JP2009097119A - Device for melt-spinning thermoplastic fiber - Google Patents

Device for melt-spinning thermoplastic fiber Download PDF

Info

Publication number
JP2009097119A
JP2009097119A JP2007270975A JP2007270975A JP2009097119A JP 2009097119 A JP2009097119 A JP 2009097119A JP 2007270975 A JP2007270975 A JP 2007270975A JP 2007270975 A JP2007270975 A JP 2007270975A JP 2009097119 A JP2009097119 A JP 2009097119A
Authority
JP
Japan
Prior art keywords
cooling air
cooling
vertical distance
base surface
spin block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007270975A
Other languages
Japanese (ja)
Inventor
Yasuki Kobayashi
靖希 小林
Seiji Yamada
晴士 山田
Naoyuki Kinoshita
直之 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007270975A priority Critical patent/JP2009097119A/en
Publication of JP2009097119A publication Critical patent/JP2009097119A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for melt-spinning a thermoplastic fiber, having a high flexibility, and capable of cooling the melt-spun fiber yarn uniformly and stably in producing the thermoplastic fiber. <P>SOLUTION: In the device for melt-spinning the thermoplastic fiber, the lower part of a melt-extruding device contacts with the upper part of a cooling and solidifying device, a cooling air-blowing out part of the cooling and solidifying device has a circular shape, an equalization chamber for blowing the cooling air uniformly is provided at a lower part than the blowing out part of the cooling air, a perpendicular distance from the uppermost part of the cooling air-blowing out part to a spinneret surface is shorter than that from the lower surface of a spinning block to the spinneret surface, and a heating device capable of temperature-controlling so as to make the temperature of the cooling air of ≥50°C and not more than a polymer melting temperature (Tm)-10°C is installed at the upper part than the equalization chamber. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、延伸または延伸仮撚加工が可能な紡糸配向した熱可塑性繊維を安定して連続的に製造することができる熱可塑性繊維の溶融紡糸装置に関する。   The present invention relates to a thermoplastic fiber melt spinning apparatus capable of stably and continuously producing spinning-oriented thermoplastic fibers that can be drawn or drawn false twisted.

従来、マルチフィラメントの熱可塑性繊維の製造方法において、特に多フィラメントの熱可塑性繊維を均一冷却する方法として円周方向に冷却風が吹き出す環状チムニーが良く用いられ、様々な方法が知られている。多フィラメントの極細熱可塑性繊維の製造方法において、口金面の吐出孔より吐出された溶融ポリマは固化が早いため、環状チムニーの冷却風吹き出し面の最上部を口金面に近づけ、かつ、口金面および口金面下近傍の温度低下を抑制するため、冷却風の吹き出し方向を下向きにする冷却方法が提案されている(例えば、特許文献1参照)。また、冷却風の吹き出し速度を変更できる環状チムニーを長手方向に2つ重ね合わせ、冷却風の風量を調整し、糸条近傍に発生する随伴気流の影響を抑制させることで多フィラメントの極細熱可塑性繊維を均一に冷却する方法が提案されている(例えば、特許文献2参照)。   Conventionally, in a method for producing a multifilament thermoplastic fiber, an annular chimney in which cooling air is blown in the circumferential direction is often used as a method for uniformly cooling a multifilament thermoplastic fiber, and various methods are known. In the method for producing a multifilament ultrafine thermoplastic fiber, since the molten polymer discharged from the discharge hole on the die surface is quickly solidified, the uppermost part of the cooling air blowing surface of the annular chimney is brought close to the die surface, and the die surface and In order to suppress a temperature drop near the base surface, a cooling method in which the blowing direction of the cooling air is directed downward has been proposed (for example, see Patent Document 1). In addition, two annular chimneys that can change the blowing speed of the cooling air are superposed in the longitudinal direction, the air volume of the cooling air is adjusted, and the influence of the accompanying airflow generated near the yarn is suppressed, so that the ultrafine thermoplasticity of the multifilament A method for uniformly cooling fibers has been proposed (see, for example, Patent Document 2).

しかしながら、これらの方法は、多フィラメントの極細熱可塑性繊維を長手方向の繊度斑なく安定して紡糸できるが、その目的を達成するには口金面と冷却風吹き出し面の最上部の距離を短くする必要があり、また、口金下近傍の温度低下を抑制するため、積極的に加熱するヒーターを設置するなど付帯設備が必要であり、汎用性に欠けるといった課題が残っている。   However, although these methods can stably spin multifilament ultrafine thermoplastic fibers without unevenness in the longitudinal direction, the distance between the die surface and the top of the cooling air blowing surface is shortened in order to achieve the purpose. In addition, in order to suppress a temperature drop near the base, additional equipment such as a heater that actively heats up is necessary, and there remains a problem of lack of versatility.

また、環状チムニーの冷却風を円周方向に均一に吹き出すためには、図2に示すような均圧室を冷却風吹き出し面と同面に設置することが知られている。この装置においては、一般的には冷却風の供給は一方向より供給されるため、均圧室を大きくし、冷却風を均一に円周方向に吹き出す方法が採用されているが、隣接する錘間を大きくする必要があり、生産性が低くなるという課題が残っている。
特開2004−300614号公報 特開2003−253522号公報
In order to blow out the cooling air of the annular chimney uniformly in the circumferential direction, it is known to install a pressure equalizing chamber as shown in FIG. 2 on the same surface as the cooling air blowing surface. In this apparatus, since the cooling air is generally supplied from one direction, a method of enlarging the pressure equalizing chamber and blowing the cooling air uniformly in the circumferential direction is adopted. There remains a problem that productivity needs to be lowered because it is necessary to increase the gap.
JP 2004-300614 A JP 2003-253522 A

本発明の目的は、上記した問題点を解決し、熱可塑性繊維を製造するに際し、汎用性が高く、溶融紡糸された糸条を均一で、かつ安定した冷却を可能にする熱可塑性繊維の溶融紡糸装置を提供することにある。   The object of the present invention is to solve the above-mentioned problems and to melt thermoplastic fibers that are highly versatile and enable uniform and stable cooling of melt-spun yarns when producing thermoplastic fibers. It is to provide a spinning device.

上記目的を達成するため、本発明は以下の構成を採用する。すなわち、
(1)紡糸口金を備えた溶融押し出し装置と、該溶融押し出し装置を加熱および保温するスピンブロックとを備え、該紡糸口金より紡出された熱可塑性繊維を冷却固化する装置により冷却固化して巻き取る溶融紡糸装置において、上記溶融押し出し装置の下部と上記冷却固化する装置の上部が接し、かつ上記冷却固化する装置の冷却風吹き出し部が環状であるとともに、冷却風を均一に吹き出すための均圧室を冷却風の吹き出し部より下部に有し、さらに冷却風吹き出し部の最上部から口金面までの鉛直距離(a)が前記スピンブロック下面から口金面までの鉛直距離(b)より短く、冷却風を50℃以上ポリマ溶融温度(Tm)−10℃以下とするための温度制御の可能な加熱装置が均圧室より上部に設けられていることを特徴とする熱可塑性繊維の溶融紡糸装置。
In order to achieve the above object, the present invention adopts the following configuration. That is,
(1) A melt extrusion apparatus provided with a spinneret and a spin block for heating and keeping the melt extrusion apparatus, and cooled and solidified by an apparatus for cooling and solidifying thermoplastic fibers spun from the spinneret. In the melt spinning apparatus, the lower part of the melt extrusion apparatus and the upper part of the cooling and solidifying apparatus are in contact with each other, and the cooling air blowing portion of the cooling and solidifying apparatus is annular, and pressure equalization for blowing out the cooling air uniformly The chamber is located below the cooling air blowing portion, and the vertical distance (a) from the top of the cooling air blowing portion to the base surface is shorter than the vertical distance (b) from the bottom surface of the spin block to the base surface. A heating device capable of controlling the temperature to bring the wind to 50 ° C. or more and the polymer melting temperature (Tm) −10 ° C. or less is provided above the pressure equalizing chamber. Melt spinning apparatus of sexual fibers.

(2)冷却風を50℃以上ポリマ溶融温度(Tm)−10℃以下とするための温度制御の可能な加熱装置の長さ(c)とスピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)が下記(イ)〜(ハ)式を満足することを特徴とする前記(1)に記載の熱可塑性繊維の溶融紡糸装置。   (2) The length (c) of the heating device capable of temperature control for setting the cooling air to 50 ° C. or more and the polymer melting temperature (Tm) −10 ° C. or less and from the lower surface of the spin block to the top of the cooling air blowing portion The thermoplastic fiber melt spinning apparatus as described in (1) above, wherein the vertical distance (d) satisfies the following formulas (a) to (c).

(イ)10mm≦c≦250mm
(ロ)50mm≦d≦150mm
(ハ)d≦3c
(3)冷却風吹き出し部の最上部から口金面までの鉛直距離(a)とスピンブロック下面から口金面までの鉛直距離(b)の差が70mm〜160mmであることを特徴とする前記(1)または(2)に記載の熱可塑性繊維の溶融紡糸装置。
(A) 10 mm ≦ c ≦ 250 mm
(B) 50 mm ≦ d ≦ 150 mm
(C) d ≦ 3c
(3) The difference between the vertical distance (a) from the top of the cooling air blowing portion to the base surface and the vertical distance (b) from the bottom surface of the spin block to the base surface is 70 mm to 160 mm. Or a thermoplastic fiber melt spinning apparatus according to (2).

