WO2017104727A1 - Electrical insulation resin composition - Google Patents

Electrical insulation resin composition Download PDF

Info

Publication number
WO2017104727A1
WO2017104727A1 PCT/JP2016/087323 JP2016087323W WO2017104727A1 WO 2017104727 A1 WO2017104727 A1 WO 2017104727A1 JP 2016087323 W JP2016087323 W JP 2016087323W WO 2017104727 A1 WO2017104727 A1 WO 2017104727A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
mass
resin composition
filler
resin
Prior art date
Application number
PCT/JP2016/087323
Other languages
French (fr)
Japanese (ja)
Inventor
大嶽 敦
小林 金也
亮 茂木
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2017104727A1 publication Critical patent/WO2017104727A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins

Definitions

  • the present invention relates to a resin composition for electrical insulation.
  • resin additives used to insulate power receiving / transforming equipment and other electrical equipment that require high withstand voltage performance have various additives aiming at higher functionality and higher performance.
  • a technique is used in which resin is mixed in the resin.
  • coexistence with the crack resistance of resin and the characteristic as a resin composition for electrical insulation has been a subject for many years.
  • Patent Document 1 discloses an epoxy resin composition for mold coil impregnation casting containing spherical fused silica and crushed fused silica (Comparative Example 2 in Table 1).
  • Patent Document 1 describes that spherical fused silica is included as a silica filler contained in a resin, and there is a description that silica particles other than spherical fused silica can be used.
  • An object of the present invention is to provide a resin composition for electrical insulation having high crack resistance, high thermal conductivity, and low viscosity during molding.
  • the resin composition for electrical insulation of the present invention is a resin composition containing a resin having an ester bond and a silica filler, and the silica filler contains crushed crystalline silica and fused silica, and has the following numerical limitations. Have.
  • the silica filler is 65% by mass or more and less than 75% by mass of the entire resin composition, and the ratio of the fused silica in the silica filler is 45 to 50% by mass.
  • the silica filler is 75% by mass or more and less than 80% by mass of the entire resin composition, and the ratio of the fused silica in the silica filler is 35 to 40% by mass.
  • the silica filler is 80% by mass or more of the entire resin composition, and the proportion of fused silica in the silica filler is 30 to 40% by mass.
  • crack resistance can be extremely enhanced by introducing fused silica and crushed crystalline silica into a resin composition at a certain ratio.
  • the present invention is based on the knowledge that the preferred ratio of silica to be introduced (hereinafter referred to as “silica filler” or simply “silica”) varies depending on the amount introduced into the resin. That is, when the ratio of the silica filler is 65 to 75% by mass with respect to the total mass of the resin material, the ratio of the fused silica to the total silica mass is preferably 45 to 50% by mass. It was found that when 75% by mass or more of silica is introduced, the ratio of fused silica to the total silica mass is preferably 35 to 40% by mass, and 80% by mass or more is preferably 30 to 40% by mass.
  • the ratio of the silica filler is lower than the above numerical range, it is considered that the thermal conductivity of the resin composition is lowered, the temperature distribution of the cured resin composition is increased, and cracks are caused.
  • the cured resin composition becomes brittle and causes cracks.
  • fused silica has a lower viscosity than crushed crystalline silica and is easy to mold, but has a problem of low thermal conductivity.
  • crushed crystalline silica is higher in viscosity than fused silica and has a problem in moldability, but has a high thermal conductivity and an effect of reducing the temperature distribution.
  • crushed crystalline silica dry-type crushed crystalline silica is preferable, and the average particle diameter is more preferably 10 ⁇ m or less.
  • the viscosity can be suppressed and the reaction with the resin can be suppressed as compared with wet process crushed crystalline silica.
  • the average particle size of the fused silica is preferably 10-30 ⁇ m.
  • the crushed crystalline silica comes to enter between the large particle size fused silica, and both the improvement of the filling rate and the reduction of the viscosity can be achieved.
  • the resin additive includes polyoxyethylene, a compound in which an alkyl group is bonded to polyoxyethylene, or an ether having phenols, and the content of the resin additive is 1.5 mass with respect to 100 parts by mass of the silica filler. Or less.
  • the elastomer particles or the flaky filler is contained, and the average particle diameter of the elastomer particles or the flaky filler is 10 ⁇ m or less.
  • elastomers examples include butadiene rubber, nitrile butadiene rubber, silicone rubber, fluoro rubber, and other copolymers thereof, compounds containing these as part of the chemical structure, compounds containing these as the skeleton of the chemical structure, the above rubbers, Examples thereof include a copolymer or a mixture of a compound and another compound.
  • shape of the elastomer particle used in the below-mentioned Example is a spherical shape, about a shape, it is not limited to this.
  • the scaly filler is a compound mainly composed of mica (mica).
  • FIG. 1 schematically shows the internal structure of the resin composition for electrical insulation of the present invention.
  • the resin composition for electrical insulation has a configuration including a resin 1 as a base material, crushed crystalline silica 2 and fused silica 3.
  • the crushed crystalline silica 2 and the fused silica 3 are dispersed in the resin 1.
  • dry crushed crystalline silica is desirable.
  • Crushed crystalline silica 2 has properties of high thermal conductivity and high linear expansion coefficient compared to fused silica 3.
  • the shape of the crushed crystalline silica 2 is amorphous and has corners as crushed traces as shown in this figure. Further, since it is crystalline, it is composed of a plurality of flat portions rather than curved surfaces.
  • the fused silica 3 is produced by cooling molten silica at a high temperature. Since it is placed in a high temperature state, a transition from a crystal to a glass state occurs, and solidifies at that temperature in that state. In many cases, it has a shape close to a sphere at a high temperature, so it is also called spherical silica. However, in the present invention, a spherical silica is not required, and it may not be a true sphere depending on production conditions. In this sense, the shape of the fused silica 3 is not particularly limited as long as it has a curvature such as a sphere, a spheroid, a flat ball or the like.
  • Dry crushed crystalline silica-Thermal conductivity is higher than fused silica.
  • Crystalline silica calculated in a mine is crushed by a dry process, and has less surface OH groups or surface moisture due to it compared to the wet method.
  • the resin 1 is obtained by polymerizing an epoxy resin (epoxy prepolymer) having a bisphenol A structure as a main skeleton with an acid anhydride and curing the resin (hereinafter referred to as “epoxy resin”).
  • epoxy resin epoxy prepolymer
  • Such an epoxy resin is a resin having an ester bond.
  • the linear expansion coefficient of this epoxy resin is about 60 ppm / K, which is large compared to ceramics and general metals (10 to 30 ppm / K). If the epoxy resin is used as it is, cracks are caused by the generation of stress due to expansion and contraction during the process from low temperature to high temperature or vice versa.
  • One of the additions of silica is to prevent the occurrence of such cracks.
  • Both silicas have the effect of improving the thermal conductivity, and crystalline silica is particularly effective for improving the thermal conductivity.
  • FIG. 2 schematically shows a state where a plurality of types of members are molded.
  • composite member including a ceramic member 12, two types of metal members 13 and 14 (metal members A and B), and a mold part 11 surrounding the periphery thereof is shown. ing.
  • the linear expansion coefficient is adjusted to an appropriate range. Need arises. Even if it is reduced too much, it can cause cracking due to the difference in expansion rate due to the temperature rise and fall, and addition of high concentration of silica to the resin contributes to the brittleness of the resin material, that is, the reduction of crack resistance. .
  • the occurrence of cracks due to an increase or decrease in temperature can be confirmed by a thermal cycle test.
  • Table 1 shows the occurrence of cracks in the resin in the thermal cycle test.
  • the resin composition used here was prepared by adding silica to bisphenol A type epoxy prepolymer and acid anhydride. The total amount of silica filler added in this resin composition is 76% by mass.
  • the heat cycle conditions were as follows. The temperature was held for 2 hours on each of the low temperature side and the high temperature side.
  • Condition (1) -20 ° C on the low temperature side and 100 ° C on the high temperature side.
  • Condition (2) -40 ° C on the low temperature side and 100 ° C on the high temperature side.
  • the condition (2) has a larger difference between the low temperature and the high temperature in the thermal cycle, and the condition for crack generation becomes severe.
  • Resin was prepared as follows, and ceramic and metal parts were molded and cured.
  • Necessary additives (imidazole curing accelerator, etc.) were mixed with a planetary mixer.
  • the silica concentration was 76% by mass of the entire resin composition before curing.
  • silica dry-crushed crystalline silica (average particle size 6 ⁇ m) and fused silica (average particle size 20 ⁇ m) were used.
  • the reason for changing the particle diameter of the silica is to allow crystalline silica to enter between the large-diameter fused silica in order to improve the filling rate and decrease the viscosity.
  • the materials used as raw materials for the above-mentioned epoxy resin are the bisphenol A type epoxy resin shown in FIG. 3A and the acid anhydride (curing agent) shown in FIG. 3B.
  • the viscosity was 3 Pa ⁇ s or less (80 ° C.), which was a low range that could be used as a casting resin.
  • a raw resin liquid having a lower viscosity can be obtained.
  • the result of 2.2 Pa ⁇ s (80 ° C.) is obtained by adding an acrylic monomer.
  • Tables 2 to 4 show the results of the thermal cycle test.
  • the addition amount of silica in the entire resin composition (total amount of dry-crushed crystalline silica and fused silica) is 65% by mass and 74% by mass in Table 2, 75% by mass and 77% by mass in Table 3, and Table 4 Is 85 mass%.
  • the ratio of the fused silica to the total mass of the two types of silica is 45 to 50 mass%.
  • the ratio of the fused silica to the total mass of the two types of silica is 35 to 40 mass%.
  • the ratio of the fused silica to the total mass of the two types of silica is 30 to 40 mass%.
  • the average particle size of the dry-process crushed silica is 10 ⁇ m or less, a cured resin product having a higher withstand voltage can be obtained.
  • silica having an average particle diameter of 12 ⁇ m was added at 76 mass%, the electric field resistance performance was 30 kV / mm, but when changed to silica with an average particle diameter of 6 ⁇ m, the electric field resistance performance was improved to 45 kV / mm. It is considered that the withstand voltage performance is improved by branching the destruction path.
  • the average particle diameter of a fused silica when the average particle diameter of a fused silica shall be 10 micrometers or more and 30 micrometers or less, the filling state of the whole silica filler containing crystalline silica will be improved, and the viscosity of a resin composition can be reduced. Specifically, when fused silica having an average particle diameter of 20 ⁇ m is used, the viscosity can be suppressed to 0.8 Pa ⁇ s (80 ° C.), and handling properties can be improved. When fused silica having an average particle diameter of 10 ⁇ m or 30 ⁇ m is added, the suppression effect is obtained although it is about 2 Pa ⁇ s (80 ° C.).
  • This resin additive was mixed in an amount of 1.5 parts by mass with respect to the total mass of the silica filler (100 parts by mass).
  • Polyoxyethylene alkyl ether has an effect as a surfactant and has an effect of suppressing the viscosity of the resin. Further, since it is not an ionic surfactant, it is possible to minimize the influence of ions on the reaction.
  • the viscosity could be suppressed to 1.5 Pa ⁇ s (80 ° C.).
  • Resin crack resistance is increased by improving the fracture toughness of the resin.
  • the average particle diameter of the scale-like filler is particularly preferably a scale having a size of 10 ⁇ m or less, and an effect of inhibiting crack progress by increasing the number density of sediments or dispersed particles can be expected. Similarly, the same effect can be expected for the scaly filler.
  • the crushed crystalline silica has an average particle size of about 6 ⁇ m.
  • the proportion of the crushed crystalline silica is desirably 60% by mass to 78% by mass based on the total amount of the resin composition.
  • the scale-like filler has a longitudinal direction of 20 ⁇ m and a thickness of about 0.1 to 2 ⁇ m.
  • the ratio of the scale-like filler is desirably 2% by mass to 12% by mass based on the total amount of the resin composition.
  • the ratio of crushed crystalline silica to scaly filler is preferably about 10: 1.
  • the addition amount was 8% by mass with respect to the resin.
  • the fracture toughness could be improved from 2.4 MPa ⁇ m to 4.5 MPa ⁇ m.
  • the effect was examined by increasing the particle diameter, but it was confirmed that the effect gradually decreased. The reason is that the number density decreases at the same mass, and the probability of encountering an advanced crack decreases.
  • the same effect was obtained with mica powder (longitudinal diameter 1 ⁇ m) as a scale-like filler. Specifically, the fracture toughness of 2.4 MPa ⁇ m could be improved to 4.0 MPa ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)

