JP2009096361A - 車両走行支援装置 - Google Patents

車両走行支援装置 Download PDF

Info

Publication number
JP2009096361A
JP2009096361A JP2007270496A JP2007270496A JP2009096361A JP 2009096361 A JP2009096361 A JP 2009096361A JP 2007270496 A JP2007270496 A JP 2007270496A JP 2007270496 A JP2007270496 A JP 2007270496A JP 2009096361 A JP2009096361 A JP 2009096361A
Authority
JP
Japan
Prior art keywords
vehicle
oncoming
target inter
unit
front wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007270496A
Other languages
English (en)
Inventor
Hiroaki Shimizu
宏明 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007270496A priority Critical patent/JP2009096361A/ja
Publication of JP2009096361A publication Critical patent/JP2009096361A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)

Abstract

【課題】対向車両の自車線への進入を妨げず、対向車線における円滑な交通の流れを確保することのできる車両走行支援装置を提供する。
【解決手段】自車両と先行車両との間の目標車間距離を取得する目標車間距離取得部12と、自車両に対する対向車両が自車線に進入するか否かを判定する進入判定部17と、進入判定部17により対向車両が自車線に進入すると判定された場合に、目標車間距離取得部12で取得した目標車間距離を修正する目標車間距離修正部21と、を備えることにより、先行車両M2との間で目標車間距離を取得しても、進入判定部17により対向車両M3が自車線へ進入すると判定された場合は、自車両M1が対向車両M3の自車線への進入の妨げとならないように、取得した目標車間距離を修正する。
【選択図】図1

