JP2009085903A - Method for analyzing impurities in aluminum-based ceramics - Google Patents

Method for analyzing impurities in aluminum-based ceramics Download PDF

Info

Publication number
JP2009085903A
JP2009085903A JP2007259405A JP2007259405A JP2009085903A JP 2009085903 A JP2009085903 A JP 2009085903A JP 2007259405 A JP2007259405 A JP 2007259405A JP 2007259405 A JP2007259405 A JP 2007259405A JP 2009085903 A JP2009085903 A JP 2009085903A
Authority
JP
Japan
Prior art keywords
residue
aluminum
hydrochloric acid
sulfuric acid
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007259405A
Other languages
Japanese (ja)
Other versions
JP4889608B2 (en
Inventor
Koichi Saeki
幸一 佐伯
Shigenori Maeda
繁則 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2007259405A priority Critical patent/JP4889608B2/en
Publication of JP2009085903A publication Critical patent/JP2009085903A/en
Application granted granted Critical
Publication of JP4889608B2 publication Critical patent/JP4889608B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analysis method capable of quantitatively determining impurities, such as a metal contained in an aluminum-based ceramics, such as aluminum nitride, alumina, with higher sensitivity and more accurately, in comparison with the conventional methods. <P>SOLUTION: The method sequentially carries out steps that is constituted of a dissolution step of dissolving the aluminum-based ceramics, by using a sulfuric acid pressurizing dissolving method; a sulfuric acid removal step of removing sulfuric acid liberated from a dissolved liquid obtained by the dissolving step, thereby obtaining a residue; a residue dissolution step of dissolving the residue obtained by the sulfuric acid removing step by using hydrochloric acid, thereby preparing a residue-containing hydrochloric acid solution; an adsorbance step of contacting anion-exchange resin with the residue contained hydrochloric acid solution obtained by the residue dissolution step; a desorption step of desorbing the components adsorbed to the anion exchange resin in the adsorbance step; and an analyzing step of analyzing the components desorbed from the anion exchange resin in the desorption step, by using an inductively-coupled plasma mass spectrometry, and the like. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、アルミニウム系セラミックス中の不純物の分析方法に関する。詳しくは、アルミニウム系セラミックス中の金属等の不純物を簡便に、高精度かつ高感度に分析することが可能な分析方法に関する。   The present invention relates to a method for analyzing impurities in aluminum-based ceramics. More specifically, the present invention relates to an analysis method that can easily and accurately analyze impurities such as metals in aluminum-based ceramics with high accuracy and high sensitivity.

窒化アルミニウム又はアルミナ等のアルミニウム系セラミックスは、高い熱伝導性や電気絶縁性を有することから、半導体基板材料やヒートシンク等の放熱材料として広く使用されている。半導体等の高集積化及び小型化に伴い、窒化アルミニウム又はアルミナの粉末及び焼結体においても更なる高純度化が要求されており、上記化合物中に含有する金属等の微量不純物の分析方法においても、測定精度及び測定感度の高度化が要求されている。   Aluminum-based ceramics such as aluminum nitride or alumina are widely used as heat dissipation materials such as semiconductor substrate materials and heat sinks because of their high thermal conductivity and electrical insulation. With the high integration and miniaturization of semiconductors and the like, further refinement is required for aluminum nitride or alumina powders and sintered bodies. In the method for analyzing trace impurities such as metals contained in the above compounds However, there is a demand for higher measurement accuracy and sensitivity.

従来、上記アルミニウム系セラミックス中の微量不純物の測定方法としては、粉末状の測定試料及び塩酸や硫酸等の酸を加圧容器に入れ、酸加圧分解して試料溶液を調整し、次いで誘導結合プラズマ発光分析法にて測定する方法が提案されている(非特許文献1及び2参照)。また、窒化アルミニウムやアルミナ等の難分解性試料に塩酸や硫酸等の酸を加え次いで、マイクロ波の出力を徐々に高めながらマイクロ波加熱により酸分解させて試料を調整し、次いで、誘導結合プラズマ発光分析法や原子吸光分析法により測定する方法が提案されている(特許文献1参照)。   Conventionally, as a method for measuring trace impurities in the above-mentioned aluminum-based ceramics, a powdered measurement sample and an acid such as hydrochloric acid or sulfuric acid are placed in a pressure vessel, and the sample solution is prepared by acid pressure decomposition, and then inductively coupled. A method of measuring by plasma emission analysis has been proposed (see Non-Patent Documents 1 and 2). Also, acid such as hydrochloric acid or sulfuric acid is added to a hardly decomposable sample such as aluminum nitride or alumina, then the sample is prepared by acid decomposition by microwave heating while gradually increasing the output of the microwave, and then inductively coupled plasma A method of measuring by an emission analysis method or an atomic absorption analysis method has been proposed (see Patent Document 1).

上記の測定方法での検出限界は数百ppbwから1ppmw程度と高感度に測定することが可能であるが、上記のとおりアルミニウム系セラミックスの用途である半導体基板材料やヒートシンク等の放熱材料においては、金属等の微量不純物の混入が厳しく制限されており、該不純物の測定においても、更なる測定精度及び測定感度の高度化が必要であった。また、上記の調製方法にて調製した測定試料を、誘導結合プラズマ発光分析装置より高感度な誘導結合プラズマ質量分析装置にて測定を行う場合、測定試料溶液中に数千ppmのアルミニウムが存在し、これが金属等の不純物に対して多量に存在するため、測定には高倍率の希釈が必要であり、その結果、測定感度の低下が著しく、誘導結合プラズマ質量分析法の適用が困難であるという問題点があった。さらに、加圧分解に塩酸を使用する場合には、腐食等の問題のため加圧分解用の容器としてガラス製容器を使用する必要があるが、加圧分解時のガラス成分の測定試料へのコンタミや、加圧分解時のガラス容器の破裂の危険性等の点で問題とされていた。   Although the detection limit in the above measurement method can be measured with a high sensitivity of several hundred ppbw to about 1 ppmw, as described above, in a heat dissipation material such as a semiconductor substrate material or a heat sink that is an application of aluminum-based ceramics, Mixing of trace impurities such as metals is severely restricted, and it is necessary to further improve measurement accuracy and measurement sensitivity in the measurement of impurities. In addition, when the measurement sample prepared by the above preparation method is measured with an inductively coupled plasma mass spectrometer having higher sensitivity than the inductively coupled plasma emission spectrometer, several thousand ppm of aluminum is present in the measured sample solution. Since this is present in a large amount with respect to impurities such as metals, it is necessary to dilute at a high magnification for the measurement. As a result, the measurement sensitivity is remarkably lowered and it is difficult to apply inductively coupled plasma mass spectrometry. There was a problem. Furthermore, when hydrochloric acid is used for pressure decomposition, it is necessary to use a glass container as a container for pressure decomposition due to problems such as corrosion. It has been regarded as a problem in terms of contamination and the risk of explosion of the glass container during pressure decomposition.