Abstract

Provided is an electrical insulation resin composition that exhibits a high cracking resistance, a high thermal conductivity, and a low viscosity during molding. This electrical insulation resin composition contains an ester bond-containing resin 1 and a silica filler, and the silica filler contains a pulverized crystalline silica 2 and a fused silica 3 and has the following numerical limitations. 1) The silica filler is at least 65 mass% and less than 75 mass% of the overall resin composition, and the proportion of the fused silica 3 in the silica filler is 45 to 50 mass%. 2) The silica filler is at least 75 mass% and less than 80 mass% of the overall resin composition, and the proportion of the fused silica 3 in the silica filler is 35 to 40 mass%. 3) The silica filler is at least 80 mass% of the overall resin composition, and the proportion of the fused silica 3 in the silica filler is 30 to 40 mass%.

Description

電気絶縁用樹脂組成物Resin composition for electrical insulation
 本発明は、電気絶縁用樹脂組成物に関する。 The present invention relates to a resin composition for electrical insulation.
 近年、高い耐電圧性能が要求される受変電設備その他の電気機器の絶縁に用いる樹脂組成物(電気絶縁用樹脂組成物)については、高機能化、高性能化等を目指して様々な添加物を樹脂中に混在させる手法が採られている。また、樹脂の耐クラック性と電気絶縁用樹脂組成物としての特性との両立が長年の課題となっている。 In recent years, various resin additives (resin compositions for electrical insulation) used to insulate power receiving / transforming equipment and other electrical equipment that require high withstand voltage performance have various additives aiming at higher functionality and higher performance. A technique is used in which resin is mixed in the resin. Moreover, coexistence with the crack resistance of resin and the characteristic as a resin composition for electrical insulation has been a subject for many years.
 溶融シリカと結晶質シリカとの混合比について記載のある公知例は多く知られている。 There are many known examples that describe the mixing ratio of fused silica and crystalline silica.
 特許文献1には、球状溶融シリカ及び破砕溶融シリカを含むモールドコイル含浸注形用エポキシ樹脂組成物(表1の比較例2)が開示されている。 Patent Document 1 discloses an epoxy resin composition for mold coil impregnation casting containing spherical fused silica and crushed fused silica (Comparative Example 2 in Table 1).
特開2010-100726号公報JP 2010-100726 A
 特許文献1においては、樹脂中に含有されるシリカフィラーとして球状溶融シリカが含まれることを述べており、また、球状溶融シリカ以外のシリカ粒子を用いることもできるとの記載がある。 Patent Document 1 describes that spherical fused silica is included as a silica filler contained in a resin, and there is a description that silica particles other than spherical fused silica can be used.
 樹脂中にシリカを導入すると、線膨脹係数の調整や粘度の調整が可能となるほか、熱伝導率を向上させることが可能となる。このような事実はよく知られている。また、シリカの形状(球状あるいは不定形)、形態(ガラス状態の溶融シリカ又は結晶質シリカ)によって樹脂の性質が変化することも知られている。しかしながら、金属およびセラミックスなど複数の素材が存在する環境で耐クラック性を向上させるにはどのような条件にしたら良いかは明確ではなく、また、そのような視点でのフィラー混合比を権利として主張するものはない。また、セラミックおよび金属類を含む部品をモールドした電気絶縁用樹脂組成物において、耐クラック性能を極大化させるフィラー構成を提供するものはない。 When silica is introduced into the resin, the coefficient of linear expansion and the viscosity can be adjusted, and the thermal conductivity can be improved. This fact is well known. It is also known that the properties of the resin change depending on the shape (spherical or indeterminate) of silica and the form (fused silica or crystalline silica in a glass state). However, it is not clear what conditions should be used to improve crack resistance in an environment with multiple materials such as metals and ceramics, and the filler mixing ratio from such a viewpoint is claimed as a right. There is nothing to do. Moreover, none of the resin compositions for electrical insulation molded with parts containing ceramics and metals provides a filler configuration that maximizes crack resistance.
 本発明は、耐クラック性が高く、高熱伝導性を有し、成形の際の粘度が低い電気絶縁用樹脂組成物を提供することを目的とする。 An object of the present invention is to provide a resin composition for electrical insulation having high crack resistance, high thermal conductivity, and low viscosity during molding.
 本発明の電気絶縁用樹脂組成物は、エステル結合を有する樹脂と、シリカフィラーと、を含む樹脂組成物であって、シリカフィラーは、破砕結晶質シリカ及び溶融シリカを含み、次の数値限定を有する。 The resin composition for electrical insulation of the present invention is a resin composition containing a resin having an ester bond and a silica filler, and the silica filler contains crushed crystalline silica and fused silica, and has the following numerical limitations. Have.
 1)シリカフィラーは、樹脂組成物全体の65質量%以上75質量%未満であり、シリカフィラーのうち溶融シリカの割合は、45~50質量%である。 1) The silica filler is 65% by mass or more and less than 75% by mass of the entire resin composition, and the ratio of the fused silica in the silica filler is 45 to 50% by mass.
 2)シリカフィラーは、樹脂組成物全体の75質量%以上80質量%未満であり、シリカフィラーのうち溶融シリカの割合は、35~40質量%である。 2) The silica filler is 75% by mass or more and less than 80% by mass of the entire resin composition, and the ratio of the fused silica in the silica filler is 35 to 40% by mass.
 3)シリカフィラーは、樹脂組成物全体の80質量%以上であり、シリカフィラーのうち溶融シリカの割合は、30~40質量%である。 3) The silica filler is 80% by mass or more of the entire resin composition, and the proportion of fused silica in the silica filler is 30 to 40% by mass.
 本発明によれば、耐クラック性が高く、高熱伝導性を有し、成形の際の粘度が低い電気絶縁用樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a resin composition for electrical insulation having high crack resistance, high thermal conductivity, and low viscosity during molding.
本発明の電気絶縁用樹脂組成物の内部構成を示す模式図である。It is a schematic diagram which shows the internal structure of the resin composition for electrical insulation of this invention. 複数種類の部材をモールドした状態を示す模式図である。It is a schematic diagram which shows the state which molded the multiple types of member. 本発明で用いたエポキシプレポリマーの構造式である。It is a structural formula of the epoxy prepolymer used in the present invention. 本発明で用いた硬化剤の構造式である。It is a structural formula of the hardening | curing agent used by this invention.