本発明によれば、上記のように環状であり、均圧室および冷却風の加熱装置を有する熱可塑性繊維を冷却固化する装置の設置位置を特定するだけで、汎用性が高く、溶融紡糸された糸条を均一で、かつ安定した冷却を行うことができ、単繊維繊度が細いマルチフィラメントであっても繊度斑が少ない熱可塑性繊維を得ることができ、さらには熱可塑性繊維のタフネスを向上させることができる。   According to the present invention, it is highly versatile and melt-spun only by specifying the installation position of the apparatus that cools and solidifies the thermoplastic fiber that is annular as described above and has a pressure equalizing chamber and a cooling air heating device. The filaments can be cooled uniformly and stably, and even with multifilaments with thin single fiber fineness, thermoplastic fibers with few fineness spots can be obtained, and the toughness of thermoplastic fibers is improved. Can be made.

ここでいう単繊維繊度が細いマルチフィラメントとは、単繊維繊度が0.2dtex〜1.5dtexのことを言う。   The term “multifilament having a fine single fiber fineness” as used herein means that the single fiber fineness is 0.2 to 1.5 dtex.

また、本発明の熱可塑性繊維の溶融紡糸装置は冷却装置を環状とすることで、冷却風がフィラメント数に関係なく、各糸条と冷却風の位置が一定範囲内にあり、均一に冷却でき、かつ冷却風の温度を高くすることで高分子の配向を抑制した延伸または延伸仮撚加工が可能な紡糸配向した熱可塑性繊維が得られ、しかも高倍率で延伸することが可能であり、熱可塑性繊維のタフネスを向上させることができるため、高分子の配向が高く高倍率で延伸できずタフネス不足が生じる極細熱可塑性繊維やホモポリマを用いた熱可塑性繊維に比べタフネスが低い共重合ポリマを用いた熱可塑性繊維を紡糸する場合に特に好適である。   In addition, the thermoplastic fiber melt spinning apparatus of the present invention has an annular cooling device, so that the position of each yarn and cooling air is within a certain range regardless of the number of filaments, and cooling can be performed uniformly. And, by increasing the temperature of the cooling air, it is possible to obtain a spin-oriented thermoplastic fiber that can be stretched or stretch false twisted while suppressing the orientation of the polymer, and can be stretched at a high magnification. Because the toughness of plastic fibers can be improved, copolymer polymers with lower toughness than thermoplastic fibers using ultra-thin thermoplastic fibers or homopolymers that have high polymer orientation and cannot be stretched at high magnifications, resulting in insufficient toughness. This is particularly suitable when spinning thermoplastic fibers.

本発明の紡糸口金を備えた溶融押し出し装置の下部と熱可塑性繊維を冷却固化する溶融紡糸装置の上部は接することが重要である。該溶融押し出し装置の下部と該溶融紡糸装置の上部が接していない場合、熱可塑性繊維の固化に伴い発生する随伴気流により糸条近傍が減圧になり、それを補うために外気を取り込むため該溶融押し出し装置の下部と該溶融紡糸装置の上部の間の気流が乱れたり、冷却風が該溶融押し出し装置の下部と該溶融紡糸装置の上部の間に流れ込んだりして、熱可塑性繊維の均一冷却ができなくなる。   It is important that the lower part of the melt extrusion apparatus equipped with the spinneret of the present invention is in contact with the upper part of the melt spinning apparatus for cooling and solidifying the thermoplastic fiber. When the lower part of the melt extrusion apparatus and the upper part of the melt spinning apparatus are not in contact with each other, the vicinity of the yarn is decompressed by the accompanying air flow generated along with the solidification of the thermoplastic fiber, and the melt is used to take in outside air to make up for it. Airflow between the lower part of the extrusion apparatus and the upper part of the melt spinning apparatus is disturbed, or cooling air flows between the lower part of the melt extrusion apparatus and the upper part of the melt spinning apparatus, so that the thermoplastic fibers can be uniformly cooled. become unable.

本発明の紡糸口金を備えた溶融押し出し装置の下部と熱可塑性繊維を冷却固化する溶融紡糸装置の上部が接する手段としては、冷却開始位置を均一にする機構であれば特に限定されるものではない。また、材質としては適度な剛性を有し、かつ伸縮性、もしくは弾力性を有するものであれば紙、木、金属および合成樹脂等特に限定するものではない。   The means for contacting the lower part of the melt extrusion apparatus equipped with the spinneret of the present invention and the upper part of the melt spinning apparatus for cooling and solidifying the thermoplastic fiber is not particularly limited as long as it is a mechanism for making the cooling start position uniform. . The material is not particularly limited as long as it has an appropriate rigidity and has elasticity or elasticity, such as paper, wood, metal, and synthetic resin.

本発明の熱可塑性繊維を均一に冷却する溶融紡糸装置は、冷却風吹き出し部が環状であり、冷却風を均一に吹き出すための均圧室を冷却風吹き出し部より下部に有するものである。均圧室がない場合、冷却風吹き出し部が環状であっても冷却風が均一とならないため、熱可塑性繊維の長手方向に繊度斑が生じる。また、均圧室が冷却風吹き出し部と同じ高さにある場合、冷却固化する装置の外周が大きくなり、空間占有が高くなるため生産性が悪くなる。また、均圧室が冷却風吹き出し部の上部にある場合、冷却風吹き出し部と口金面の距離が長くなり、単繊維繊度の太い熱可塑性繊維は均一冷却できるが、単繊維繊度の細い熱可塑性繊維は冷却する前に固化が始まり、それに伴い発生する随伴気流の影響により長手方向の繊度斑が発生する。   In the melt spinning apparatus for uniformly cooling the thermoplastic fiber of the present invention, the cooling air blowing portion is annular, and has a pressure equalizing chamber for blowing the cooling air uniformly below the cooling air blowing portion. When there is no pressure equalizing chamber, even if the cooling air blowing portion is annular, the cooling air is not uniform, and fineness spots are generated in the longitudinal direction of the thermoplastic fiber. Further, when the pressure equalizing chamber is at the same height as the cooling air blowing portion, the outer periphery of the apparatus for cooling and solidifying becomes large, and the space occupation becomes high, so that the productivity is deteriorated. In addition, when the pressure equalizing chamber is located above the cooling air blowing part, the distance between the cooling air blowing part and the base surface becomes long, and the thermoplastic fiber with a large single fiber fineness can be cooled uniformly, but the thermoplastic with a thin single fiber fineness. The fiber begins to solidify before being cooled, and longitudinal fineness spots are generated due to the influence of the accompanying airflow.

ここでいう冷却風を均一に吹き出すとは、環状の冷却風吹き出し部の風速を円周方向に8等配で測定し、その風速の最大値と風速の最小値の差が0.2m/秒以下であることを言う。   Uniformly blowing the cooling air here refers to measuring the wind speed of the annular cooling air blowing section at 8 equally in the circumferential direction, and the difference between the maximum wind speed and the minimum wind speed is 0.2 m / sec. Say the following.

本発明の溶融紡糸装置は、冷却風吹き出し部の最上部から口金面までの鉛直距離(a)がスピンブロック下面から口金面までの鉛直距離(b)より短いことが重要である。冷却固化する装置の最上部から口金面までの鉛直距離(a)がスピンブロック下面から口金面までの鉛直距離(b)より長い場合、口金面および口金面下雰囲気の温度低下が生じるため、加熱ヒーターを設置して口金面を積極的に加熱するなど付帯設備が必要となり汎用性がない。冷却風吹き出し部の最上部から口金面までの鉛直距離(a)とスピンブロック下面から口金面までの鉛直距離(b)の差が短すぎると口金面および口金面下雰囲気の温度が低下する傾向を示し、また、冷却風吹き出し部の最上部から口金面までの鉛直距離(a)とスピンブロック下面から口金面までの鉛直距離(b)の差が長すぎると紡糸口金より紡出された熱可塑性繊維糸条が冷却固化した後に発生する随伴気流が外乱となり、糸条の揺れを引き起こし、熱可塑性繊維の長手方向に繊度斑を生じる傾向を示すので、冷却風吹き出し部の最上部から口金面までの鉛直距離(a)とスピンブロック下面から口金面までの鉛直距離(b)の差は70mmから160mmの範囲であることが好ましい。なお、冷却風吹き出し部の最上部から口金面までの鉛直距離(a)とスピンブロック下面から口金面までの鉛直距離(b)の差は前記(b)から前記(a)の差のことをいう。   In the melt spinning apparatus of the present invention, it is important that the vertical distance (a) from the top of the cooling air blowing part to the base surface is shorter than the vertical distance (b) from the bottom surface of the spin block to the base surface. When the vertical distance (a) from the uppermost part of the apparatus to be cooled and solidified to the base surface is longer than the vertical distance (b) from the bottom surface of the spin block to the base surface, the temperature of the base surface and the atmosphere below the base surface is lowered. Ancillary equipment is required such as a heater to positively heat the base, which is not versatile. If the difference between the vertical distance (a) from the top of the cooling air blowing portion to the base surface and the vertical distance (b) from the bottom surface of the spin block to the base surface is too short, the temperature of the base surface and the atmosphere below the base surface tends to decrease. In addition, if the difference between the vertical distance (a) from the top of the cooling air blowing portion to the base surface and the vertical distance (b) from the bottom surface of the spin block to the base surface is too long, the heat spun from the spinneret The accompanying airflow generated after the plastic fiber yarn has cooled and solidified becomes a disturbance, causing the yarn to sway, and tend to produce fineness unevenness in the longitudinal direction of the thermoplastic fiber. And the vertical distance (b) from the bottom surface of the spin block to the base surface is preferably in the range of 70 mm to 160 mm. The difference between the vertical distance (a) from the top of the cooling air blowing part to the base surface and the vertical distance (b) from the bottom surface of the spin block to the base surface is the difference between (b) and (a). Say.