一方、金属アルミニウム中の金属等の不純物の定量方法としては、該アルミニウム測定試料削片に塩酸を添加して加熱溶解させ、該溶解液中のアルミニウムと金属等の不純物を陰イオン交換樹脂により分離し、定量する方法が提案されている(非特許文献3参照)。   On the other hand, as a method for quantifying impurities such as metals in metal aluminum, hydrochloric acid is added to the aluminum sample specimen and dissolved by heating, and impurities such as aluminum and metals in the solution are separated by anion exchange resin. And the method of quantifying is proposed (refer nonpatent literature 3).

しかしながら、上記塩酸による加熱溶解をアルミニウム系セラミックスに適用した場合、非特許文献2にも記載されているように、塩酸では完全に分解せず測定試料の一部が残存する。従って上記試料に含有する金属等の不純物の回収率が低く、正確な定量測定が困難であり、測定精度の点でも問題を有する。さらに、上記したように、塩酸による加圧分解では、測定試料へのコンタミ等の問題が懸念される。   However, when heating and melting with hydrochloric acid is applied to aluminum-based ceramics, as described in Non-Patent Document 2, hydrochloric acid does not completely decompose and a part of the measurement sample remains. Therefore, the recovery rate of impurities such as metals contained in the sample is low, and accurate quantitative measurement is difficult, and there is a problem in terms of measurement accuracy. Furthermore, as described above, pressure decomposition with hydrochloric acid is concerned about problems such as contamination to the measurement sample.

特開平 8−68735号公報JP-A-8-68735 社団法人日本セラミック協会、日本セラミック協会規格 JCRS 105−1995「ファインセラミックス用窒化アルミニウム微粉末の化学分析方法」、社団法人日本セラミック協会、平成7年6月10日Japan Ceramic Association, Japan Ceramic Society Standard JCRS 105-1995 “Chemical Analysis Method of Fine Aluminum Nitride Powder for Fine Ceramics”, Japan Ceramic Association, June 10, 1995 平河喜美男、JIS R 9301−3−4「アルミナ粉末−第3部:化学分析方法−4:加圧酸分解」、財団法人日本規格協会、平成11年9月30日Kimio Hirakawa, JIS R 9301-3-4 "Alumina powder-Part 3: Chemical analysis method-4: Pressurized acid decomposition", Japanese Standards Association, September 30, 1999 平野四蔵、他2名、「高純度アルミニウム中の極微量十金属不純物の分離定量」、工業化学雑誌、日本化学会、昭和34年10月、第62巻、第10号、p.1491−1494Shizo Hirano and two others, “Separation and determination of trace amounts of 10 metal impurities in high-purity aluminum,” Industrial Chemical Journal, Chemical Society of Japan, October 1959, Vol. 62, No. 10, p. 1491-1494

そこで、本発明の目的は、窒化アルミニウムおよびアルミナ等のアルミニウム系セラミックス中の金属等の不純物を、従来法より簡便で、高精度かつ高感度で定量できる分析方法を提供する事を目的とする。   Therefore, an object of the present invention is to provide an analysis method that can quantitate impurities such as metals in aluminum-based ceramics such as aluminum nitride and alumina, which is simpler than conventional methods, with high accuracy and high sensitivity.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた。その結果、アルミニウム系セラミックス中のアルミニウムと金属等の不純物の陰イオン交換樹脂による分離には、塩酸水溶液にする事が必要であることを確認した。そこで、アルミニウムと重金属不純物を陰イオン交換樹脂により分離する際に、一旦硫酸加圧分解法により、アルミニウム系セラミックスを完全に分解せしめた後、該分解液を特定の方法により溶媒置換して塩酸水溶液とすることにより、アルミニウムと重金属不純物を確実に分離することが可能であることを見出し、本発明を完成させるに至った。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, it was confirmed that an aqueous hydrochloric acid solution was required for separation of impurities such as aluminum and metal in the aluminum-based ceramic by an anion exchange resin. Therefore, when aluminum and heavy metal impurities are separated by anion exchange resin, once the aluminum-based ceramics are completely decomposed by sulfuric acid pressure decomposition method, the decomposition solution is solvent-replaced by a specific method and hydrochloric acid aqueous solution. As a result, it was found that aluminum and heavy metal impurities can be reliably separated, and the present invention has been completed.

すなわち、本発明は、(1)硫酸加圧分解法により、アルミニウム系セラミックスを分解する分解工程、(2)上記分解工程により得られた分解液より遊離の硫酸を除去して残渣を得る硫酸除去工程、(3)上記硫酸除去工程により得られた残渣を塩酸に溶解せしめて、残渣含有塩酸水溶液を調製する残渣溶解工程、(4)上記残渣溶解工程より得られた残渣含有塩酸水溶液を陰イオン交換樹脂と接触せしめる吸着工程、(5)上記吸着工程により陰イオン交換樹脂に吸着した成分を脱着する脱着工程、(6)上記脱着工程により陰イオン交換樹脂より脱着された成分の分析を行う分析工程を含むことを特徴とするアルミニウム系セラミックス中の不純物の分析方法である。   That is, the present invention includes (1) a decomposition step of decomposing aluminum-based ceramics by sulfuric acid pressure decomposition method, and (2) removal of sulfuric acid by removing free sulfuric acid from the decomposition solution obtained by the decomposition step and obtaining a residue. Step (3) The residue obtained in the sulfuric acid removal step is dissolved in hydrochloric acid to prepare a residue-containing hydrochloric acid aqueous solution. (4) The residue-containing hydrochloric acid aqueous solution obtained from the residue dissolving step is anionized. An adsorption step for contacting with the exchange resin, (5) a desorption step for desorbing the component adsorbed on the anion exchange resin by the adsorption step, and (6) an analysis for analyzing the component desorbed from the anion exchange resin by the desorption step. It is the analysis method of the impurity in the aluminum type ceramics characterized by including a process.