 本発明者は、新たな事実として、樹脂組成物に溶融シリカと破砕結晶質シリカとをある規定の比率で導入することにより、耐クラック性を極めて高められることを見出した。 As a new fact, the present inventor has found that crack resistance can be extremely enhanced by introducing fused silica and crushed crystalline silica into a resin composition at a certain ratio.
 従来は、単に線膨脹係数の低下と熱伝導率の向上とを狙って、樹脂組成物に結晶質シリカと溶融シリカとを混合して用いることが行われてきたが、両者の混合比がある範囲において極大化することを指摘した文献等はない。 Conventionally, a mixture of crystalline silica and fused silica has been used in a resin composition for the purpose of simply lowering the coefficient of linear expansion and improving thermal conductivity, but there is a mixing ratio between the two. There is no literature etc. that pointed out that the range is maximal.
 本発明は、後述するように、導入するシリカ(以下「シリカフィラー」又は単に「シリカ」という。)の好ましい比率が、樹脂への導入量によって変化するという知見に基くものである。すなわち、シリカフィラーの比率は、樹脂材料の全質量に対し、65~75質量%では、全シリカ質量に対して溶融シリカの比率が45~50質量%が好ましい。75質量%以上のシリカを導入する場合には、全シリカ質量に対して溶融シリカの比率が35~40質量%が好ましく、80質量%以上では30~40質量%が好ましいことが分かった。 As will be described later, the present invention is based on the knowledge that the preferred ratio of silica to be introduced (hereinafter referred to as “silica filler” or simply “silica”) varies depending on the amount introduced into the resin. That is, when the ratio of the silica filler is 65 to 75% by mass with respect to the total mass of the resin material, the ratio of the fused silica to the total silica mass is preferably 45 to 50% by mass. It was found that when 75% by mass or more of silica is introduced, the ratio of fused silica to the total silica mass is preferably 35 to 40% by mass, and 80% by mass or more is preferably 30 to 40% by mass.
 上記の数値範囲においては、温度の上下によるクラック発生が防止できることが実験により判明している。 In the above numerical range, it has been experimentally found that the occurrence of cracks due to an increase or decrease in temperature can be prevented.
 上記の数値範囲外においては、温度の上下によりクラックが発生してしまう。 Outside the above numerical range, cracks will occur due to the temperature rise and fall.
 シリカフィラーの比率が上記の数値範囲より低い場合、樹脂組成物の熱伝導率が低くなり、硬化後の樹脂組成物の温度分布が大きくなり、クラックの原因となると考えられる。 When the ratio of the silica filler is lower than the above numerical range, it is considered that the thermal conductivity of the resin composition is lowered, the temperature distribution of the cured resin composition is increased, and cracks are caused.
 一方、シリカフィラーの比率が上記の数値範囲より高い場合、硬化後の樹脂組成物が脆くなり、クラックの原因となる。 On the other hand, when the ratio of the silica filler is higher than the above numerical range, the cured resin composition becomes brittle and causes cracks.
 シリカフィラーのうち、溶融シリカは、破砕結晶質シリカに比べて、粘度が低く、成形が容易であるが、熱伝導度は低いという問題がある。 Among the silica fillers, fused silica has a lower viscosity than crushed crystalline silica and is easy to mold, but has a problem of low thermal conductivity.
 一方、破砕結晶質シリカは、溶融シリカに比べて、粘度が高く、成形性に問題があるが、熱伝導度は高く、温度分布を小さくする作用を有する。 On the other hand, crushed crystalline silica is higher in viscosity than fused silica and has a problem in moldability, but has a high thermal conductivity and an effect of reducing the temperature distribution.
 溶融シリカと破砕結晶質シリカとを上記の数値範囲で樹脂組成物に混合することにより、互いの長所及び短所を補い合い、クラックが生じにくく、粘度も低くすることができ、充填率を向上するという効果も得られる。 By mixing fused silica and crushed crystalline silica into the resin composition in the above numerical range, it is possible to compensate for each other's strengths and weaknesses, hardly cause cracks, reduce the viscosity, and improve the filling rate. An effect is also obtained.
 また、破砕結晶質シリカとしては、乾式法破砕結晶質シリカが好ましく、その平均粒子径が10μm以下であれば更によい。乾式法破砕結晶質シリカは、樹脂組成物に混合した場合に、湿式法破砕結晶質シリカに比べて、粘度を抑制でき、樹脂との反応も抑制できる。 Further, as the crushed crystalline silica, dry-type crushed crystalline silica is preferable, and the average particle diameter is more preferably 10 μm or less. When dry process crushed crystalline silica is mixed with a resin composition, the viscosity can be suppressed and the reaction with the resin can be suppressed as compared with wet process crushed crystalline silica.
 溶融シリカの平均粒子径は、10~30μmであることが望ましい。 The average particle size of the fused silica is preferably 10-30 μm.
 このような粒径範囲のシリカフィラーを組み合わせることにより、大粒径の溶融シリカの間に破砕結晶質シリカが入り込むようになり、充填率の向上と粘度の低下とを両立することができる。 By combining the silica filler having such a particle size range, the crushed crystalline silica comes to enter between the large particle size fused silica, and both the improvement of the filling rate and the reduction of the viscosity can be achieved.
 さらに、樹脂添加物としてポリオキシエチレン、ポリオキシエチレンにアルキル基が結合した化合物、又はフェノール類を有するエーテルを含み、樹脂添加物の含有量は、シリカフィラー100質量部に対して1.5質量部以下であることが望ましい。 Further, the resin additive includes polyoxyethylene, a compound in which an alkyl group is bonded to polyoxyethylene, or an ether having phenols, and the content of the resin additive is 1.5 mass with respect to 100 parts by mass of the silica filler. Or less.
 さらに、エラストマー粒子又は鱗片状フィラーを含み、エラストマー粒子又は鱗片状フィラーの平均粒子径は、10μm以下であることが望ましい。 Furthermore, it is preferable that the elastomer particles or the flaky filler is contained, and the average particle diameter of the elastomer particles or the flaky filler is 10 μm or less.
 エラストマーとしては、ブタジエンゴム、ニトリルブタジエンゴム、シリコーンゴム、フッ素ゴム、その他これらの共重合体、これらを化学構造の一部として含む化合物、これらを化学構造の骨格として含む化合物、上記のゴム類、共重合体又は化合物と他の化合物との混合物などが挙げられる。なお、後述の実施例において用いたエラストマー粒子の形状は、球形状であるが、形状についてはこれに限定されるものではない。 Examples of elastomers include butadiene rubber, nitrile butadiene rubber, silicone rubber, fluoro rubber, and other copolymers thereof, compounds containing these as part of the chemical structure, compounds containing these as the skeleton of the chemical structure, the above rubbers, Examples thereof include a copolymer or a mixture of a compound and another compound. In addition, although the shape of the elastomer particle used in the below-mentioned Example is a spherical shape, about a shape, it is not limited to this.