Description

本発明は、車両の走行状態を支援する車両走行支援装置に関する。
従来、車両の走行支援を行うものとして、例えば特開2002−163790号公報に記載されるように、交差点などに設置された処理装置によってウインカの点滅状況や速度に基づき対向車両が右折するか、直進するか、又は左折するか否かを判定して右折車両を特定し、その情報を通信回線を介して与えることによって、右折車両との衝突事故を防止するものが知られている。
特開2002−163790号公報
しかしながら、このような車両走行支援装置にあっては、例えば、先行車両との間の目標車間距離を取得して当該目標車間距離を確保するように走行する車両に適用した場合、停止又は徐行する先行車両にあわせて自車両が目標車間距離を確保しながら停止又は徐行した時に、右折やUターンなどによる対向車両の自車線への進入を妨げてしまう場合があった。これによって、対向車線における円滑な交通の流れを妨げてしまうという問題があった。
本発明は、このような問題を解決するためになされたものであり、対向車両の自車線への進入を妨げず、対向車線における円滑な交通の流れを確保することのできる車両走行支援装置を提供することを目的とする。
本発明に係る車両走行支援装置は、自車両と先行車両との間の目標車間距離を取得する目標車間距離取得手段と、自車両に対する対向車両が自車線に進入するか否かを判定する進入判定手段と、進入判定手段により対向車両が自車線に進入すると判定された場合に、目標車間距離取得手段で取得した目標車間距離を修正する目標車間距離修正手段と、を備えることを特徴とする。
この車両走行支援装置では、先行車両との間で目標車間距離を取得しても、進入判定手段により対向車両が自車線へ進入すると判定された場合は、自車両が対向車両の自車線への進入の妨げとならないように、取得した目標車間距離を修正することができる。これによって、対向車線における円滑な交通の流れを確保することができる。
この車両走行支援装置では、目標車間距離修正手段は、対向車両の進入スペースを確保するように目標車間距離を修正することが好ましい。対向車両の進入スペースを確保することによって、自車両が対向車両の自車線への進入の妨げになることを防止し、対向車線における円滑な交通の流れを確保することができる。
本発明に係る車両走行支援装置は、目標車間距離修正手段は、自車両と先行車両との間に対向車両の進入スペースを確保するように目標車間距離を修正することが好ましい。自車両の後方側に進入スペースを確保する場合は、自車両の後方に存在する車両の挙動によっては対向車両を自車線に進入させることができない場合があるが、自車両の前方側に進入スペースを確保することによって、対向車両が進入するのに必要なだけの進入スペースを確実に確保することができる。
本発明に係る車両走行支援装置は、先行車両との間で目標車間距離を確保した場合に、自車両が到達すると予測される到達予定位置を取得する到達予定位置取得手段と、自車両が到達予定位置に到達したと仮定した場合に、自車両が対向車両の自車線への進入を妨げるか否かを判定する進入妨害判定手段と、を備え、目標車間距離修正手段は、進入妨害判定手段により自車両が対向車両の自車線への進入を妨げると判定された場合に、目標車間距離を修正することが好ましい。これによれば、自車両が取得した目標車間距離に従って到達予定位置へ到達したと仮定したときに、対向車両の自車線への進入を妨げると判定された場合にのみ目標車間距離の修正を行うことができる。従って、進入判定手段により対向車両が自車線へ進入すると判定されたときでも、進入妨害判定手段により自車両が対向車両の自車線への進入を妨げないと判定された場合は目標車間距離の修正を省略することができ、処理の負荷を軽減することができる。
本発明に係る車両走行支援装置は、進入判定手段が、対向車両のウインカの点滅状態に基づいて、対向車両が自車線に進入すると判定することが好ましい。これによれば、対向車両の運転者の意思を明確に示したウインカの点滅状態に基づいて対向車両の自車線への進入を判定することができるため、判定の確実性を向上することができる。
本発明に係る車両走行支援装置は、進入判定手段が、対向車両の前方の空間が所定の広さ以上である場合に、対向車両が自車線に進入すると判定することが好ましい。これによれば、例えば、前方に車両がなく、所定の広さ以上の空間がある状態で対向車両が対向車線内で徐行又は停止しているような場合は、対向車両の運転者に自車線への進入の意思があるとみなすことができるため、対向車両の運転者がウインカを出し忘れた場合でも、対向車両が自車線へ進入するか否かを判定することができる。
本発明に係る車両走行支援装置は、進入判定手段は、対向車両の進行方向に対する対向車両の前輪角度を取得する前輪角度取得手段を有し、前輪角度が所定の閾値以上である場合に、対向車両が前記自車線に進入すると判定することが好ましい。これによれば、前輪角度取得手段で対向車両の前輪角度が所定の閾値以上であるか否かによって対向車両の進行方向を予測することができるため、対向車両の運転者がウインカを出し忘れていた場合であっても、対向車両が自車線へ進入するか否かを判定することができる。
本発明に係る車両走行支援装置は、進入判定手段は、自車両側から撮像した対向車両の画像を取得する画像取得手段と、画像中において前輪の側面及び後輪の側面を抽出する車輪側面抽出手段と、を有し、前輪角度取得手段は、楕円状に示される前輪の側面の長軸と短軸との比率、及び楕円状に示される後輪の側面の長軸と短軸との比率に基づいて前輪角度を取得することが好ましい。これによれば、自車両側から撮像した画像中の前輪の側面と後輪の側面を画像中で抽出し、それらの楕円形状の長軸と短軸の比率に基づいて、前輪及び後輪が自車両のカメラなどに対してどの程度傾いているかを取得することができる。また、前輪はハンドル操舵などによって進行方向へ傾くのに対して、後輪は車両の動きに追従して動くものであるため、前輪と後輪の傾きを比較することによって、前輪角度を取得することができる。以上によって、対向車両全体の画像解析をしなくても前輪及び後輪のそれぞれの側面の長軸と短軸の比率によって前輪角度を取得することができるため、進入判定の処理の負荷を軽減することができる。
本発明に係る車両走行支援装置は、進入判定手段は、対向車両の車体の側面に沿って水平方向に延在する第1の直線、及び前輪における地面と接触する接地面に沿って水平方向に延在する第2の直線を検出する直線検出手段を有し、前輪角度取得手段は、第1の直線と第2の直線同士の角度に基づいて前輪角度を取得することが好ましい。これによれば、第1の直線を検出することによって対向車両の車体の向きを取得することができると共に、第2の直線を検出することによって前輪の向きを取得することができるため、第1の直線及び第2の直線に基づいて前輪角度を取得することができる。従って、前輪の傾きが大きく、取得した画像中では前輪の側面が抽出できない場合でも、車体の側面及び前輪の接地面が抽出できれば前輪角度を取得することができる。
本発明に係る車両走行支援装置は、進入判定手段は、自車両側から撮像した対向車両の画像を取得する画像取得手段と、画像の中から、対向車両の前面側の輪郭を抽出する輪郭抽出手段と、抽出された対向車両の前面側の輪郭から、楕円状に示される前輪の側面の形状を推定する側面形状推定手段と、を備え、前輪角度取得手段は、推定された前輪の側面の形状の長軸と短軸との比率に基づいて前輪角度を取得することが好ましい。これによれば、対向車両の画像中で抽出された対向車両の前面側の輪郭から、楕円状に示される前輪の側面の形状を推定し、その楕円形状の長軸と短軸との比率を計算することによって、自車両のカメラに対して前輪がどの程度傾いているかを取得することができる。また、対向車両の前面側の輪郭から、カメラに対する対向車両の車体の向きを取得することによって、車体に対して前輪がどの程度傾いているかを取得できるため、前輪角度を取得することができる。以上によって、画像中で対向車両の車体の側面を抽出できなかった場合であっても、対向車両の前面側の画像のみから前輪角度を取得することができる。
本発明に係る車両走行支援装置は、自車両と先行車両との間の目標車間距離を設定する目標車間距離取得手段と、自車両に対する対向車両が自車線に進入する可能性の高い進入領域が前記自車両の前方に存在するか否かを判定する進入領域判定手段と、進入判定手段により進入領域が自車両の前方に存在すると判定された場合に、目標車間距離取得手段で取得された目標車間距離を修正する目標車間距離修正手段と、を備えることを特徴とする。
この車両走行支援装置では、先行車両との間で目標車間距離を取得しても、進入領域判定手段により対向車両が進入する可能性の高い進入領域が自車両の前方に存在すると判定された場合は、進入領域を対向車両の進入スペースとして空けておくように目標車間距離を修正する。従って、新たに自車線に進入しようとする対向車両が走行して来たときに、進入の妨げとなることを防止できる。これによって、現時点で対向車両が存在していない場合であっても、新たな対向車両が走行して来てくることを予測して、予め目標車間距離を修正しておくことができるため、対向車線における円滑な交通の流れを確保することができる。
本発明に係る車両走行支援装置は、進入領域判定手段は、自車両の周辺情報に基づいて判定することが好ましい。これによれば、自車両の周辺情報を反映させて、進入領域が存在するか否かの判断を正確に判定することができる。
本発明に係る車両走行支援装置は、対向車両が自車線の所定の領域に過去に進入した進入回数を記憶する記憶部を備え、進入領域判定手段は、記憶部に記憶された進入回数に基づいて進入領域を取得することが好ましい。これによれば、自車両の周辺情報が更新されていないような場合でも、実際に対向車両が過去に進入した進入回数をもとに進入領域の取得を行うことができるため、最新の交通情報に基づいて進入スペースを確保することができる。
本発明によれば、対向車両の自車線への進入を妨げず、対向車線における円滑な交通の流れを確保することができる。
以下、図面を参照して、本発明に係る車両走行支援装置の好適な実施形態について詳細に説明する。
[第1実施形態]
まず、第1の実施形態に係る車両走行支援装置1の構成を説明する。図1は、第1の実施形態に係る車両走行支援装置のブロック構成を示した図である。図1に示すように、車両走行支援装置1は、ECU(Electronic Control Unit)2、車速センサ3、撮像部4、レーダ6、走行駆動部7、及び制動部8を備えている。
車速センサ3は、自車両速度情報を取得する機能を有し、例えば、車輪に設けられて、車輪の回転数を計測するセンサなどが用いられる。車速センサ3は、取得した自車両速度情報をECU2へ出力する機能を有する。
撮像部4は、先行車両M2の画像や道路の白線の画像、又は自車両M1に対する対向車両M3を自車両側から撮像した画像など、自車両前方の画像を取得する機能を有するものであり、自車両M1の前面の中央に取り付けられたCCDカラーカメラ等によって構成される。撮像部5は、撮影した画像をECU2へ出力する機能を有する。
レーダ6は、自車両M1の前部に設けられており、ミリ波やレーザ等の発信波を自車両M1の前方に向けて発信し、物体で反射した反射波を受信してレーダ情報として取得する機能を有する。レーダ6は、レーダ情報を取得したらECU2へ出力する機能を有する。
走行駆動部7は、車両の走行駆動を行う機能を有し、例えばスロットルモータやインジェクタなどにより構成される。この走行駆動部7は、ECU2の走行駆動信号を受けて作動し、その走行駆動信号に応じた車両走行駆動を実行する機能を有する。
制動部8は、車両の制動を行う機能を有し、例えばブレーキ油圧を調整する電磁弁やブレーキ油圧を生成するポンプモータにより構成される。この制動部8は、ECU2の制動指令信号を受けて作動し、その制動指令信号に応じた車両制動を実行する機能を有する。
ECU2は、装置全体の制御を行う電子制御ユニットであり、例えばCPUを主体として構成され、ROM、RAM、入力信号回路、出力信号回路、電源回路などを備えている。このECU2は、先行車両検出部11、目標車間距離取得部12、自車両速度判定部13、対向車両検出部14、進入判定部17、到達予定位置取得部18、進入妨害判定部19、目標車間距離修正部21、及び自車両速度制御部22を有している。