本発明の冷却風吹き出し部の最上部から口金面までの鉛直距離(a)は10mmから80mmの範囲に設定することが好ましい。冷却風吹き出し部の最上部から口金面までの鉛直距離(a)が10mm未満では、口金面の温度低下が見られる場合があり、また、80mmを超えると、熱可塑性繊維の長手方向の繊度斑や製糸性の悪化が起こる場合があるが、紡糸する熱可塑性繊維、単繊維繊度、フィラメント数、ポリマの種類に応じて適宜選択すればよい。   The vertical distance (a) from the uppermost part of the cooling air blowing part of the present invention to the base surface is preferably set in the range of 10 mm to 80 mm. If the vertical distance (a) from the uppermost part of the cooling air blowing part to the die surface is less than 10 mm, the temperature of the die surface may be lowered. If it exceeds 80 mm, the fineness in the longitudinal direction of the thermoplastic fiber may be observed. In some cases, the yarn-making property may be deteriorated, but may be appropriately selected according to the thermoplastic fiber to be spun, the single fiber fineness, the number of filaments, and the type of polymer.

本発明のスピンブロック下面から口金面までの鉛直距離(b)は80mmから250mmの範囲に設定することが好ましい。スピンブロック下面から口金面までの鉛直距離(b)が80mm未満では、口金面の温度低下が見られる場合があり、また、250mmを超えると、熱可塑性繊維の長手方向の繊度斑や製糸性の悪化が起こる場合があるが、紡糸する熱可塑性繊維、単繊維繊度、フィラメント数、ポリマの種類に応じて適宜選択すればよい。   The vertical distance (b) from the lower surface of the spin block of the present invention to the base surface is preferably set in the range of 80 mm to 250 mm. If the vertical distance (b) from the lower surface of the spin block to the base surface is less than 80 mm, the temperature of the base surface may be decreased. If the vertical distance (b) exceeds 250 mm, the fineness in the longitudinal direction of the thermoplastic fibers and the yarn-forming properties may be observed. Although deterioration may occur, it may be appropriately selected according to the thermoplastic fiber to be spun, the single fiber fineness, the number of filaments, and the type of polymer.

本発明の溶融紡糸装置は熱可塑性繊維の単糸繊度が細くなるにつれて、紡糸口金より紡出された熱可塑性繊維糸条の冷却固化した後に発生する随伴気流に起因する空気の吸い込みが発生しやすくなるため溶融紡糸装置の最上部と紡糸パック最下部は密接することが好ましい。   In the melt spinning apparatus of the present invention, as the single fiber fineness of the thermoplastic fiber becomes finer, air suction due to the accompanying air flow that occurs after the thermoplastic fiber yarn spun from the spinneret is cooled and solidified easily occurs. Therefore, it is preferable that the uppermost part of the melt spinning apparatus and the lowermost part of the spinning pack are in close contact with each other.

本発明の溶融紡糸装置の冷却風は50℃以上ポリマ溶融温度(Tm)−10℃以下であることが重要である。冷却風の温度が50℃未満の場合、均一冷却はできるが徐冷ができずにタフネス向上が得られず、冷却風が口金面温度の低下を生じさせ紡糸ができなくなる。一方、冷却風の温度がポリマ溶融温度(Tm)−10℃より高いと隣接する紡糸口金より吐出したポリマが冷却されずに融着して糸切れを生じさせ紡糸不可となってしまうことがある。   It is important that the cooling air of the melt spinning apparatus of the present invention is 50 ° C. or higher and the polymer melting temperature (Tm) −10 ° C. or lower. When the temperature of the cooling air is less than 50 ° C., uniform cooling can be performed, but slow cooling cannot be performed and improvement in toughness cannot be obtained, and the cooling air causes a decrease in the base surface temperature, which makes spinning impossible. On the other hand, if the temperature of the cooling air is higher than the polymer melting temperature (Tm) −10 ° C., the polymer discharged from the adjacent spinneret may be melted without being cooled, causing yarn breakage and making spinning impossible. .

また、本発明の冷却風は上部が高温であり、下部が低温である温度勾配をもつことが好ましい。ここでいう、上部とは冷却風の吹き出しが紡糸口金に近い部分のことをいい、下部とは上部より下の部分をいう。上部と下部は冷却長(L)の二等分で区分することが好ましいが、等分でなくともよい。冷却風の上部が低温の場合、均一冷却は可能であるが、徐冷ができずにタフネス向上は得られにくく、下部が高温の場合、熱可塑性繊維の冷却が不十分となり長手方向の繊度斑が生じやすくなる。好ましくは上部の冷却風が50℃以上であり、かつポリマ溶融温度(Tm)−10℃以下であり、下部が50℃以下である。上部の冷却風がポリマ溶融温度(Tm)−10℃を超えると徐冷によるタフネス向上は得られるが、単糸間の干渉による製糸性不調や均一冷却ができず、長手方向の繊度斑が生じやすくなる。より好ましくは上部の冷却風が50℃以上240℃以下である。下部の冷却風は低すぎると上部の加熱に影響を与える傾向があるので、好ましくは20℃以上50℃以下である。   The cooling air of the present invention preferably has a temperature gradient in which the upper part is high temperature and the lower part is low temperature. Here, the upper part refers to the part where the blowing of cooling air is close to the spinneret, and the lower part refers to the part below the upper part. The upper part and the lower part are preferably divided into two equal parts of the cooling length (L), but they need not be equally divided. When the upper part of the cooling air is low temperature, uniform cooling is possible, but slow cooling cannot be achieved and it is difficult to improve toughness, and when the lower part is high temperature, the thermoplastic fiber is insufficiently cooled, causing longitudinal fineness unevenness. Is likely to occur. Preferably, the upper cooling air is 50 ° C. or higher, the polymer melting temperature (Tm) is −10 ° C. or lower, and the lower portion is 50 ° C. or lower. When the cooling air at the top exceeds the polymer melting temperature (Tm) −10 ° C., the toughness can be improved by slow cooling, but the yarn-making failure or uniform cooling due to interference between the single yarns cannot be achieved, resulting in longitudinal fineness spots. It becomes easy. More preferably, the upper cooling air is 50 ° C. or higher and 240 ° C. or lower. If the cooling air in the lower part is too low, the heating of the upper part tends to be affected. Therefore, it is preferably 20 ° C. or higher and 50 ° C. or lower.

本発明の溶融紡糸装置は冷却風を50℃以上ポリマ溶融温度(Tm)−10℃以下とするための温度制御の可能な加熱装置が均圧室より上部に設けられていることが重要である。冷却風を50℃以上ポリマ溶融温度(Tm)−10℃以下とするための温度制御の可能な加熱装置が均圧室と同じ高さに設けられた場合、冷却風供給口と対面する均圧室の冷却風に温度差が生じ均圧が保持されず均一冷却ができなくなる。また、冷却風を50℃以上ポリマ溶融温度(Tm)−10℃以下とするための加熱装置が均圧室より下部に設けられた場合、均一冷却するには冷却装置全体を均一に加熱する必要があり、膨大な熱量を必要とするため生産性が悪く、また、本発明の溶融紡糸近傍の雰囲気温度が上昇するため他の溶融紡糸装置の操業性に悪影響を及ぼす。冷却風を50℃以上ポリマ溶融温度(Tm)−10℃以下とするための温度制御の可能な加熱装置の長さ(c)とスピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)が下記(イ)〜(ハ)式を満足することを特徴とする請求項1に記載の熱可塑性繊維の溶融紡糸装置。   In the melt spinning apparatus of the present invention, it is important that a temperature-controllable heating device is provided above the pressure equalizing chamber so that the cooling air is 50 ° C. or more and the polymer melting temperature (Tm) −10 ° C. or less. . When a heating device capable of temperature control for setting the cooling air to 50 ° C. or more and the polymer melting temperature (Tm) −10 ° C. or less is provided at the same height as the pressure equalizing chamber, the pressure equalizing facing the cooling air supply port A temperature difference is generated in the cooling air in the chamber, and the uniform pressure is not maintained and uniform cooling cannot be performed. Further, when a heating device for setting the cooling air to 50 ° C. or more and the polymer melting temperature (Tm) −10 ° C. or less is provided below the pressure equalizing chamber, it is necessary to uniformly heat the entire cooling device for uniform cooling. Since the enormous amount of heat is required, the productivity is poor, and the ambient temperature in the vicinity of the melt spinning of the present invention increases, which adversely affects the operability of other melt spinning apparatuses. The length (c) of the heating device capable of temperature control for setting the cooling air to 50 ° C. or more and the polymer melting temperature (Tm) −10 ° C. or less and the vertical distance from the bottom surface of the spin block to the top of the cooling air blowing portion ( The melt spinning apparatus for thermoplastic fibers according to claim 1, wherein d) satisfies the following formulas (a) to (c).