 また、鱗片状フィラーは、マイカ(雲母)を主成分とする化合物である。 Further, the scaly filler is a compound mainly composed of mica (mica).
 以下、本発明の実施形態について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の電気絶縁用樹脂組成物の内部構成を模式的に示したものである。 FIG. 1 schematically shows the internal structure of the resin composition for electrical insulation of the present invention.
 本図において、電気絶縁用樹脂組成物は、母材となる樹脂1と、破砕結晶質シリカ2と、溶融シリカ3と、を含む構成を有する。破砕結晶質シリカ2及び溶融シリカ3は、樹脂1に分散されている。破砕結晶質シリカ2としては、乾式破砕結晶質シリカが望ましい。 In this figure, the resin composition for electrical insulation has a configuration including a resin 1 as a base material, crushed crystalline silica 2 and fused silica 3. The crushed crystalline silica 2 and the fused silica 3 are dispersed in the resin 1. As the crushed crystalline silica 2, dry crushed crystalline silica is desirable.
 破砕結晶質シリカ2及び溶融シリカ3の二種類のシリカは、それぞれ異なる機能を有する。 Two types of silica, crushed crystalline silica 2 and fused silica 3, have different functions.
 破砕結晶質シリカ2は、溶融シリカ3と比較して熱伝導性が高く、線膨脹係数が高いという性質を有する。破砕結晶質シリカ2の形状は、無定形であり、本図にも示すように、破砕された痕跡としての角を有する。また、結晶質であるため、曲面状というよりは複数の平面状の部分で構成されている。 Crushed crystalline silica 2 has properties of high thermal conductivity and high linear expansion coefficient compared to fused silica 3. The shape of the crushed crystalline silica 2 is amorphous and has corners as crushed traces as shown in this figure. Further, since it is crystalline, it is composed of a plurality of flat portions rather than curved surfaces.
 溶融シリカ3は、高温にした溶融状態のシリカを冷却して生産される。高温状態に置かれるため、結晶からガラス状態への転移が起こり、その状態のまま常温で固化する。多くの場合、高温状態で球に近い形状になるため、球状シリカとも呼ばれる。しかし、本発明においては、真球状のシリカを要求するものではなく、生産条件によって真球にはならなくてもかまわない。この意味で、溶融シリカ3の形状は、球、回転楕円体、扁球その他の曲率を有する形状であれば特に限定されるものではない。 The fused silica 3 is produced by cooling molten silica at a high temperature. Since it is placed in a high temperature state, a transition from a crystal to a glass state occurs, and solidifies at that temperature in that state. In many cases, it has a shape close to a sphere at a high temperature, so it is also called spherical silica. However, in the present invention, a spherical silica is not required, and it may not be a true sphere depending on production conditions. In this sense, the shape of the fused silica 3 is not particularly limited as long as it has a curvature such as a sphere, a spheroid, a flat ball or the like.
 二種類のシリカの特徴をまとめると、次のとおりである。ここでは、破砕結晶質シリカ2の望ましい形態である乾式破砕結晶質シリカについて述べる。 The characteristics of the two types of silica are summarized as follows. Here, the dry crushed crystalline silica which is a desirable form of the crushed crystalline silica 2 will be described.
 (1)乾式破砕結晶質シリカ
 ・溶融シリカと比較して熱伝導性が高い。
(1) Dry crushed crystalline silica-Thermal conductivity is higher than fused silica.
 ・溶融シリカと比較して線膨脹係数が高い。 ・ Higher linear expansion coefficient than fused silica.
 ・鉱山で算出された結晶質シリカをドライプロセスで破砕したもので、湿式法に比較して表面のOH基又はそれに起因する表面水分量が少ない。 ・ Crystalline silica calculated in a mine is crushed by a dry process, and has less surface OH groups or surface moisture due to it compared to the wet method.
 (2)溶融シリカ
 ・結晶質シリカと比較して熱伝導性が低い。
(2) Fused silica-Low thermal conductivity compared to crystalline silica.
 ・結晶質シリカと比較して線膨脹係数が高い。 ・ Higher linear expansion coefficient than crystalline silica.
 つぎに、電気絶縁用樹脂組成物の母材となる樹脂1について説明する。 Next, the resin 1 serving as a base material of the resin composition for electrical insulation will be described.
 樹脂1は、ビスフェノールA構造を主骨格としたエポキシ樹脂(エポキシプレポリマー)を酸無水物と重合させ、硬化させたもの(以下、「エポキシ樹脂」という。)である。
このようなエポキシ樹脂は、エステル結合を有する樹脂である。
The resin 1 is obtained by polymerizing an epoxy resin (epoxy prepolymer) having a bisphenol A structure as a main skeleton with an acid anhydride and curing the resin (hereinafter referred to as “epoxy resin”).
Such an epoxy resin is a resin having an ester bond.
 このエポキシ樹脂の線膨脹係数は、60ppm/K程度であり、セラミックや一般的な金属(10~30ppm/K)と比較すると大きい。このままエポキシ樹脂を用いると、低温から高温あるいはその逆のプロセスが起こる中で膨脹と伸縮による応力発生によりクラックが生ずる原因となる。シリカの添加は、一つはこのようなクラック発生を防ぐためである。また、どちらのシリカにも熱伝導率を向上させる効果があり、特に結晶質シリカは熱伝導性を向上させる効果が高い。 The linear expansion coefficient of this epoxy resin is about 60 ppm / K, which is large compared to ceramics and general metals (10 to 30 ppm / K). If the epoxy resin is used as it is, cracks are caused by the generation of stress due to expansion and contraction during the process from low temperature to high temperature or vice versa. One of the additions of silica is to prevent the occurrence of such cracks. Both silicas have the effect of improving the thermal conductivity, and crystalline silica is particularly effective for improving the thermal conductivity.
 ただし、次のような問題点がある。 However, there are the following problems.
 図2は、複数種類の部材をモールドした状態を模式的に示したものである。 FIG. 2 schematically shows a state where a plurality of types of members are molded.
 本図においては、セラミック部材12と、2種類の金属部材13、14(金属部材A、B)と、これらの周囲を取り囲むモールド部11と、を含む複合化された部材(複合部材)を示している。 In the figure, a composite member (composite member) including a ceramic member 12, two types of metal members 13 and 14 (metal members A and B), and a mold part 11 surrounding the periphery thereof is shown. ing.
 本図のように、セラミック部材12と金属部材A、Bとが複合化された部材を樹脂によりモールドし、モールド部11が形成されている場合においては、線膨脹係数を適切な範囲に調整する必要が生じる。あまりに低下させても、温度の上下による膨脹率の差異によってクラック発生の原因となり得る上、樹脂へのシリカ高濃度添加は、樹脂材の脆さ、すなわち耐クラック性の低下を引き起こす一因となる。 As shown in this figure, when the member in which the ceramic member 12 and the metal members A and B are combined is molded with resin and the mold part 11 is formed, the linear expansion coefficient is adjusted to an appropriate range. Need arises. Even if it is reduced too much, it can cause cracking due to the difference in expansion rate due to the temperature rise and fall, and addition of high concentration of silica to the resin contributes to the brittleness of the resin material, that is, the reduction of crack resistance. .
