrate support member 102 and the fixed substrate support member 103, the first conductive member 201 on the movable substrate support member 102 is installed. The conductor connecting member 106 thus made contacts with the second conductor member 202. After that, the movable substrate support member 103 is moved in the direction of the arrow (a) in order to sandwich the material to be etched 105, and the conductor until the first conductor member 201 and the material to be etched 105 come into contact with each other. When the connecting member 106 contracts in the vertical direction of the substrate surface, that is, in the direction of the arrow (i), the first conductor member 201 and the object to be etched are kept in contact with the conductor connecting member 106 and the second conductor member 202. The material 105 can be brought into contact and the material to be etched 105 can be sandwiched. With this configuration, the first conductor member 201 and the material to be etched 105 can be reliably brought into contact with each other while the conductor connection member 106 and the second conductor member 202 are in contact with each other. Both surfaces can reliably form a path that is electrically connected via the second conductor member 202, the conductor connecting member 106, and the first conductor member 201.

導電体接続部材106の構造としては、図3Cに示すように被エッチング材料105の厚さよりも確実に凸部が高い構造となっていることが望ましい。また、導電性接合部材106の材質としては導電性が高く、弾力性に富み、耐衝撃性に優れた材料でできていることが望ましい。   As the structure of the conductor connecting member 106, it is desirable that the convex portion is surely higher than the thickness of the material to be etched 105 as shown in FIG. 3C. Further, it is desirable that the conductive bonding member 106 is made of a material having high conductivity, high elasticity, and excellent impact resistance.

尚、本実施例では、導電体接続部材106を第一の導電体部材201上に設置したが、第二の導電体接続部材202上に導電体接続部材106を設置しても構わない。   In this embodiment, the conductor connecting member 106 is installed on the first conductor member 201. However, the conductor connecting member 106 may be installed on the second conductor connecting member 202.

可動式基板支持部材102の被エッチング材料105と接触する面の角204は丸みをおびた構造をしており、被エッチング材料105の表面と可動式基板支持部材102が接触した衝撃で可動式基板支持部材の角が欠けるのを防ぐことができる。同様に、固定式基板支持部材103の被エッチング材料105と接触する面の角205は丸みをおびた構造をしており、被エッチング材料105表面と固定式基板支持部材103が接触した衝撃で可動式基板支持部材の角が欠けるのを防いでいる。第一の導電体部材201および第二の導電体部材202の後ろにはバネやゴム材料等でできた伸縮材206が備わっており、可動式基板支持部材102が被エッチング材料105と固定式基板支持部材103と接触したときの衝撃を該伸縮材206が吸収することで、可動式基板支持部材102及び固定式基板支持部材103及び被エッチング材料105が損傷するのを防ぐことができる。   The corner 204 of the surface of the movable substrate support member 102 that comes into contact with the material to be etched 105 has a rounded structure, and the movable substrate is affected by the impact of contact between the surface of the material to be etched 105 and the movable substrate support member 102. It is possible to prevent the corners of the support member from being lost. Similarly, the corner 205 of the surface of the fixed substrate support member 103 that contacts the material to be etched 105 has a rounded structure, and is movable by the impact of contact between the surface of the material to be etched 105 and the fixed substrate support member 103. The corners of the substrate support member are prevented from being missing. The first conductive member 201 and the second conductive member 202 are provided with an elastic material 206 made of a spring, a rubber material, or the like, and the movable substrate support member 102 is connected to the material to be etched 105 and the fixed substrate. The elastic member 206 absorbs an impact when it comes into contact with the support member 103, so that the movable substrate support member 102, the fixed substrate support member 103, and the etching target material 105 can be prevented from being damaged.

また、該伸縮材が第一の導電体部材201、第二の導電体部材202、被エッチング材料にかかる圧力を低減するため、可動式基板支持部材102により第一の導電体部材201を被エッチング材料に一定の圧力で押しつけた状態、つまり第一の導電体部材201と被エッチング材料105の密着性及び、第二の導電体部材202と被エッチング材料105の密着性が向上した状態での加工が可能となる。   In order to reduce the pressure applied to the first conductor member 201, the second conductor member 202, and the material to be etched by the stretchable material, the first conductor member 201 is etched by the movable substrate support member 102. Processing in a state where the material is pressed with a certain pressure, that is, in a state where the adhesion between the first conductor member 201 and the material to be etched 105 and the adhesion between the second conductor member 202 and the material to be etched 105 are improved. Is possible.

また、図3Aでは、伸縮材206は可動式基板支持部材102及び固定式基板支持部材103の両者に備わっているが、可動式基板支持部材102と固定式基板支持部材103と被エッチング材料105の損傷を防ぎ、第一の導電体部材201と被エッチング材料105の密着性、および第二の導電体部材202と被エッチング材料105の密着性が向上した状態で加工することができれば、可動式基板支持部材102及び固定式基板支持部材103のどちらか一方に備わっている構造であっても構わない。   In FIG. 3A, the elastic material 206 is provided in both the movable substrate support member 102 and the fixed substrate support member 103, but the movable substrate support member 102, the fixed substrate support member 103, and the etching target material 105 If processing can be performed in a state in which damage is prevented and the adhesion between the first conductor member 201 and the material to be etched 105 and the adhesion between the second conductor member 202 and the material to be etched 105 are improved, the movable substrate A structure provided in either one of the support member 102 and the fixed substrate support member 103 may be employed.

次に、図4により、被エッチング材料105の搬送方法について述べる。図4の(1)〜(4)は、被エッチング材料105を搬入出室114から真空容器101内へ搬送し、可動式基板支持部材102と固定式基板支持部材103の間へ挟持した図1の状態にする各ステップを示している。   Next, a method for conveying the material to be etched 105 will be described with reference to FIG. 4 (1) to 4 (4), the material 105 to be etched is transported from the loading / unloading chamber 114 into the vacuum vessel 101 and is sandwiched between the movable substrate support member 102 and the fixed substrate support member 103. Each step to enter the state is shown.

まず、ゲートバルブ115が閉じた状態で被エッチング材料105を大気雰囲気の搬入出室114にセットする。次に、搬入出室内が減圧され、ゲートバルブ115が開く。その後、被エッチング材料105はその一部を基板搬送部材118で保持され、搬入経路117を通り、真空容器101内の可動式基板支持部材102と固定式基板支持部材103の間へ搬入され、図4の(1)の状態になる。   First, the to-be-etched material 105 is set in the carry-in / out chamber 114 in the air atmosphere with the gate valve 115 closed. Next, the pressure in the loading / unloading chamber is reduced, and the gate valve 115 is opened. Thereafter, a part of the material to be etched 105 is held by the substrate transport member 118, passes through the transport path 117, and is transported between the movable substrate support member 102 and the fixed substrate support member 103 in the vacuum container 101. 4 (1).

そして、基板搬送部材118が矢印(i)の方向に移動し、図4の(2)に示すように可動式基板支持部材102に設置された導電体接続部材106と略円環状の被エッチング材料の内孔119と固定式基板支持部材103が一直線に並ぶ位置に、被エッチング材料が設置される。その後、可動式基板支持部材102が矢印(j)の方向に移動することで、略円環状の被エッチング材料105は可動式基板支持部材102と固定式基板支持部材103で挟持され図4の(3)の状態になる。最後に、基板搬送部材118は被エッチング材料105を離し、矢印(k)の方向に移動し、図4の(4)の状態、つまり図1の状態にする。この状態で、前記のとおり、基板両面に対するエッチング処理がなされる。   Then, the substrate transport member 118 moves in the direction of the arrow (i), and as shown in (2) of FIG. 4, the conductor connecting member 106 installed on the movable substrate support member 102 and the substantially annular material to be etched. The material to be etched is placed at a position where the inner hole 119 and the fixed substrate support member 103 are aligned. Thereafter, the movable substrate support member 102 moves in the direction of the arrow (j), so that the substantially circular material to be etched 105 is sandwiched between the movable substrate support member 102 and the fixed substrate support member 103 (FIG. 3). Finally, the substrate transport member 118 releases the material to be etched 105 and moves in the direction of the arrow (k), so that the state shown in FIG. 4 (4), that is, the state shown in FIG. In this state, as described above, the etching process is performed on both sides of the substrate.

以上述べたとおり、本実施例によれば、略円環状の被エッチング材料の内縁を一対の導電体で挟持した際に、一対の導電体の一方に設置された導電体接続部材を介し、一対の導電体を電気的に導通することができる。これにより、たとえ基板の材質にガラス等の絶縁体材料を用いた場合でも、被エッチング材料両面は一対の導電体と導電体接続部材を介し電気的に導通する経路ができるため、基板両面に効率よくエッチング電力を印加することが可能となる。   As described above, according to the present embodiment, when the inner edge of the substantially annular material to be etched is sandwiched between the pair of conductors, the pair of conductors is interposed via the conductor connecting member installed on one of the pair of conductors. The conductor can be electrically conducted. As a result, even when an insulating material such as glass is used as the material of the substrate, both surfaces of the material to be etched can be electrically connected through a pair of conductors and a conductor connecting member. It becomes possible to apply etching power well.

また、前記導電体接続部材が導電体部材間の隙間に合わせて変形する機能を有することで、被エッチング材料両面が一対の導電体部材と導電体接続部材を介し電気的に導通する経路は確実なものとなり、基板両面に確実に効率よく電力を印加することができる。   In addition, since the conductor connecting member has a function of deforming in accordance with a gap between the conductor members, a path through which both surfaces of the material to be etched are electrically connected via the pair of conductor members and the conductor connecting member is ensured. Therefore, it is possible to reliably and efficiently apply power to both sides of the substrate.

本発明において、基板の材質によらず被エッチング材料の両面を電気的に導通させる方法は、被エッチング材料両面を電気的に導通させることができればその方法は問わない。図5(図5A、図5B)により、基板の材質によらず被エッチング材料両面を電気的に導通させる他の方法を示す。   In the present invention, the method of electrically connecting both surfaces of the material to be etched regardless of the material of the substrate is not limited as long as both surfaces of the material to be etched can be electrically connected. FIG. 5 (FIGS. 5A and 5B) shows another method for electrically conducting both sides of the material to be etched regardless of the material of the substrate.

まず、図5Aは、実施例2として、可動式基板支持部材102と固定式基板支持部材103で被エッチング材料105の内縁を挟持する直前の断面図の一例を示している。図5Aに示すように第一の導電体部材201は凸型構造をしており、第一の導電体部材が被エッチング材料と接触する面には導電体伸縮機構3001が設置されている。   First, FIG. 5A shows an example of a cross-sectional view immediately before the inner edge of the material to be etched 105 is sandwiched between the movable substrate support member 102 and the fixed substrate support member 103 as the second embodiment. As shown in FIG. 5A, the first conductor member 201 has a convex structure, and a conductor expansion / contraction mechanism 3001 is provided on the surface where the first conductor member contacts the material to be etched.

図5Aに示すように、第一の導電体部材201が可動式基板支持部材102と固定式基板支持部材103で被エッチング材料105の内縁を挟持する前に、固定式基板支持部材103の第一の導電体部材201上に設置された導電体伸縮機構3001が被エッチング材料105と接触する構造になっている。その後、被エッチング材料105を挟持するために可動式基板支持部材103が矢印(a)の方向に可動するのに合わせて、第一の導電体部材201と第二の導電体部材202が接触するまで導電体伸縮機構3001が基板面鉛直方向、即ち矢印(j)の方向に縮むことで、被エッチング材料105を導電体伸縮機構3001と接触させたまま、第一の導電体部材201と第二の導電体部材202を接触させることができる。   As shown in FIG. 5A, before the first conductor member 201 sandwiches the inner edge of the material to be etched 105 between the movable substrate support member 102 and the fixed substrate support member 103, The conductor expansion / contraction mechanism 3001 installed on the conductor member 201 is in contact with the material to be etched 105. Thereafter, the first conductor member 201 and the second conductor member 202 come into contact with the movable substrate support member 103 that moves in the direction of the arrow (a) in order to sandwich the material to be etched 105. As the conductor expansion / contraction mechanism 3001 contracts in the direction perpendicular to the substrate surface, that is, in the direction of the arrow (j), the first conductor member 201 and the second conductor member 105 are kept in contact with the conductor expansion / contraction mechanism 3001. The conductor member 202 can be brought into contact.