(イ)10mm≦c≦250mm
(ロ)50mm≦d≦150mm
(ハ)d≦3c
冷却風を50℃以上ポリマ溶融温度(Tm)−10℃以下とするための温度制御の可能な加熱装置の長さ(c)が10mm未満の場合、熱容量が小さく冷却風を十分加熱しにくくなり均一冷却はできるがタフネスが低くなりやすくなる。また、加熱装置の長さ(c)が250mmより長い場合、熱容量は十分あり冷却風を十分加熱できるが溶融紡糸装置が長くなるにつれて空間占有が高くなる傾向になる。また、スピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)が50mm未満の場合、紡糸パックがスピンブロック下面に近くなり口金面温度が低下しやすくなる。また、スピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)が150mmより長い場合、溶融紡糸装置が長くなるにつれて空間占有が高くなる傾向になる。前記式(イ)、(ロ)を満足し、かつ冷却風を50℃以上ポリマ溶融温度(Tm)−10℃以下とするための温度制御の可能な加熱装置の長さ(c)を3倍したものがスピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)より短い場合、加熱装置の長さが短くなるにつれて熱容量が小さくり、冷却風を加熱しにくくなる。
(A) 10 mm ≦ c ≦ 250 mm
(B) 50 mm ≦ d ≦ 150 mm
(C) d ≦ 3c
If the length (c) of the heating device capable of temperature control to make the cooling air at 50 ° C. or more and the polymer melting temperature (Tm) −10 ° C. or less is less than 10 mm, the heat capacity is small and it becomes difficult to heat the cooling air sufficiently. Although uniform cooling is possible, the toughness tends to be low. When the length (c) of the heating device is longer than 250 mm, the heat capacity is sufficient and the cooling air can be heated sufficiently, but the space occupation tends to increase as the melt spinning device becomes longer. In addition, when the vertical distance (d) from the lower surface of the spin block to the uppermost portion of the cooling air blowing portion is less than 50 mm, the spinning pack is closer to the lower surface of the spin block and the base surface temperature is likely to be lowered. Further, when the vertical distance (d) from the lower surface of the spin block to the uppermost part of the cooling air blowing portion is longer than 150 mm, the space occupation tends to increase as the melt spinning apparatus becomes longer. The length (c) of the heating device capable of controlling the temperature to satisfy the above formulas (a) and (b) and to make the cooling air at 50 ° C. or higher and the polymer melting temperature (Tm) −10 ° C. or lower is tripled. When this is shorter than the vertical distance (d) from the lower surface of the spin block to the uppermost part of the cooling air blowing part, the heat capacity becomes smaller as the length of the heating device becomes shorter, making it difficult to heat the cooling air.

本発明の溶融紡糸装置の冷却風は整流されることが好ましい。例えば、金属製リボンを螺旋状に巻いて焼結した多孔性部材を用いることにより冷却風を整流する方法があるが、冷却風が整流されるのであれば、特に限定するものではない。   The cooling air of the melt spinning apparatus of the present invention is preferably rectified. For example, there is a method of rectifying the cooling air by using a porous member obtained by spirally winding a metal ribbon, and there is no particular limitation as long as the cooling air is rectified.

本発明の溶融紡糸装置より吹き出される冷却風の風速は、0.1m/秒から0.3m/秒程度であることが好ましく、紡糸された糸条と冷却装置との距離は5mmから20mm程度とすることが好ましい。冷却風の風速が0.1m/秒未満では、糸条の冷却が不足し、製糸性が悪化し、また、0.3m/秒を超えると糸揺れが発生し、効果が損なわれる傾向を示す。また、糸条と冷却装置との距離が5mm未満では、冷却装置と糸条が接触し、糸切れを発生する問題があり、また、距離が20mmを超えると、糸条の冷却が不足し効果が損なわれ、製糸性が悪化する傾向を示す。   The wind speed of the cooling air blown from the melt spinning apparatus of the present invention is preferably about 0.1 to 0.3 m / second, and the distance between the spun yarn and the cooling apparatus is about 5 to 20 mm. It is preferable that If the wind speed of the cooling air is less than 0.1 m / second, the cooling of the yarn is insufficient, and the yarn-making property is deteriorated, and if it exceeds 0.3 m / second, the yarn sways and the effect tends to be impaired. . In addition, if the distance between the yarn and the cooling device is less than 5 mm, there is a problem that the cooling device and the yarn come into contact with each other and yarn breakage occurs. If the distance exceeds 20 mm, the cooling of the yarn is insufficient. Is impaired and the yarn-making property tends to deteriorate.

本発明の熱可塑性繊維は、ポリエステル、ポリアミドなど溶融紡糸できる熱可塑性繊維であれば特に限定されるものではない。また、本発明の熱可塑性繊維は機能付与するために添加物を含んでもよい。例えば、顔料、染料、艶消し剤、防汚剤、蛍光増白剤、難燃剤、安定剤、紫外線吸収剤、滑剤等を含んでもよい。   The thermoplastic fiber of the present invention is not particularly limited as long as it is a thermoplastic fiber that can be melt-spun, such as polyester and polyamide. Further, the thermoplastic fiber of the present invention may contain an additive for imparting a function. For example, pigments, dyes, matting agents, antifouling agents, fluorescent whitening agents, flame retardants, stabilizers, ultraviolet absorbers, lubricants and the like may be included.

本発明で用いられる熱可塑性繊維は、単一成分で構成しても、複数成分で構成してもよく、複数成分の場合には、例えば、芯鞘、サイドバイサイド等の構成が挙げられる。また、繊維の断面形状は、丸、三角、扁平等の異形状や中空であってもよい。   The thermoplastic fiber used in the present invention may be composed of a single component or a plurality of components. In the case of a plurality of components, examples include a core sheath and a side-by-side configuration. Further, the cross-sectional shape of the fiber may be an irregular shape such as a circle, a triangle, a flat shape, or a hollow shape.

本発明において対象とする熱可塑性繊維、単繊維繊度、フィラメント数は、目的に応じて適宜選択される。   The target thermoplastic fiber, single fiber fineness, and number of filaments in the present invention are appropriately selected according to the purpose.

以下、本発明の溶融紡糸装置の一実施例について、図1を参照して詳細に説明する。図1は、本発明の熱可塑性繊維溶融紡糸装置の一実施態様を示す概略図である。図1において、溶融紡糸装置は、溶融押し出し装置1、環状冷却装置3−1、給油ガイド8、引取ローラー12、13および巻取装置14を備えている。溶融押し出し装置1はスピンブロック4により加熱および保温され、溶融押し出し装置1は紡糸口金2を備えており、紡糸口金2の吐出孔より紡出された糸条9は、環状冷却装置3−1から吹き出される冷却風で冷却され、給油ガイド10で油剤を付与された後、インターレースノズル11で交絡を付与される。その後、引取ローラー12、13で引き取られ、巻取装置14で巻き取られる。上述装置において、本発明における環状冷却装置3−1は、冷却風吹き出し部6および冷却風を高温にするための温度制御可能な加熱装置5を均圧室7の上部に有しており、図示しない温調器より供給された冷却風を冷却風調節装置15で任意の風量に調整し、上部にパンチングプレート8を有する均圧室7で均圧にし、加熱装置5で冷却風を任意の温度に加熱し、冷却風吹き出し部6で整流して糸条9に吹き付けるようになっている。   Hereinafter, an embodiment of the melt spinning apparatus of the present invention will be described in detail with reference to FIG. FIG. 1 is a schematic view showing an embodiment of the thermoplastic fiber melt spinning apparatus of the present invention. In FIG. 1, the melt spinning apparatus includes a melt extrusion apparatus 1, an annular cooling apparatus 3-1, an oil supply guide 8, take-up rollers 12 and 13, and a winding apparatus 14. The melt extrusion apparatus 1 is heated and kept warm by the spin block 4, and the melt extrusion apparatus 1 includes a spinneret 2, and the yarn 9 spun from the discharge hole of the spinneret 2 is fed from the annular cooling device 3-1. After being cooled by the blown-out cooling air and oiled by the oil supply guide 10, the interlace nozzle 11 is entangled. Thereafter, the paper is taken up by the take-up rollers 12 and 13 and taken up by the take-up device 14. In the above-described apparatus, the annular cooling device 3-1 in the present invention has the cooling air blowing portion 6 and the heating device 5 capable of controlling the temperature for raising the cooling air at the upper portion of the pressure equalizing chamber 7, as shown in the figure. The cooling air supplied from the temperature controller not adjusted is adjusted to an arbitrary air volume by the cooling air adjusting device 15, is equalized in the pressure equalizing chamber 7 having the punching plate 8 on the upper portion, and the cooling air is heated to an arbitrary temperature by the heating device 5. The cooling air blowing section 6 rectifies the air and blows it onto the yarn 9.

均圧室7は円筒状をしており、冷却風の均圧を目的としたドーナツ状のパンチングプレート8を上部に有し、冷却風吹き出し部と仕切られている構造になっている。   The pressure equalizing chamber 7 has a cylindrical shape, and has a donut-shaped punching plate 8 for the purpose of equalizing the cooling air at the top, and is partitioned from the cooling air blowing portion.

ここで、使用するパンチングプレート8の開孔は、均圧性の面から、全面に均一に開孔していることが好ましく、開孔率は30〜60%が好ましい。   Here, the holes of the punching plate 8 to be used are preferably uniformly formed from the surface of pressure equalization, and the hole area ratio is preferably 30 to 60%.