本発明の分析方法によれば、アルミニウム系セラミックス中に数千ppmと高濃度に存在するアルミニウムと、金属等の不純物とを確実に分離し、さらに、該不純物を効率良く回収することが可能である。この結果、本発明の分析方法で調整された測定溶液中に残存するアルミニウムは10ppm以下となるため、従来アルミニウム系セラミックス中の金属等の不純物の分析に適用が困難であった、誘導結合プラズマ質量分析法等への適用が可能であり、該不純物の分析を高感度に行うことが可能である。さらに、本発明の分析方法では、試料となるアルミニウム系セラミックスの分解を硫酸加圧分解法で行うことが可能であるため、上記試料の形状としては、粉末のみならず、小片状や塊状であっても破砕等の前処理を必要とせずに短時間で分解することが可能である。   According to the analysis method of the present invention, it is possible to reliably separate aluminum present at a high concentration of several thousand ppm in aluminum-based ceramics and impurities such as metals, and to efficiently recover the impurities. is there. As a result, since the aluminum remaining in the measurement solution prepared by the analysis method of the present invention is 10 ppm or less, the inductively coupled plasma mass has been difficult to apply to the analysis of impurities such as metals in the conventional aluminum-based ceramics. The present invention can be applied to analysis methods and the like, and the impurities can be analyzed with high sensitivity. Furthermore, in the analysis method of the present invention, the aluminum-based ceramics as a sample can be decomposed by the sulfuric acid pressure decomposition method, so that the shape of the sample is not only powder but also small pieces or lumps. Even if it exists, it can decompose | disassemble in a short time, without requiring pretreatment, such as crushing.

本発明におけるアルミニウム系セラミックス中の不純物の分析方法は、上記(1)〜(5)の工程により、該アルミニウム系セラミックス中のアルミニウムと金属等の不純物(以下単に不純物とも言う)とを分離することが特徴である。上記の分析方法により、上記アルミニウム系セラミックス中の不純物、例えば、Fe、Co、Cu、Zn、Cd、Sn、In、Sb、Bi等の不純物を、高精度かつ高感度で定量することが可能である。   In the method for analyzing impurities in aluminum-based ceramics according to the present invention, aluminum in the aluminum-based ceramics and impurities such as metals (hereinafter also simply referred to as impurities) are separated by the steps (1) to (5). Is a feature. By the above analysis method, impurities in the aluminum-based ceramics, for example, impurities such as Fe, Co, Cu, Zn, Cd, Sn, In, Sb, and Bi can be quantified with high accuracy and high sensitivity. is there.

(アルミニウム系セラミックス化合物)
本発明の分析方法の対象試料であるアルミニウム系セラミックスとしては、既知のアルミニウム系セラミックスを何ら制限なく使用することが可能である。該アルミニウム系セラミックスを具体的に挙げれば、窒化アルミニウム、アルミナ等が挙げられる。これらの内、半導体基板材料に用いられ、高純度化が要求され、そのため、分析方法においても高い測定精度及び測定感度を要求される点から、窒化アルミニウム又はアルミナが好適である。
(Aluminum ceramic compounds)
Known aluminum ceramics can be used without any limitation as the aluminum ceramics that are the target samples of the analysis method of the present invention. Specific examples of the aluminum-based ceramics include aluminum nitride and alumina. Among these, aluminum nitride or alumina is preferable because it is used for a semiconductor substrate material and requires high purity. Therefore, high measurement accuracy and measurement sensitivity are also required in the analysis method.

また、上記アルミニウム系セラミックスの形状としては、硫酸による加圧分解が可能であれば、特に制限なく、粉末状でも、焼結体等の小片状、あるいは塊状であっても使用することが可能である。特に、破砕等の前処理を必要とせずに簡便に測定溶液の調整が可能である点で、焼結体等の小片状が好適である。本発明の分析方法において分析に供するアルミニウム系セラミックス(以下分析用試料とも称する)の必要量は、後述の分析工程において採用する分析方法により適宜決定すればよいが、分析工程の分析方法として誘導結合プラズマ質量分析法を用いる際には上記分析用試料として通常0.5g〜1.0g程度使用すれば十分である。この時、上記分析試料中に含有するアルミニウムは数千ppmである。   The shape of the aluminum-based ceramic is not particularly limited as long as it can be decomposed under pressure with sulfuric acid, and can be used in the form of powder, small pieces such as a sintered body, or a lump. It is. In particular, a small piece such as a sintered body is preferable in that the measurement solution can be easily adjusted without requiring pretreatment such as crushing. The required amount of aluminum-based ceramics (hereinafter also referred to as analytical sample) to be analyzed in the analysis method of the present invention may be determined as appropriate according to the analysis method employed in the analysis step described later. When plasma mass spectrometry is used, it is usually sufficient to use about 0.5 g to 1.0 g as the sample for analysis. At this time, the aluminum contained in the analysis sample is several thousand ppm.

(分解工程)
本発明の分析方法において、まず最初に硫酸加圧分解法により上記分析用試料を分解する分解工程を行う。硫酸加圧分解法としては、前記非特許文献2に記載の方法等、公知の方法を特に制限なく使用することが可能である。図1は本発明の分解工程において好適な加圧分解容器の断面図である。内容器2を有する加圧分解容器3に、分析用試料と硫酸を加えた、試料分解用容器1を収納し、該加圧分解容器を外部から加熱することで、加圧容器内が加圧され、加圧分解を行うことが可能となる。上記の内容器及び試料分解容器は、硫酸に直接接触する部分であり、容器の腐食による試料の汚染を防止する観点から、四フッ化エチレン樹脂(PTFE)製が好適である。また、上記試料容器を加熱する方法としては、上記分析試料を硫酸により加圧分解を行うのに十分な温度まで加熱可能であれば、特に制限なく公知の加熱方法を適宜選択することが可能であるが、作業が簡便であるという点等から恒温乾燥機やオーブンにより加熱するのが好適である。
(Disassembly process)
In the analysis method of the present invention, first, a decomposition step of decomposing the analytical sample is performed by sulfuric acid pressure decomposition method. As the sulfuric acid pressure decomposition method, a known method such as the method described in Non-Patent Document 2 can be used without particular limitation. FIG. 1 is a sectional view of a pressure decomposition vessel suitable for the decomposition process of the present invention. The pressure decomposition vessel 3 having the inner vessel 2 accommodates the sample decomposition vessel 1 to which the sample for analysis and sulfuric acid are added, and the inside of the pressure vessel is pressurized by heating the pressure decomposition vessel from the outside. It is possible to perform pressure decomposition. The inner container and the sample decomposition container are in direct contact with sulfuric acid, and are preferably made of tetrafluoroethylene resin (PTFE) from the viewpoint of preventing contamination of the sample due to corrosion of the container. As a method for heating the sample container, a known heating method can be appropriately selected without particular limitation as long as the analysis sample can be heated to a temperature sufficient for pressure decomposition with sulfuric acid. However, it is preferable to heat with a constant temperature dryer or oven because the work is simple.