かかる構成とすることで、第一の導電体部材201と第二の導電体部材202を接触させたまま、第一の導電体部材201と被エッチング材料105を確実に接触させることができ、被エッチング材料105の両面は第二の導電体部材202、第一の導電体部材201、導電体伸縮機構3001を介し電気的に導通する経路を確実に作ることができる。導電体伸縮機構3001の材質としては導電性が高く、弾力性に富み、耐衝撃性に優れた材料でできていることが望ましい。   With this configuration, the first conductor member 201 and the material to be etched 105 can be reliably brought into contact with each other while the first conductor member 201 and the second conductor member 202 are in contact with each other. Both surfaces of the etching material 105 can surely create a path for electrical conduction through the second conductor member 202, the first conductor member 201, and the conductor expansion / contraction mechanism 3001. The material of the conductor expansion / contraction mechanism 3001 is desirably made of a material having high conductivity, high elasticity, and excellent impact resistance.

次に、図5Bは、可動式基板支持部材102と固定式基板支持部材103で被エッチング材料105の内縁を挟持する直前の断面図の他の例を示している。図5Bに示すように第一の導電体部材201が凸型の、第二の導電体接続部材202が凹型の構造をしており、第一の導電体部材201の先端に導電体接続部材106が設置された構造をしている。   Next, FIG. 5B shows another example of a cross-sectional view immediately before the inner edge of the material to be etched 105 is sandwiched between the movable substrate support member 102 and the fixed substrate support member 103. As shown in FIG. 5B, the first conductor member 201 has a convex structure, and the second conductor connecting member 202 has a concave structure, and the conductor connecting member 106 is formed at the tip of the first conductor member 201. The structure is installed.

図5Bに示すように、可動式基板支持部材102と固定式基板支持部材103で被エッチング材料105の内縁を挟持する前に、凸型の第一の導電体部材201に設置された導電体接続部材106が凹型の第二の導電体部材202と接触する構造になっている。その後、被エッチング材料105を挟持するために可動式基板支持部材103が矢印(a)の方向に可動するのに合わせて、凸型の第一の導電体部材201と被エッチング材料105が接触するまで導電体接続部材106が基板面鉛直方向、即ち矢印(k)の方向に縮むことで、導電体接続部材106と凹型の第二の導電体部材202を接触させたまま、凸型の第一の導電体部材201と被エッチング材料105を確実に接触させ、被エッチング材料105を挟持することができる。   As shown in FIG. 5B, before the inner edge of the material to be etched 105 is sandwiched between the movable substrate support member 102 and the fixed substrate support member 103, the conductor connection installed on the convex first conductor member 201 is connected. The member 106 is in contact with the concave second conductor member 202. Thereafter, as the movable substrate support member 103 moves in the direction of the arrow (a) in order to sandwich the material to be etched 105, the convex first conductor member 201 and the material to be etched 105 come into contact with each other. The conductor connecting member 106 is contracted in the vertical direction of the substrate surface, that is, in the direction of the arrow (k), so that the convex first is kept while the conductor connecting member 106 and the concave second conductor member 202 are kept in contact with each other. The conductor member 201 and the material to be etched 105 can be reliably brought into contact with each other, and the material to be etched 105 can be sandwiched.

かかる構成とすることで、導電体接続部材106と凹型の第二の導電体部材202を接触させたまま、凸型の第一の導電体部材201と被エッチング材料105を確実に接触させることができ、被エッチング材料両面は凹型の第二の導電体部材202、導電体接続部材106、凸型の第一の導電体部材201を介し電気的に導通する経路を確実に作ることができる。   With such a configuration, the convex first conductor member 201 and the material to be etched 105 can be reliably brought into contact with the conductor connecting member 106 and the concave second conductor member 202 in contact with each other. In addition, the both surfaces of the material to be etched can surely make a path for electrical conduction through the concave second conductor member 202, the conductor connecting member 106, and the convex first conductor member 201.

尚、凹型の第二の導電体接続部材202上に導電体接続部材106を設置しても構わない。また、第一の導電体部材201が凹型の、第二の導電体部材202が凸型の構造をしていても構わない。   The conductor connecting member 106 may be installed on the concave second conductor connecting member 202. The first conductor member 201 may have a concave structure, and the second conductor member 202 may have a convex structure.

このように、凸型の導電体部材を凹型の導電体部材に挿入する構造とすることで、第一の導電体部材と第二の導電体部材を基板面水平方向にずれることなく、接触させることが可能となる。   As described above, by adopting a structure in which the convex conductor member is inserted into the concave conductor member, the first conductor member and the second conductor member are brought into contact with each other without being displaced in the horizontal direction of the substrate surface. It becomes possible.

本実施例によれば、基板の材質によらず被エッチング材料両面を電気的に導通させるので、基板両面に効率よくエッチング電力を印加することが可能となる。   According to the present embodiment, since both surfaces of the material to be etched are electrically connected regardless of the material of the substrate, it is possible to efficiently apply the etching power to both surfaces of the substrate.

ソース電源及びバイアス電源から被エッチング材料やその両側に形成された一対の電極に対する高周波電力の供給方法は上記実施例の方法に限定されるものではない。   The method of supplying high frequency power from the source power source and the bias power source to the material to be etched and the pair of electrodes formed on both sides thereof is not limited to the method of the above embodiment.

本発明の他の高周波電力の供給方法を図6で説明する。図6は、本発明の第三の実施形態に示すプラズマエッチング装置の断面図である。   Another high frequency power supply method of the present invention will be described with reference to FIG. FIG. 6 is a cross-sectional view of the plasma etching apparatus shown in the third embodiment of the present invention.

本実施例では、ソース電源107が被エッチング材料の両側に形成された一対の電極1002に接続されている。プラズマを生成するためにソース電源107から供給されたソース電力は、一対の電極1002から電磁波として放出される。電極1002と真空容器101の間には絶縁体材料1001が設置されており、電極1002はアースに接続された真空容器101と直接接触しない構造になっている。電極1002には被エッチング材料両面に均一にガスを導入するシャワープレートが設けられており、電極1002の内部に備わったガス導入経路を通り、シャワープレートから被エッチング材料両面に均一に導入されたプロセスガスを、前記電極1002から放出された電磁波でプラズマ化する。   In this embodiment, the source power source 107 is connected to a pair of electrodes 1002 formed on both sides of the material to be etched. Source power supplied from the source power source 107 to generate plasma is emitted from the pair of electrodes 1002 as electromagnetic waves. An insulator material 1001 is installed between the electrode 1002 and the vacuum vessel 101, and the electrode 1002 has a structure that does not directly contact the vacuum vessel 101 connected to the ground. The electrode 1002 is provided with a shower plate that uniformly introduces gas to both surfaces of the material to be etched, passes through the gas introduction path provided in the electrode 1002, and is uniformly introduced from the shower plate to both surfaces of the material to be etched. The gas is turned into plasma by the electromagnetic waves emitted from the electrode 1002.

プラズマ中で発生したイオンを積極的に引き込むためにバイアス電源108から供給されたバイアス電力は、固定式基板支持部材103の内部の高周波伝達経路109、固定式基板支持部材103における被エッチング材料と接触する面に設置された第二の導電体部材、導電体接続部材106、及び可動式基板支持部材102における被エッチング材料と接触する面に設置された第一の導電体部材を通り、被エッチング材料105両面に印加される。このバイアス電力により、プラズマ中のイオンを基板両面に積極的に引き込むことができ、基板両面を一度にエッチングすることが可能となる。   The bias power supplied from the bias power source 108 to actively attract ions generated in the plasma contacts the high-frequency transmission path 109 inside the fixed substrate support member 103 and the material to be etched in the fixed substrate support member 103. The material to be etched passes through the second conductor member installed on the surface to be etched, the conductor connecting member 106, and the first conductor member installed on the surface in contact with the material to be etched in the movable substrate support member 102. 105 is applied to both sides. With this bias power, ions in the plasma can be actively attracted to both surfaces of the substrate, and both surfaces of the substrate can be etched at once.

電極1002の材質としては、導電性やプラズマ耐性が高く、プラズマに長時間さらされても異物や汚染などの要因とならない材質でできていることが望ましい。すなわち、アルミニウム、各種アルミ合金、チタン合金、ステンレス、ボロンドープシリコン等が好ましい。もしくはアルミニウム等の金属表面にアルマイト処理を施したり、アルミナ、イットリア等の溶射膜を形成したりした物も好ましい。   The electrode 1002 is preferably made of a material that has high conductivity and plasma resistance and does not cause foreign matter or contamination even when exposed to plasma for a long time. That is, aluminum, various aluminum alloys, titanium alloys, stainless steel, boron-doped silicon and the like are preferable. Or the thing which performed the alumite process to metal surfaces, such as aluminum, or formed thermal spraying films, such as an alumina and a yttria, is also preferable.

本実施例によれば、基板の材質によらず被エッチング材料両面を電気的に導通させるので、基板両面に効率よくエッチング電力を印加することが可能となる。   According to the present embodiment, since both surfaces of the material to be etched are electrically connected regardless of the material of the substrate, it is possible to efficiently apply the etching power to both surfaces of the substrate.

なお、図6ではプラズマ中に発生したイオンを積極的に被エッチング材料に引き込むため、バイアス電源108よりバイアス電力を印加しているが、これに限定されるものではない。プラズマ中に発生したイオンを積極的に被エッチング材料に引き込む必要がないプラズマ処理をおこなう場合、図7に示すように被エッチング材料105をアースに接続する構造であってもかまわない。   In FIG. 6, bias power is applied from the bias power source 108 in order to positively attract ions generated in the plasma to the material to be etched, but the present invention is not limited to this. In the case of performing plasma processing that does not require the ions generated in the plasma to be actively drawn into the material to be etched, a structure in which the material to be etched 105 is connected to the ground as shown in FIG. 7 may be used.

次に、図8に、本発明の第四の実施形態を示すプラズマエッチング装置の断面図を示す。図8のプラズマエッチング装置は、同一平面上に複数の被エッチング材料を設置することで、複数のエッチング材料を同時にエッチングすることができ、スループットをあげることができる。以下、図8のプラズマエッチング装置について概略を述べる。   Next, FIG. 8 shows a cross-sectional view of a plasma etching apparatus showing a fourth embodiment of the present invention. The plasma etching apparatus in FIG. 8 can etch a plurality of etching materials at the same time by increasing the throughput by providing a plurality of materials to be etched on the same plane. The outline of the plasma etching apparatus of FIG. 8 will be described below.

真空容器101内には上下二段に二つの可動式基板支持部材102とそれらの各々と対向する位置に配置された固定式基板支持部材103が備わっている。各可動式基板支持部材102は真空ベローズ104を通し、真空容器の外に飛出した構造をしており、夫々基板面鉛直方向、つまり矢印(a)の方向に可動できる。可動式基板支持部材102と固定式基板支持部材103の間に夫々被エッチング材料105が挟まれることで機械的に固定される。複数の被エッチング材料105を固定した際、可動式基板支持部材102に設けられた導電体接続部材106により可動式基板支持部材102と固定式基板支持部材103が接続される。ソース電源107から供給されたソース電力は、複数の固定式基板支持部材103内部の高周波伝達経路109、複数の導電体接続部材106を通り、複数の被エッチング材料105両面から電磁波として放出され、被エッチング材料両側の対向する位置に設置されたシャワープレート110から複数の被エッチング材料両面に均一に導入されたプロセスガスは、この電磁波によりプラズマ化される。   The vacuum vessel 101 includes two movable substrate support members 102 in two upper and lower stages and a fixed substrate support member 103 disposed at a position facing each of them. Each movable substrate support member 102 has a structure in which it passes through the vacuum bellows 104 and jumps out of the vacuum vessel, and can be moved in the direction perpendicular to the substrate surface, that is, in the direction of arrow (a). The material to be etched 105 is sandwiched between the movable substrate support member 102 and the fixed substrate support member 103 to be mechanically fixed. When a plurality of materials to be etched 105 are fixed, the movable substrate support member 102 and the fixed substrate support member 103 are connected by the conductor connecting member 106 provided on the movable substrate support member 102. The source power supplied from the source power source 107 passes through the high-frequency transmission paths 109 and the plurality of conductor connecting members 106 inside the plurality of fixed substrate support members 103, and is emitted as electromagnetic waves from both surfaces of the plurality of materials to be etched 105. The process gas uniformly introduced into both surfaces of the plurality of materials to be etched from the shower plate 110 installed at opposite positions on both sides of the etching material is turned into plasma by this electromagnetic wave.