先行車両検出部11は、レーダ6から入力されたレーダ情報に基づいて先行車両M2の存在を検出すると共に、先行車両M2の位置、自車両M1との距離及び自車両M1との相対速度を検出する機能を有する。具体的には、先行車両検出部11は、反射波の反射方向から先行車両M2の位置を検出し、発信波と反射波の位相差から自車両M1との距離を検出する。また、先行車両検出部11は、今回検出した位置及び距離と、前回検出した位置及び距離とに基づいて、先行車両M2との相対距離を検出する。先行車両検出部11は、先行車両M2の位置、距離、相対速度を検出したら、目標車間距離取得部12へ出力する機能を有する。なお、先行車両検出部11は、撮像部4から入力された画像中の白線を検出して、自車両M1と同一車線内で前方に存在する車両を先行車両M2として検出してもよい。
目標車間距離取得部12は、自車両M1と先行車両M2との間の目標車間距離を取得する機能を有する。例えば、目標車間距離取得部12は、車速センサ3から入力された自車両速度、及び先行車両検出部11で検出した相対速度に基づき、先行車両M2に安全に追従することのできる目標車間距離を取得する。目標車間距離は、先行車両M2が低速で走行する場合は短くなり、高速で走行する場合は長くなる。また、目標車間距離取得部12は、目標車間距離を取得したら、到達予定位置取得部18、目標車間距離修正部21、自車両速度制御部22へ出力する機能を有する。
自車両速度判定部13は、車速センサ3から入力された自車両速度が所定の閾値以下であるか否かを判定する機能を有する。また、自車両速度判定部13は、対向車両検出部14へ判定結果を出力する機能を有する。
対向車両検出部14は、対向自車線内で停止又は徐行している対向車両M3を検出する機能を有する。対向車両検出部14は、レーダ6から入力されたレーダ情報に基づいて自車両前方の対向車両M3を特定し、そのうち停止又は徐行しているものを検出する。対向車両M3が停止又は徐行しているかは、先行車両検出部11と同様の方法で検出した相対速度と、車速センサ3から入力された自車両速度とに基づいて判断することができる。なお、自車線の両側の白線から一定間隔外側の領域、又は自車両M1の進行方向へ向かって延長した直線の両側一定間隔の領域を対向車両検出領域とする。また、対向車両検出部14は、対向車両M3を検出したら、対向車両M3が存在する旨及び対向車両M3の速度や距離を進入判定部17、進入妨害判定部19、目標車間距離修正部21へ出力する機能を有する。
進入判定部17は、ウインカ点滅状態検出部23、空間検出部24及び判定部26を有し、対向車両検出部14で検出した対向車両M3が自車線へ進入するか否かを判定する機能を有する。進入判定部17は、例えば、対向車両M3が交差点で右折する場合や、自車線が店舗の入口などに面しているときに対向車両M3が右折する場合や、Uターンする場合などのように、対向車両M3が自車線に進入するか否かを判定する。
ウインカ点滅状態検出部23は、対向車両検出部14で検出した対向車両M3のウインカの点滅状態を検出する機能を有する。ウインカ点滅状態検出部23は、例えば、撮像部4から入力された画像から対向車線における黄色い光源の周期的な点滅を特定し、その点滅の点滅回数や点滅時間を所定の閾値と比較することによってウインカ点滅状態を検出する。あるいは、対向車両M3から発信されたウインカ点滅状態に関する情報を受信することによって、ウインカの点滅状態を検出する。ウインカ点滅状態検出部23は、ウインカ点滅状態を検出したら、その検出結果を判定部26へ出力する機能を有する。
空間検出部24は、対向車両検出部14で検出した対向車両M3の前方の空間が所定の広さ以上であるか否かを判定することによって、対向車両前方の空きスペースを検出する機能を有する。空間検出部24は、レーダ6から入力されたレーダ情報に基づいて上述の対向車両検出領域内で対向車両M3の前方における他の車両を検出し、対向車両M3と他の車両との間の所定以上の広さを有する空間を空きスペースとして検出する。空間検出部24は、空きスペースを検出したら、その検出結果を判定部26へ出力する機能を有する。
判定部26は、ウインカ点滅状態検出部23及び空間検出部24から入力された検出結果に基づいて対向車両M3が自車線へ進入するか否かの判定を行う機能を有する。また、判定部26は、到達予定位置取得部18へ判定結果を出力する機能を有する。
到達予定位置取得部18は、先行車両M2との間で目標車間距離を確保した場合に、自車両M1が到達すると予測される到達予定位置Pを取得する機能を有する。到達予定位置取得部18は、取得した到達予定位置Pを進入妨害判定部19へ出力する機能を有する。
進入妨害判定部19は、自車両M1が到達予定位置Pに到達したと仮定した場合に、自車両M1が対向車両M3の自車線への進入を妨げるか否かを判定する機能を有する。進入妨害判定部19は、目標車間距離修正部21へ判定結果を出力する機能を有する。
目標車間距離修正部21は、進入判定部17により対向車両M3が自車線に進入すると判定された場合に、目標車間距離取得部12で取得した目標車間距離を修正する機能を有する。目標車間距離修正部21は、例えば、自車両M1と先行車両M2との間に対向車両M3の進入スペースを確保するように目標車間距離を修正する。目標車間距離修正部21は、修正した目標車間距離を自車両速度制御部22へ出力する機能を有する。
自車両速度制御部22は、目標車間距離取得部12で取得した目標車間距離、又は目標車間距離修正部で修正した目標車間距離を確保するように走行駆動部7へ走行駆動信号を出力すると共に制動部8へ制動指令信号を出力することによって、自車両速度を制御する機能を有する。
次に、図2を参照して、第1の実施形態に係る車両走行支援装置1の動作について説明する。図2は、第1の実施形態に係る車両走行支援装置1における車両走行支援処理を示すフローチャートである。
この処理は、ECU2において、先行車両M2に追従する追従制御を行っている間、所定のタイミングで繰り返し実行される。
追従制御中は、先行車両M2との車間距離と相対速度とに基づいて、自車両M1が先行車両M2と目標車間距離を確保ながら走行するように走行制御を行うと共に、先行車両M2が減速・停止した場合などに制動制御を行う。
図2に示すように、車両走行支援装置1は、先行車両M2の検出処理から処理を開始する(S10)。S10の処理は、先行車両検出部11で実行され、レーダ6からのレーダ情報や撮像部4からの画像に基づいて先行車両M2を検出すると共に、先行車両M2の位置、自車両M1との車間距離、自車両M1との相対速度の検出を行う処理である。S10の処理が終了すると、目標車間距離取得処理へ移行する(S12)。
S12の処理は、目標車間距離取得部12で実行され、車速センサ3からの自車両速度情報と先行車両検出部11からの相対速度に基づいて先行車両M2との目標車間距離LTを算出して取得する処理である。目標車間距離LTを算出する方法は、既存の目標車間距離算出方法が用いられ、例えば、目標車間距離LT(m)=自車両速度(m/s)×2.5(s)−相対速度(m/s)×4(s)として算出することができる。S12の処理が終了すると、自車両速度判定処理へ移行する(S14)。
S14の処理は、自車両速度判定部13で実行され、車速センサ3からの自車両速度情報に基づき、自車両速度が予め設定した閾値以下であるか否かを判定する処理である。S14の処理において、閾値より大きいと判定された場合は、自車両速度制御処理へ移行する(S28)。
S28の処理は、自車両速度制御部22で実行され、S12で取得した目標車間距離LTを先行車両M2との間で確保するように、走行駆動部7へ走行駆動信号を出力すると共に、制動部8へ制動指令信号を出力することによって自車両速度を制御する処理である。S28の処理においては、例えば、目標自車両速度は、(目標自車両速度)=(自車両速度)+G{(先行車両までの距離)−(目標車間距離LT)}と算出される。なお、Gは所定のゲインである。S28の処理が終了したら、図2の処理は終了し、再びS10の処理へ戻る。これによって、自車両M1が通常走行状態にあるときは、対向車両M3の影響を受けることなく、走行状態を継続することができる。
一方、S14の処理において、例えば、先行車両M2が停止したり徐行したりするのにあわせて自車両速度も低下したことなどによって、自車両速度が閾値以下であると判定された場合は、対向車両検出処理へ移行する(S16)。S16の処理は、対向車両検出部14で実行され、レーダ6の検出領域で停止又は徐行している対向車両M3を検出する処理である。S16の処理において、対向車両M3が検出されなかった場合、又は所定の速度以上で走行している対向車両M3しか検出されなかった場合は、自車線に進入する対向車両M3は存在しないとみなして、S12で取得した目標車間距離LTを先行車両M2との間で確保すべく、自車両速度制御処理(S28)へ移行する。
一方、S16の処理において、停止又は徐行している対向車両M3が検出された場合は、進入判定条件取得処理へ移行する(S18)。S18の処理は、進入判定部17のウインカ点滅状態検出部23及び空間検出部24で実行され、S16で検出した対向車両M3が自車線へ進入するか否かを判定するための条件を取得する処理である。S18の処理が終了すると、進入判定処理へ移行する(S20)。
S20の処理は進入判定部17の判定部26で実行され、S18で取得した進入判定条件に基づいて、対向車両M3が自車線へ進入するか否かを判定する処理である。S20の処理において、対向車両M3が自車線へ進入しないと判定された場合は、対向車両確認処理へ移行する(S29)。
S29の処理は、対向車両検出部14で実行され、先にS16の進入判定条件取得処理の対象となった対向車両M3以外の他の対向車両M3が検出されていないかを確認する処理である。S29において、他の対向車両M3が検出されていると確認された場合は、再び進入判定条件取得処理へ移行し(S18)、その対向車両M3についての進入判定条件が取得される。一方、他に検出された対向車両M3が存在しない場合は、S12で取得した目標車間距離LTを先行車両M2との間で確保すべく、自車両速度制御処理へ移行する(S28)。このような処理は、複数の対向車両M3を検出した場合、全ての対向車両M3について進入判定条件取得処理がなされるように繰り返し実行される。
一方、S20の処理において、対向車両M3が自車線へ進入すると判定された場合は、到達予定位置取得処理へ移行する(S22)。S22の処理は、到達予定位置取得部18で実行され、S12で取得した目標車間距離LTを先行車両M2との間で確保した場合に、自車両M1が到達すると予測される到達予定位置Pを取得する。S22の処理が終了すると、進入妨害判定処理へ移行する(S24)。
S24の処理は、進入妨害判定部19で実行され、自車両M1がS22で取得した到達予定位置Pへ到達したと仮定した場合に、自車両M1が対向車両M3の自車線への進入を妨げるか否かを判定する処理である。S24の処理において、自車両M1が対向車両M3の自車線への進入を妨げないと判定された場合は、対向車両確認処理へ移行する(S29)。一方、S24の処理において、自車両M1が対向車両M3の自車線への進入を妨げると判定された場合は、目標車間距離修正処理へ移行する(S26)。
ここで、S24の処理の詳細な説明を行う。図3(a),(b)は、自車両M1が対向車両M3の自車線への進入を妨害しない場合の自車両M1と対向車両M3の位置関係を示す図である。図4は、自車両M1が対向車両M3の自車線への進入を妨害する場合の自車両M1と対向車両M3の位置関係を示す図である。図3に示すように、現在の自車両M1の位置からS22で取得した到達予定位置Pまでの距離である自車両到達距離L1は、(自車両到達距離L1)=(先行車両までの距離L2)−(目標車間距離LT)−(自車両全長L3)と算出される。このとき、進入妨害判定部19は、図3(a)に示すように、(自車両到達距離L1)≧(対向車両までの距離L4)の関係が成り立つ場合、又は図3(b)に示すように、(自車両到達距離L1)+(自車両全長L3)≦(対向車両までの距離L4)−(進入に必要な距離L5)の関係が成り立つ場合には、自車両M1が到達予定位置Pに到達したと仮定したときに、対向車両M3の自車線への進入を妨害しないと判定する。一方、進入妨害判定部19は、(対向車両までの距離L4)−(進入に必要な距離L5)−(自車両全長L3)<(自車両到達距離L1)<(対向車両までの距離L4)の関係が成り立つ場合には、自車両M1が到達予定位置Pに到達したと仮定したときに、対向車両M3の自車線への進入を妨害すると判定する。