以下、ポリエステルマルチフィラメントおよびポリアミドマルチフィラメントを例に取り、実施例により本発明をさらに具体的に説明する。実施例中に使用した各特性値は次の測定方法により求めた。
[溶融温度(Tm)]
ポリマを10mg精秤し、アルミニウム製オープンパンおよびパンカバーを用いて封入し、示差走査熱量計(パーキンエルマー社製、DSC7型)を用いて、窒素気流下、20℃から285℃まで16℃/分で昇温させ、その途中で観察される吸熱ピークの温度を溶融温度(Tm)とした。
[強度・伸度・タフネス]
(1)ポリエステルマルチフィラメントの場合
ORIENTEC(現エー・アンド・ディ)社のTENSILON RTC−1210Aを用い、試長200mm、引張速度200mm/分で荷重伸長曲線を求め、糸が破断した際の力を繊度で除した値を強度とし、糸が破断した際の伸びを試料長で除した値に100を乗じた値を伸度とし、次式より求めた強伸度積を用いタフネスを評価し、冷風を用いた環状チムニーの強伸度積に対して、「+3.5以上」の差を○○、「+2.5以上+3.5未満」の差を○、「+1.0以上+2.5未満」の差を△、「+1.0以下」の差を×として評価した。
Hereinafter, the present invention will be described more specifically with reference to examples of polyester multifilaments and polyamide multifilaments. Each characteristic value used in the examples was determined by the following measurement method.
[Melting temperature (Tm)]
10 mg of polymer is precisely weighed and sealed with an aluminum open pan and pan cover, and a differential scanning calorimeter (DSC7, manufactured by Perkin Elmer Co., Ltd.) is used at 16 ° C./20° C. to 285 ° C. under a nitrogen stream. The temperature was increased in minutes, and the temperature of the endothermic peak observed in the middle was taken as the melting temperature (Tm).
[Strength / Elongation / Toughness]
(1) In the case of polyester multifilament Using TENSILON RTC-1210A of ORIENTEC (currently A & D), a load elongation curve is obtained at a test length of 200 mm and a tensile speed of 200 mm / min, and the force when the yarn breaks is obtained. The value divided by the fineness is taken as the strength, the value obtained by dividing the elongation when the yarn breaks by the sample length is multiplied by 100, and the elongation is taken as the elongation, and the toughness is evaluated using the strong elongation product obtained from the following formula, The difference of “+3.5 or more” with respect to the strong elongation product of the annular chimney using cold air is ◯, the difference of “+2.5 or more and less than +3.5” is ◯, “+1.0 or more +2.5 The difference of “less than” was evaluated as Δ, and the difference of “+1.0 or less” was evaluated as ×.

なお、実施例のタフネス評価は比較例7の強伸度積の差より評価した。   The toughness of the examples was evaluated from the difference in the strength and elongation products of Comparative Example 7.

強伸度積=強度(cN/dtex)×(伸度(%))1/2
(2)ポリアミドマルチフィラメントの場合
ORIENTEC(現エー・アンド・ディ)社のTENSILON RTC−1210Aを用い、試長500mm、引張速度500mm/分で荷重伸長曲線を求め、糸が破断した際の力を繊度で除した値を強度とし、糸が破断した際の伸びを試料長で除した値に100を乗じた値を伸度とし、次式より求めた強伸度積を用いタフネスを評価し、冷風を用いた環状チムニーの強伸度積に対して、「+3.5以上」の差を○○、「+2.5以上+3.5未満」の差を○、「+1.0以上+2.5未満」の差を△、「+1.0以下」の差を×として評価した。
Strong elongation product = strength (cN / dtex) × (elongation (%)) 1/2
(2) In the case of polyamide multifilament Using TENSILON RTC-1210A of ORIENTEC (currently A & D), a load elongation curve is obtained at a test length of 500 mm and a tensile speed of 500 mm / min, and the force when the yarn breaks is obtained. The value divided by the fineness is taken as the strength, the value obtained by dividing the elongation when the yarn breaks by the sample length is multiplied by 100, and the elongation is taken as the elongation, and the toughness is evaluated using the strong elongation product obtained from the following formula, The difference of “+3.5 or more” with respect to the strong elongation product of the annular chimney using cold air is ◯, the difference of “+2.5 or more and less than +3.5” is ◯, “+1.0 or more +2.5 The difference of “less than” was evaluated as Δ, and the difference of “+1.0 or less” was evaluated as ×.

なお、実施例のタフネス評価は比較例9の強伸度積の差より評価した。   The toughness of the examples was evaluated from the difference in the strength and elongation products of Comparative Example 9.

強伸度積=強度(cN/dtex)×(伸度(%))1/2
[ウスター斑(繊度斑)(U%)]
(1)ポリエステルマルチフィラメントの場合
ZELLWEGER USTER社のUSTER TESTER UT−4を用い、糸速100m/分、給糸張力1/30g/dtex、S撚り、ツイスター回転数8000rpmで5分間測定し、HInertで評価し、U%(H)「0.5未満」を○○、「0.5以上1.0未満」を○、「1.0以上1.5未満」を△、「1.5以上」を×として評価した。
(2)ポリアミドマルチフィラメントの場合
ZELLWEGER USTER社のUSTER TESTER UT−4を用い、糸速50m/分、給糸張力1/30g/dtex、S撚り、ツイスター回転数8000rpmで5分間測定し、HInertで評価し、U%(H)「0.8未満」を○○、「0.8以上1.3未満」を○、「1.3以上1.8未満」を△、「1.8以上」を×として評価した。
[冷却風速]
日本カノマックス株式会社のアネモマスター風速計(MODEL6004)を用い、任意の風量に設定し、環状の冷却風吹き出し部から5mm離れた位置の風速を円周方向に8等配で測定し、その風速(m/秒)の最大値と風速の最小値の差を算出した。
[製糸性および生産性]
パック数20個で、24時間の紡糸を行い、この間の糸切れ回数評価を実施し、「1回未満」を○○、「1回以上2回未満」を○、「2回以上3回未満」を△、「3回以上」を×として評価した。
[生産性]
同一製糸条件、同一敷地面積で、24時間の紡糸を行い、その生産量を比較した際、パック数20個を使用した場合との生産量を比較した場合、「同じ生産量」を○、「少ない生産量」を×として評価した。
Strong elongation product = strength (cN / dtex) × (elongation (%)) 1/2
[Worcester spots (fineness spots) (U%)]
(1) In the case of polyester multifilament Measured using ZELLWEGER USTER's USTER TESTER UT-4 at a yarn speed of 100 m / min, feed tension of 1/30 g / dtex, S twist, twister rotation speed of 8000 rpm for 5 minutes. Evaluate, U% (H) “less than 0.5” ○○, “0.5 or more and less than 1.0” ○, “1.0 or more and less than 1.5” Δ, “1.5 or more” Was evaluated as x.
(2) Polyamide multifilament Measured using ZELLWEGER USTER's USTER TESTER UT-4 at a yarn speed of 50 m / min, feed tension of 1/30 g / dtex, S twist, twister rotation speed of 8000 rpm for 5 minutes. Evaluate, U% (H) “less than 0.8” ○○, “0.8 or more and less than 1.3” ○, “1.3 or more and less than 1.8” Δ, “1.8 or more” Was evaluated as x.
[Cooling air speed]
Using an anemone master anemometer (MODEL6004) from Nippon Kanomax Co., Ltd., setting the air flow at an arbitrary flow rate, measuring the air velocity at a position 5 mm away from the annular cooling air blowout part in the circumferential direction at an equal pitch of 8 The difference between the maximum value of m / second and the minimum value of wind speed was calculated.
[Yarn making and productivity]
The number of packs is 20 and spinning is performed for 24 hours, and the number of times of yarn breakage is evaluated during this period. “Less than 1” is ○○, “1 to less than 2” is ○, “2 to less than 3” ”Was evaluated as Δ, and“ 3 times or more ”was evaluated as ×.
[productivity]
When performing spinning for 24 hours under the same spinning conditions and the same site area and comparing the production volume, when comparing the production volume with the case of using 20 packs, the "same production volume" “Low production” was evaluated as x.

実施例1〜3、比較例1〜8
溶融温度(Tm)255℃のポリエチレンテレフタレートを溶融紡糸し、それぞれ冷却風温度、紡糸口金を備えた押し出し装置の下部と冷却装置の上部の接し方、均圧室および均圧室位置、冷却風吹き出し部の最上部から口金面までの鉛直距離(a)、スピンブロック下面から口金面までの鉛直距離(b)を異ならせるようにし、実施例1〜3および比較例1〜7は図1の冷却装置を、実施例8は図3の冷却装置を用い、紡糸速度2700m/分で引き取った後、延伸倍率1.62で延伸した。得られた延伸糸特性を表1に示す。
Examples 1-3, Comparative Examples 1-8
Polyethylene terephthalate with a melting temperature (Tm) of 255 ° C. is melt-spun. The vertical distance (a) from the top of the part to the base surface and the vertical distance (b) from the bottom surface of the spin block to the base surface are made different, and Examples 1 to 3 and Comparative Examples 1 to 7 are shown in FIG. In Example 8, the apparatus of Example 8 used the cooling device of FIG. The obtained drawn yarn characteristics are shown in Table 1.

実施例1〜3は本発明に適した冷却装置、冷却風温度、均圧室および均圧室位置であり、かつ紡糸口金を備えた押し出し装置の下部と冷却装置の上部が接しており、冷却風吹き出し部の最上部から口金面までの鉛直距離(a)がスピンブロック下面から口金面までの鉛直距離(b)より短いので、U%、タフネス、製糸性ともに非常に優れるものであった。   Examples 1 to 3 are the cooling device, cooling air temperature, pressure equalization chamber and pressure equalization chamber position suitable for the present invention, and the lower part of the extrusion device equipped with the spinneret and the upper part of the cooling device are in contact with each other. Since the vertical distance (a) from the uppermost part of the wind blowing portion to the base surface is shorter than the vertical distance (b) from the lower surface of the spin block to the base surface, U%, toughness, and yarn-making property were very excellent.