また、バイアス電源108から供給されたバイアス電力は、夫々固定式基板支持部材103内部の高周波伝達経路109、導電体接続部材106を通り、各被エッチング材料105両面に印加される。バイアス電力により各被エッチング材料両面に生成されたプラズマ中のイオンを各エッチング材料に積極的に引き込むことができる。このようにして、複数の被エッチング材料両面を一度にエッチングすることが可能となる。   Further, the bias power supplied from the bias power source 108 is applied to both surfaces of each material to be etched 105 through the high-frequency transmission path 109 and the conductor connecting member 106 inside the fixed substrate support member 103, respectively. Ions in the plasma generated on both surfaces of each material to be etched by the bias power can be actively drawn into each etching material. In this way, it is possible to etch both surfaces of a plurality of materials to be etched at once.

なお、図8ではプラズマ中に発生したイオンを積極的に被エッチング材料に引き込むため、バイアス電源108よりバイアス電力を印加しているが、プラズマ中に発生したイオンを積極的に被エッチング材料に引き込む必要がないプラズマ処理をおこなう場合、バイアス電源108及び第二の整合器113はなくてもよい。この場合、第一の整合器112はソース電源108から供給されたソース電力の反射を抑える機能のみを有する。   In FIG. 8, a bias power is applied from the bias power source 108 in order to actively attract ions generated in the plasma to the material to be etched. However, ions generated in the plasma are actively attracted to the material to be etched. In the case of performing plasma processing that is not necessary, the bias power source 108 and the second matching unit 113 may be omitted. In this case, the first matching unit 112 has only a function of suppressing reflection of source power supplied from the source power supply 108.

図8におけるX−X’断面を図9に示す。図9に示すように、同一平面上に被エッチング材料105(105A〜105D)が上下二段に設置されており、各々の被エッチング材料の内孔にはそれぞれ導電体接続部材106が備わった構造になっている。図9のように同一平面上に複数の被エッチング材料を設置することで、複数のエッチング材料を同時にエッチングすることができる。   FIG. 9 shows an X-X ′ cross section in FIG. As shown in FIG. 9, the material to be etched 105 (105A to 105D) is installed in two upper and lower stages on the same plane, and a conductor connecting member 106 is provided in each inner hole of each material to be etched. It has become. By installing a plurality of materials to be etched on the same plane as shown in FIG. 9, a plurality of etching materials can be etched simultaneously.

第四の実施形態における搬入出室から真空容器101内への被エッチング材料の搬入は、例えば、1つの基板搬送部材を用いて、被エッチング材料105A、105B、105C、105Dの順に搬入する。   In the fourth embodiment, the material to be etched is carried into the vacuum vessel 101 from the carry-in / out chamber, for example, in the order of the materials to be etched 105A, 105B, 105C, and 105D using one substrate transport member.

尚、図9では4枚の被エッチング材料が同平面上に設置しているが、被エッチング材料の数はこれに限られる必要がない。したがって、基板の数に応じて可動式基板支持部材の数、固定式基板支持部材の数、導電体接続部材の数を変更してもよい。   In FIG. 9, four materials to be etched are provided on the same plane, but the number of materials to be etched need not be limited to this. Therefore, the number of movable substrate support members, the number of fixed substrate support members, and the number of conductor connecting members may be changed according to the number of substrates.

なお、図8の例では複数の被エッチング材料内縁にバイアス電力とソース電力の両方を印加しているが、前の実施例に示したとおり、被エッチング材料両側に設置した対向する電極にソース電力を印加することで、複数の被エッチング材料両側にプラズマを生成する構造であっても当然かまわない。   In the example of FIG. 8, both the bias power and the source power are applied to the inner edges of the plurality of materials to be etched. However, as shown in the previous embodiment, the source power is applied to the opposing electrodes provided on both sides of the material to be etched. Of course, the structure may be such that plasma is generated on both sides of a plurality of materials to be etched by applying.

本実施例によれば、複数のエッチング材料を同時にエッチングする場合であっても、各被エッチング材料の両面は一対の導電体と導電体接続部材を介し電気的に導通する経路ができるため、基板両面に効率よくエッチング電力を印加することが可能となる。   According to this embodiment, even when a plurality of etching materials are etched at the same time, both surfaces of each material to be etched can be electrically connected through a pair of conductors and a conductor connecting member. It becomes possible to apply etching power to both surfaces efficiently.

図10に、本発明の第五の実施形態を示すプラズマエッチング装置の断面図を示す。真空容器101内には、可動式基板支持部材102と固定式基板支持部材103で内縁を保持された略円環状の被エッチング材料105が設置される。可動式基板支持部材102と固定式基板支持部材103は回転機構(図示略)により回転可能に構成されている。プラズマを生成するためにソース電源107から供給されたソース電力及び、プラズマ中で発生したイオンを積極的に被エッチング材料に引き込むためにバイアス電源108から供給されたバイアス電力は固定式基板支持部材103の内部の高周波伝達経路109、固定式基板支持部材103における被エッチング材料と接触する面に設置された第二の導電体部材、導電体接続部材106、及び可動式基板支持部材102における被エッチング材料と接触する面に設置された第一の導電体部材を通り被エッチング材料105の表裏両面から電磁波として放出される。   FIG. 10 is a sectional view of a plasma etching apparatus showing the fifth embodiment of the present invention. In the vacuum vessel 101, a substantially annular material to be etched 105 having an inner edge held by a movable substrate support member 102 and a fixed substrate support member 103 is installed. The movable substrate support member 102 and the fixed substrate support member 103 are configured to be rotatable by a rotation mechanism (not shown). The source power supplied from the source power source 107 to generate plasma and the bias power supplied from the bias power source 108 to actively attract ions generated in the plasma to the material to be etched are fixed substrate support member 103. The high-frequency transmission path 109 inside, the second conductor member installed on the surface of the fixed substrate support member 103 that contacts the material to be etched, the conductor connecting member 106, and the material to be etched in the movable substrate support member 102 The electromagnetic wave is emitted from both the front and back surfaces of the material to be etched 105 through the first conductor member installed on the surface in contact with the surface.

前記基板両面から放出された電磁波のうちソース電源から供給されたソース電力はガス噴出口403から基板両面に導入されたプロセスガスをプラズマ化する。図10ではガス噴出孔403は二個設置されているが、基板両面にガスを均一に噴出することができればガス噴出孔403の数は一個でも構わない。また、前記基板両面から放出された電磁波のうちバイアス電源108から供給されたバイアス電力がプラズマ中で生成されたイオンを基板両面に積極的に引き込むことで、基板両面を一度に処理することが可能となる。   Of the electromagnetic waves emitted from both sides of the substrate, the source power supplied from the source power source converts the process gas introduced from the gas outlet 403 to both sides of the substrate into plasma. In FIG. 10, two gas ejection holes 403 are provided, but the number of gas ejection holes 403 may be one as long as gas can be uniformly ejected to both surfaces of the substrate. In addition, it is possible to process both surfaces of the substrate at one time by positively attracting ions generated in the plasma by the bias power supplied from the bias power source 108 to both surfaces of the electromagnetic wave emitted from both surfaces of the substrate. It becomes.

被エッチング材料両面に生成されたプラズマはガス噴出孔403側つまり図10の上部程プラズマ密度が濃くなるが、エッチング中に被エッチング材料を保持した可動式基板支持部材102と固定式基板支持部材103が回転機構により、被エッチング材料面鉛直方向を軸に回転する、つまり矢印(d)の方向に回転することで、被エッチング材料105も矢印(d)の方向に回転し、被エッチング材料面内を均一に加工することができる。   The plasma generated on both surfaces of the material to be etched has a higher plasma density toward the gas ejection hole 403 side, that is, the upper part of FIG. Is rotated about the vertical direction of the material to be etched by the rotation mechanism, that is, by rotating in the direction of arrow (d), the material to be etched 105 is also rotated in the direction of arrow (d). Can be processed uniformly.

本実施例によれば、基板の材質によらず被エッチング材料両面を電気的に導通させることができるので、基板両面に効率よくエッチング電力を印加することが可能となる。   According to this embodiment, both surfaces of the material to be etched can be electrically connected regardless of the material of the substrate, so that it is possible to efficiently apply the etching power to both surfaces of the substrate.

なお、上記各実施例において、固定式基板支持部材103に設置された第二の導電体部材が高周波伝達経路109と接続された構造になっているが、可動式基板支持部材102に設置された第一の導電体接続部材が高周波伝達経路109と接続されている構造であっても構わない。   In each of the above embodiments, the second conductor member installed on the fixed substrate support member 103 is connected to the high-frequency transmission path 109, but is installed on the movable substrate support member 102. A structure in which the first conductor connecting member is connected to the high-frequency transmission path 109 may be used.

図11に、本発明の第六の実施形態を示すプラズマエッチング処理システムの概略図を示す。本実施例は、すでに述べた本発明のいずれかの実施例のエッチング装置を複数用い、基板両面に各種エッチング処理を連続で施すものである。図11は、処理システムを上方から見た状態で概略的に示している。   FIG. 11 is a schematic view of a plasma etching processing system showing the sixth embodiment of the present invention. In this embodiment, a plurality of etching apparatuses according to any of the embodiments of the present invention described above are used, and various etching processes are continuously performed on both surfaces of the substrate. FIG. 11 schematically shows the processing system as viewed from above.

図11を用い、被エッチング材料両面に各種プラズマ処理を連続で施す一例を説明する。プラズマエッチング処理システムは、概略、搬入室1201、第一の処理室1203、第二の処理室1205、第三の処理室1207、搬出室1209から成り立っている。前記各室の相互間にはゲートバルブと基板搬送ロボットを備えた搬送室1202、1204、1206、1208が設けられており、前記各室間の被エッチング材料の移動と各処理室の個別の雰囲気設定を可能としている。   An example in which various plasma treatments are continuously performed on both surfaces of the material to be etched will be described with reference to FIG. The plasma etching processing system generally includes a loading chamber 1201, a first processing chamber 1203, a second processing chamber 1205, a third processing chamber 1207, and a carry-out chamber 1209. Between the chambers, transfer chambers 1202, 1204, 1206, and 1208 having gate valves and a substrate transfer robot are provided, and the movement of the material to be etched between the chambers and the individual atmospheres of the processing chambers are provided. Setting is possible.