上記加圧分解における、硫酸の使用量や、加圧分解に要する温度、時間等の条件については、アルミニウム系セラミックスが全量分解する条件であれば特に制限はないが、通常、上記アルミニウム系セラミックスの分析用試料1gに対し(1:2)〜(1:4)硫酸15ml〜20ml加え、200〜230℃の温度で12〜16時間、加圧分解すれば十分である。   There are no particular limitations on the amount of sulfuric acid used in the pressure decomposition, the temperature, time, etc. required for pressure decomposition as long as the aluminum ceramic decomposes in its entirety. It is sufficient to add 15 ml to 20 ml of (1: 2) to (1: 4) sulfuric acid to 1 g of the analytical sample and decompose under pressure at a temperature of 200 to 230 ° C. for 12 to 16 hours.

(硫酸除去工程)
本発明の分析方法では、上記分解工程にて加圧分解された分析用試料の分解液は、次いで、遊離の硫酸を除去して残渣を得る硫酸除去工程を行うことが重要である。即ち、遊離の硫酸が残存した状態では、後述の残渣が溶解した塩酸水溶液を調整時において、正確な塩酸濃度の調整ができず、その後の陰イオン交換樹脂による吸着工程を行うと、前記不純物の陰イオン交換樹脂への吸着が阻害され、アルミニウムとの分離が不十分となる。このため、上記不純物の回収率が低下するばかりでなく、測定精度や測定感度を低下させることになるため、遊離の硫酸を除去することが必要である。
(Sulfuric acid removal process)
In the analysis method of the present invention, it is important that the analysis sample decomposition solution pressure-decomposed in the decomposition step is then subjected to a sulfuric acid removal step in which free sulfuric acid is removed to obtain a residue. That is, in the state in which free sulfuric acid remains, when adjusting a hydrochloric acid aqueous solution in which a residue described later is dissolved, it is not possible to accurately adjust the hydrochloric acid concentration. Adsorption to the anion exchange resin is hindered and separation from aluminum becomes insufficient. For this reason, not only the recovery rate of the impurities is lowered but also the measurement accuracy and measurement sensitivity are lowered, so that it is necessary to remove free sulfuric acid.

上記硫酸を除去する方法としては、減圧留去により遊離の硫酸を除去する方法や、硫酸に対して不活性なガスを吹き込みながら、加熱により遊離の硫酸を除去する方法等が挙げられる。上記硫酸の除去方法のうち、効率よく硫酸の除去が可能であるという点から、硫酸に対して不活性なガスを吹き込みながら、加熱により遊離の硫酸を除去する方法が好適である。図2は、本発明の硫酸除去工程において好適な硫酸除去装置の概略図である。不活性ガス吸入口4及びガス排出口5を備えた、試料容器6に上記分解工程にて得られた分解液を移液し、容器外部を加熱しながら、不活性ガス吸入口4より不活性ガスを吹き込み、蒸発した硫酸を不活性ガスと共にガス排出口5から排出することで、上記分解液から遊離の硫酸を除去することが可能である。   Examples of the method for removing sulfuric acid include a method for removing free sulfuric acid by distillation under reduced pressure, a method for removing free sulfuric acid by heating while blowing a gas inert to sulfuric acid, and the like. Of the above-mentioned sulfuric acid removal methods, a method of removing free sulfuric acid by heating while blowing a gas inert to sulfuric acid is preferable from the viewpoint that sulfuric acid can be efficiently removed. FIG. 2 is a schematic diagram of a sulfuric acid removal apparatus suitable for the sulfuric acid removal process of the present invention. The decomposition solution obtained in the above decomposition step is transferred to a sample container 6 having an inert gas inlet 4 and a gas outlet 5, and the inert gas inlet 4 is inactive while the outside of the container is heated. By blowing gas and discharging the evaporated sulfuric acid together with the inert gas from the gas discharge port 5, it is possible to remove free sulfuric acid from the decomposition solution.

上記不活性ガスは、硫酸に対して不活性であれば特に制限なく使用することが可能であるが、入手が容易である点、及び試料の汚染等を勘案して、高純度窒素ガスを用いるのが好適である。   The inert gas can be used without particular limitation as long as it is inert to sulfuric acid, but high purity nitrogen gas is used in consideration of easy availability and contamination of the sample. Is preferred.

また上記試料容器は、硫酸による腐食がないものであれば特に制限なく使用することが可能であるが、容器内部を観察することが可能で、高純度な材料が入手できる点等から石英容器を用いるのが好適である。   The sample container can be used without particular limitation as long as it does not corrode with sulfuric acid. However, a quartz container can be used because the inside of the container can be observed and high-purity materials can be obtained. It is preferred to use.

さらに、上記試料容器を加熱する方法としては、硫酸が除去できるのに十分な温度、具体的には250〜300℃程度まで加熱可能であれば、特に制限なく公知の加熱方法を選択することが可能であるが、作業が簡便であるという点及び後述する残渣溶解工程での溶解方法を勘案して、マイクロ波照射により加熱するのが好適である。   Furthermore, as a method for heating the sample container, a known heating method can be selected without particular limitation as long as it can be heated to a temperature sufficient to remove sulfuric acid, specifically about 250 to 300 ° C. Although possible, it is preferable to heat by microwave irradiation in consideration of the simple operation and the dissolution method in the residue dissolution step described later.

上記マイクロ波照射により加熱する際の照射するマイクロ波の出力及び照射時間は、試料容器内の遊離の硫酸を完全に除去できれば、適宜選択することが可能である。通常は15ml程度の硫酸を除去する場合、500W〜700Wの出力で、30分〜40分程度で十分である。また、遊離の硫酸の除去の終点確認は、試料容器内に遊離の硫酸の白煙が生じなくなることで確認することが可能である。   The microwave output and irradiation time when heating by the microwave irradiation can be appropriately selected as long as the free sulfuric acid in the sample container can be completely removed. Usually, when removing about 15 ml of sulfuric acid, an output of 500 W to 700 W and about 30 to 40 minutes are sufficient. Further, the end point of the removal of free sulfuric acid can be confirmed by the fact that free sulfuric acid white smoke is not generated in the sample container.

(残渣溶解工程)
本発明の分析方法において、硫酸除去工程にて得られた残渣は、次いで、塩酸に溶解せしめて、残渣含有塩酸水溶液を調製する残渣溶解工程を行う。残渣含有塩酸水溶液中では、前記不純物は、塩酸と塩化物錯イオンを生成するが、アルミニウムは塩化物錯イオンを生成しない。従って、残渣含有塩酸水溶液は、後述の吸着工程を行うことで、上記不純物の塩化物錯イオンは陰イオン交換樹脂に吸着されるが、アルミニウムは該樹脂に吸着されずに上記塩酸水溶液と共に留出する。吸着工程に次いで、陰イオン交換樹脂に吸着された不純物の塩化物錯イオンの脱着を行うことにより、上記不純物とアルミニウムを確実に分離し、さらに不純物を高回収率で回収することが可能である。
(Residue dissolution process)
In the analysis method of the present invention, the residue obtained in the sulfuric acid removal step is then dissolved in hydrochloric acid to perform a residue dissolution step of preparing a residue-containing aqueous hydrochloric acid solution. In the residue-containing hydrochloric acid aqueous solution, the impurities generate hydrochloric acid and chloride complex ions, but aluminum does not generate chloride complex ions. Therefore, the residue-containing hydrochloric acid aqueous solution is subjected to the adsorption step described later, whereby the impurity chloride complex ions are adsorbed to the anion exchange resin, but aluminum is not adsorbed to the resin and distilled together with the hydrochloric acid aqueous solution. To do. Following the adsorption step, by desorption of the chloride complex ions of the impurities adsorbed on the anion exchange resin, the impurities and aluminum can be reliably separated, and the impurities can be recovered at a high recovery rate. .