図2へ戻り、S26の処理は、目標車間距離修正部21で実行され、自車両M1と先行車両M2との間に対向車両M3の進入スペースを確保するように、S12で取得した目標車間距離LTを修正する処理である。図5は目標車間距離を修正した後の自車両M1と対向車両M3の位置関係を示した図であり、図5に示すように、S26の処理において、目標車間距離LTは、(修正目標車間距離LT´)=(目標車間距離LT)+(進入に必要な距離L5)と修正される。S26の処理が終了すると、自車両速度制御処理へ移行する(S28)。S28においては、目標自車両速度は、(目標自車両速度)=(自車両速度)+G{(先行車両との距離L2)−(修正目標車間距離LT´)}と算出される。S28の処理が終了したら、図2の処理は終了し、再びS10の処理へ戻る。
次に、第1の実施形態に係る車両走行支援装置1の進入判定条件取得処理(S18)の動作について説明する。図6は、第1の実施形態に係る車両走行支援装置における進入判定条件取得処理を示すフローチャートである。
進入判定条件取得処理は、進入判定部17で実行される。まず、この処理はウインカ点滅状態検出処理から開始される(S30)。
S30の処理は、ウインカ点滅状態検出部23で実行され、S16で検出した対向車両M3のウインカの点滅状態を検出する処理である。S30の処理が終了すると、前方車両検出処理へ移行する(S32)。
S32の処理は、空間検出部24で実行され、対向車両M3の前方に存在する他の車両を検出する処理である。S32の処理が終了すると、空間検出処理へ移行する(S34)。S34の処理は、空間検出部24で実行され、対向車両M3とS32で検出した他の車両との間の空間を検出する処理である。S34においては、対向車両M3と他の車両との間の距離が予め設定した閾値以上である場合に、空きスペースとして検出する。また、他の車両が検出されなかった場合も空きスペースとして検出する。
以上の処理によって、S30〜S32の検出結果から、「対向車両M3のウインカが点滅状態にあるか否か」と「対向車両M3の前方に空きスペースがあるか否か」を進入判定条件として取得することができる。進入判定条件取得処理が終了したら、進入判定処理(S20)へ移行し、進入判定部17の判定部26は進入判定条件に基づいて対向車両M3が自車線へ進入するか否かを判定する。判定は、「対向車両M3のウインカが点滅状態にあり、かつ、対向車両M3の前方に空きスペースがある」場合に対向車両M3が進入すると判定してよく、この場合は判定の確実性を向上させることができる。また、いずれか一方の条件を満たしていた場合にのみ、対向車両M3が進入すると判定してもよい。
以上のように、第1の実施形態に係る車両走行支援装置1によれば、先行車両M2との間で目標車間距離を取得しても、進入判定部17により対向車両M3が自車線へ進入すると判定された場合は、自車両M1が対向車両M3の自車線への進入の妨げとならないように、取得した目標車間距離を修正することができる。これによって、対向車線における円滑な交通の流れを確保することができる。
また、第1の実施形態に係る車両走行支援装置1によれば、目標車間距離修正部21が、対向車両M3の進入スペースを確保するように目標車間距離を修正するため、自車両M1が対向車両M3の自車線への進入の妨げになることを防止し、対向車線における円滑な交通の流れを確保することができる。
また、第1の実施形態に係る車両走行支援装置1によれば、自車両M1の後方側に進入スペースを確保する場合は、自車両M1の後方に存在する車両の挙動によっては対向車両M3を自車線に進入させることができない場合があるが、目標車間距離修正部21が目標車間距離を修正して自車両M1の前方側に進入スペースを確保することによって、対向車両M3が進入するのに必要なだけの進入スペースを確実に確保することができる。
また、第1の実施形態に係る車両走行支援装置1によれば、自車両M1が取得した目標車間距離に従って到達予定位置Pへ到達したと仮定したときに、対向車両M3の自車線への進入を妨げると判定された場合にのみ目標車間距離の修正を行うことができる。従って、進入判定部17により対向車両M3が自車線へ進入すると判定されたときでも、進入妨害判定部19により自車両M1が対向車両M3の自車線への進入を妨げないと判定された場合は目標車間距離の修正を省略することができ、処理の負荷を軽減することができる。
また、第1の実施形態に係る車両走行支援装置1によれば、進入判定部17が、対向車両M3の運転者の意思を明確に示したウインカの点滅状態に基づいて対向車両M3の自車線への進入を判定することができるため、判定の確実性を向上することができる。
また、第1の実施形態に係る車両走行支援装置1によれば、進入判定部17が、対向車両M3の前方の空間が所定の広さ以上である場合に、対向車両M3が自車線に進入すると判定するため、例えば、前方に車両がなく、所定の広さ以上の空間がある状態で対向車両M3が対向車線内で徐行又は停止しているような場合は、対向車両M3の運転者に自車線への進入の意思があるとみなすことができるため、対向車両M3の運転者がウインカを出し忘れた場合でも、対向車両M3が自車線へ進入するか否かを判定することができる。
[第2実施形態]
次に、第2の実施形態に係る車両走行支援装置の構成を説明する。第2の実施形態に係る車両走行支援装置30は、進入判定部の構成及び進入判定条件取得処理の動作が異なる点で、第1の実施形態に係る車両走行支援装置1と主に相違する。
図7は、第2の実施形態に係る車両走行支援装置のブロック構成を示した図である。図7に示すように、進入判定部31は、画像取得部32、車輪側面抽出部33、直線検出部34、輪郭抽出部36、側面形状推定部37、前輪角度取得部38及び判定部39を備えている。なお、進入判定部31以外の構成は、第1の実施形態に係る車両走行支援装置1と同様である。
画像取得部32は、撮像部4によって自車両M1側から撮像した対向車両M3の画像を取得する機能を有する。また、画像取得部32は、取得した対向車両M3の画像を車輪側面抽出部33、輪郭抽出部36、側面形状推定部37、及び前輪角度取得部38へ出力する機能を有する。
車輪側面抽出部33は、画像取得部32によって取得された画像中において対向車両M3の前輪100の側面101及び後輪102の側面103を抽出する機能を有する。画像中において、前輪100の側面101及び後輪102の側面103は、楕円形状に示され(図10(a)参照)、例えば、画像からエッジ抽出し、線分の接続関係とエッジの勾配からその楕円形状を抽出することができる。車輪側面抽出部33は、抽出した前輪100の側面101及び後輪102の側面103を前輪角度取得部38へ出力する機能を有する。
直線検出部34は、対向車両M3の車体側面104に沿って水平方向に延在する直線(第1の直線)106、及び前輪100における地面と接触する接地面107に沿って水平方向に延在する直線(第2の直線)108を検出する機能を有する(図12)。それぞれの直線106,108は、例えば、レーザレーダの点列の座標値を用いたハフ変換などによって検出される。直線検出部34は、それぞれの直線106,108を検出したら前輪角度取得部38へ出力する機能を有する。
輪郭抽出部36は、画像取得部32によって取得された画像の中から、対向車両M3の前面側の輪郭110を抽出する機能を有する(図10(c)参照)。対向車両M3の前面側の輪郭110は、例えば、エッジ抽出により取得することができる。輪郭抽出部36は、輪郭110を抽出したら側面形状推定部37、前輪角度取得部38へ出力する機能を有する。
側面形状推定部37は、輪郭抽出部36で抽出された対向車両M3の前面側の輪郭110から、楕円状に示される前輪100の側面101の形状を推定する機能を有する。前輪の側面形状は、例えば、エッジ抽出して線分の接続関係とエッジ勾配から対向車両M3の前面側の輪郭110における前輪の側面の楕円成分111を抽出する(図10(c)参照)。そして、抽出した楕円成分111を構成する点の座標を所定の式に代入することによって前輪100の側面形状を推定する。側面形状推定部37は、前輪100の側面形状を推定したら、前輪角度取得部38へ出力する機能を有する。
前輪角度取得部38は、対向車両M3の進行方向に対する対向車両M3の前輪角度を取得する機能を有する。前輪角度とは、図8においてξで示される角度であり、車輪側面抽出部33によって抽出した前輪100の側面101及び後輪102の側面103の楕円形状や、直線検出部34によって検出した直線106,108や、側面形状推定部37によって推定した前輪100の側面形状に基づいて取得される。また、前輪角度取得部38は、取得した前輪角度を判定部39へ出力する機能を有する。
判定部39は、前輪角度取得部38から入力された前輪角度に基づいて、対向車両M3が自車線へ進入するか否かを判定する機能を有する。例えば、前輪角度を所定の閾値と比較し、閾値以上であれば進入すると判定し、閾値より小さければ進入しないと判定する。判定部39は、到達予定位置取得部18へ判定結果を出力する機能を有する。
次に、図9を参照して、第2の実施形態に係る車両走行支援装置30の進入判定条件取得処理の動作について説明する。図9は、第2の実施形態に係る車両走行支援装置における進入判定条件取得処理を示すフローチャートである。なお、第2の実施形態においては、進入判定条件取得処理より前のS10〜S16においては、第1の実施形態と同様の処理がなされる。
進入判定条件取得処理は、進入判定部31で実行される。まず、この処理は画像取得処理から開始する(S40)。
S40の処理は、画像取得部32で実行され、撮像部4によって自車両M1側から撮像した対向車両M3の画像を取得する画像を取得する処理である。ここで、図10は、対向車両M3の画像を示す図であり、(a)は前輪100の側面101及び後輪102の側面103が示されている画像、(b)は車体側面104が示され前輪100の側面101は示されない画像、(c)は車体側面104が示されず前面のみが示される画像である。S40においては、図10(a),(b),(c)のいずれかの画像が取得される。S40の処理が終了すると、車輪側面抽出処理へ移行する(S42)。
S42の処理は、車輪側面抽出部33で実行され、S40で取得された画像の中から対向車両M3の前輪100の側面101及び後輪102の側面103を抽出する処理である。S40で取得された画像が図10(a)である場合は、画像中において、前輪100の側面101及び後輪102の側面103は楕円形状に示されるため、これらの楕円形状を抽出する。S42において、前輪100の側面101が抽出された場合は比率算出処理へ移行する(S44)。なお、S40で取得された画像が図10(b),(c)である場合は前輪100の側面101が示されておらず抽出できないので、車体直線検出処理へ移行する(S50)。なお、前輪100の側面101が画像中で示されていたとしても、抽出できる程度に十分示されていない場合は同様に車体直線検出処理へ移行する。
S44の処理は、前輪角度取得部38で実行され、S42で抽出された前輪100の側面101及び後輪102の側面103の楕円形状の長軸と短軸を計測し、その比率を算出する処理である。図10(a)に示すように、前輪100側の楕円形状の長軸と短軸の長さをLlf,Lsfとし、後輪102側の楕円形状の長軸と短軸の長さをLlr,Lsrとすると、前輪100側の比率はαf=Lsf/Llf、後輪102側の比率はαr=Lsr/Llrと表される。S44の処理が終了すると、前輪角度取得処理へ移行する(S46)。
S46の処理は、前輪角度取得部38で実行され、S44で算出された前輪100側の比率αf及び後輪102側の比率αrに基づいて前輪角度ξを取得する処理である。図11に示すように、撮像部4から後輪102へ向かって延在する直線と直交する基準線B1と後輪102の側面103とがなす角度θrはθr=cos−1(αr)によって算出される。また、撮像部4から前輪100へ向かって延在する直線と直交する基準線B2と前輪100の側面101とがなす角度θfはθf=cos−1(αf)によって算出される。従って、前輪角度ξは、ξ≒θf−θrによって取得される。S46の処理が終了したら、前輪角度判定処理へ移行する(S48)。