被エッチング材料105を大気雰囲気の搬入室1201にセットすると、搬入室内が減圧され、ゲートバルブ1202が開く。被エッチング材料は基板搬送ロボットにより搬送室1202を経て第一の処理室1203に搬入される。第一の処理室1203ではレジスト直下に形成された反射防止膜の除去、レジスト直下に形成されたベース層の除去、レジストトリミング等のレジストマスクを所定の形状に加工するプロセスが行われる。第一の処理室1203で所定の加工が行われた被エッチング材料105は搬送室1204を通り、第二の処理室1205に搬入される。第二の処理室1205では例えば磁性膜やSiN、SiO等の膜をマスク形状に合わせて加工する。第二の処理室で所定の加工を行った被エッチング材料は搬送室1206を通り、第三の処理室1207に搬入される。 When the material to be etched 105 is set in the carry-in chamber 1201 in the atmosphere, the carry-in chamber is depressurized and the gate valve 1202 is opened. The material to be etched is carried into the first treatment chamber 1203 through the transfer chamber 1202 by the substrate transfer robot. In the first processing chamber 1203, a process of processing the resist mask into a predetermined shape, such as removal of the antireflection film formed immediately below the resist, removal of the base layer formed immediately below the resist, and resist trimming, is performed. The etching target material 105 that has been subjected to predetermined processing in the first treatment chamber 1203 passes through the transfer chamber 1204 and is carried into the second treatment chamber 1205. In the second treatment chamber 1205, for example, a magnetic film, a film of Si 3 N 4 , SiO 2 or the like is processed according to the mask shape. The material to be etched that has undergone predetermined processing in the second treatment chamber passes through the transfer chamber 1206 and is carried into the third treatment chamber 1207.

第三の処理室1207では、被エッチング材料に付着した塩素等のプロセスガスの除去、エッチング中に付着した反応性生物の除去、レジスト、ハードマスクの除去等のプロセスを行う。第三の処理室1207で所定の加工が行われた被エッチング材料105は基板搬送ロボットにより搬送室1208を経て搬出室1209に搬出される。搬出室では減圧雰囲気から大気雰囲気に戻された後、大気中に取り出される。各処理室で行われるプロセスにおいてバイアス電力が必要ない場合、バイアス電源118及び第二の整合器113はなくてもよい。   In the third treatment chamber 1207, processes such as removal of process gas such as chlorine attached to the material to be etched, removal of reactive organisms attached during etching, removal of resist and hard mask are performed. The to-be-etched material 105 that has been subjected to predetermined processing in the third treatment chamber 1207 is carried out to the carry-out chamber 1209 through the transfer chamber 1208 by the substrate transfer robot. In the carry-out chamber, the air is returned from the reduced pressure atmosphere to the air atmosphere and then taken out into the air. If the bias power is not required in the process performed in each processing chamber, the bias power supply 118 and the second matching unit 113 may be omitted.

なお、図11では3つの処理室を用い連続処理するシステム構成を記載したが、処理室の数、各処理室で行う処理工程については特に限定しない。つまり、図11では被処理基板に各種エッチングを施すプロセスのみを述べたが、処理室の内壁についた反応生成物を除去するプロセスや、ある処理室でスパッタ等の成膜をおこなうプロセスを導入しても構わない。   Note that although FIG. 11 illustrates a system configuration in which continuous processing is performed using three processing chambers, the number of processing chambers and the processing steps performed in each processing chamber are not particularly limited. That is, although only the process of performing various etchings on the substrate to be processed is described in FIG. 11, a process for removing reaction products on the inner wall of the processing chamber and a process for forming a film such as sputtering in a certain processing chamber are introduced. It doesn't matter.

また、複数の処理室をシリーズに接続する代わりに、これらの処理室を共通の搬送室の周囲に放射状に配置した構成とし、これら複数の処理室で順次処理を行なうようにしても差し支えない。   Further, instead of connecting a plurality of processing chambers in series, the processing chambers may be arranged radially around a common transfer chamber, and processing may be sequentially performed in the plurality of processing chambers.

さらに、本実施例の処理システムは、前記に述べたレジスト処理、ハードマスクのエッチング、磁性膜加工、アッシング等の処理を同一の処理室で連続しておこなうことも可能である。この場合、必要であれば処理室内側壁についてデポ物の除去等、処理室のコンディションを整えるための処理工程を入れても構わない。   Furthermore, the processing system of the present embodiment can also perform the processing such as resist processing, hard mask etching, magnetic film processing, and ashing described above continuously in the same processing chamber. In this case, if necessary, a processing step for adjusting the condition of the processing chamber, such as removal of deposits, may be performed on the side wall of the processing chamber.

本実施例によれば、基板の材質によらず被エッチング材料両面を電気的に導通させるので、基板両面に各種エッチング処理を連続で施す場合でも、基板両面に効率よくエッチング電力を印加することが可能となる。   According to the present embodiment, both surfaces of the material to be etched are electrically connected regardless of the material of the substrate, so that etching power can be efficiently applied to both surfaces of the substrate even when various etching processes are continuously performed on both surfaces of the substrate. It becomes possible.

図1に記載したプラズマエッチング装置は被エッチング材料をチャンバー内に縦置きに配置しているが、図12に示すように、図1と同様の装置構成で被エッチング材料をチャンバー内に横置きに配置した装置構成にしてもよい。同様に、図6、図7、図8、図10、図11に記載したプラズマエッチング装置も全て、チャンバー内に被エッチング材料を横置きに配置した構成にしても構わない。   In the plasma etching apparatus shown in FIG. 1, the material to be etched is arranged vertically in the chamber, but as shown in FIG. 12, the material to be etched is placed horizontally in the chamber with the same apparatus configuration as in FIG. You may make it the arrangement | positioning apparatus structure. Similarly, all of the plasma etching apparatuses described in FIGS. 6, 7, 8, 10, and 11 may be configured such that the material to be etched is arranged horizontally in the chamber.

次に、本発明の第八の実施形態として、すでに述べた本実施例の処理装置を用いた磁気記録媒体の製造方法、すなわち被処理基板の両面に凹凸パターンを作製するパターンドメディアの製造方法を説明する。図13に、多層磁性膜にトラックピッチもしくはビット周期に対応する周期的な凹凸パターンを作製し、パターンドメディアを作製するまでの第一のプロセス工程を表す概略図を示す。   Next, as an eighth embodiment of the present invention, a method of manufacturing a magnetic recording medium using the processing apparatus of the present example described above, that is, a method of manufacturing a patterned medium for forming a concavo-convex pattern on both surfaces of a substrate to be processed Will be explained. FIG. 13 is a schematic diagram showing a first process step from the production of a periodic concavo-convex pattern corresponding to the track pitch or bit period to the multilayer magnetic film to the production of patterned media.

まず、アルミやガラス等の材料でできた基板2001の両面に多層磁性膜2002を堆積させ、その上にハードマスク2003を堆積させる(ステップ1)。多層磁性膜2002はCo、Cr、Pt、Ni、Fe、Ta、B、W、SiO等の材料でできており、ハードマスク2003はTi、Ta、TiN、SiO、SiN、あるいはAlO等の材料でできている。 First, a multilayer magnetic film 2002 is deposited on both surfaces of a substrate 2001 made of a material such as aluminum or glass, and a hard mask 2003 is deposited thereon (step 1). The multilayer magnetic film 2002 is made of a material such as Co, Cr, Pt, Ni, Fe, Ta, B, W, and SiO 2 , and the hard mask 2003 is Ti, Ta, TiN, SiO 2 , Si 3 N 4 , or It is made of a material such as Al 2 O 3 .

その後、フォトリソグラフィー、電子線描画、極端紫外線露光、ナノインプリント法等を用いて、ハードマスク2003上にトラックピッチもしくはビット周期に対応する周期的なレジストパターン2004を作製する(ステップ2)。   Thereafter, a periodic resist pattern 2004 corresponding to a track pitch or a bit period is formed on the hard mask 2003 by using photolithography, electron beam drawing, extreme ultraviolet exposure, nanoimprint method, or the like (step 2).

次に、レジストパターン2004を用いて基板2001の両面のハードマスク2003と多層磁性膜2002を所定のパターンにエッチングする。その後、レジストパターン2004とハードマスク2003を除去し、基板2001両面の多層磁性膜2002に所定の凹凸パターンを作製する(ステップ3)。   Next, the hard mask 2003 and the multilayer magnetic film 2002 on both surfaces of the substrate 2001 are etched into a predetermined pattern using the resist pattern 2004. Thereafter, the resist pattern 2004 and the hard mask 2003 are removed, and a predetermined concavo-convex pattern is formed on the multilayer magnetic film 2002 on both surfaces of the substrate 2001 (step 3).

次に、SiOなどの非磁性材料2005で多層磁性膜2002に作製された凹凸パターンの溝を平坦化し、ダイヤモンドライクカーボン、SiO、Cr膜などの保護膜2006と潤滑層2007を堆積させ、基板両面に周期的な凹凸パターンを有するパターンドメディアができる(ステップ4)。 Next, the groove of the concavo-convex pattern formed on the multilayer magnetic film 2002 with a nonmagnetic material 2005 such as SiO 2 is flattened, and a protective film 2006 such as diamond-like carbon, SiO 2 , Cr film and the lubricating layer 2007 are deposited, A patterned medium having a periodic uneven pattern on both sides of the substrate is produced (step 4).

上記ステップ2で作成された被エッチング材料の両面に、上記ステップ3において、所定のレジストパターン2004を用いてエッチングを行い、多層磁性膜2002または下地層2008に所定の凹凸パターンを作製する際に、前記した各実施例のプラズマエッチング装置を用い、被エッチング材料にソース電力及びバイアス電力を供給するための導電体部材を被エッチング材料表面の内縁に接触させ、該導電体部材から被エッチング材料表面にバイアス電力及びソース電力を印加することでプラズマエッチングを行う。   When both surfaces of the material to be etched created in Step 2 are etched using the predetermined resist pattern 2004 in Step 3 above to form a predetermined uneven pattern in the multilayer magnetic film 2002 or the underlayer 2008, Using the plasma etching apparatus of each of the embodiments described above, a conductor member for supplying source power and bias power to the material to be etched is brought into contact with the inner edge of the surface of the material to be etched, and the surface of the material to be etched is transferred from the conductor member. Plasma etching is performed by applying bias power and source power.

本実施例によれば、基板両面にエッチング処理により凹凸パターンを作製するステップにおいて、ガラス等の絶縁性材料からなる基板の両面上に多層磁性膜を堆積させてパターンドメディアを政策する場合でも、被エッチング材料両面を電気的に導通させるので、パターンドメディアを精度良くかつ効率的に製造することが可能となる。   According to the present embodiment, in the step of forming the concavo-convex pattern by etching on both sides of the substrate, even when the patterned media is policyd by depositing a multilayer magnetic film on both sides of the substrate made of an insulating material such as glass, Since both surfaces of the material to be etched are electrically connected, the patterned medium can be manufactured with high accuracy and efficiency.

本実施例の処理装置を用いた磁気記録媒体すなわちパターンドメディアの他の製造方法を説明する。   Another method for manufacturing a magnetic recording medium, that is, a patterned medium using the processing apparatus of this embodiment will be described.

図14に、多層磁性膜に凹凸パターンを作製し、パターンドメディアを作製するまでの第二のプロセス工程を表す概略図を示す。   FIG. 14 is a schematic view showing a second process step from producing a concavo-convex pattern in a multilayer magnetic film to producing patterned media.

まず、アルミやガラス等の材料でできた基板2001の上面側の全面にわたり高電気伝導膜2105を堆積させ、さらにその上に全面にわたり下地層2008を堆積させる。さらにその上にトラックピッチもしくはビット周期に対応する周期的なレジストパターン2004を作製する(ステップ1)。高電気伝導膜2105は電気伝導度が高く、ガラスとの密着性がよい材料でできていることが望ましい。具体例を挙げると、Al、Co、Cr、Cu、Fe、Mg、Mo、Ni、W、Taのいずれかもしくはそれらの合金が望ましい。下地層2008はSiN、SiO等の材料でできていることが望ましい。 First, the high electrical conductive film 2105 is deposited over the entire upper surface of the substrate 2001 made of a material such as aluminum or glass, and then the underlying layer 2008 is deposited over the entire surface. Further, a periodic resist pattern 2004 corresponding to the track pitch or bit period is formed thereon (step 1). The high electrical conductive film 2105 is preferably made of a material having high electrical conductivity and good adhesion to glass. Specifically, any one of Al, Co, Cr, Cu, Fe, Mg, Mo, Ni, W, Ta or an alloy thereof is desirable. The underlayer 2008 is preferably made of a material such as Si 3 N 4 or SiO 2 .