本発明において、残渣含有塩酸水溶液中の塩酸濃度は、以後の吸着工程及び脱着工程により回収される不純物の回収率を勘案して決定され、該塩酸水溶液中の塩酸濃度としては、通常1〜8mol/l(以下、モル濃度をMと略記する)の範囲から選択される。上記不純物の種類によっては、残渣含有塩酸水溶液中の塩酸濃度により、以後の工程を経て回収される該不純物の回収率に差が生じることがある。上記回収率は、分析工程における分析結果の測定精度に影響するため、塩酸濃度により回収率に差が生じる場合には、予備実験として複数の塩酸濃度の残渣含有塩酸水溶液を調製して不純物の回収を行い、回収率の高い塩酸濃度を採用することが好ましい。上記の回収率が高いほど不純物の分析を精度良く行うことが可能であり、回収率が70%以上となる塩酸濃度を選択することが推奨される。   In the present invention, the hydrochloric acid concentration in the residue-containing hydrochloric acid aqueous solution is determined in consideration of the recovery rate of impurities recovered in the subsequent adsorption step and desorption step, and the hydrochloric acid concentration in the aqueous hydrochloric acid solution is usually 1 to 8 mol. / L (hereinafter the molar concentration is abbreviated as M). Depending on the type of the impurities, there may be a difference in the recovery rate of the impurities recovered through the subsequent steps depending on the hydrochloric acid concentration in the residue-containing hydrochloric acid aqueous solution. Since the recovery rate affects the measurement accuracy of the analysis results in the analysis process, if there is a difference in the recovery rate depending on the hydrochloric acid concentration, prepare a hydrochloric acid solution containing multiple hydrochloric acid residues as a preliminary experiment to collect impurities. It is preferable to adopt a hydrochloric acid concentration with a high recovery rate. The higher the recovery rate, the more accurately the impurities can be analyzed, and it is recommended to select a hydrochloric acid concentration at which the recovery rate is 70% or more.

具体的には、後述の参考例及び実施例にも示すように、回収率に差が生じるSn、In、Sbでは4M程度の比較的低濃度が、Co、Cuについては、8M程度の比較的高濃度の塩酸濃度が採用される。また、回収率に差が生じないFe、Zn、Cd、Biでは、いずれの塩酸濃度でも適宜選択することが可能である。   Specifically, as shown in the reference examples and examples described later, Sn, In, and Sb, which have different recovery rates, have a relatively low concentration of about 4M, and Co and Cu have a relatively low concentration of about 8M. A high concentration of hydrochloric acid is employed. Further, Fe, Zn, Cd, and Bi that do not cause a difference in the recovery rate can be appropriately selected at any hydrochloric acid concentration.

上記残渣含有塩酸水溶液の調製方法としては、残渣に直接、塩酸を添加し残渣を溶解させる方法、残渣を水で溶解させ、次いで、塩酸を添加することによって、上記塩酸水溶液を調製する方法等が挙げられる。また、上記の調整方法において、残渣を溶解させる際に、作業時間の短縮の点から加熱を行うことも可能である。   Examples of a method for preparing the residue-containing hydrochloric acid aqueous solution include a method in which hydrochloric acid is directly added to the residue to dissolve the residue, a method in which the residue is dissolved in water, and then hydrochloric acid is added to prepare the hydrochloric acid aqueous solution. Can be mentioned. In the above adjustment method, when the residue is dissolved, heating can be performed from the viewpoint of shortening the working time.

上述したように、残渣含有塩酸水溶液の塩酸濃度によって、不純物の回収率に差が生じる場合には、上記塩酸濃度を正確に調製する必要がある。残渣の溶解時に加熱しても、正確な塩酸濃度の調整が可能である点で、残渣をあらかじめ水で溶解させ、次いで、塩酸を添加することによって、上記塩酸水溶液を調製する方法が好適である。かかる場合には、残渣を溶解させるために使用する水も勘案して所定の塩酸濃度の残渣含有塩酸水溶液を調製すればよい。   As described above, when there is a difference in the recovery rate of impurities depending on the hydrochloric acid concentration of the residue-containing hydrochloric acid aqueous solution, it is necessary to accurately adjust the hydrochloric acid concentration. A method of preparing the aqueous hydrochloric acid solution by dissolving the residue in advance with water and then adding hydrochloric acid is preferable in that it can be adjusted accurately even when heated when the residue is dissolved. . In such a case, a residue-containing hydrochloric acid aqueous solution having a predetermined hydrochloric acid concentration may be prepared in consideration of water used for dissolving the residue.

上記加熱方法としては、前記硫酸除去工程と同様の方法で挙げられるが、作業が簡便であるという点等からマイクロ波照射等により加熱する方法が好適である。マイクロ波照射により加熱する際の照射するマイクロ波の出力及び照射時間は、試料容器内の残渣を完全に溶解させるものであれば、適宜選択することが可能である。通常は250W〜500Wの出力で、20分〜40分程度で十分である。   Examples of the heating method include the same method as in the sulfuric acid removal step, but a method of heating by microwave irradiation or the like is preferable from the viewpoint that the operation is simple. The output and irradiation time of the microwave when heating by microwave irradiation can be appropriately selected as long as the residue in the sample container is completely dissolved. Usually, an output of 250 W to 500 W is sufficient, and about 20 minutes to 40 minutes is sufficient.

上記残渣含有塩酸水溶液の調製方法として、残渣を水で溶解させ、次いで、塩酸を添加する調整方法を適用する場合には、以後の吸着工程に供する溶解して含有する塩酸水溶液の量を減少させて効率よく作業を行える点から、残渣を水で溶解させた後、該水溶液を残渣が析出しない程度まで濃縮した後、塩酸を添加して調製するのが好適である。   As a method for preparing the residue-containing hydrochloric acid aqueous solution, when applying an adjustment method in which the residue is dissolved in water and then hydrochloric acid is added, the amount of the hydrochloric acid aqueous solution to be dissolved and used for the subsequent adsorption step is reduced. From the standpoint of efficient operation, it is preferable to dissolve the residue with water and then concentrate the aqueous solution to such an extent that the residue does not precipitate, and then add hydrochloric acid to prepare.