一方、S50の処理は、直線検出部34で実行され、対向車両M3の車体側面104に沿って水平方向に延在する直線106を検出する処理である。S40で取得された画像が図10(b)である場合は、図12に示すように、自車両M1のレーダ6からのレーザレーダRの点列Dのうち最も長い直線を車体側面104の直線106とみなして検出する。S50の処理が終了すると、前輪直線検出処理へ移行する(S52)。なお、S40で取得された画像が図10(c)の場合は車体側面104が示されておらず直線106を検出することができないため、輪郭抽出処理へ移行する(S56)。車体側面104が示されていたとしても、直線106を検出できる程度に十分示されてないときは同様に輪郭抽出処理へ移行する。
S52の処理は、直線検出部34で実行され、前輪100における地面と接触する接地面107に沿って水平方向に延在する直線108を検出する処理である。レーザレーダRの点列Dのうち車両側面104の直線106からはずれた点列を前輪100の接地面107に沿った直線108とみなし検出する。S52の処理が終了すると。前輪角度取得処理へ移行する(S54)。
S54の処理は、前輪角度取得部38で実行され、S50で取得された対向車両M3の車体側面104の直線106、及びS52で取得した前輪100の接地面107の直線108に基づいて前輪角度ξを取得する処理である。図12に示すように、前輪100に沿った直線108と直交する直線109を算出すると、前輪角度ξは、その直線109と車体側面104の直線106とがなす角度θtによって取得される。S54の処理が終了すると、前輪角度判定処理へ移行する(S48)。
一方、S56の処理は、輪郭抽出部36で実行され、S40で取得した画像の中から、対向車両M3の前面側の輪郭110を抽出する処理である。輪郭110は、図10(c)中において太線で示される部分である。S56の処理が終了すると、側面形状推定処理へ移行する(S58)。
S58の処理は、側面形状推定部37で実行され、S56で抽出された対向車両M3の前面側の輪郭110から、楕円状に示される前輪100の側面101の形状を推定する処理である。図10(c)に示すように、対向車両M3の前面側の輪郭110は、前輪100の側面101の縁部によって形成される楕円成分111を含んでいる。この楕円成分111を構成する点の座標(x,y)を式(1)に代入して、最小自乗法で楕円形状を推定する。
A・x+B・x・y+C・y+D・x+E・y+F=0 …(1)
特に、前輪の場合は楕円の傾きは無いと考えることができるため、式(2)に代入することもできる。
A・(x−a)+C・(y−b)=R …(2)
S58の処理が終了すると、比率算出処理へ移行する(S60)。
S60の処理は、前輪角度取得部38で実行され、S58で推定した楕円形状の長軸と短軸の比率を算出する処理である。S60においては、S58で推定した楕円の長軸の長さはA、短軸の長さはCと表されるので比率β=C/Aによって算出される。S60の処理が終了すると、前輪角度取得処理へ移行する(S62)。
S62の処理は、前輪角度取得部38で実行され、S60で算出された比率βに基づいて前輪角度ξを取得する処理である。ここで、画像から対向車両M3の車体側面104が検出できない場合は、対向車両M3の進行方向が自車両M1側へ向いている場合であるため、前輪角度ξは、図13に示すように、対向車両M3の車体側面104と前輪100がなす角度によって取得される。よって、前輪角度ξは、ξ=sin−1(β)によって取得される。S62の処理が終了すると、前輪角度判定処理へ移行する(S48)。
S48の処理は、判定部39で実行され、S46、S54又はS60で取得された前輪角度ξが所定の閾値以上であるか否かを判定する処理である。その結果を進入判定条件として取得し、進入判定処理へ移行する(S20、図2参照)。S20の処理においては、「前輪角度ξが閾値以上である」旨の進入判定条件を取得した場合は、対向車両M3が自車線へ進入すると判定する。一方、「前輪角度ξが閾値より小さい」旨の進入判定条件を取得した場合は、対向車両M3は自車線へ進入しないと判定する。
第2の実施形態においては、進入判定処理より後のS22〜S29においては、第1の実施形態と同様の処理がなされる。
以上のように、第2の実施形態に係る車両走行支援装置30によれば、前輪角度取得部38で対向車両M3の前輪角度ξが所定の閾値以上であるか否かによって対向車両M3の進行方向を予測することができるため、対向車両M3の運転者がウインカを出し忘れていた場合であっても、対向車両M3が自車線へ進入するか否かを判定することができる。
また、第2の実施形態に係る車両走行支援装置30によれば、自車両M1側から撮像した画像中の前輪100の側面101と後輪102の側面103を画像中で抽出し、それらの楕円形状の長軸と短軸の比率に基づいて、前輪100及び後輪102が撮像部4などに対してどの程度傾いているかを取得することができる。また、前輪100はハンドル操舵などによって進行方向へ傾くのに対して、後輪102は車両の動きに追従して動くものであるため、前輪100と後輪102の傾きを比較することによって、前輪角度ξを取得することができる。以上によって、対向車両全体の画像解析をしなくても前輪100及び後輪102のそれぞれの側面の長軸と短軸の比率によって前輪角度ξを取得することができるため、進入判定処理の負荷を軽減することができる。
また、第2の実施形態に係る車両走行支援装置30によれば、直線106を検出することによって対向車両M3の車体の向きを取得することができると共に、直線108を検出することによって前輪100の向きを取得することができるため、直線106,108に基づいて前輪角度ξを取得することができる。従って、前輪100の傾きが大きく、取得した画像中では前輪100の側面101が抽出できない場合でも、車体側面104及び前輪100の接地面107が抽出できれば前輪角度ξを取得することができる。
また、第2の実施形態に係る車両走行支援装置30によれば、対向車両の画像中で抽出された対向車両の前面側の輪郭から、楕円状に示される前輪の側面の形状を推定し、その楕円形状の長軸と短軸との比率を計算することによって、自車両のカメラに対して前輪がどの程度傾いているかを取得することができる。また、対向車両の前面側の輪郭から、カメラに対する対向車両の車体の向きを取得することによって、車体に対して前輪がどの程度傾いているかを取得できるため、前輪角度を取得することができる。以上によって、画像中で対向車両の車体の側面を抽出できなかった場合であっても、対向車両の前面側の画像のみから前輪角度を取得することができる。
[第3実施形態]
次に、第3の実施形態に係る車両走行支援装置の構成を説明する。
図14は、第3の実施形態に係る車両走行支援装置50のブロック構成を示した図である。図14に示すように、車両走行支援装置1は、ECU2、車速センサ3、撮像部4、レーダ6、GPS(Global Positioning System)51、走行駆動部7、及び制動部8を備えている。
また、ECU2は、先行車両検出部11、目標車間距離取得部12、自車両速度判定部13、絶対位置取得部52、記憶部53、検索部54、進入領域判定部56、到達予定位置取得部18、重複判定部57、目標車間距離修正部58、及び自車両速度制御部22を有している。
GPS51は、自車両M1の絶対位置を検出する機能を有し、例えば、人工衛星から発信される信号を受信して、その信号が到達する時間差を計算することで自車両M1の緯度や経度を検出する。また、GPS51は、検出した絶対位置情報を絶対位置取得部52へ出力する機能を有する。
絶対位置取得部52は、GPS51の絶対位置情報に基づいて自車両M1の絶対位置を取得する機能を有すると共に、検索部54へ自車両M1の絶対位置を出力する機能を有する。
記憶部53は、予め取得しておいた情報を記憶しておく機能を有し、例えば、地図データを記憶させると共に、車両の横断やUターンが多い領域や店舗の入口に面している領域など、対向車両M3が自車線に進入する可能性の高い進入領域Aの地図内における位置を記憶させておくことができる。また、記憶部53は、検索部54へ地図データ及び進入領域情報を出力する機能を有する。
検索部54は、記憶部53から出力された地図データ及び進入領域位置情報を検索することによって自車両M1周辺の進入領域Aの位置を取得する機能を有する。検索部54は、例えば、絶対位置取得部52から自車両M1の絶対位置情報を取得し、自車両M1の絶対位置が地図中のどの位置に該当するかを検索すると共に、その周辺の進入領域位置情報を検索して自車両M1周辺の進入領域Aの位置を取得する。また、検索部54は、進入領域判定部56へ検索結果を出力する機能を有する。
進入領域判定部56は、検索部54から出力された検索結果に基づいて、対向車両M3が自車線に進入する可能性の高い進入領域Aが自車両M1の前方に存在するか否かを判定する機能を有する。また、進入領域判定部56は、判定結果を重複判定部57へ出力する機能を有する。
重複判定部57は、進入領域判定部56により進入領域Aが自車両M1の前方に存在すると判定された場合に、自車両M1の到達予定位置Pが進入領域Aと重複するか否かを判定する機能を有する。重複判定部57は、例えば、進入領域判定部56で判定の対象となった進入領域Aを取得すると共に、到達予定位置取得部18から到達予定位置Pを取得し、それらが重複するか否かを判定する。また、重複判定部57は、判定結果を目標車間距離修正部58へ出力する。
目標車間距離修正部58は、進入領域判定部56により進入領域Aが自車両M1の前方に存在すると判定され、重複判定部57により到達予定位置Pが進入領域Aに重複すると判定された場合に、目標車間距離取得部12で取得された目標車間距離LTを修正する機能を有する。目標車間距離修正部58は、例えば、自車両M1が進入領域Aを進入スペースとして確保するように目標車間距離LTを修正する。目標車間距離修正部58は、修正した目標車間距離LT´を自車両速度制御部22へ出力する機能を有する。
なお、車速センサ3、撮像部4、レーダ6、走行駆動部7、制動部8、先行車両検出部11、目標車間距離取得部12、自車両速度判定部13、到達予定位置取得部18、及び自車両速度制御部22は、第1の実施形態に係る車両走行支援装置1のものと同様の機能を有する。
次に、図15を参照して、第3の実施形態に係る車両走行支援装置50の動作について説明する。図15は、第2の実施形態に係る車両走行支援装置50における車両走行支援処理を示すフローチャートである。
なお、図15に示すように、車両走行支援装置50は、S10〜S14までは、第1の実施形態の車両走行支援装置1における車両走行支援処理と同様の処理を行う(図2参照)。S14において、自車両速度が閾値以下であると判定された場合は、絶対位置取得処理へ移行する(S80)。
S80の処理は、絶対位置取得部52で実行され、GPS51からの絶対位置情報に基づいて自車両M1の絶対位置を取得する処理である。S80の処理が終了すると、進入領域検索処理へ移行する(S82)。
S82の処理は、検索部54で実行され、S80の処理で取得した自車両M1の絶対位置に基づいて記憶部53から入力された地図データ及び進入領域位置情報を検索して、自車両M1周辺の進入領域Aの位置を取得する処理である。S82の処理が終了すると、進入領域判定処理へ移行する(S84)。
S84の処理は、進入領域判定部56で実行され、S82で取得した進入領域Aが自車両M1の前方に存在するか否かを判定する処理である。例えば、図16に示すように、自車両M1と先行車両M2との間に進入領域Aが存在する場合は、「進入領域Aが自車両M1の前方に存在する」と判定する。S84の処理において、存在しないと判定された場合は、自車両速度制御処理へ移行する(S28)。なお、S28においては、第1の実施形態における自車両速度制御処理(S28、図2参照)と同様の処理がなされる。
一方、S84の処理において、「進入領域Aが自車両M1の前方に存在する」と判定された場合は、到達予定位置取得処理へ移行する(S22)。S22の処理は、第1の実施形態におけるものと同様の処理がなされる。S22の処理が終了すると、重複判定処理へ移行する(S86)。