その後、レジストパターン2004を用いて、下地層2008をエッチングした後、レジストパターン2004を除去し、下地層2008に所定の凹凸パターンを作製する(ステップ2)。なお、図示した例では、下地層2008の非マスク部を下地層2008の途中までエッチングしているが、下地層2008の非マスク部の全てをエッチングしても構わない。   Thereafter, the base layer 2008 is etched using the resist pattern 2004, and then the resist pattern 2004 is removed to form a predetermined uneven pattern on the base layer 2008 (step 2). In the illustrated example, the non-mask portion of the base layer 2008 is etched partway through the base layer 2008, but the entire non-mask portion of the base layer 2008 may be etched.

次に、周期的な凹凸パターンが作製された下地層2008に、多層磁性膜2002を堆積させ、この多層磁性膜2002に凹凸パターンを作製する(ステップ3)。   Next, the multilayer magnetic film 2002 is deposited on the underlayer 2008 on which the periodic uneven pattern is formed, and the uneven pattern is formed on the multilayer magnetic film 2002 (step 3).

その後、SiOなどの非磁性材料2005で多層磁性膜2002及び下地層2008に作製された凹凸パターンの溝を平坦化し、ダイヤモンドライクカーボン、SiO、Cr膜などの保護膜2006と潤滑層2007を堆積させ、パターンドメディアができる(ステップ4)。 Thereafter, the grooves of the uneven pattern formed on the multilayer magnetic film 2002 and the base layer 2008 is flattened by a non-magnetic material 2005 such as SiO 2, diamond-like carbon, a protective film 2006 and the lubricating layer 2007 such as SiO 2, Cr film Deposited to form patterned media (step 4).

上記ステップ1で作成された被エッチング材料の両面に、ステップ2において、作製した所定のレジストパターン2004を用いてエッチングを行い、多層磁性膜2002または下地層2008に所定の凹凸パターンを作製する際に、前記した各実施例のプラズマエッチング装置を用い、被エッチング材料にソース電力及びバイアス電力を供給するための導電体部材を被エッチング材料表面の内縁に接触させ、該導電体部材から被エッチング材料表面にバイアス電力及びソース電力を印加することでプラズマエッチングを行う。   When both surfaces of the material to be etched created in the above step 1 are etched using the predetermined resist pattern 2004 prepared in step 2 to form a predetermined uneven pattern in the multilayer magnetic film 2002 or the underlayer 2008. Using the plasma etching apparatus of each of the embodiments described above, a conductor member for supplying source power and bias power to the material to be etched is brought into contact with the inner edge of the surface of the material to be etched, and the surface of the material to be etched is transferred from the conductor member. Plasma etching is performed by applying a bias power and a source power to.

本実施例によれば、基板両面にエッチング処理により凹凸パターンを作製するステップにおいて、基板の材質によらず被エッチング材料両面を電気的に導通させるので、パターンドメディアを精度良くかつ効率的に製造することが可能となる。   According to the present embodiment, in the step of forming the concavo-convex pattern on both sides of the substrate by etching, both sides of the material to be etched are electrically connected regardless of the material of the substrate, so that the patterned media can be manufactured accurately and efficiently. It becomes possible to do.

次に、前記実施例、特に前記実施例8乃至実施例9に示したエッチング処理に際して、導電体部材を被エッチング材料表面の内縁に接触させ、該導電体部材から被エッチング材料表面にバイアス電力及びソース電力を印加する方法において、該導電体部材から被エッチング材料表面に効率よく電力を印加し、レジストから発生する異物を低減させる方法について、説明する。   Next, in the etching process shown in the above-described embodiment, particularly in Embodiments 8 to 9, the conductor member is brought into contact with the inner edge of the surface of the material to be etched, and bias power and In the method of applying source power, a method of efficiently applying power from the conductor member to the surface of the material to be etched to reduce foreign matter generated from the resist will be described.

前記各実施例では導電体部材を被エッチング材料表面の内縁に接触させ、被エッチング材料表面の内縁の導電体部材から被エッチング材料表面全体にバイアス電力及びソース電力を印加する方法を記載したが、本発明はこれに限定されるものではない。   In each of the above embodiments, the method has been described in which the conductor member is brought into contact with the inner edge of the surface of the material to be etched, and the bias power and the source power are applied to the entire surface of the material to be etched from the conductor member on the inner edge of the surface of the material to be etched. The present invention is not limited to this.

導電体部材を被エッチング材料表面に接触させ、該導電体部材と被エッチング材料表面の導電体部材から被エッチング材料にバイアス電力及びソース電力を印加する方法であれば、その接触場所は内縁に限定せず適応可能である。   If the conductor member is brought into contact with the surface of the material to be etched and bias power and source power are applied to the material to be etched from the conductor member and the conductor member on the surface of the material to be etched, the contact location is limited to the inner edge. It is possible to adapt without.

以下、図13の(ステップ3)の導電体部材を被エッチング材料表面に接触させ、該導電体部材と被エッチング材料表面の導電体部材から被エッチング材料にバイアス電力及びソース電力を供給するエッチングプロセスについて説明する。   Hereinafter, an etching process in which the conductor member of FIG. 13 (step 3) is brought into contact with the surface of the material to be etched and bias power and source power are supplied to the material to be etched from the conductor member and the conductor member on the surface of the material to be etched. Will be described.

図15の(A)に示した本実施例は、所定のパターンが形成されたレジストパターン2004を用い、Ti、Ta、TiN、SiO、SiN、あるいはAlO等の材料でできたハードマスク2003を加工した後、Co、Cr、Pt、Ni、Fe、Ta、B、W、SiO等の材料でできた多層磁性膜2002を加工する場合に、導電体部材2102から被エッチング材料にバイアス電力及びソース電力を効率よく印加し、レジストから発生する異物を低減させる方法である。 This embodiment shown in FIG. 15A uses a resist pattern 2004 on which a predetermined pattern is formed, and is made of a material such as Ti, Ta, TiN, SiO 2 , Si 3 N 4 , or Al 2 O 3. After processing the resulting hard mask 2003, when processing the multilayer magnetic film 2002 made of a material such as Co, Cr, Pt, Ni, Fe, Ta, B, W, SiO 2 , In this method, bias power and source power are efficiently applied to the etching material to reduce foreign matter generated from the resist.

導電体部材2102と接触させるハードマスク2003上部に形成されたレジスト2004は、図13のステップ2のレジストパターンを作製する工程で除去される。そのため、ハードマスク2003と導電体部材2102を直接接触させた状態でエッチングすることができる。   The resist 2004 formed on the top of the hard mask 2003 to be brought into contact with the conductor member 2102 is removed in the step of producing a resist pattern in Step 2 of FIG. Therefore, the etching can be performed in a state where the hard mask 2003 and the conductor member 2102 are in direct contact with each other.

絶縁体であるレジストと導電体接続部材を直接接触させた状態で高周波電力を印加した場合、導電体部材と接触したレジストが加熱され、加熱により変質したレジストが異物となり、処理室及び被エッチング材料を汚染するが、前記したように導電体部材と接触するレジスト2004をエッチング前に取り除き、導電体部材とレジストを直接接触させないことで、導電体部材でのレジストの加熱をなくし、レジストが異物源となることを防ぐことができる。   When high-frequency power is applied in a state where the resist that is an insulator and the conductor connecting member are in direct contact with each other, the resist that is in contact with the conductor member is heated, and the resist altered by the heating becomes a foreign substance, and the processing chamber and the material to be etched As described above, the resist 2004 in contact with the conductor member is removed before etching, and the conductor member and the resist are not brought into direct contact with each other, thereby eliminating the heating of the resist on the conductor member. Can be prevented.

導電体部材と接触するハードマスク2003上部に形成されたレジスト2004をプラズマ処理する前に予め除去する方法としては、フォトリソグラフィー、電子線描画、極端紫外線露光によりレジストパターンを作製する場合は前記接触部のレジストを露光後の現像工程で同時に除去できるように露光するのが望ましい。ナノインプリント法によりレジストパターンを作製した場合も、導電体部材と接触するハードマスク2003上部に形成されたレジストをプラズマ処理する前に予め除去する工程を導入することが望ましいが、新たに工程を導入することが難しい場合は前記接触部のレジスト膜厚をできるだけ薄くし、接触部のレジストの抵抗を低減させる構造にしてもかまわない。   As a method of removing the resist 2004 formed on the hard mask 2003 in contact with the conductor member in advance before the plasma treatment, the contact portion may be used when a resist pattern is formed by photolithography, electron beam drawing, or extreme ultraviolet exposure. It is desirable that the resist be exposed so that it can be removed simultaneously in the development step after exposure. Even when a resist pattern is produced by the nanoimprint method, it is desirable to introduce a step of removing the resist formed on the hard mask 2003 in contact with the conductor member in advance before plasma processing, but a new step is introduced. If this is difficult, the resist film thickness at the contact portion may be made as thin as possible to reduce the resistance of the resist at the contact portion.

ハードマスク2003の材料は、ハードマスクの抵抗を低減させるためTi、Ta、TiN等の導電体材料でできていることが望ましい。また、ハードマスクの材料にSiO、SiN、AlO等の絶縁体材料を用いた場合は、多層磁性膜2002に効率よく高周波電力を印加するため、ハードマスクの厚さを数百ナノメートル以下にしなければならない。 The material of the hard mask 2003 is preferably made of a conductive material such as Ti, Ta, or TiN in order to reduce the resistance of the hard mask. In addition, when an insulating material such as SiO 2 , Si 3 N 4 , Al 2 O 3 is used as the hard mask material, the thickness of the hard mask is reduced in order to efficiently apply high-frequency power to the multilayer magnetic film 2002. Must be less than a few hundred nanometers.

導電体部材2102の側面は、耐熱ガラス、石英、アルミナ、ジルコニア、窒化シリコン、ポリイミド樹脂などの絶縁体材料でできた絶縁体カバー2103で覆われており、バイアス電力及びソース電力の印加された導電体部材2102がプラズマと直接接触するのを防ぐことができる。   The side surface of the conductor member 2102 is covered with an insulator cover 2103 made of an insulator material such as heat-resistant glass, quartz, alumina, zirconia, silicon nitride, polyimide resin, etc., and is electrically conductive to which bias power and source power are applied. The body member 2102 can be prevented from coming into direct contact with the plasma.

本実施例によれば、導電体部材から被エッチング材料表面に効率よく高周波電力を印加し、レジストから発生する異物を低減することができる。   According to the present embodiment, high frequency power can be efficiently applied from the conductor member to the surface of the material to be etched, and foreign matters generated from the resist can be reduced.

なお、被エッチング材料に効率よくバイアス電力及びソース電力を印加し、レジストから発生する異物を低減させる方法としては、導電体部材と接触するハードマスク2003上部に形成されたレジストを残したままで行う方法もある。すなわち、図15の(B)に示すように、導電体部材2102上に針状の導電体突起物2104が形成されており、該導電体突起物2104がレジスト2004を貫通することでハードマスク2003と接触する構造であってもよい。導電体突起物2104はレジスト材を貫通する強度を出すため、突起物の回りをSiCやダイヤモンドライクカーボンでコーティングしてあることが望ましい。この場合、ハードマスク2003と接触する導電体突起物2104の先端はコーティングを除去しており導電体突起物2104とハードマスク2003が電気的に導通していなければならない。なお、導電体突起物2104はレジスト2004を貫通することができれば、その形状は問わない。   Note that as a method for efficiently applying bias power and source power to the material to be etched to reduce foreign matter generated from the resist, a method is performed in which the resist formed on the hard mask 2003 in contact with the conductor member is left. There is also. That is, as shown in FIG. 15B, needle-like conductor protrusions 2104 are formed on the conductor member 2102, and the conductor protrusions 2104 penetrate the resist 2004 so that the hard mask 2003 is formed. The structure which contacts with may be sufficient. The conductor protrusions 2104 are preferably coated with SiC or diamond-like carbon around the protrusions in order to give strength to penetrate the resist material. In this case, the coating is removed from the tip of the conductor protrusion 2104 that contacts the hard mask 2003, and the conductor protrusion 2104 and the hard mask 2003 must be electrically connected. Note that the conductor protrusion 2104 may have any shape as long as it can penetrate the resist 2004.