(吸着工程)
本発明の分析方法では、上記残渣含有塩酸水溶液を陰イオン交換樹脂と接触せしめる吸着工程を行う。残渣含有塩酸水溶液中では、前記不純物は、塩酸と塩化物錯イオンを生成するが、アルミニウムは塩化物錯イオンを生成しない。従って、吸着工程を行うことで、上記不純物の塩化物錯イオンは陰イオン交換樹脂に吸着されるが、アルミニウムは該樹脂に吸着されず、不純物とアルミニウムを確実に分離することが可能である。
(Adsorption process)
In the analysis method of the present invention, an adsorption step is performed in which the residue-containing hydrochloric acid aqueous solution is brought into contact with an anion exchange resin. In the residue-containing hydrochloric acid aqueous solution, the impurities generate hydrochloric acid and chloride complex ions, but aluminum does not generate chloride complex ions. Therefore, by performing the adsorption step, the chloride complex ion of the impurity is adsorbed on the anion exchange resin, but aluminum is not adsorbed on the resin, and the impurity and aluminum can be reliably separated.

なお、上記の残渣には、アルミニウムの硫酸塩が存在するため、残渣溶解工程により調製した塩酸水溶液中には硫酸イオンが存在するが、その量は、塩酸水溶液に対して少量であるため、アルミニウムと不純物の分離に影響せず、以後の脱着工程において、該不純物を効率良く回収することが可能である。   In addition, since the sulfate of aluminum exists in said residue, in the hydrochloric acid aqueous solution prepared by the residue melt | dissolution process, although sulfate ion exists, since the quantity is small with respect to hydrochloric acid aqueous solution, aluminum In the subsequent desorption step, the impurities can be efficiently recovered without affecting the separation of the impurities.

本発明の分析方法において、使用する陰イオン交換樹脂としては、金属の塩化物錯イオンを吸着させるものであれば良く、強塩基性陰イオン交換樹脂が挙げられる。より具体的には、交換基が4級アンモニウム基である、陰イオン交換樹脂が最も好適である。上記強塩基性陰イオン交換樹脂としては、ダイヤイオン(商品名、三菱化学株式会社製)やアンバーライト(商品名、ローム・アンド・ハース株式会社製)等が挙げられる。   In the analysis method of the present invention, the anion exchange resin to be used is not particularly limited as long as it can adsorb metal chloride complex ions, and examples thereof include strongly basic anion exchange resins. More specifically, an anion exchange resin in which the exchange group is a quaternary ammonium group is most preferred. Examples of the strongly basic anion exchange resin include Diaion (trade name, manufactured by Mitsubishi Chemical Corporation) and Amberlite (trade name, manufactured by Rohm and Haas Co., Ltd.).

残渣含有塩酸水溶液を陰イオン交換樹脂と接触せしめる方法としては、該塩酸水溶液と陰イオン交換樹脂を接触せしめ、撹拌後、陰イオン交換樹脂をろ過等により分離するバッチ法、又は、陰イオン交換樹脂を充填したカラムを調製し、上記残渣が溶解した塩酸水溶液をカラムに通液して陰イオン交換樹脂と接触せしめるカラム法のいずれも可能である。そのうち、本発明の処理方法においては、後述する脱着工程を連続的に行うことが可能であるという点、及び、各操作時における外部からの汚染の混入を防止する点からカラム法を使用することが好ましい。   As a method of bringing the residue-containing hydrochloric acid aqueous solution into contact with the anion exchange resin, the aqueous hydrochloric acid solution and the anion exchange resin are brought into contact with each other, and after stirring, a batch method in which the anion exchange resin is separated by filtration or the like, or an anion exchange resin Any column method can be used in which a column filled with is prepared, and an aqueous hydrochloric acid solution in which the residue is dissolved is passed through the column and brought into contact with an anion exchange resin. Among them, in the treatment method of the present invention, the column method should be used from the viewpoint that the desorption process described later can be performed continuously, and that contamination from outside is prevented during each operation. Is preferred.

また、上記カラム法において、残渣が溶解した塩酸水溶液の供給方法としては、操作が簡便である点、及び汚染を防止する点から、送液ポンプを使用し、かつ密閉系にすることが好ましい。   In the above column method, it is preferable to use a liquid feed pump and make it a closed system as a method for supplying a hydrochloric acid aqueous solution in which the residue is dissolved from the viewpoint of easy operation and prevention of contamination.

(脱着工程)
上記吸着工程にて、陰イオン交換樹脂に吸着された前記不純物は、次いで脱着工程により、陰イオン交換樹脂から分離、回収する。上記不純物は、塩化物錯イオンの状態で陰イオン交換樹脂に吸着しており、塩酸以外の酸を通液することにより錯体形成が阻害させることで、該樹脂からの脱着が可能である。
(Desorption process)
The impurities adsorbed on the anion exchange resin in the adsorption step are then separated and recovered from the anion exchange resin in a desorption step. The impurities are adsorbed on the anion exchange resin in the form of chloride complex ions, and can be desorbed from the resin by inhibiting complex formation by passing an acid other than hydrochloric acid.

脱着工程に使用する酸としては、硫酸、硝酸、フッ化水素酸等の鉱酸が挙げられ、脱着させる不純物の種類に応じて適宜選択することが可能である。後述する分析工程における分析方法として誘導結合プラズマ質量分析法を用いる場合には、該分析方法に供する測定溶液は硝酸溶液で調製するという点で、上記の酸としては、硝酸を使用するのが好適である。また、脱着工程に使用する酸の濃度や酸の使用量については、吸着している金属等の不純物を脱着させるのに十分な濃度、量を使用すれば特に制限なく、以後の分析工程の条件等を勘案して適宜決定すればよい。   Examples of the acid used in the desorption step include mineral acids such as sulfuric acid, nitric acid, and hydrofluoric acid, and can be appropriately selected according to the type of impurities to be desorbed. When inductively coupled plasma mass spectrometry is used as an analysis method in the analysis step described later, nitric acid is preferably used as the acid in that the measurement solution used for the analysis method is prepared with a nitric acid solution. It is. The concentration of the acid used in the desorption step and the amount of acid used are not particularly limited as long as the concentration and amount used to desorb impurities such as the adsorbed metal are not particularly limited. This may be determined as appropriate.

前記不純物のうち、Biはフッ化水素酸により陰イオン交換樹脂からの脱着が可能であるが、フッ化水素酸を加熱除去した後、硝酸溶液等に調製することで、誘導結合プラズマ質量分析法により分析することが可能である。   Among the impurities, Bi can be desorbed from the anion exchange resin with hydrofluoric acid, but after removing hydrofluoric acid by heating, it is prepared in a nitric acid solution or the like, so that inductively coupled plasma mass spectrometry is performed. It is possible to analyze by.