S86の処理は、重複判定部57で実行され、自車両M1の到達予定位置PがS84の判定の対象となった進入領域Aと重複するか否かを判定する処理である。S86の処理において、到達予定位置Pが進入領域Aと重複しないと判定された場合は、S12で取得した目標車間距離LTを先行車両M2との間で確保すべく、自車両速度制処理へ移行する(S28)。一方、S86の処理において、到達予定位置Pが進入領域Aと重複すると判定された場合は、目標車間距離修正処理へ移行する(S88)。
ここで、S86の処理の詳細な説明を行う。図16(a),(b)は、到達予定位置Pが進入領域Aと重複しない場合の位置関係を示す図である。図17(a),(b)は、到達予定位置Pが進入領域Aと重複する場合の位置関係を示す図である。図16に示すように、自車両M1がS20で取得した到達予定位置Pに停止した場合の自車両M1の前端の位置から現在の自車両M1の位置までの距離である自車両前端距離L6は、(自車両前端距離L6)=(先行車両までの距離L2)−(目標車間距離LT)と算出され、自車両M1の後端から現在の自車両M1の位置までの距離である自車両後端距離L7は、(自車両後端距離L7)=(先行車両までの距離L2)−(目標車間距離LT)−(自車両全長L3)と算出される。このとき、重複判定部57は、図16(a)に示すように、(自車両後端距離L7)≧(進入領域最遠方距離L8)の関係が成り立つ場合、又は、図16(b)に示すように、(自車両前端距離L6)≦(進入領域最近傍距離L9)の関係が成り立つ場合は、自車両M1の到達予定位置Pが進入領域Aと重複しないと判定する。一方、重複判定部57は、(自車両後端距離L7)<(進入領域最遠方距離L8)、且つ、(自車両前端距離L6)>(進入領域最近傍距離L9)の関係が成り立つ場合は、自車両M1の到達予定位置Pが進入領域Aと重複すると判定する。
S88の処理は、目標車間距離修正部58で実行され、自車両M1が進入領域Aを進入スペースとして確保するように、S12で取得した目標車間距離LTを修正する処理である。図18は目標車間距離LTを修正した後の自車両M1と進入領域Aの位置関係を示した図であり、図18に示すように、S88の処理において、目標車間距離LTは、(修正目標車間距離LT´)=(先行車両までの距離L2)−(進入領域最近傍距離L9)と修正される。S88の処理が終了すると、自車両速度制御処理へ移行する(S28)。なお、S28においては、第1の実施形態における自車両速度制御処理と同様の処理がなされる。S28の処理が終了したら、図15の処理は終了し、再びS10の処理へ戻る。
以上のように、第3の実施形態に係る車両走行支援装置50によれば、先行車両との間で目標車間距離LTを取得しても、進入領域判定部56により対向車両M3が進入する可能性の高い進入領域Aが自車両M1の前方に存在すると判定された場合は、進入領域Aを対向車両M3の進入スペースとして空けておくように目標車間距離LTを修正する。従って、新たに自車線に進入しようとする対向車両M3が走行して来たときに、進入の妨げとなることを防止できる。これによって、現時点で対向車両M3が存在していない場合であっても、新たな対向車両M3が走行して来てくることを予測して、予め目標車間距離LTを修正しておくことができるため、対向車線における円滑な交通の流れを確保することができる。
また、第3の実施形態に係る車両走行支援装置50によれば、進入領域判定部56が、自車両M1の周辺情報に基づいて判定するため、自車両M1の周辺情報を反映させて、進入領域が存在するか否かの判断を正確に判定することができる。
[第4実施形態]
次に、第4の実施形態に係る車両走行支援装置60の構成を説明する。第4の実施形態に係る車両走行支援装置60は、進入領域Aの取得方法が異なる点で、第3の実施形態に係る車両走行支援装置50と主に相違する。
図19は、第4の実施形態に係る車両走行支援装置のブロック構成を示した図である。図19に示すように、車両走行支援装置60は、自車両M1内にECU2、車速センサ3、撮像部4、レーダ6、GPS51、走行駆動部7、制動部8、及び送受信部61を備えている。更に、車両走行支援装置60は、自車両M1外に送受信部71、記憶部72、検索部73を有する外部装置70を備えている。
また、ECU2は、先行車両検出部11、目標車間距離取得部12、自車両速度判定部13、絶対位置取得部52、進入領域判定部62、到達予定位置取得部18、重複判定部57、目標車間距離修正部58、及び自車両速度制御部22を有している。
自車両M1内及び外部装置70内の送受信部61,71は、互いに情報の送受信を行う機能を有する。
記憶部72は、予め取得しておいた情報を記憶しておく機能を有し、例えば、地図データを記憶させると共に、地図内の所定の場所において自車両M1を含む複数の車両が過去に右折やUターンを何回行ったかに関する情報、すなわち進入回数を記憶させておくことができる。また、記憶部72は、検索部73へ地図データ及び進入回数を出力する機能を有する。
検索部73は、絶対位置取得部52から送受信部71を介して入力された絶対位置を取得し、自車両M1と先行車両M2との間に所定サイズの判定領域を設定し、記憶部72から入力された地図データ及び進入回数を検索することによって、その判定領域内へ過去に車両が進入した回数を取得する機能を有する機能を有する。また、検索部73は、送受信部61,71を介して進入領域判定部56へ、判定領域の位置及び検索結果を出力する機能を有する。
進入領域判定部62は、検索部73から出力された検索結果に基づいて、対向車両M3が自車線に進入する可能性の高い進入領域Aが自車両M1の前方に存在するか否かを判定する機能を有する。具体的には、検索部73から入力された判定領域における過去の車両の進入回数が所定の閾値を超えている場合に、その判定領域を進入領域Aとして取得し、「自車両M1の前方に進入領域Aが存在する」と判定する。また、進入領域判定部62は、判定結果を重複判定部57へ出力する機能を有する。
なお、車速センサ3、撮像部4、レーダ6、GPS51、走行駆動部7、制動部8、先行車両検出部11、目標車間距離取得部12、自車両速度判定部13、絶対位置取得部52、到達予定位置取得部18、重複判定部57、目標車間距離修正部58、及び自車両速度制御部22は、第3の実施形態に係る車両走行支援装置50のものと同様の機能を有する。
次に、図20を参照して、第4の実施形態に係る車両走行支援装置60の動作について説明する。図20は、第4の実施形態に係る車両走行支援装置における車両走行支援処理を示すフローチャートである。
なお、図20に示すように、第4の実施形態に係る車両走行支援装置は、S10〜S14、S80までは、第3の実施形態に係る車両走行支援装置50と同様の処理を行う(図15参照)。S80において、自車両M1の絶対位置を取得したら進入台数検索処理へ移行する(S100)。
S100の処理は、検索部73で実行され、S80の処理で取得した自車両M1の絶対位置に基づいて自車両M1と先行車両M2との間に所定サイズの判定領域を設定し、その判定領域内へ過去に車両が進入した回数を検索して取得する処理である。例えば、自車両M1と先行車両M2との間の領域を所定サイズに区分することによって、判定領域を複数設定する。そして、それぞれの判定領域内について、過去何台の車両が何度進入したかを検索することによって、判定領域内への進入回数を取得する。S100の処理が終了すると、進入領域判定処理へ移行する(S102)。
S102の処理は、進入領域判定部62で実行され、S100で設定した判定領域が対向車両M3の進入する可能性の高い進入領域Aであるかどうかによって、自車両M1の前方に進入領域Aが存在するか否かを判定する処理である。例えば、S100で設定した判定領域内における過去の進入回数が所定の閾値を超えているかどうかを全ての判定領域について判定し、いずれかの判定領域で閾値を超えていた場合は、その判定領域を進入領域Aとして取得すると共に、「進入領域Aが自車両M1の前方に存在する」と判定する。S102の処理において、存在しないと判定された場合は、自車両速度制御処理へ移行する(S28)。一方、存在すると判定された場合は、重複判定処理へ移行する(S86)。
なお、S28においては、第1の実施形態における自車両速度制御処理と同様の処理がなされる。また、S86以降は第3の実施形態と同様の処理がなされる。S28の処理が終了したら、図20の処理は終了し、再びS10の処理へ戻る。
以上のように、第3の実施形態に係る車両走行支援装置によれば、自車両M1の周辺情報が更新されていないような場合でも、実際に対向車両M3が過去に進入した進入回数をもとに進入領域Aの取得を行うことができるため、最新の交通情報に基づいて進入スペースを確保することができる。
本発明は、上述した実施形態に限定されるものではない。
例えば、第3の実施形態に係る車両走行支援装置50では、記憶部及び検索部を車両内に有しているが、第4の実施形態に係る車両走行支援装置60のように、外部装置内に備えてもよい。また、第4の実施形態に係る車両走行支援装置60も、車両内に記憶部及び検索部を有してもよい。
また、目標車間距離を取得した場合は、自車両速度制御処理によって自動で目標車間距離を確保しているが、運転者の手動による操作によって目標車間距離を確保してもよい。
また、図2に示す車両走行支援処理の進入判定条件取得処理においては、ウインカの点滅状態や前輪角度に基づいて進入判定条件を取得しているが、例えば、前照灯の点滅や人の腕の振りなどを進入判定条件として取得してもよい。また、これらの進入判定条件を単独で判定してもよいし、組み合わせて判定してもよい。
第1の実施形態に係る車両走行支援装置のブロック構成図である。 第1の実施形態に係る車両走行支援装置1における車両走行支援処理を示すフローチャートである。 自車両が対向車両の自車線への進入を妨害しない場合の自車両と対向車両の位置関係の例を示す図である。 自車両が対向車両の自車線への進入を妨害する場合の自車両と対向車両の位置関係を示す図である。 目標車間距離を修正した後の自車両と対向車両の位置関係を示した図である。 第1の実施形態に係る車両走行支援装置における進入判定条件取得処理を示すフローチャートである。 第2の実施形態に係る車両走行支援装置のブロック構成図である。 対向車両の前輪角度の定義を示す図である。 第2の実施形態に係る車両走行支援装置における進入判定条件取得処理を示すフローチャートである。 対向車両の画像を示す図であり、(a)は前輪の側面及び後輪の側面が示されている画像、(b)は車体の側面が示され前輪の側面は示されない画像、(c)は車体の側面が示されず前面のみが示される画像である。 画像中で前輪の側面を抽出できた場合の前輪角度取得方法を示す図である。 車体側面の直線を検出した場合の前輪角度取得方法を示す図である。 車体側面の直線を検出できなかった場合の前輪角度取得方法を示す図である。 第3の実施形態に係る車両走行支援装置のブロック構成図である。 第3の実施形態に係る車両走行支援装置における車両走行支援処理を示すフローチャートである。 到達予定位置が進入領域と重複しない場合の位置関係の例を示す図である。 到達予定位置が進入領域と重複する場合の位置関係の例を示す図である。 目標車間距離を修正した後の自車両と進入領域の位置関係を示した図である。 第4の実施形態に係る車両走行支援装置のブロック構成図である。 第4の実施形態に係る車両走行支援装置における車両走行支援処理を示すフローチャートである。
符号の説明
1,30,50,60…車両走行支援装置、12…目標車間距離取得部(目標車間距離取得手段)、17,31…進入判定部(進入判定手段)、18…到達予定位置取得部(到達予定位置取得手段)、19…進入妨害判定部(進入妨害判定手段)、21,58…目標車間距離修正部(目標車間距離修正手段)、32…画像取得部(画像取得手段)、33…車輪側面抽出部(車輪側面抽出手段)、34…直線検出部(直線検出手段)、36…輪郭抽出部(輪郭抽出手段)、37…側面形状推定部(側面形状推定手段)、38…前輪角度取得部(前輪角度取得手段)、53,72…記憶部(記憶手段)、56,62…進入領域判定部(進入領域判定手段)、104…車体側面、106…直線(第1の直線)、107…接地面、108…直線(第2の直線)