また、上記コーティングにより、高周波電力がレジストに印加されるのを防ぎ、高周波電力によりレジストが加熱され、レジストから異物が発生することを防ぐことができる。つまり、上記、導電体部材2102上に導電体突起物2104を形成することで、導電体部材2102と接触するハードマスク2003上部に形成されたレジストを除去しなくても被エッチング材料に効率よくバイアス電力及びソース電力を印加し、レジストから発生する異物を低減させることができる。   In addition, the coating can prevent high-frequency power from being applied to the resist, and the resist can be heated by the high-frequency power and foreign matter can be prevented from being generated from the resist. That is, by forming the conductor protrusion 2104 on the conductor member 2102, the material to be etched can be efficiently biased without removing the resist formed on the hard mask 2003 in contact with the conductor member 2102. By applying power and source power, foreign substances generated from the resist can be reduced.

次に、図16の(A)、(B)により、図14のステップ2の導電体部材を被エッチング材料表面に接触させ、該導電体部材と被エッチング材料表面の導電体部材から被エッチング材料にバイアス電力及びソース電力を供給するエッチングプロセスにおいて、被エッチング材料に効率よく高周波電力を印加し、レジストから発生する異物を低減させる方法について、説明する。   Next, according to FIGS. 16A and 16B, the conductor member of Step 2 in FIG. 14 is brought into contact with the surface of the material to be etched, and the material to be etched is transferred from the conductor member and the conductor member on the surface of the material to be etched. In the etching process for supplying bias power and source power to the substrate, a method for efficiently applying high frequency power to the material to be etched and reducing foreign matter generated from the resist will be described.

すなわち、図14のステップ2の導電体部材2102を被エッチング材料表面に接触させ、該導電体部材と被エッチング材料表面の導電体部材から被エッチング材料にバイアス電力及びソース電力を供給するエッチングプロセスにおいて、所定のパターンが形成されたレジストパターン2004を用い、SiN、SiO等の下地層2008を加工する場合に、該導電体部材と被エッチング材料表面の導電体部材から被エッチング材料にバイアス電力及びソース電力を効率よく印加する方法について、説明する。 That is, in the etching process in which the conductor member 2102 in step 2 of FIG. 14 is brought into contact with the surface of the material to be etched, and bias power and source power are supplied from the conductor member and the conductor member on the surface of the material to be etched to the material to be etched. When a base layer 2008 such as Si 3 N 4 or SiO 2 is processed using a resist pattern 2004 on which a predetermined pattern is formed, the conductor member and the conductor member on the surface of the material to be etched are changed into the material to be etched. A method for efficiently applying the bias power and the source power will be described.

ここでは、導電体部材2102と接触させる下地層2008の上部に形成されたレジスト2004は、図14(ステップ1)のレジストパターンを作製する工程で除去してあるものとする。こうすることで、高周波電力によりレジストが加熱され、レジストが異物源となることを防ぐことができる。   Here, it is assumed that the resist 2004 formed on the base layer 2008 to be in contact with the conductor member 2102 has been removed in the step of producing the resist pattern in FIG. 14 (Step 1). By doing so, it is possible to prevent the resist from being heated by the high frequency power and the resist from becoming a source of foreign matter.

まず、図16の(A)で比較例を説明する。図16の(A)に示すように、基板2001の材質にアルミニウム等の導電性材料を用いた場合、図14(ステップ2)の工程で、下地層2008と導電体部材2102を直接接触させた状態で基板2001を通る電気的な経路(矢印(f))を通り、基板全面に効率よく高周波電力を印加することができる。   First, a comparative example will be described with reference to FIG. As shown in FIG. 16A, when a conductive material such as aluminum is used as the material of the substrate 2001, the base layer 2008 and the conductor member 2102 are brought into direct contact in the step of FIG. 14 (Step 2). In this state, high-frequency power can be efficiently applied to the entire surface of the substrate through an electrical path (arrow (f)) passing through the substrate 2001.

しかし、基板2001の材質にガラス等の絶縁体材料を用いた場合は、電気的な経路(矢印(f))が形成されない。さらに、下地層(被エッチング材料)2008がSiN、SiO等の絶縁体材料であるため、導電体部材2102を下地層2008の表面に接触させても、下地層を通る電気的な経路(矢印(e))も形成されない。そのため、図14(ステップ2)の工程で、基板全面に効率よく高周波電力を印加できなくなる。 However, when an insulating material such as glass is used as the material of the substrate 2001, an electrical path (arrow (f)) is not formed. Furthermore, since the base layer (material to be etched) 2008 is an insulator material such as Si 3 N 4 , SiO 2 , even if the conductor member 2102 is brought into contact with the surface of the base layer 2008, the electrical property that passes through the base layer A path (arrow (e)) is not formed either. For this reason, in the process of FIG. 14 (step 2), high-frequency power cannot be efficiently applied to the entire surface of the substrate.

これに対し、図16の(B)に、基板2001の材質にガラス等の絶縁体材料を用いた場合でも、図14(ステップ2)の工程で、基板全面に効率よく高周波電力を印加する方法を示す。   In contrast, even in the case where an insulating material such as glass is used as the material of the substrate 2001 in FIG. 16B, a method of efficiently applying high-frequency power to the entire surface of the substrate in the step of FIG. 14 (Step 2). Indicates.

すなわち、図16の(B)に示すように、基板2001の全面に高電気伝導膜2105を設けることで、電気的な経路(矢印(h))が形成されない場合でも、高電気伝導膜2105を通る電気的な経路(矢印(g))を作ることができる。この場合、下地層2008の厚さが薄い(数百ナノメートル以下)ため、基板2001の材質にガラス等の絶縁体材料を用いた場合でも、導電体部材2102を下地層2008の表面に接触させて、高電気伝導膜2105の電気的な経路矢印(g)を通り、基板全面に効率よく高周波電力を印加することが可能となる。高電気伝導膜2105は、図14(ステップ1)の工程で基板2001と下地層2008の間に作製する。   That is, as shown in FIG. 16B, by providing the high electrical conductive film 2105 over the entire surface of the substrate 2001, the high electrical conductive film 2105 can be formed even when the electrical path (arrow (h)) is not formed. An electrical path through (arrow (g)) can be created. In this case, since the thickness of the base layer 2008 is thin (several hundred nanometers or less), even when an insulating material such as glass is used as the material of the substrate 2001, the conductor member 2102 is brought into contact with the surface of the base layer 2008. Thus, high-frequency power can be efficiently applied to the entire surface of the substrate through the electrical path arrow (g) of the high electrical conductive film 2105. The high electrical conductive film 2105 is formed between the substrate 2001 and the base layer 2008 in the process of FIG. 14 (Step 1).

本実施例によれば、基板両面にエッチング処理により凹凸パターンを作製するステップにおいて、基板の材質によらず被エッチング材料両面を電気的に導通させるので、パターンドメディアを精度良くかつ効率的に製造することが可能となる。   According to the present embodiment, in the step of forming the concavo-convex pattern on both sides of the substrate by etching, both sides of the material to be etched are electrically connected regardless of the material of the substrate, so that the patterned media can be manufactured accurately and efficiently. It becomes possible to do.

尚、実施例では多層磁性膜への適用について説明したが、本発明は、導電体部材を被エッチング材料表面に接触させバイアス電力及びソース電力を被エッチング材料に印加するプロセスであれば、エッチング対象は多層磁性膜に限らず適応可能である。   In the embodiment, the application to the multilayer magnetic film has been described. However, the present invention is applicable to etching as long as it is a process in which a conductor member is brought into contact with the surface of the material to be etched and bias power and source power are applied to the material to be etched. Is applicable not only to multilayer magnetic films.

本発明の第一の実施例を表す平板アンテナ型のプラズマエッチング装置の縦断面図である。It is a longitudinal cross-sectional view of the flat plate type plasma etching apparatus showing the first embodiment of the present invention. 図1の基板支持部材部分の横断面図である。It is a cross-sectional view of the board | substrate support member part of FIG. 第一の実施例において、可動式基板支持部材と固定式基板支持部材で被エッチング材料を挟持した際の断面の拡大図である。FIG. 5 is an enlarged view of a cross section when a material to be etched is sandwiched between a movable substrate support member and a fixed substrate support member in the first embodiment. 図3Aの状態における導電体接続部材を被エッチング材料の横方向から見た拡大図である。It is the enlarged view which looked at the conductor connection member in the state of FIG. 3A from the horizontal direction of the to-be-etched material. 図1の一対の導電体で被エッチング材料を挟持する直前の断面図である。FIG. 2 is a cross-sectional view immediately before a material to be etched is sandwiched between a pair of conductors in FIG. 1. 第一の実施例において、被エッチング材料を搬入室から真空容器内へ搬送し、図1の状態にする各ステップを示す図である。In a 1st Example, it is a figure which shows each step which conveys to-be-etched material from a carrying-in chamber into a vacuum vessel, and makes it the state of FIG. 本発明の他の実施例になる第一の導電体部材及び第二の導電体接続部材を示す断面図である。It is sectional drawing which shows the 1st conductor member and 2nd conductor connection member which become the other Example of this invention. 本発明の他の実施例になる第一の導電体部材及び第二の導電体接続部材を示す断面図である。It is sectional drawing which shows the 1st conductor member and 2nd conductor connection member which become the other Example of this invention. 本発明の他の実施例を表すプラズマエッチング装置の断面図である。It is sectional drawing of the plasma etching apparatus showing the other Example of this invention. 本発明の他の実施例になるプラズマエッチング装置の断面図である。It is sectional drawing of the plasma etching apparatus which becomes another Example of this invention. 本発明の他の実施例を表すプラズマエッチング装置の断面図である。It is sectional drawing of the plasma etching apparatus showing the other Example of this invention. 図8のX−X’断面図である。It is X-X 'sectional drawing of FIG. 本発明の他の実施例を表すプラズマエッチング装置の断面図である。It is sectional drawing of the plasma etching apparatus showing the other Example of this invention. 本発明の他の実施例を表すプラズマエッチング処理システム概念図である。It is a plasma etching processing system conceptual diagram showing other examples of the present invention. 被エッチング材料を縦方向に設置した本発明の他の実施例になるプラズマエッチング装置の断面図である。It is sectional drawing of the plasma etching apparatus used as the other Example of this invention which installed the to-be-etched material in the vertical direction. 本発明の装置を用いて、多層磁性膜に凹凸パターンを作製し、パターンドメディアを作製するためのプロセス工程の概略図である。It is the schematic of the process process for producing an uneven | corrugated pattern in a multilayer magnetic film using the apparatus of this invention, and producing a patterned media. 本発明の他の実施例になる、多層磁性膜に凹凸パターンを作製し、パターンドメディアを作製するためのプロセス工程の概略図である。It is the schematic of the process process for producing an uneven | corrugated pattern in the multilayer magnetic film and producing a patterned media which become another Example of this invention. 図13のエッチングプロセスにおける、導電体部材を被エッチング材料表面の内縁付近に接触させる方法について、説明する図である。It is a figure explaining the method of making a conductor member contact the inner edge vicinity of the to-be-etched material surface in the etching process of FIG. 図14のエッチングプロセスにおける、導電体部材を被エッチング材料表面の内縁付近に接触させる本発明の他の実施例を説明する図である。FIG. 15 is a diagram for explaining another embodiment of the present invention in which the conductor member is brought into contact with the vicinity of the inner edge of the surface of the material to be etched in the etching process of FIG. 従来例になる基板支持部材の断面図である。It is sectional drawing of the board | substrate support member used as a prior art example.