 温度の上下によるクラック発生は、熱サイクル試験によって確認することができる。 The occurrence of cracks due to an increase or decrease in temperature can be confirmed by a thermal cycle test.
 以下、実施例について説明する。 Hereinafter, examples will be described.
 表1は、熱サイクル試験における樹脂のクラック発生状況を示したものである。ここで用いた樹脂組成物は、シリカをビスフェノールA型エポキシプレポリマー及び酸無水物に添加して作製したものである。この樹脂組成物におけるシリカフィラーの添加総量は76質量%である。 Table 1 shows the occurrence of cracks in the resin in the thermal cycle test. The resin composition used here was prepared by adding silica to bisphenol A type epoxy prepolymer and acid anhydride. The total amount of silica filler added in this resin composition is 76% by mass.
 熱サイクルの条件は、次の二通りとした。それぞれの低温側及び高温側において2時間温度保持を実施した。 The heat cycle conditions were as follows. The temperature was held for 2 hours on each of the low temperature side and the high temperature side.
 条件(1):低温側が-20℃、高温側が100℃。 Condition (1): -20 ° C on the low temperature side and 100 ° C on the high temperature side.
 条件(2):低温側が-40℃、高温側が100℃。 Condition (2): -40 ° C on the low temperature side and 100 ° C on the high temperature side.
 条件(2)の方が、熱サイクルにおける低温と高温との差が大きく、クラック発生に対する条件が厳しくなる。 The condition (2) has a larger difference between the low temperature and the high temperature in the thermal cycle, and the condition for crack generation becomes severe.
 樹脂は、次のようにして調合し、セラミック及び金属部品をモールドし、硬化させた。 Resin was prepared as follows, and ceramic and metal parts were molded and cured.
 〔1〕エポキシプレポリマー及び酸無水物(硬化剤)にそれぞれ、シリカを添加し、プラネタリーミキサーで混合し、2種類の硬化前樹脂液を作製した。 [1] Silica was added to the epoxy prepolymer and acid anhydride (curing agent), respectively, and mixed with a planetary mixer to prepare two types of pre-curing resin liquids.
 〔2〕必要な添加物(イミダゾール系硬化促進剤等)をプラネタリーミキサーで混合した。 [2] Necessary additives (imidazole curing accelerator, etc.) were mixed with a planetary mixer.
 〔3〕上記二液(エポキシプレポリマー、酸無水物硬化剤)を一軸回転翼撹拌機で混合した。この段階で80℃に加熱した。 [3] The two liquids (epoxy prepolymer and acid anhydride curing agent) were mixed with a uniaxial rotary blade stirrer. At this stage it was heated to 80 ° C.
 〔4〕上記液を80℃に予熱したセラミック及び金属部材A、Bが入った金型に流し入れ、80℃で5時間、更に130℃で8時間加熱した。 [4] The above solution was poured into a mold containing ceramics and metal members A and B preheated to 80 ° C., and heated at 80 ° C. for 5 hours and further at 130 ° C. for 8 hours.
 〔5〕加熱後、3時間徐冷し、硬化した樹脂を型から取り外した。 [5] After heating, it was gradually cooled for 3 hours, and the cured resin was removed from the mold.
 いずれもシリカ濃度は、硬化前の樹脂組成物全体の76質量%となるようにした。 In all cases, the silica concentration was 76% by mass of the entire resin composition before curing.
 シリカは、乾式破砕結晶質シリカ(平均粒子径6μm)及び溶融シリカ(平均粒子径20μm)を用いた。シリカの粒子径を変えた理由は、大粒径の溶融シリカの間に結晶質シリカが入り込むようにし、充填率の向上と粘度の低下とを狙うためである。 As the silica, dry-crushed crystalline silica (average particle size 6 μm) and fused silica (average particle size 20 μm) were used. The reason for changing the particle diameter of the silica is to allow crystalline silica to enter between the large-diameter fused silica in order to improve the filling rate and decrease the viscosity.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本表に示す熱サイクル試験の結果から、溶融シリカの添加量が少なくても多くても、クラックが発生することが分かる。条件として温度変化の大きい条件(2)においては、クラックが発生しない点で望ましい溶融シリカの添加比率は、30~50質量%であり、好ましくは35~40質量%であることが分かる。また、この範囲において熱伝導率は1W/m・K以上であり、良好である。また、粘度も、80℃において3Pa・s程度と低い値であった。 From the results of the thermal cycle test shown in this table, it can be seen that cracks occur even if the amount of fused silica added is small or large. In condition (2) where the temperature change is large as a condition, it is understood that the desirable addition ratio of fused silica is 30 to 50% by mass, and preferably 35 to 40% by mass in terms of preventing the generation of cracks. In this range, the thermal conductivity is 1 W / m · K or more, which is good. Also, the viscosity was a low value of about 3 Pa · s at 80 ° C.
 上述のエポキシ樹脂の原料として使用した物質は、図3Aに示すビスフェノールA型エポキシ樹脂、及び図3Bに示す酸無水物(硬化剤)である。粘度は、上述のとおり、3Pa・s以下(80℃)であり、注型樹脂として用い得る低い範囲であった。 The materials used as raw materials for the above-mentioned epoxy resin are the bisphenol A type epoxy resin shown in FIG. 3A and the acid anhydride (curing agent) shown in FIG. 3B. As described above, the viscosity was 3 Pa · s or less (80 ° C.), which was a low range that could be used as a casting resin.
 これに加え、ラジカル重合による硬化を起こすモノマーを同時に用いると、更に粘度の低い原樹脂液を得ることができる。例えば、アクリル系モノマーの添加により2.2Pa・s(80℃)という結果を得ている。 In addition to this, when a monomer that causes curing by radical polymerization is used at the same time, a raw resin liquid having a lower viscosity can be obtained. For example, the result of 2.2 Pa · s (80 ° C.) is obtained by adding an acrylic monomer.
 表2~4は、熱サイクル試験の結果を示したものである。 Tables 2 to 4 show the results of the thermal cycle test.
 樹脂組成物全体に占めるシリカの添加量(乾式破砕結晶質シリカと溶融シリカの総量)は、表2においては65質量%及び74質量%、表3においては75質量%及び77質量%、表4においては85質量%である。 The addition amount of silica in the entire resin composition (total amount of dry-crushed crystalline silica and fused silica) is 65% by mass and 74% by mass in Table 2, 75% by mass and 77% by mass in Table 3, and Table 4 Is 85 mass%.
 これらの表に示すとおり、最適な溶融シリカの添加量の範囲はごく限定されていることが分かる。 As shown in these tables, it can be seen that the range of the optimum amount of fused silica added is very limited.
 また、これらの結果から、次の範囲において耐クラック性を最大化することが可能であることがわかる。 Also, it can be seen from these results that the crack resistance can be maximized in the following range.