Claims (13)

  1. 自車両と先行車両との間の目標車間距離を取得する目標車間距離取得手段と、
    前記自車両に対する対向車両が自車線に進入するか否かを判定する進入判定手段と、
    前記進入判定手段により前記対向車両が前記自車線に進入すると判定された場合に、前記目標車間距離取得手段で取得した前記目標車間距離を修正する目標車間距離修正手段と、
    を備えることを特徴とする車両走行支援装置。
  2. 前記目標車間距離修正手段は、前記対向車両の進入スペースを確保するように前記目標車間距離を修正することを特徴とする請求項1記載の車両走行支援装置。
  3. 前記目標車間距離修正手段は、前記自車両と前記先行車両との間に前記対向車両の進入スペースを確保するように前記目標車間距離を修正することを特徴とする請求項2記載の車両走行支援装置。
  4. 前記先行車両との間で前記目標車間距離を確保した場合に、前記自車両が到達すると予測される到達予定位置を取得する到達予定位置取得手段と、
    前記自車両が前記到達予定位置に到達したと仮定した場合に、前記自車両が前記対向車両の前記自車線への進入を妨げるか否かを判定する進入妨害判定手段と、
    を備え、
    前記目標車間距離修正手段は、前記進入妨害判定手段により前記自車両が前記対向車両の前記自車線への進入を妨げると判定された場合に、前記目標車間距離を修正することを特徴とする請求項1〜3のいずれか一項記載の車両走行支援装置。
  5. 前記進入判定手段は、前記対向車両のウインカの点滅状態に基づいて、前記対向車両が前記自車線に進入すると判定することを特徴とする請求項1〜4のいずれか一項記載の車両走行支援装置。
  6. 前記進入判定手段は、前記対向車両の前方の空間が所定の広さ以上である場合に、前記対向車両が前記自車線に進入すると判定することを特徴とする請求項1〜5のいずれか一項記載の車両走行支援装置。
  7. 前記進入判定手段は、前記対向車両の進行方向に対する前記対向車両の前輪角度を取得する前輪角度取得手段を有し、
    前記前輪角度が所定の閾値以上である場合に、前記対向車両が前記自車線に進入すると判定することを特徴とする請求項1〜6のいずれか一項記載の車両走行支援装置。
  8. 前記進入判定手段は、前記自車両側から撮像した前記対向車両の画像を取得する画像取得手段と、
    前記画像中において前記前輪の側面及び後輪の側面を抽出する車輪側面抽出手段と、を有し、
    前記前輪角度取得手段は、楕円状に示される前記前輪の側面の長軸と短軸との比率、及び楕円状に示される前記後輪の側面の長軸と短軸との比率に基づいて前記前輪角度を取得することを特徴とする請求項7記載の車両走行支援装置。
  9. 前記進入判定手段は、前記対向車両の車体の側面に沿って水平方向に延在する第1の直線、及び前記前輪における地面と接触する接地面に沿って水平方向に延在する第2の直線を検出する直線検出手段を有し、
    前記前輪角度取得手段は、前記第1の直線と前記第2の直線同士の角度に基づいて前記前輪角度を取得することを特徴とする請求項7又は8記載の車両走行支援装置。
  10. 前記進入判定手段は、前記自車両側から撮像した前記対向車両の画像を取得する画像取得手段と、
    前記画像の中から、前記対向車両の前面側の輪郭を抽出する輪郭抽出手段と、
    抽出された前記対向車両の前面側の前記輪郭から、楕円状に示される前記前輪の側面の形状を推定する側面形状推定手段と、
    を備え、
    前記前輪角度取得手段は、推定された前記前輪の側面の形状の長軸と短軸との比率に基づいて前記前輪角度を取得することを特徴とする請求項7〜9のいずれか一項記載の車両走行支援装置。
  11. 自車両と先行車両との間の目標車間距離を設定する目標車間距離取得手段と、
    自車両に対する対向車両が自車線に進入する可能性の高い進入領域が前記自車両の前方に存在するか否かを判定する進入領域判定手段と、
    前記進入判定手段により前記進入領域が前記自車両の前方に存在すると判定された場合に、前記目標車間距離取得手段で取得された前記目標車間距離を修正する目標車間距離修正手段と、
    を備えることを特徴とする車両走行支援装置。
  12. 前記進入領域判定手段は、前記自車両の周辺情報に基づいて判定することを特徴とする請求項11記載の車両走行支援装置。
  13. 前記対向車両が前記自車線における所定の領域内に過去に進入した進入回数を記憶する記憶部を備え、
    前記進入領域判定手段は、前記記憶部に記憶された進入回数に基づいて前記進入領域を取得することを特徴とする請求項11又は12記載の車両走行支援装置。
JP2007270496A 2007-10-17 2007-10-17 車両走行支援装置 Withdrawn JP2009096361A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007270496A JP2009096361A (ja) 2007-10-17 2007-10-17 車両走行支援装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007270496A JP2009096361A (ja) 2007-10-17 2007-10-17 車両走行支援装置