比較例1は本発明に適した冷却装置、冷却風温度、紡糸口金を備えた押し出し装置の下部と冷却装置の上部が接しており、冷却風吹き出し部の最上部から口金面までの鉛直距離(a)がスピンブロック下面から口金面までの鉛直距離(b)より短いが、均圧室が冷却風の吹き出し部の上部にあるため、U%が劣るものであった。   In Comparative Example 1, the cooling device suitable for the present invention, the cooling air temperature, the lower part of the extrusion device equipped with the spinneret and the upper part of the cooling device are in contact with each other, and the vertical distance from the uppermost part of the cooling air blowing part to the base surface ( Although a) is shorter than the vertical distance (b) from the lower surface of the spin block to the base surface, U% is inferior because the pressure equalizing chamber is located above the blowing portion of the cooling air.

比較例2は本発明に適した冷却装置、冷却風温度、紡糸口金を備えた押し出し装置の下部と冷却装置の上部が接しており、冷却風吹き出し部の最上部から口金面までの鉛直距離(a)がスピンブロック下面から口金面までの鉛直距離(b)より短いが、均圧室がないためU%、タフネス、製糸性が劣るものであった。   In Comparative Example 2, the cooling device suitable for the present invention, the cooling air temperature, the lower part of the extrusion device equipped with the spinneret and the upper part of the cooling device are in contact with each other, and the vertical distance from the top of the cooling air blowing part to the base surface ( Although a) is shorter than the vertical distance (b) from the lower surface of the spin block to the base surface, U%, toughness, and yarn-making property were inferior because there was no pressure equalization chamber.

比較例3は本発明に適した冷却装置、冷却風温度、紡糸口金を備えた押し出し装置の下部と冷却装置の上部が接しており、冷却風吹き出し部の最上部から口金面までの鉛直距離(a)がスピンブロック下面から口金面までの鉛直距離(b)より短いが、均圧室が冷却風吹き出し部と同じ高さにあるため、U%、タフネス、製糸性、生産性が劣るものであった。   In Comparative Example 3, the cooling device suitable for the present invention, the cooling air temperature, the lower part of the extrusion device equipped with the spinneret and the upper part of the cooling device are in contact with each other, and the vertical distance from the top of the cooling air blowing part to the base surface ( a) is shorter than the vertical distance (b) from the lower surface of the spin block to the base surface, but the pressure equalizing chamber is at the same height as the cooling air blowing part, so that U%, toughness, yarn-making property and productivity are inferior. there were.

比較例4は本発明に適した冷却装置、冷却風温度、均圧室および均圧室位置、紡糸口金を備えた押し出し装置の下部と冷却装置の上部が接しているが、冷却風吹き出し部の最上部から口金面までの鉛直距離(a)がスピンブロック下面から口金面までの鉛直距離(b)と同じであるため、口金面および口金下雰囲気温度が低下し、U%、タフネス、製糸性が劣るものであった。   In Comparative Example 4, the cooling device suitable for the present invention, the cooling air temperature, the pressure equalizing chamber and the pressure equalizing chamber position, the lower portion of the extrusion device provided with the spinneret and the upper portion of the cooling device are in contact with each other. Since the vertical distance (a) from the top to the base surface is the same as the vertical distance (b) from the lower surface of the spin block to the base surface, the ambient temperature under the base surface and the base is lowered, and U%, toughness, and yarn-making property Was inferior.

比較例5は本発明に適した冷却装置、冷却風温度、均圧室および均圧室位置、紡糸口金を備えた押し出し装置の下部と冷却装置の上部が接しているが、冷却風吹き出し部の最上部から口金面までの鉛直距離(a)がスピンブロック下面から口金面までの鉛直距離(b)より長いため、U%、タフネス、製糸性、生産性が劣るものであった。   In Comparative Example 5, the cooling device suitable for the present invention, the cooling air temperature, the pressure equalizing chamber and the pressure equalizing chamber position, the lower portion of the extrusion device equipped with the spinneret and the upper portion of the cooling device are in contact with each other. Since the vertical distance (a) from the uppermost part to the base surface is longer than the vertical distance (b) from the lower surface of the spin block to the base surface, U%, toughness, yarn production, and productivity were inferior.

比較例6は本発明に適した冷却装置、冷却風温度、均圧室および均圧室位置、冷却風吹き出し部の最上部から口金面までの鉛直距離(a)がスピンブロック下面から口金面までの鉛直距離(b)より短いが、紡糸口金を備えた押し出し装置の下部と冷却装置の上部が接していないため、U%、タフネス、製糸性、生産性が劣るものであった。   In Comparative Example 6, the cooling device suitable for the present invention, the cooling air temperature, the pressure equalizing chamber and the pressure equalizing chamber position, and the vertical distance (a) from the top of the cooling air blowing portion to the base surface are from the bottom surface of the spin block to the base surface. However, since the lower part of the extrusion device provided with the spinneret and the upper part of the cooling device are not in contact with each other, U%, toughness, yarn production, and productivity were inferior.

比較例7は本発明に適した冷却装置、均圧室および均圧室位置、紡糸口金を備えた押し出し装置の下部と冷却装置の上部が接しており、冷却風吹き出し部の最上部から口金面までの鉛直距離(a)がスピンブロック下面から口金面までの鉛直距離(b)より短いが、冷却風温度が低いので、タフネスが劣るものであった。   In Comparative Example 7, the cooling device suitable for the present invention, the pressure equalizing chamber and the position of the pressure equalizing chamber, the lower portion of the extrusion device equipped with the spinneret and the upper portion of the cooling device are in contact, and the base surface from the top of the cooling air blowing portion The vertical distance (a) is shorter than the vertical distance (b) from the lower surface of the spin block to the base surface, but the toughness is inferior because the cooling air temperature is low.

比較例8は冷却装置がクロスフローであるため、U%が劣るものであった。   In Comparative Example 8, since the cooling device was a cross flow, U% was inferior.

実施例4〜8
溶融温度(Tm)256℃のポリエチレンテレフタレートを図1に示す環状冷却装置により溶融紡糸し、冷却風吹き出し部の最上部から口金面までの鉛直距離(a)、スピンブロック下面から口金面までの鉛直距離(b)、加熱装置の長さ(c)、スピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)をそれぞれ異ならせるように、紡糸速度2900m/minで引き取った後、延伸速度1.65で延伸した。得られた延伸糸特性を表2に示す。
Examples 4-8
Polyethylene terephthalate having a melting temperature (Tm) of 256 ° C. is melt-spun by the annular cooling device shown in FIG. 1, and the vertical distance (a) from the uppermost part of the cooling air blowing part to the base surface, the vertical from the bottom surface of the spin block to the base surface Drawing was carried out at a spinning speed of 2900 m / min so that the distance (b), the length of the heating device (c), and the vertical distance (d) from the lower surface of the spin block to the uppermost part of the cooling air blowing part were different, and then drawn. Stretched at a speed of 1.65. The obtained drawn yarn characteristics are shown in Table 2.

実施例4は本発明に適した冷却装置、冷却風温度、均圧室および均圧室位置であり、かつ冷却風吹き出し部の最上部から口金面までの鉛直距離(a)がスピンブロック下面から口金面までの鉛直距離(b)より短く、加熱装置の長さ(c)とスピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)が適しているが、加熱装置の長さ(c)がやや短いのでタフネスがやや劣るものであった。   Example 4 is a cooling device, cooling air temperature, pressure equalizing chamber and pressure equalizing chamber position suitable for the present invention, and the vertical distance (a) from the top of the cooling air blowing portion to the base surface is from the lower surface of the spin block. The length (c) of the heating device and the vertical distance (d) from the lower surface of the spin block to the top of the cooling air blowing part are suitable, but shorter than the vertical distance (b) to the base surface. Since (c) was somewhat short, the toughness was slightly inferior.

実施例5は本発明に適した冷却装置、冷却風温度、均圧室および均圧室位置であり、かつ冷却風吹き出し部の最上部から口金面までの鉛直距離(a)がスピンブロック下面から口金面までの鉛直距離(b)より短く、加熱装置の長さ(c)とスピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)が適しているが、加熱装置の長さ(c)がやや長いので生産性がやや劣るものであった。   Example 5 is a cooling device, cooling air temperature, pressure equalizing chamber and pressure equalizing chamber position suitable for the present invention, and the vertical distance (a) from the top of the cooling air blowing portion to the base surface is from the lower surface of the spin block. The length (c) of the heating device and the vertical distance (d) from the lower surface of the spin block to the top of the cooling air blowing part are suitable, but shorter than the vertical distance (b) to the base surface. Since (c) was somewhat long, the productivity was slightly inferior.

実施例6は本発明に適した冷却装置、冷却風温度、均圧室および均圧室位置であり、かつ冷却風吹き出し部の最上部から口金面までの鉛直距離(a)がスピンブロック下面から口金面までの鉛直距離(b)より短く、加熱装置の長さ(c)とスピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)が適しているが、スピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)がやや短いため、タフネス、製糸性がやや劣るものであった。   Example 6 is a cooling device, cooling air temperature, pressure equalizing chamber and pressure equalizing chamber position suitable for the present invention, and the vertical distance (a) from the top of the cooling air blowing portion to the base surface is from the lower surface of the spin block. It is shorter than the vertical distance (b) to the base surface, and the length (c) of the heating device and the vertical distance (d) from the lower surface of the spin block to the top of the cooling air blowing part are suitable. Since the vertical distance (d) to the uppermost part of the wind blowing portion was slightly short, the toughness and the yarn-making property were slightly inferior.