 すなわち、添加したシリカの質量が樹脂組成物全体の質量を基準として65質量%以上75質量%未満の範囲においては、二種のシリカ合計質量に対する溶融シリカの比率を45~50質量%とする。添加したシリカの質量が樹脂組成物全体の質量を基準として75質量%以上80質量%未満の範囲においては、二種のシリカ合計質量に対する溶融シリカの比率を35~40質量%とする。添加したシリカの質量が樹脂組成物全体の質量を基準として80質量%以上の範囲においては、二種のシリカ合計質量に対する溶融シリカの比率を30~40質量%とする。 That is, in the range where the mass of the added silica is 65 mass% or more and less than 75 mass% based on the mass of the entire resin composition, the ratio of the fused silica to the total mass of the two types of silica is 45 to 50 mass%. In the range where the mass of the added silica is 75 mass% or more and less than 80 mass% based on the mass of the entire resin composition, the ratio of the fused silica to the total mass of the two types of silica is 35 to 40 mass%. In the range where the mass of the added silica is 80 mass% or more based on the mass of the entire resin composition, the ratio of the fused silica to the total mass of the two types of silica is 30 to 40 mass%.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記実施例において、乾式法破砕シリカの平均粒子径が10μm以下であれば、更に高い耐電圧性能の樹脂硬化物が得られる。76質量%で平均粒子径12μmのシリカを添加した場合、耐電界性能は30kV/mmの耐電界性能であったが、平均粒子径6μmのシリカに変えた場合は45kV/mmまで向上した。破壊路が分岐することによる耐電圧性能の向上と考えられる。 In the above examples, if the average particle size of the dry-process crushed silica is 10 μm or less, a cured resin product having a higher withstand voltage can be obtained. When silica having an average particle diameter of 12 μm was added at 76 mass%, the electric field resistance performance was 30 kV / mm, but when changed to silica with an average particle diameter of 6 μm, the electric field resistance performance was improved to 45 kV / mm. It is considered that the withstand voltage performance is improved by branching the destruction path.
 上記実施例において、溶融シリカの平均粒子径が10μm以上30μm以下とすると、結晶質シリカを含むシリカフィラー全体の充填の状態が改善され、樹脂組成物の粘度を低下させることができる。具体的には、平均粒子径が20μmの溶融シリカを用いると、粘度は0.8Pa・s(80℃)まで抑制でき、ハンドリング性を向上することができる。
平均粒子径が10μm又は30μmの溶融シリカを添加した場合、2Pa・s(80℃)程度であるが、抑制の効果が得られる。
In the said Example, when the average particle diameter of a fused silica shall be 10 micrometers or more and 30 micrometers or less, the filling state of the whole silica filler containing crystalline silica will be improved, and the viscosity of a resin composition can be reduced. Specifically, when fused silica having an average particle diameter of 20 μm is used, the viscosity can be suppressed to 0.8 Pa · s (80 ° C.), and handling properties can be improved.
When fused silica having an average particle diameter of 10 μm or 30 μm is added, the suppression effect is obtained although it is about 2 Pa · s (80 ° C.).
 上記実施例において、樹脂添加物としてポリオキシエチレンアルキルエーテルを添加した場合について説明する。 In the above embodiment, the case where polyoxyethylene alkyl ether is added as a resin additive will be described.
 この樹脂添加物は、シリカフィラー全体の質量(100質量部)に対して1.5質量部混合した。 This resin additive was mixed in an amount of 1.5 parts by mass with respect to the total mass of the silica filler (100 parts by mass).
 ポリオキシエチレンアルキルエーテルは、界面活性剤としての効果を持ち、樹脂の粘度を抑制する効果がある。また、イオン性界面活性剤ではないので、イオンによる反応への影響を最小限にすることが可能である。 Polyoxyethylene alkyl ether has an effect as a surfactant and has an effect of suppressing the viscosity of the resin. Further, since it is not an ionic surfactant, it is possible to minimize the influence of ions on the reaction.
 上記実施例に述べた樹脂にポリオキシエチレンアルキルエーテルを添加すると、粘度が1.5Pa・s(80℃)まで抑制することができた。 When the polyoxyethylene alkyl ether was added to the resins described in the above examples, the viscosity could be suppressed to 1.5 Pa · s (80 ° C.).
 本実施例において、シリカフィラーのほかに、鱗片状フィラーを含む樹脂について説明する。 In this example, a resin containing scaly filler in addition to silica filler will be described.
 樹脂の耐クラック性は、樹脂の破壊じん性を向上することで上昇する。鱗片状フィラーの平均粒子径は、10μm以下の鱗片が特に好ましく、沈降や分散粒子の数密度を上げることによるクラック進展阻害作用が期待できる。また、同様に鱗片状フィラーにも同様の作用が期待できる。 Resin crack resistance is increased by improving the fracture toughness of the resin. The average particle diameter of the scale-like filler is particularly preferably a scale having a size of 10 μm or less, and an effect of inhibiting crack progress by increasing the number density of sediments or dispersed particles can be expected. Similarly, the same effect can be expected for the scaly filler.
 本実施例においては、破砕結晶質シリカは、平均粒子径が6μm程度である。破砕結晶質シリカの割合は、樹脂組成物全体の量を基準として60質量%~78質量%であることが望ましい。 In this embodiment, the crushed crystalline silica has an average particle size of about 6 μm. The proportion of the crushed crystalline silica is desirably 60% by mass to 78% by mass based on the total amount of the resin composition.
 また、鱗片状フィラーに関しては、長手方向20μm、厚さ0.1~2μm程度である。鱗片状フィラーの割合は、樹脂組成物全体の量を基準として2質量%~12質量%であることが望ましい。破砕結晶質シリカと鱗片状フィラーとの比率は、10:1程度であることが望ましい。 Also, the scale-like filler has a longitudinal direction of 20 μm and a thickness of about 0.1 to 2 μm. The ratio of the scale-like filler is desirably 2% by mass to 12% by mass based on the total amount of the resin composition. The ratio of crushed crystalline silica to scaly filler is preferably about 10: 1.
 添加量は樹脂に対して8質量%とした。この結果、破壊じん性は、2.4MPa√mから4.5MPa√mに向上させることができた。更に粒子径を増大させて効果を調べたが、徐々にその効果が落ちる現象が確認された。その理由として、同じ質量では数密度が小さくなり、進展したクラックと遭遇する確率が下がることが挙げられる。 The addition amount was 8% by mass with respect to the resin. As a result, the fracture toughness could be improved from 2.4 MPa√m to 4.5 MPa√m. Further, the effect was examined by increasing the particle diameter, but it was confirmed that the effect gradually decreased. The reason is that the number density decreases at the same mass, and the probability of encountering an advanced crack decreases.
 なお、同様に、鱗片状フィラーとしてマイカパウダー(長手方向径1μm)でも同様の効果が得られた。具体的には、2.4MPa√mの破壊じん性を4.0MPa√mに改善することができた。 Similarly, the same effect was obtained with mica powder (longitudinal diameter 1 μm) as a scale-like filler. Specifically, the fracture toughness of 2.4 MPa√m could be improved to 4.0 MPa√m.
 また、本実施例に述べたじん性向上効果のほか、上記までに述べてきた実施例における効果も同時に発揮される。 Further, in addition to the toughness improving effect described in the present embodiment, the effects in the embodiments described above are also exhibited.
 1:樹脂、2:破砕結晶質シリカ、3:溶融シリカ、11:モールド部、12:セラミック部材、13、14:金属部材。 1: resin, 2: crushed crystalline silica, 3: fused silica, 11: mold part, 12: ceramic member, 13, 14: metal member.