符号の説明Explanation of symbols

100…平板電極、101… 真空容器、102… 可動式基板支持部材、103… 固定式基板支持部材、104… 真空ベローズ、105… 略円環状被エッチング材料、106… 導電体接続部材、107… ソース電源、108… バイアス電源、109… 高周波伝達経路、110… シャワープレート、112… 第一の整合器、113… 第二の整合器、114…搬入出室、115…ゲートバルブ、117…搬入出経路、118…基板搬送部材、119…被エッチング材料の内孔、120…マスフローコントローラー、201… 第一の導電体部材、202… 第二の導電体部材、204… 可動式基板支持部材の被エッチング材料と接触する面の角、205… 固定式基板支持部材の被エッチング材料と接触する面の角、206… 伸縮材、403… ガス噴出口、1001… 絶縁体材料、1002… 電極、1201… 搬入室、1202…搬送室、1203… 第一の処理室、1204… 搬送室、1205… 第二の処理室、1206… 搬送室、 1207… 第三の処理室、1208… 搬送室、1209… 搬出室、2001… 基板、2002… 多層磁性膜、2003… ハードマスク、2004… レジストパターン、2005… 被磁性材料、2006… 保護膜、2007… 潤滑層 、2008…下地層、2102… 導電体部材、2103… 絶縁体カバー、2104… 導電体突起物、2105… 高電気伝導膜、3001… 導電体伸縮機構。 DESCRIPTION OF SYMBOLS 100 ... Flat plate electrode, 101 ... Vacuum container, 102 ... Movable substrate support member, 103 ... Fixed substrate support member, 104 ... Vacuum bellows, 105 ... Substantially annular material to be etched, 106 ... Conductor connection member, 107 ... Source Power supply, 108 ... Bias power supply, 109 ... High frequency transmission path, 110 ... Shower plate, 112 ... First matching unit, 113 ... Second matching unit, 114 ... Loading / unloading chamber, 115 ... Gate valve, 117 ... Loading / unloading path 118 ... Substrate transport member, 119 ... Inner hole of material to be etched, 120 ... Mass flow controller, 201 ... First conductor member, 202 ... Second conductor member, 204 ... Material to be etched of movable substrate support member 205, a corner of a surface that contacts the material to be etched of the fixed substrate support member, 206, a stretchable material, 403 Gas outlet, 1001 ... Insulator material, 1002 ... Electrode, 1201 ... Loading chamber, 1202 ... Transfer chamber, 1203 ... First treatment chamber, 1204 ... Transfer chamber, 1205 ... Second treatment chamber, 1206 ... Transfer chamber, 1207 ... Third processing chamber, 1208 ... Transfer chamber, 1209 ... Unloading chamber, 2001 ... Substrate, 2002 ... Multi-layer magnetic film, 2003 ... Hard mask, 2004 ... Resist pattern, 2005 ... Magnetic material, 2006 ... Protective film, 2007 ... Lubrication layer, 2008 ... Underlayer, 2102 ... Conductor member, 2103 ... Insulator cover, 2104 ... Conductor protrusion, 2105 ... High electrical conductive film, 3001 ... Conductor expansion / contraction mechanism.

Claims (20)

真空容器内に対向して配置された一対の電極と、該一対の電極間に配置され略円環状の被処理基板の内孔の縁付近を挟持する一対の基板支持部材と、前記一対の電極と前記被処理基板の両面間にプロセスガスを供給するガス供給手段と、前記各基板支持部材に設けられ前記一対の電極と前記被処理基板の両面間に高周波電力を印加する一対の導電体部材とを有し、
一方の前記導電体部材の先端付近に導電体接続部材が設置されており、該導電体接続部材は前記被処理基板が前記一対の基板支持部材に保持された状態で該被処理基板の前記内孔を介して他方の前記導電体部材と接触し得るように構成されている
ことを特徴とするプラズマエッチング装置。
A pair of electrodes disposed opposite to each other in the vacuum vessel, a pair of substrate support members disposed between the pair of electrodes and sandwiching the vicinity of the edge of the inner hole of the substantially annular substrate to be processed, and the pair of electrodes And a gas supply means for supplying a process gas between both surfaces of the substrate to be processed, and a pair of conductor members provided on each substrate support member for applying high-frequency power between both surfaces of the pair of electrodes and the substrate to be processed And
A conductor connecting member is installed near the tip of one of the conductor members, and the conductor connecting member is disposed in the inside of the substrate to be processed while the substrate to be processed is held by the pair of substrate support members. A plasma etching apparatus configured to be in contact with the other conductor member through a hole.
請求項1において、
前記一対の基板支持部材の一方が前記電極に対して基板面垂直方向に伸縮可能な可動式基板支持部材であり、前記基板支持部材の他方が固定式基板支持部材であることを特徴とするプラズマエッチング装置。
In claim 1,
One of the pair of substrate support members is a movable substrate support member that can expand and contract in a direction perpendicular to the substrate surface with respect to the electrode, and the other of the substrate support members is a fixed substrate support member. Etching equipment.
請求項1において、
前記一対の電極が平行平板電極であり、
該一対の平行平板電極に、各々前記プロセスガスを供給するシャワープレートが設けられている
ことを特徴とするプラズマエッチング装置。
In claim 1,
The pair of electrodes is a parallel plate electrode;
A plasma etching apparatus characterized in that a shower plate for supplying the process gas is provided on each of the pair of parallel plate electrodes.
請求項1において、
前記一対の基板支持部材は、夫々前記導電体部材の後方に配置された伸縮部材を有しており、前記被処理基板の内縁を該一対の導電体部材で狭持した際に、前記各導電体部材が前記基板面の垂直方向に移動可能に構成されている
ことを特徴とするプラズマエッチング装置。
In claim 1,
Each of the pair of substrate support members has an elastic member disposed behind the conductor member. When the inner edge of the substrate to be processed is sandwiched between the pair of conductor members, each of the conductive members A plasma etching apparatus, wherein the body member is configured to be movable in a direction perpendicular to the substrate surface.
請求項1において、
前記導電体接続部材は、板バネで構成されている
ことを特徴とするプラズマエッチング装置。
In claim 1,
The plasma etching apparatus, wherein the conductor connecting member is constituted by a leaf spring.
請求項2において、
前記導電体接続部材は、前記可動式基板支持部材と前記固定式基板支持部材で前記被処理基板の内縁を挟持する前に、前記可動式基板支持部材上の前記導電体部材が前記被処理基板と接触するように構成されている
ことを特徴とするプラズマエッチング装置。
In claim 2,
The conductor connecting member is configured such that the conductor member on the movable substrate support member is placed on the substrate to be processed before the inner edge of the substrate to be processed is sandwiched between the movable substrate support member and the fixed substrate support member. A plasma etching apparatus configured to come into contact with a plasma etching apparatus.
請求項1において、
前記一対の導電体部材の一方が凸型構造をしており、該凸型構造の凸部の高さは前記被処理基板の厚さよりも高い
ことを特徴とするプラズマエッチング装置。
In claim 1,
One of the pair of conductor members has a convex structure, and the height of the convex portion of the convex structure is higher than the thickness of the substrate to be processed.
請求項1において、
前記一対の導電体部材の一方が凸型構造、他方が凹型構造をしており、前記凸型構造の先端に前記導電体接続部材が設置されている
ことを特徴とするプラズマエッチング装置。
In claim 1,
One of the pair of conductor members has a convex structure, the other has a concave structure, and the conductor connecting member is installed at the tip of the convex structure.
請求項1において、
略円環状の被処理基板の内縁を一対の導電体部材で狭持した際に、該導電体部材がそれぞれ設置された一対の基板支持部材の被処理基板と接触する面の角が丸まっている
ことを特徴とするプラズマエッチング装置。
In claim 1,
When the inner edge of the substantially annular substrate to be processed is held between a pair of conductor members, the corners of the surfaces of the pair of substrate support members on which the conductor members are respectively in contact with the substrate to be processed are rounded. A plasma etching apparatus characterized by that.
請求項1において、
前記一対の電極間に配置され各々前記略円環状の被処理基板を挟持する複数対の基板支持部材と、
前記各基板支持部材に設けられ前記一対の電極と複数の前記被処理基板間に高周波電力を印加する複数対の導電体部材とを有し、
前記対をなす導電体部材の一方の先端付近に前記導電体接続部材が設置されており、該導電体接続部材は前記複数の被処理基板が各々前記一対の基板支持部材に保持された状態で夫々該被処理基板の内孔を介して対をなす他方の前記導電体部材と接触し得るように構成されており、
前記複数対の導電体部材を通して前記複数の被処理基板の両面が電気的に導通し得るように構成されている
ことを特徴とするプラズマエッチング装置。
In claim 1,
A plurality of pairs of substrate support members disposed between the pair of electrodes, each sandwiching the substantially annular substrate to be processed;
A plurality of pairs of conductor members that apply high-frequency power between the pair of electrodes and the plurality of substrates to be processed; provided on each of the substrate support members;
The conductor connecting member is installed near one end of the pair of conductor members, and the conductor connecting member is in a state where the plurality of substrates to be processed are respectively held by the pair of substrate support members. Each configured to be in contact with the other conductor member that forms a pair through the inner hole of the substrate to be processed;
A plasma etching apparatus, wherein both surfaces of the plurality of substrates to be processed can be electrically conducted through the plurality of pairs of conductor members.
請求項2において、
前記可動式基板支持部材が前記被処理基板面の鉛直方向を軸に回転可能に構成されており、
前記可動式基板支持部材の回転に伴い、前記一対の基板支持部材に前記内孔を保持された前記被処理基板が前記被処理基板面の鉛直方向を軸に回転する
ことを特徴とするプラズマエッチング装置。
In claim 2,
The movable substrate support member is configured to be rotatable about a vertical direction of the substrate surface to be processed;
In accordance with rotation of the movable substrate support member, the substrate to be processed, in which the inner hole is held by the pair of substrate support members, rotates about a vertical direction of the substrate surface to be processed. apparatus.
請求項1において、
前記高周波電力を供給するためのソース電源と、高周波バイアスを供給するためのバイアス電源とを有しており、
前記ソース電源及び前記バイアス電源の少なくとも一つが、前記基板支持部材の内部に設けられた高周波伝達経路を経て前記導電体接続部材に接続されている
ことを特徴とするプラズマエッチング装置。
In claim 1,
A source power source for supplying the high-frequency power, and a bias power source for supplying a high-frequency bias,
At least one of the source power supply and the bias power supply is connected to the conductor connection member through a high-frequency transmission path provided inside the substrate support member.
請求項2において、
導電体材料で構成された前記真空容器がアースに接続され、
前記高周波電力は、ソース電源から該ソース電源に接続され前記固定式基板支持部材内部の高周波伝達経路及び前記導電体接続部材を通り、前記被処理基板の両面に印加される
ことを特徴とするプラズマエッチング装置。
In claim 2,
The vacuum vessel made of a conductive material is connected to ground,
The plasma is characterized in that the high-frequency power is applied from the source power source to the source power source, passes through the high-frequency transmission path inside the fixed substrate support member and the conductor connecting member, and is applied to both surfaces of the substrate to be processed. Etching equipment.
請求項10において、
前記高周波電力を供給するためのソース電源と、高周波バイアスを供給するためのバイアス電源とを有しており、
前記ソース電源及び前記バイアス電源の少なくとも一つが、前記複数対の基板支持部材の内部に夫々設けられた高周波伝達経路を経て前記複数の導電体接続部材に接続されている
ことを特徴とするプラズマエッチング装置。
In claim 10,
A source power source for supplying the high-frequency power, and a bias power source for supplying a high-frequency bias,
At least one of the source power supply and the bias power supply is connected to the plurality of conductor connection members via high-frequency transmission paths provided inside the plurality of pairs of substrate support members, respectively. apparatus.
プラズマエッチング装置を用いて略円環状の被処理基板の両面にエッチングを施して磁気記録媒体を製造する方法であって、
前記プラズマエッチング装置は、
真空容器内に対向して配置された一対の電極と、該一対の電極間に配置され前記被処理基板の内孔の縁付近を挟持する一対の基板支持部材と、前記一対の電極と前記被処理基板の両面間にプロセスガスを供給するガス供給手段と、前記各基板支持部材に設けられ前記一対の電極と前記被処理基板の両面間に高周波電力を印加する一対の導電体部材と、高周波電源を有し、一方の前記導電体部材の先端付近に導電体接続部材が設置されており、
前記被処理基板を前記一対の基板支持部材に保持した状態で前記導電体接続部材を前記被処理基板の内孔を介して他方の前記導電体部材と接触させることにより、前記一対の電極と前記被処理基板の両面間を前記高周波電源に接続し、前記一対の電極と前記被処理基板の両面間に電磁波を放出させると共に、
前記ガス供給手段から前記一対の電極と前記被処理基板の両面間にプロセスガスを供給し、
前記電磁波により前記プロセスガスをプラズマ化し、前記被処理基板の両面を同時にエッチングして所定の凹凸パターンを作製する
ことを特徴とする磁気記録媒体の製造方法。
A method of manufacturing a magnetic recording medium by etching both surfaces of a substantially annular substrate to be processed using a plasma etching apparatus,
The plasma etching apparatus includes:
A pair of electrodes disposed opposite to each other in the vacuum vessel; a pair of substrate support members disposed between the pair of electrodes and sandwiching the vicinity of an edge of the inner hole of the substrate to be processed; the pair of electrodes and the substrate A gas supply means for supplying a process gas between both surfaces of the processing substrate; a pair of conductor members provided on each substrate support member for applying high-frequency power between both surfaces of the pair of electrodes and the substrate to be processed; Having a power source, a conductor connecting member is installed near the tip of one of the conductor members,
By bringing the conductor connecting member into contact with the other conductor member through the inner hole of the substrate to be processed while holding the substrate to be processed on the pair of substrate support members, the pair of electrodes and the Between both surfaces of the substrate to be processed is connected to the high frequency power source, and electromagnetic waves are emitted between both surfaces of the pair of electrodes and the substrate to be processed.
Supplying a process gas between the pair of electrodes and the substrate to be processed from the gas supply means;
A method for producing a magnetic recording medium, wherein the process gas is converted into plasma by the electromagnetic wave, and a predetermined uneven pattern is produced by simultaneously etching both surfaces of the substrate to be treated.
請求項15において、
前記被処理基板の温度を計測し、該測定結果を前記高周波電源にフィードバックして該ソース電源からの供給電力を制御し、前記被処理基板の温度上昇時は間欠放電を繰り返すことにより、該被処理基板の温度上昇を抑制しつつ、該被処理基板の両面に前記所定の加工を施す
ことを特徴とする磁気記録媒体の製造方法。
In claim 15,
The temperature of the substrate to be processed is measured, the measurement result is fed back to the high frequency power source to control the power supplied from the source power source, and intermittent discharge is repeated when the temperature of the substrate to be processed is increased. A method of manufacturing a magnetic recording medium, wherein the predetermined processing is performed on both surfaces of a substrate to be processed while suppressing an increase in temperature of the substrate to be processed.
請求項15において、
前記プラズマエッチング装置は、前記被処理基板を前記真空容器内に縦置きに配置する構造であり、前記基板支持部材の一方が回転機構により回転可能に構成されており、
前記被処理基板を基板面鉛直方向を軸に回転させながら前記被処理基板の両面を同時にエッチングして所定の凹凸パターンを作製する
ことを特徴とする磁気記録媒体の製造方法。
In claim 15,
The plasma etching apparatus has a structure in which the substrate to be processed is arranged vertically in the vacuum vessel, and one of the substrate support members is configured to be rotatable by a rotation mechanism,
A method of manufacturing a magnetic recording medium, wherein a predetermined concavo-convex pattern is formed by simultaneously etching both surfaces of the substrate to be processed while rotating the substrate to be processed around a vertical direction of the substrate surface.
請求項15において、
前記プラズマエッチング装置は、前記一対の電極間に配置され各々前記略円環状の被処理基板を挟持する複数対の基板支持部材と、前記各基板支持部材に設けられ前記一対の電極と複数の前記被処理基板間に高周波電力を印加する複数対の導電体部材を有し、
前記複数対の導電体部材を通して前記複数の被処理基板の両面を電気的に導通することにより前記一対の電極と前記各被処理基板の両面間を前記高周波電源に接続し、前記複数の被処理基板の両面を同時にエッチングして所定の凹凸パターンを作製する
ことを特徴とする磁気記録媒体の製造方法。
In claim 15,
The plasma etching apparatus includes a plurality of pairs of substrate support members disposed between the pair of electrodes and sandwiching the substantially annular substrate to be processed, and the pair of electrodes provided on each of the substrate support members and the plurality of the plurality of the plurality of substrate support members. Having a plurality of pairs of conductor members for applying high-frequency power between the substrates to be processed;
By electrically conducting both surfaces of the plurality of substrates to be processed through the plurality of pairs of conductor members, the pair of electrodes and both surfaces of the substrates to be processed are connected to the high-frequency power source, and the plurality of substrates to be processed A method of manufacturing a magnetic recording medium, wherein a predetermined uneven pattern is formed by simultaneously etching both surfaces of a substrate.
電気絶縁材料からなり内孔を有する略円環状の平坦な基板と、
該基板の両面の全面にわたり形成された電気伝導度の高い材料からなる高電気伝導膜と、
前記各高電気伝導膜の上に全面にわたり形成された電気絶縁体の材料からなる下地層と、
前記各下地層の上に全面にわたり形成された少なくとも1層の磁性膜と、
前記各下地層及び前記磁性膜に形成されたトラックピッチに対応する周期的な凹凸パターンと、
前記各凹凸パターンの溝に堆積された非磁性材料膜とを備えた
ことを特徴とする磁気記録媒体。
A substantially annular flat substrate made of an electrically insulating material and having an inner hole;
A highly conductive film made of a material with high electrical conductivity formed over the entire surface of both surfaces of the substrate;
An underlayer made of a material of an electrical insulator formed over the entire surface of each high electrical conductive film;
At least one magnetic film formed over the entire surface of each underlayer;
A periodic concavo-convex pattern corresponding to the track pitch formed in each of the underlayers and the magnetic film;
A magnetic recording medium comprising: a nonmagnetic material film deposited in the groove of each of the concavo-convex patterns.
請求項19において、
前記高電気伝導膜が、Al、Co、Cr、Cu、Fe、Mg、Mo、Ni、W、Taのいずれかもしくはそれらの合金からなる
ことを特徴とする磁気記録媒体。
In claim 19,
The magnetic recording medium, wherein the highly conductive film is made of any one of Al, Co, Cr, Cu, Fe, Mg, Mo, Ni, W, Ta, or an alloy thereof.
JP2007276518A 2007-10-24 2007-10-24 Plasma etching apparatus and method for manufacturing magnetic recording medium Expired - Fee Related JP5175519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007276518A JP5175519B2 (en) 2007-10-24 2007-10-24 Plasma etching apparatus and method for manufacturing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007276518A JP5175519B2 (en) 2007-10-24 2007-10-24 Plasma etching apparatus and method for manufacturing magnetic recording medium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012252984A Division JP5621176B2 (en) 2012-11-19 2012-11-19 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2009102705A true JP2009102705A (en) 2009-05-14
JP5175519B2 JP5175519B2 (en) 2013-04-03