実施例7は本発明に適した冷却装置、冷却風温度、均圧室および均圧室位置であり、かつ冷却風吹き出し部の最上部から口金面までの鉛直距離(a)がスピンブロック下面から口金面までの鉛直距離(b)より短く、加熱装置の長さ(c)とスピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)が適しているが、スピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)がやや長いため、タフネス、生産性がやや劣るものであった。   Example 7 is a cooling device, cooling air temperature, pressure equalizing chamber and pressure equalizing chamber position suitable for the present invention, and the vertical distance (a) from the top of the cooling air blowing portion to the base surface is from the lower surface of the spin block. It is shorter than the vertical distance (b) to the base surface, and the length (c) of the heating device and the vertical distance (d) from the lower surface of the spin block to the top of the cooling air blowing part are suitable. Since the vertical distance (d) to the top of the wind blowing part is slightly long, the toughness and productivity are slightly inferior.

実施例8は本発明に適した冷却装置、冷却風温度、均圧室および均圧室位置であり、かつ冷却風吹き出し部の最上部から口金面までの鉛直距離(a)がスピンブロック下面から口金面までの鉛直距離(b)より短く、加熱装置の長さ(c)とスピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)、スピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)が適しているため、U%、タフネス、製糸性、生産性に優れたものであった。   Example 8 is a cooling device, cooling air temperature, pressure equalizing chamber and pressure equalizing chamber position suitable for the present invention, and the vertical distance (a) from the top of the cooling air blowing portion to the base surface is from the lower surface of the spin block. It is shorter than the vertical distance (b) to the base surface, the length (c) of the heating device, the vertical distance (d) from the lower surface of the spin block to the top of the cooling air blowing portion, and the maximum distance of the cooling air blowing portion from the lower surface of the spin block. Since the vertical distance (d) to the upper part was suitable, it was excellent in U%, toughness, yarn-making property, and productivity.

実施例9〜13
溶融温度(Tm)256℃のポリエチレンテレフタレートを図1に示す環状冷却装置により溶融紡糸し、単繊維繊度、冷却風速の最大値と最小値、冷却風吹き出し部の最上部から口金面までの鉛直距離(a)、スピンブロック下面から口金面までの鉛直距離(b)をそれぞれ異ならせるように、紡糸速度3000m/minで引き取った後、延伸速度1.50で延伸した。得られた延伸糸特性を表3に示す。
Examples 9-13
Polyethylene terephthalate having a melting temperature (Tm) of 256 ° C. is melt-spun by the annular cooling device shown in FIG. 1, and the single fiber fineness, the maximum and minimum values of the cooling air speed, and the vertical distance from the top of the cooling air blowing part to the base surface (A) After drawing at a spinning speed of 3000 m / min so as to vary the vertical distance (b) from the lower surface of the spin block to the base surface, it was drawn at a drawing speed of 1.50. The obtained drawn yarn characteristics are shown in Table 3.

実施例9は本発明に適した冷却装置、冷却風温度、均圧室および均圧室位置であり、かつ加熱装置の長さ(c)とスピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)が適しているが、冷却風吹き出し部の最上部から口金面までの鉛直距離(a)がスピンブロック下面から口金面までの鉛直距離(b)の差がやや小さいため、タフネス、製糸性がやや劣るものであった。   Example 9 is a cooling device, cooling air temperature, pressure equalizing chamber and pressure equalizing chamber position suitable for the present invention, and the length (c) of the heating device and the bottom surface of the spin block to the top of the cooling air blowing portion Although the vertical distance (d) is suitable, the vertical distance (a) from the uppermost part of the cooling air blowing part to the base surface is slightly small in the difference in the vertical distance (b) from the bottom surface of the spin block to the base surface. The spinning property was slightly inferior.

実施例10は本発明に適した冷却装置、冷却風温度、均圧室および均圧室位置であり、かつ加熱装置の長さ(c)とスピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)が適しているが、冷却風吹き出し部の最上部から口金面までの鉛直距離(a)がスピンブロック下面から口金面までの鉛直距離(b)の差がやや大きいため、U%、タフネス、製糸性のやや劣るものであった。   Example 10 is a cooling device, cooling air temperature, pressure equalizing chamber and pressure equalizing chamber position suitable for the present invention, and the length (c) of the heating device and the bottom surface of the spin block to the top of the cooling air blowing portion. Although the vertical distance (d) is suitable, since the vertical distance (a) from the top of the cooling air blowing portion to the base surface is slightly larger than the vertical distance (b) from the bottom surface of the spin block to the base surface, U %, Toughness, and slightly poor yarn-making property.

実施例11は本発明に適した冷却装置、冷却風温度、均圧室および均圧室位置であり、かつ冷却風吹き出し部の最上部から口金面までの鉛直距離(a)がスピンブロック下面から口金面までの鉛直距離(b)より短く、加熱装置の長さ(c)とスピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)、スピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)が適しているが、単繊維繊度がやや細いため、U%、タフネス、製糸性、生産性のやや劣るものであった。   Example 11 is a cooling device, cooling air temperature, pressure equalizing chamber and pressure equalizing chamber position suitable for the present invention, and the vertical distance (a) from the top of the cooling air blowing portion to the base surface is from the lower surface of the spin block. It is shorter than the vertical distance (b) to the base surface, the length (c) of the heating device, the vertical distance (d) from the lower surface of the spin block to the top of the cooling air blowing portion, and the maximum distance of the cooling air blowing portion from the lower surface of the spin block. Although the vertical distance (d) to the upper part is suitable, the single fiber fineness is slightly thin, and therefore U%, toughness, yarn-making property, and productivity are slightly inferior.

実施例12は本発明に適した冷却装置、冷却風温度、均圧室および均圧室位置であり、かつ冷却風吹き出し部の最上部から口金面までの鉛直距離(a)がスピンブロック下面から口金面までの鉛直距離(b)より短く、加熱装置の長さ(c)とスピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)、スピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)が適しているが、単繊維繊度がやや太いため、U%、タフネス、製糸性がやや劣るものであった。   Example 12 is a cooling device, cooling air temperature, pressure equalizing chamber and pressure equalizing chamber position suitable for the present invention, and the vertical distance (a) from the top of the cooling air blowing portion to the base surface is from the lower surface of the spin block. It is shorter than the vertical distance (b) to the base surface, the length (c) of the heating device, the vertical distance (d) from the lower surface of the spin block to the top of the cooling air blowing portion, and the maximum distance of the cooling air blowing portion from the lower surface of the spin block. Although the vertical distance (d) to the upper part is suitable, the single fiber fineness is slightly thick, so that U%, toughness, and yarn-making property are slightly inferior.

実施例13は本発明に適した冷却風温度、均圧室および均圧室位置であり、かつ冷却風吹き出し部の最上部から口金面までの鉛直距離(a)がスピンブロック下面から口金面までの鉛直距離(b)より短く、加熱装置の長さ(c)とスピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)、スピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)が適しているが、冷却風速の最大値と最小値の差がやや大きいため、U%、タフネス、製糸性、生産性のやや劣るものであった。   Example 13 is a cooling air temperature suitable for the present invention, a pressure equalizing chamber and a pressure equalizing chamber position, and the vertical distance (a) from the top of the cooling air blowing portion to the base surface is from the lower surface of the spin block to the base surface. Shorter than the vertical distance (b), the length (c) of the heating device and the vertical distance (d) from the bottom surface of the spin block to the top of the cooling air blowing portion, and from the bottom surface of the spin block to the top of the cooling air blowing portion. Although the vertical distance (d) is suitable, since the difference between the maximum value and the minimum value of the cooling air speed is slightly large, U%, toughness, yarn-making property, and productivity are slightly inferior.

実施例14、比較例9
溶融温度(Tm)250℃のナイロン66を図1に示す環状冷却装置により溶融紡糸し、冷却風吹き出し部の最上部から口金面までの鉛直距離(a)、スピンブロック下面から口金面までの鉛直距離(b)をそれぞれ異ならせるように、紡糸速度4000m/minで引き取った。得られたナイロン糸特性を表4に示す。
Example 14 and Comparative Example 9
Nylon 66 having a melting temperature (Tm) of 250 ° C. is melt-spun by the annular cooling device shown in FIG. 1, and the vertical distance (a) from the uppermost part of the cooling air blowing part to the base surface, the vertical from the bottom surface of the spin block to the base surface Drawing was performed at a spinning speed of 4000 m / min so that the distances (b) were different. Table 4 shows the obtained nylon yarn characteristics.

実施例11は本発明に適した冷却装置、冷却風温度、均圧室および均圧室位置であり、かつ冷却風吹き出し部の最上部から口金面までの鉛直距離(a)がスピンブロック下面から口金面までの鉛直距離(b)より短く、加熱装置の長さ(c)とスピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)、スピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)が適しているため、U%、タフネス、製糸性、生産性に優れたものであった。   Example 11 is a cooling device, cooling air temperature, pressure equalizing chamber and pressure equalizing chamber position suitable for the present invention, and the vertical distance (a) from the top of the cooling air blowing portion to the base surface is from the lower surface of the spin block. It is shorter than the vertical distance (b) to the base surface, the length (c) of the heating device, the vertical distance (d) from the lower surface of the spin block to the top of the cooling air blowing portion, and the maximum distance of the cooling air blowing portion from the lower surface of the spin block. Since the vertical distance (d) to the upper part was suitable, it was excellent in U%, toughness, yarn-making property, and productivity.