上記の各工程を行い、前記したアルミニウム系セラミックス分析用試料中の不純物をアルミニウムと分離、回収することで、当初分析用試料中に数千ppm存在していたアルミニウムを10ppm以下とすることが可能であり、分析用試料中に存在するアルミニウムによる測定感度の低下を抑制することが可能である。   By performing the above steps and separating and recovering the impurities in the aluminum-based ceramic analysis sample described above from aluminum, it is possible to reduce the aluminum present in the initial analysis sample to 10 ppm or less. It is possible to suppress a decrease in measurement sensitivity due to aluminum present in the sample for analysis.

(分析工程)
本発明の分析方法において、上記脱着工程にて陰イオン交換樹脂から脱着した成分は、次いで分析工程を行うことで、アルミニウム系セラミックス中の不純物の分析を行う。上記成分の分析方法としては、金属元素の分析方法として公知の分析方法を特に制限なく使用することが可能である。かかる分析方法を例示すれば、原子吸光分析法、誘導結合プラズマ発光分析法又は誘導結合プラズマ質量分析法等の分析方法が挙げられるが、微量元素の分析を高感度、高精度に行うことが可能であるという点で誘導結合プラズマ発光分析法又は誘導結合プラズマ質量分析法が好適である。
(Analysis process)
In the analysis method of the present invention, the component desorbed from the anion exchange resin in the desorption step is then subjected to an analysis step to analyze impurities in the aluminum-based ceramic. As an analysis method for the above components, a known analysis method as a metal element analysis method can be used without any particular limitation. Examples of such analytical methods include analytical methods such as atomic absorption spectrometry, inductively coupled plasma emission spectrometry, or inductively coupled plasma mass spectrometry, but it is possible to analyze trace elements with high sensitivity and high accuracy. Therefore, inductively coupled plasma emission spectrometry or inductively coupled plasma mass spectrometry is preferable.

上記誘導結合プラズマ質量分析法による測定は、通常、プラズマ照射時の温度が比較的低いクールプラズマ法や、該温度が比較的高いホットプラズマ法で測定される。Fe、Co、Cu等の高感度分析は、通常クールプラズマで可能であるが、マトリックスの影響で感度低下を起こしやすい。これに対し、反応ガスとして、例えば、水素やヘリウムガスを用いたコリジョンセル機能を有する誘導結合プラズマ質量分析装置を使用することで、ホットプラズマ条件で、Fe、Co、Cu等の分析が可能である点で好適である。また、コリジョンセルは種々の分子イオン干渉を低減できる点でも好適である。さらに、上記の工程によりアルミニウムを分離した不純物中に微量残存するアルミニウムや高濃度の酸溶媒による感度増減を補正するために、内部標準法による測定が好ましい。内部標準法による測定に使用する内部標準元素としては、例えば、Sc、Y、Ce等が挙げられる。   Measurement by the inductively coupled plasma mass spectrometry is usually performed by a cool plasma method having a relatively low temperature during plasma irradiation or a hot plasma method having a relatively high temperature. High-sensitivity analysis of Fe, Co, Cu, etc. is usually possible with cool plasma, but sensitivity is likely to decrease due to the influence of the matrix. On the other hand, for example, by using an inductively coupled plasma mass spectrometer having a collision cell function using hydrogen or helium gas as a reactive gas, it is possible to analyze Fe, Co, Cu, etc. under hot plasma conditions. It is preferable in a certain point. The collision cell is also preferable in that it can reduce various molecular ion interferences. Furthermore, in order to correct the sensitivity increase / decrease due to aluminum remaining in a trace amount in the impurities separated from the aluminum by the above-mentioned steps or a high concentration acid solvent, measurement by the internal standard method is preferable. Examples of the internal standard element used for measurement by the internal standard method include Sc, Y, and Ce.

以下、本発明を更に具体的に説明するため、実施例を示すが、本発明は、これらの実施例に限定されるものではない。   EXAMPLES Hereinafter, examples will be shown to describe the present invention more specifically, but the present invention is not limited to these examples.

なお、測定には、誘導結合プラズマ質量分析装置(Agilent 7500cs(Agilent technologies社製))、及び誘導結合プラズマ発光分析装置(iCAP 6500 DUO(サーモフィッシャーサイエンティフィック社製)を使用した。   For the measurement, an inductively coupled plasma mass spectrometer (Agilent 7500cs (manufactured by Agilent Technologies)) and an inductively coupled plasma emission spectrometer (iCAP 6500 DUO (manufactured by Thermo Fisher Scientific)) were used.

参考例1
(回収率測定)
測定試料として、窒化アルミニウム粉末A0.75g、及び窒化アルミニウム粉末A0.75gに金属元素(Fe4000ng、Co、Cu、Zn、Cd、Sn、In、Sb、Bi各200ng)を添加したものを、それぞれ図1に示す加圧分解容器に加え、さらに硫酸(1:2)15mlを添加し、200℃で16時間加圧分解を行った。得られた分解液を図2に示す石英製の硫酸除去装置に移し、高純度窒素ガスを吹き込みながら、試料容器外部から500Wのマイクロウェーブを照射して、30分間加熱し、遊離の硫酸を除去した。いずれの試料においても、30分加熱後には試料容器中から遊離の硫酸の白煙は生じず、上記分解液中の遊離の硫酸が除去されたことを確認した。
Reference example 1
(Recovery rate measurement)
As a measurement sample, aluminum nitride powder A 0.75 g and aluminum nitride powder A 0.75 g added with metal elements (Fe 4000 ng, Co, Cu, Zn, Cd, Sn, In, Sb, Bi 200 ng each) In addition to the pressure decomposition vessel shown in 1, 15 ml of sulfuric acid (1: 2) was further added, and pressure decomposition was performed at 200 ° C. for 16 hours. The resulting decomposition solution is transferred to the quartz sulfuric acid removal device shown in FIG. 2, and 500 W microwave is irradiated from the outside of the sample container while blowing high purity nitrogen gas, and heated for 30 minutes to remove free sulfuric acid. did. In any sample, it was confirmed that no free sulfuric acid white smoke was generated from the sample container after heating for 30 minutes, and the free sulfuric acid in the decomposition solution was removed.