Claims (7)

  1.  エステル結合を有する樹脂と、シリカフィラーと、を含む樹脂組成物であって、
     前記シリカフィラーは、破砕結晶質シリカ及び溶融シリカを含み、
     前記シリカフィラーは、前記樹脂組成物全体の65質量%以上75質量%未満であり、 前記シリカフィラーのうち前記溶融シリカの割合は、45~50質量%である、電気絶縁用樹脂組成物。
    A resin composition comprising a resin having an ester bond and a silica filler,
    The silica filler includes crushed crystalline silica and fused silica,
    The silica filler is 65% by mass or more and less than 75% by mass of the entire resin composition, and the proportion of the fused silica in the silica filler is 45 to 50% by mass.
  2.  エステル結合を有する樹脂と、シリカフィラーと、を含む樹脂組成物であって、
     前記シリカフィラーは、破砕結晶質シリカ及び溶融シリカを含み、
     前記シリカフィラーは、前記樹脂組成物全体の75質量%以上80質量%未満であり、 前記シリカフィラーのうち前記溶融シリカの割合は、35~40質量%である、電気絶縁用樹脂組成物。
    A resin composition comprising a resin having an ester bond and a silica filler,
    The silica filler includes crushed crystalline silica and fused silica,
    The silica filler is 75% by mass or more and less than 80% by mass of the entire resin composition, and the proportion of the fused silica in the silica filler is 35 to 40% by mass.
  3.  エステル結合を有する樹脂と、シリカフィラーと、を含む樹脂組成物であって、
     前記シリカフィラーは、破砕結晶質シリカ及び溶融シリカを含み、
     前記シリカフィラーは、前記樹脂組成物全体の80質量%以上であり、
     前記シリカフィラーのうち前記溶融シリカの割合は、30~40質量%である、電気絶縁用樹脂組成物。
    A resin composition comprising a resin having an ester bond and a silica filler,
    The silica filler includes crushed crystalline silica and fused silica,
    The silica filler is 80% by mass or more of the entire resin composition,
    The resin composition for electrical insulation, wherein the proportion of the fused silica in the silica filler is 30 to 40% by mass.
  4.  前記破砕結晶質シリカの平均粒子径が10μm以下である、請求項1~3のいずれか一項に記載の電気絶縁用樹脂組成物。 The resin composition for electrical insulation according to any one of claims 1 to 3, wherein an average particle size of the crushed crystalline silica is 10 µm or less.
  5.  前記溶融シリカの平均粒子径が10~30μmである、請求項1~3のいずれか一項に記載の電気絶縁用樹脂組成物。 The resin composition for electrical insulation according to any one of claims 1 to 3, wherein the fused silica has an average particle size of 10 to 30 µm.
  6.  さらに、樹脂添加物としてポリオキシエチレン、ポリオキシエチレンにアルキル基が結合した化合物、又はフェノール類を有するエーテルを含み、
     前記樹脂添加物の含有量は、前記シリカフィラー100質量部に対して1.5質量部以下である、請求項1~3のいずれか一項に記載の電気絶縁用樹脂組成物。
    Further, polyoxyethylene as a resin additive, a compound in which an alkyl group is bonded to polyoxyethylene, or an ether having phenols,
    The resin composition for electrical insulation according to any one of claims 1 to 3, wherein a content of the resin additive is 1.5 parts by mass or less with respect to 100 parts by mass of the silica filler.
  7.  さらに、エラストマー粒子又は鱗片状フィラーを含み、
     前記エラストマー粒子又は前記鱗片状フィラーの平均粒子径は、10μm以下である、請求項1~3のいずれか一項に記載の電気絶縁用樹脂組成物。
    In addition, elastomer particles or scaly fillers,
    The resin composition for electrical insulation according to any one of claims 1 to 3, wherein an average particle diameter of the elastomer particles or the scaly filler is 10 µm or less.
PCT/JP2016/087323 2015-12-16 2016-12-15 Electrical insulation resin composition WO2017104727A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015244950A JP2017110089A (en) 2015-12-16 2015-12-16 Resin composition for electric insulation
JP2015-244950 2015-12-16