比較例9は本発明に適した冷却装置、冷却風温度、均圧室および均圧室位置であり、かつ冷却風吹き出し部の最上部から口金面までの鉛直距離(a)がスピンブロック下面から口金面までの鉛直距離(b)より短いが、加熱装置がないので、タフネスが劣るものであった。   Comparative Example 9 is a cooling device, cooling air temperature, pressure equalizing chamber and pressure equalizing chamber position suitable for the present invention, and the vertical distance (a) from the top of the cooling air blowing portion to the base surface is from the lower surface of the spin block. Although shorter than the vertical distance (b) to the die surface, the toughness was inferior because there was no heating device.

Figure 2009097119
Figure 2009097119

Figure 2009097119
Figure 2009097119

Figure 2009097119
Figure 2009097119

Figure 2009097119
Figure 2009097119

本発明の熱可塑性繊維溶融紡糸装置の一実施態様を示す概略図である。It is the schematic which shows one embodiment of the thermoplastic fiber melt spinning apparatus of this invention. 従来の熱可塑性繊維溶融紡糸装置の一実施態様を示す概略図である。It is the schematic which shows one embodiment of the conventional thermoplastic fiber melt spinning apparatus. 従来の熱可塑性繊維溶融紡糸装置の一実施態様を示す概略図である。It is the schematic which shows one embodiment of the conventional thermoplastic fiber melt spinning apparatus.

符号の説明Explanation of symbols

1:溶融押し出し装置
2:紡糸口金
3−1:本発明の環状冷却装置
3−2:従来の環状冷却装置
3−3:従来のクロスフロー冷却装置
4:スピンブロック
5:冷却風加熱装置
6:冷却風吹き出し部
7:均圧室
8:パンチングプレート
9:糸条
10:給油ガイド
11:インターレースノズル
12、13:引取ローラー
14:巻取装置
15:冷却風調節装置
1: Melt extrusion device 2: Spinneret 3-1: Annular cooling device 3-2 of the present invention: Conventional annular cooling device 3-3: Conventional cross-flow cooling device 4: Spin block 5: Cooling air heating device 6: Cooling air blowing section 7: Pressure equalizing chamber 8: Punching plate 9: Yarn 10: Lubrication guide 11: Interlace nozzle 12, 13: Take-up roller 14: Winding device 15: Cooling air adjusting device

Claims (3)

紡糸口金を備えた溶融押し出し装置と、該溶融押し出し装置を加熱および保温するスピンブロックとを備え、該紡糸口金より紡出された熱可塑性繊維を冷却固化する装置により冷却固化して巻き取る溶融紡糸装置において、上記溶融押し出し装置の下部と上記冷却固化する装置の上部が接し、かつ上記冷却固化する装置の冷却風吹き出し部が環状であるとともに、冷却風を均一に吹き出すための均圧室を冷却風の吹き出し部より下部に有し、さらに冷却風吹き出し部の最上部から口金面までの鉛直距離(a)が前記スピンブロック下面から口金面までの鉛直距離(b)より短く、冷却風を50℃以上ポリマ溶融温度(Tm)−10℃以下とするための温度制御の可能な加熱装置が均圧室より上部に設けられていることを特徴とする熱可塑性繊維の溶融紡糸装置。   A melt spinning apparatus comprising: a melt extrusion apparatus provided with a spinneret; and a spin block for heating and maintaining the melt extrusion apparatus; and cooling and solidifying the thermoplastic fiber spun from the spinneret by cooling and solidifying the apparatus. In the apparatus, the lower part of the melt extrusion apparatus and the upper part of the cooling and solidifying apparatus are in contact with each other, and the cooling air blowing portion of the cooling and solidifying apparatus is annular, and the pressure equalizing chamber for uniformly blowing the cooling air is cooled. The vertical distance (a) from the uppermost part of the cooling air blowing part to the base surface is shorter than the vertical distance (b) from the bottom surface of the spin block to the base surface, and the cooling wind is 50 A thermoplastic fiber characterized in that a temperature-controllable heating device for setting the polymer melting temperature (Tm) to 10 ° C or lower is provided above the pressure equalizing chamber. Melt spinning device. 冷却風を50℃以上ポリマ溶融温度(Tm)−10℃以下とするための温度制御の可能な加熱装置の長さ(c)とスピンブロック下面から冷却風吹き出し部の最上部までの鉛直距離(d)が下記(イ)〜(ハ)式を満足することを特徴とする請求項1に記載の熱可塑性繊維の溶融紡糸装置。
(イ)10mm≦c≦250mm
(ロ)50mm≦d≦150mm
(ハ)d≦3c
The length (c) of the heating device capable of temperature control for setting the cooling air to 50 ° C. or higher and the polymer melting temperature (Tm) −10 ° C. or lower and the vertical distance from the bottom surface of the spin block to the top of the cooling air blowing portion ( The melt spinning apparatus for thermoplastic fibers according to claim 1, wherein d) satisfies the following formulas (a) to (c).
(A) 10 mm ≦ c ≦ 250 mm
(B) 50 mm ≦ d ≦ 150 mm
(C) d ≦ 3c
冷却風吹き出し部の最上部から口金面までの鉛直距離(a)とスピンブロック下面から口金面までの鉛直距離(b)の差が70mm〜160mmであることを特徴とする請求項1または2に記載の熱可塑性繊維の溶融紡糸装置。   The difference between the vertical distance (a) from the top of the cooling air blowing portion to the base surface and the vertical distance (b) from the bottom surface of the spin block to the base surface is 70 mm to 160 mm. The thermoplastic fiber melt spinning apparatus as described.
JP2007270975A 2007-10-18 2007-10-18 Device for melt-spinning thermoplastic fiber Withdrawn JP2009097119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007270975A JP2009097119A (en) 2007-10-18 2007-10-18 Device for melt-spinning thermoplastic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007270975A JP2009097119A (en) 2007-10-18 2007-10-18 Device for melt-spinning thermoplastic fiber

Publications (1)

Publication Number Publication Date
JP2009097119A true JP2009097119A (en) 2009-05-07

Family

ID=40700391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007270975A Withdrawn JP2009097119A (en) 2007-10-18 2007-10-18 Device for melt-spinning thermoplastic fiber

Country Status (1)

Country Link
JP (1) JP2009097119A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899760A (en) * 2012-09-24 2013-01-30 江苏中润纤维科技股份有限公司 Production process of composite fiber and process equipment of composite fiber
CN103940093A (en) * 2013-01-18 2014-07-23 株式会社能率 Hot Water Supply Apparatus And Control Method Thereof
CN106381536A (en) * 2016-11-30 2017-02-08 南京右转信息科技有限公司 Subsection cooling device for melt spinning
JP2018523029A (en) * 2015-08-08 2018-08-16 エーリコン テクスティル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトOerlikon Textile GmbH & Co. KG Method and apparatus for melt spinning synthetic yarn

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899760A (en) * 2012-09-24 2013-01-30 江苏中润纤维科技股份有限公司 Production process of composite fiber and process equipment of composite fiber
CN103940093A (en) * 2013-01-18 2014-07-23 株式会社能率 Hot Water Supply Apparatus And Control Method Thereof
CN103940093B (en) * 2013-01-18 2018-01-05 株式会社能率 Supply hot water apparatus and its control method
JP2018523029A (en) * 2015-08-08 2018-08-16 エーリコン テクスティル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトOerlikon Textile GmbH & Co. KG Method and apparatus for melt spinning synthetic yarn
CN106381536A (en) * 2016-11-30 2017-02-08 南京右转信息科技有限公司 Subsection cooling device for melt spinning

Similar Documents

Publication Publication Date Title
JP5526531B2 (en) Spinning cooling device and melt spinning method
JP2010106393A (en) Apparatus and method for producing multifilament yarn
JP2007284857A (en) Method for melt spinning polyester and its melt spinning apparatus
JP2010077553A (en) Apparatus and method for producing filament yarn
JP2009097119A (en) Device for melt-spinning thermoplastic fiber
JP2007077547A (en) Method for producing super fine polyamide multifilament and apparatus for melt-spinning polyamide multifilament yarn
JP4904943B2 (en) Polyester fiber melt spinning equipment
JP5585469B2 (en) Synthetic fiber melt spinning equipment
JP2007247121A (en) Yarn cooling device
KR20050098892A (en) Spin annealed poly(trimethylene terephthalate) yarn
JP2010070887A (en) Cooling device for spinning and melt-spinning method
JP2012136797A (en) Method for producing polyphenylene sulfide fiber
JP2009068154A (en) Yarn cooling device
JP2007186810A (en) Melt-spinning apparatus and melt-spinning method
JP2009084712A (en) Method for spinning polyester monofilament having small fineness
JP2974263B2 (en) High-speed spinning method
JP4677532B2 (en) Method for producing polyphenylene sulfide fiber
JPH01111011A (en) Production of nylon 46 fiber
JP2006225792A (en) Melt-spinning apparatus of synthetic fiber and method for carrying out melt spinning of synthetic fiber by using the apparatus
JP2007031892A (en) Yarn cooling apparatus
JPS61194218A (en) Production of polyester fiber
JP2842243B2 (en) Melt spinning equipment
JP5332253B2 (en) Filament yarn manufacturing apparatus and manufacturing method
JP3880143B2 (en) Method for cooling melt spun fiber
JPH11279825A (en) Melt spinning unit for multifilament yarn and melt spinning using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101001

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120525

A761 Written withdrawal of application

Effective date: 20120702

Free format text: JAPANESE INTERMEDIATE CODE: A761