Publications (1)

Publication Number Publication Date
JP2009096361A true JP2009096361A (ja) 2009-05-07

Family

ID=40699769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007270496A Withdrawn JP2009096361A (ja) 2007-10-17 2007-10-17 車両走行支援装置

Country Status (1)

Country Link
JP (1) JP2009096361A (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117505A1 (ja) * 2011-02-28 2012-09-07 トヨタ自動車株式会社 走行支援装置及び方法
JP2014182632A (ja) * 2013-03-19 2014-09-29 Honda Motor Co Ltd 車両周辺監視装置
US9573592B2 (en) 2014-12-23 2017-02-21 Toyota Motor Engineering & Manufacturing North America, Inc. Risk mitigation for autonomous vehicles relative to oncoming objects
KR20170050433A (ko) * 2015-10-30 2017-05-11 주식회사 만도 차량 제어 시스템 및 방법
US9701306B2 (en) 2014-12-23 2017-07-11 Toyota Motor Engineering & Manufacturing North America, Inc. Risk mitigation for autonomous vehicles relative to turning objects
JP2019079284A (ja) * 2017-10-25 2019-05-23 本田技研工業株式会社 車両、走行制御装置及び走行制御方法
JP2019151261A (ja) * 2018-03-05 2019-09-12 日産自動車株式会社 運転特性推定方法及び運転特性推定装置
JP2019160031A (ja) * 2018-03-15 2019-09-19 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP2019209902A (ja) * 2018-06-07 2019-12-12 日産自動車株式会社 走行支援方法及び走行支援装置
CN110588651A (zh) * 2018-06-13 2019-12-20 株式会社斯巴鲁 车辆的驾驶辅助装置
JP2020109681A (ja) * 2017-02-10 2020-07-16 ウェイモ エルエルシー 車輪姿勢を使用した将来の進行方向の決定
JP2021064033A (ja) * 2019-10-10 2021-04-22 日産自動車株式会社 車両制御方法及び車両制御装置
WO2021250936A1 (ja) * 2020-06-12 2021-12-16 日立Astemo株式会社 走行制御装置及び走行制御方法
JP7270795B1 (ja) 2022-03-08 2023-05-10 三菱電機株式会社 車両用制御装置

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117505A1 (ja) * 2011-02-28 2012-09-07 トヨタ自動車株式会社 走行支援装置及び方法
US9852633B2 (en) 2011-02-28 2017-12-26 Toyota Jidosha Kabushiki Kaisha Travel assist apparatus and travel assist method
JP2014182632A (ja) * 2013-03-19 2014-09-29 Honda Motor Co Ltd 車両周辺監視装置
US9573592B2 (en) 2014-12-23 2017-02-21 Toyota Motor Engineering & Manufacturing North America, Inc. Risk mitigation for autonomous vehicles relative to oncoming objects
US9701306B2 (en) 2014-12-23 2017-07-11 Toyota Motor Engineering & Manufacturing North America, Inc. Risk mitigation for autonomous vehicles relative to turning objects
KR20170050433A (ko) * 2015-10-30 2017-05-11 주식회사 만도 차량 제어 시스템 및 방법
KR102374921B1 (ko) * 2015-10-30 2022-03-16 주식회사 만도모빌리티솔루션즈 차량 제어 시스템 및 방법
US11851055B2 (en) 2017-02-10 2023-12-26 Waymo Llc Using wheel orientation to determine future heading
CN111661046B (zh) * 2017-02-10 2024-03-26 伟摩有限责任公司 确定对象的未来行为和航向的方法
US11299150B2 (en) 2017-02-10 2022-04-12 Waymo Llc Using wheel orientation to determine future heading
JP2020109681A (ja) * 2017-02-10 2020-07-16 ウェイモ エルエルシー 車輪姿勢を使用した将来の進行方向の決定
CN111661046A (zh) * 2017-02-10 2020-09-15 伟摩有限责任公司 确定对象的未来行为和航向的方法
US10902729B2 (en) 2017-10-25 2021-01-26 Honda Motor Co., Ltd. Vehicle, travel control device, and travel control method
JP2019079284A (ja) * 2017-10-25 2019-05-23 本田技研工業株式会社 車両、走行制御装置及び走行制御方法
JP2019151261A (ja) * 2018-03-05 2019-09-12 日産自動車株式会社 運転特性推定方法及び運転特性推定装置
JP7206048B2 (ja) 2018-03-05 2023-01-17 日産自動車株式会社 運転特性推定方法及び運転特性推定装置
JP2019160031A (ja) * 2018-03-15 2019-09-19 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
CN110271547A (zh) * 2018-03-15 2019-09-24 本田技研工业株式会社 车辆控制装置、车辆控制方法以及存储介质
JP7098366B2 (ja) 2018-03-15 2022-07-11 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP7117162B2 (ja) 2018-06-07 2022-08-12 日産自動車株式会社 走行支援方法及び走行支援装置
JP2019209902A (ja) * 2018-06-07 2019-12-12 日産自動車株式会社 走行支援方法及び走行支援装置
CN110588651A (zh) * 2018-06-13 2019-12-20 株式会社斯巴鲁 车辆的驾驶辅助装置
CN110588651B (zh) * 2018-06-13 2024-05-24 株式会社斯巴鲁 车辆的驾驶辅助装置
JP2021064033A (ja) * 2019-10-10 2021-04-22 日産自動車株式会社 車両制御方法及び車両制御装置
JP7398236B2 (ja) 2019-10-10 2023-12-14 日産自動車株式会社 車両制御方法及び車両制御装置
JP7402334B2 (ja) 2020-06-12 2023-12-20 日立Astemo株式会社 走行制御装置及び走行制御方法
JPWO2021250936A1 (ja) * 2020-06-12 2021-12-16
WO2021250936A1 (ja) * 2020-06-12 2021-12-16 日立Astemo株式会社 走行制御装置及び走行制御方法
JP7270795B1 (ja) 2022-03-08 2023-05-10 三菱電機株式会社 車両用制御装置
JP2023130587A (ja) * 2022-03-08 2023-09-21 三菱電機株式会社 車両用制御装置

Similar Documents

Publication Publication Date Title
JP2009096361A (ja) 車両走行支援装置
JP6438516B2 (ja) 車両の走行制御装置
EP3477614B1 (en) Vehicle control method and vehicle control device
US11260859B2 (en) Vehicle control system, vehicle control method, and storage medium
US9235767B2 (en) Detection region modification for driving assistance apparatus and driving assistance method
JP6465319B2 (ja) 車両の走行制御装置
US20190071094A1 (en) Vehicle control system, vehicle control method, and storage medium
US11092442B2 (en) Host vehicle position estimation device
US11042759B2 (en) Roadside object recognition apparatus
CN112703540B (zh) 驾驶辅助方法和驾驶辅助装置
US11526173B2 (en) Traveling trajectory correction method, traveling control method, and traveling trajectory correction device
JP6747079B2 (ja) 運転支援装置
JP2021033614A (ja) 自動運転システム
CN114728657A (zh) 车辆控制方法及车辆控制装置
JP7043765B2 (ja) 車両走行制御方法及び装置
JP6943127B2 (ja) 位置補正方法、車両制御方法及び位置補正装置
US10970870B2 (en) Object detection apparatus
WO2020148561A1 (ja) 運転支援方法及び運転支援装置
JP2006004188A (ja) 障害物認識方法及び障害物認識装置
JP2019144758A (ja) 自動運転支援装置、自動運転支援システム、自動運転支援方法及びプログラム
JP7435513B2 (ja) 車両制御装置及び車両制御方法
JP7216695B2 (ja) 周囲車両監視装置及び周囲車両監視方法
WO2020249989A1 (ja) 車両の走行制御方法及び走行制御装置
CN113479204A (zh) 车辆控制装置、车辆控制方法及存储介质
WO2021145032A1 (ja) 周辺車両位置推定システム、周辺車両位置推定プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100121

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110322