Family

ID=40704685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007276518A Expired - Fee Related JP5175519B2 (en) 2007-10-24 2007-10-24 Plasma etching apparatus and method for manufacturing magnetic recording medium

Country Status (1)

Country Link
JP (1) JP5175519B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507131A (en) * 2007-12-06 2011-03-03 インテバック・インコーポレイテッド System and method for commercially producing patterned media

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634373U (en) * 1979-08-23 1981-04-03
JPH04113517A (en) * 1990-09-04 1992-04-15 Tdk Corp Production of magnetic disk and magnetic disk
JPH04293235A (en) * 1991-03-22 1992-10-16 Kokusai Electric Co Ltd Plasma generating equipment
JPH06116759A (en) * 1992-10-01 1994-04-26 Ulvac Japan Ltd Device for simultaneous etching on both sides
JPH0991691A (en) * 1995-07-13 1997-04-04 Hitachi Ltd Magnetic disk, production of magnetic disk and producing device
JPH10324980A (en) * 1997-05-27 1998-12-08 Ulvac Japan Ltd Electrode device for both side etching apparatus
JP2000150478A (en) * 1998-11-12 2000-05-30 Matsushita Electronics Industry Corp Plasma generating method and device therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634373U (en) * 1979-08-23 1981-04-03
JPH04113517A (en) * 1990-09-04 1992-04-15 Tdk Corp Production of magnetic disk and magnetic disk
JPH04293235A (en) * 1991-03-22 1992-10-16 Kokusai Electric Co Ltd Plasma generating equipment
JPH06116759A (en) * 1992-10-01 1994-04-26 Ulvac Japan Ltd Device for simultaneous etching on both sides
JPH0991691A (en) * 1995-07-13 1997-04-04 Hitachi Ltd Magnetic disk, production of magnetic disk and producing device
JPH10324980A (en) * 1997-05-27 1998-12-08 Ulvac Japan Ltd Electrode device for both side etching apparatus
JP2000150478A (en) * 1998-11-12 2000-05-30 Matsushita Electronics Industry Corp Plasma generating method and device therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507131A (en) * 2007-12-06 2011-03-03 インテバック・インコーポレイテッド System and method for commercially producing patterned media
US8784622B2 (en) 2007-12-06 2014-07-22 Intevac, Inc. System and method for dual-sided sputter etch of substrates
US9165587B2 (en) 2007-12-06 2015-10-20 Intevac, Inc. System and method for dual-sided sputter etch of substrates

Also Published As

Publication number Publication date
JP5175519B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
JP5233092B2 (en) Mounting table for plasma processing apparatus and plasma processing apparatus
RU2390883C1 (en) Method of making magnetoresistive effect element and multichamber device for making magnetoresistive effect element
JP5216918B2 (en) Ion beam generator, substrate processing apparatus, and electronic device manufacturing method
US20080149590A1 (en) Substrate-Holder, Etching Method of the Substrate, and the Fabrication Method of a Magnetic Recording Media
JP2006245510A (en) Method and device for plasma processing
JP2005056535A (en) Method and device for manufacturing magnetic recording medium
JP5934523B2 (en) Semiconductor device manufacturing method and computer recording medium
JP2004250778A (en) Method and apparatus for smoothing surface on atomic scale
JP2010157559A (en) Plasma processing apparatus
JP2006303144A (en) Vacuum processing device and vacuum processing method of sample
JP2021077808A (en) Plasma processing apparatus
JP5175519B2 (en) Plasma etching apparatus and method for manufacturing magnetic recording medium
JP5621176B2 (en) Magnetic recording medium
JP2011146690A (en) Ion beam generator and substrate processing apparatus and production method of electronic device using the ion beam generator
JP6573820B2 (en) Plasma processing apparatus member and plasma processing apparatus
TW202032715A (en) Placing table and substrate processing apparatus
KR102313860B1 (en) Method of manufacturing magnetoresistive device and magnetoresistive device manufacturing system
JP2008153249A (en) Plasma etching apparatus
WO2004079045A1 (en) Dry etching method for magnetic material, magnetic material and magnetic recording medium
JP5666248B2 (en) Magnetic recording medium manufacturing equipment
TW201635330A (en) Plasma processing apparatus and method for determining replacement of component of plasma processing apparatus
JP2007103604A (en) Etching method and processor
US20100015356A1 (en) In-line film forming apparatus and manufacturing method of magnetic recording medium
JP5794858B2 (en) Ion implantation method and manufacturing method of magnetic recording medium
JP5270751B2 (en) Plasma processing apparatus and magnetic recording medium manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

LAPS Cancellation because of no payment of annual fees