Publications (1)

Publication Number Publication Date
WO2017104727A1 true WO2017104727A1 (en) 2017-06-22

Family

ID=59056792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087323 WO2017104727A1 (en) 2015-12-16 2016-12-15 Electrical insulation resin composition

Country Status (2)

Country Link
JP (1) JP2017110089A (en)
WO (1) WO2017104727A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187055A (en) * 1989-01-13 1990-07-23 Nitto Denko Corp Semiconductor device
JPH04164953A (en) * 1990-10-30 1992-06-10 Sumitomo Bakelite Co Ltd Epoxy resin composition
JPH07273251A (en) * 1994-03-30 1995-10-20 Hitachi Chem Co Ltd Resin sealed type semiconductor device
JP2002338788A (en) * 2001-05-16 2002-11-27 Mitsui Chemicals Inc Epoxy resin composition and hollow package housing semiconductor element using the composition
JP2011148958A (en) * 2010-01-25 2011-08-04 Kyocera Chemical Corp Epoxy resin composition for sealing electronic component and electronic component device using the same
JP2016079195A (en) * 2014-10-10 2016-05-16 株式会社日立製作所 Electrical insulation resin
JP2016162515A (en) * 2015-02-27 2016-09-05 株式会社日立製作所 Electric insulation resin composition and electric insulation resin cured article, electric substation equipment using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187055A (en) * 1989-01-13 1990-07-23 Nitto Denko Corp Semiconductor device
JPH04164953A (en) * 1990-10-30 1992-06-10 Sumitomo Bakelite Co Ltd Epoxy resin composition
JPH07273251A (en) * 1994-03-30 1995-10-20 Hitachi Chem Co Ltd Resin sealed type semiconductor device
JP2002338788A (en) * 2001-05-16 2002-11-27 Mitsui Chemicals Inc Epoxy resin composition and hollow package housing semiconductor element using the composition
JP2011148958A (en) * 2010-01-25 2011-08-04 Kyocera Chemical Corp Epoxy resin composition for sealing electronic component and electronic component device using the same
JP2016079195A (en) * 2014-10-10 2016-05-16 株式会社日立製作所 Electrical insulation resin
JP2016162515A (en) * 2015-02-27 2016-09-05 株式会社日立製作所 Electric insulation resin composition and electric insulation resin cured article, electric substation equipment using the same

Also Published As

Publication number Publication date
JP2017110089A (en) 2017-06-22

Similar Documents

Publication Publication Date Title
EP2607420A1 (en) Composition for a composite sheet comprising core-shell type filler particles, a composite sheet comprising the same and a production method for the composite sheet
JP2009073933A (en) Epoxy resin composition having thermal degradation resistance
JP2023126257A (en) Resin composition for stator core insulation
JP2014193965A (en) High thermal conductive resin composition, high thermal conductive semi-cured resin film and high thermal conductive resin cured product
JP2016040383A (en) Epoxy resin composition for encapsulating electronic component and electronic component device using the same
CA3016634A1 (en) A process for the preparation of insulation systems for electrical engineering, the articles obtained therefrom and the use thereof
JP6310730B2 (en) Epoxy resin composition and electric power equipment using the same
JP2011246596A (en) Sheet-like resin composition and circuit component sealed by using the same
TWI801488B (en) Resin composition and its cured product, adhesives for electronic parts, semiconductor devices, and electronic parts
JP2009155370A (en) Epoxy resin molding material for sealing motor and molded article
JP2009114222A (en) Epoxy resin composition for casting and electric/electronic component device
WO2017104727A1 (en) Electrical insulation resin composition
WO2017104726A1 (en) Mold varnish, resin cured material, electric power apparatus, and vacuum circuit breaker
WO2016056263A1 (en) Electric insulation resin
JP6303627B2 (en) Epoxy resin composition and cured product
JP2013119588A (en) Epoxy resin composition for sealing electronic component and electronic component device using the same
JP2019167436A (en) Resin composition, semiconductor device and method for producing semiconductor device
JP2018012745A (en) Epoxy resin composition for casting and electric/electronic component
CN110746741A (en) Resin composite material and preparation method and application thereof
JP2014227465A (en) Liquid resin compositions for injection molding, and semiconductor device
CN102061062B (en) Synthetic resin composition for cast-in-situ medium-voltage bus
JP7168157B2 (en) COMPOSITION FOR HIGHLY HEAT RESISTANT RESIN CURED MATERIAL, ELECTRONIC COMPONENTS AND SEMICONDUCTOR DEVICE USING THE SAME
JP2018168253A (en) Thermosetting resin composition and method for producing resin cured product
JP6804992B2 (en) Epoxy resin composition for coil impregnation, manufacturing method of coil products, and ignition coil
JP2008222824A (en) Motor sealing epoxy resin molding material and molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875704

Country of ref document: EP

Kind code of ref document: A1