上記の硫酸除去にて得られた残渣に、それぞれ超純水70mlを添加し、試料容器外部から200Wのマイクロウェーブを照射して、30分間加熱し、残渣の溶解と、残渣を溶解した水溶液の濃縮を行った。次いで、塩酸(30wt%〜35wt%)を添加して、4Mの残渣含有塩酸水溶液50mlを調製した。   70 ml of ultrapure water was added to each of the residues obtained by the above sulfuric acid removal, 200 W microwave was irradiated from the outside of the sample container, and heated for 30 minutes to dissolve the residue and the aqueous solution in which the residue was dissolved. Concentration was performed. Then, hydrochloric acid (30 wt% to 35 wt%) was added to prepare 50 ml of 4M residue-containing hydrochloric acid aqueous solution.

4M硝酸、超純水、4M塩酸を順に通液した陰イオン交換樹脂(ダイヤイオン CA08P:商品名、三菱化学株式会社製)約5mlに、上記の工程で調製した残渣含有塩酸水溶液Aを通液して、不純物の塩化物錯イオンを吸着させた。続いて、4M塩酸を通液し、陰イオン交換樹脂に残存するアルミニウムを洗浄除去した。   4M nitric acid, ultrapure water, and 4M hydrochloric acid were passed through anion exchange resin (Diaion CA08P: trade name, manufactured by Mitsubishi Chemical Corporation) in about 5 ml, and the residue-containing hydrochloric acid aqueous solution A prepared in the above step was passed. Then, an impurity chloride complex ion was adsorbed. Subsequently, 4M hydrochloric acid was passed through to wash away aluminum remaining in the anion exchange resin.

上記不純物の塩化物錯イオンが吸着した陰イオン交換樹脂に、それぞれ4Mの硝酸25mlを通液してBiを除く不純物を溶出し、次いで50mlに定容することで測定溶液を調整した。上記Bi以外の元素を溶出させた陰イオン交換樹脂に、2Mフッ化水素酸25mlを通液し、Biを溶出させた。引き続き、500Wのマイクロウェーブを30分照射して、フッ酸を加熱除去後、5wt%硝酸50mlに定容し、測定溶液を調整した。   The measurement solution was prepared by passing 25 ml of 4M nitric acid through the anion exchange resin adsorbing the impurity chloride complex ions to elute impurities excluding Bi, and then adjusting the volume to 50 ml. Bi was eluted by passing 25 ml of 2M hydrofluoric acid through an anion exchange resin from which elements other than Bi were eluted. Subsequently, irradiation with 500 W microwave was performed for 30 minutes to remove hydrofluoric acid by heating, and then the volume was adjusted to 50 ml of 5 wt% nitric acid to prepare a measurement solution.

上記の工程により調製した測定溶液について内部標準法による誘導結合プラズマ質量分析法にて測定を行った。結果を表1に示す。回収率は、以下の式により算出した。
回収率(%)={(金属元素を添加した試料の測定値−窒化アルミニウムのみの測定値)/添加した金属元素の濃度}×100
The measurement solution prepared by the above steps was measured by inductively coupled plasma mass spectrometry using an internal standard method. The results are shown in Table 1. The recovery rate was calculated by the following formula.
Recovery rate (%) = {(measured value of sample added with metal element−measured value of aluminum nitride only) / concentration of added metal element} × 100

Figure 2009085903
Figure 2009085903

さらに、残渣含有塩酸水溶液の塩酸濃度を8Mとし、陰イオン交換樹脂に通液する塩酸濃度を8Mとした以外は上記と同様の操作にて残渣含有塩酸水溶液の塩酸濃度が8Mの場合の回収率を算出した。結果を表1に示す。   Furthermore, the recovery rate when the hydrochloric acid concentration of the residue-containing hydrochloric acid aqueous solution is 8 M in the same manner as above except that the hydrochloric acid concentration of the residue-containing hydrochloric acid aqueous solution is 8 M and the hydrochloric acid concentration passing through the anion exchange resin is 8 M. Was calculated. The results are shown in Table 1.

参考例2
(検出限界測定)
測定試料を入れずに参考例1と同様の操作で調整した測定溶液を用いて、空試験を3回行い、得られた定量値の3σから試料換算の検出限界を求めた。この時、上記の参考例の回収率の結果から、Sn、In、Sbは、4Mの残渣含有塩酸水溶液から調整した測定溶液を、Co、Cuは8Mの残渣含有塩酸水溶液から調整した測定溶液を用いた。また、回収率に差がない、Fe、Zn、Cd、Biは、4Mの残渣含有塩酸水溶液から調整した測定溶液を用いた。結果を表2に示す。
Reference example 2
(Detection limit measurement)
Using the measurement solution prepared by the same operation as in Reference Example 1 without putting the measurement sample, a blank test was performed three times, and the detection limit in terms of sample was obtained from 3σ of the obtained quantitative value. At this time, from the results of the recovery rate in the above reference example, Sn, In and Sb are measurement solutions prepared from a 4M residue-containing hydrochloric acid aqueous solution, and Co and Cu are measurement solutions prepared from an 8M residue-containing hydrochloric acid aqueous solution. Using. In addition, for Fe, Zn, Cd, and Bi with no difference in recovery, a measurement solution prepared from a 4M residue-containing hydrochloric acid aqueous solution was used. The results are shown in Table 2.

Figure 2009085903
Figure 2009085903

実施例1
測定試料として窒化アルミニウム粉末B0.75gを使用し、上記参考例1と同様の操作で、4M及び8M残渣含有塩酸水溶液を調製し、さらに、上記参考例1と同様の操作で、それぞれ測定溶液を調製した。
Example 1
Using 0.75 g of aluminum nitride powder B as a measurement sample, 4M and 8M residue-containing hydrochloric acid aqueous solutions were prepared by the same operation as in Reference Example 1, and the measurement solutions were respectively prepared by the same operation as in Reference Example 1. Prepared.

調製した測定溶液を内部標準法による誘導結合プラズマ質量分析法にて測定を行った。この時、Fe、Zn、Cd、Sn、In、Sb、Biは、4Mの残渣含有塩酸水溶液から調整した測定溶液を、Co、Cuは8Mの残渣含有塩酸水溶液から調整した測定溶液を用いた。結果をそれぞれ表3に示す。なお、測定溶液に含有するアルミニウムは3ppmであった。   The prepared measurement solution was measured by inductively coupled plasma mass spectrometry using an internal standard method. At this time, Fe, Zn, Cd, Sn, In, Sb, and Bi were measured solutions prepared from a 4M residue-containing hydrochloric acid aqueous solution, and Co and Cu were measured solutions prepared from an 8M residue-containing hydrochloric acid aqueous solution. The results are shown in Table 3, respectively. The aluminum contained in the measurement solution was 3 ppm.

Figure 2009085903
Figure 2009085903

比較例1
上記実施例1にて使用したものと同じ窒化アルミニウム粉末B0.75gに硫酸(1:2)15mlを加えて、硫酸(1:2)15mlを添加し、200℃で16時間加圧分解を行った。次いで硫酸(1:2)を加えて100mlに定容して測定溶液を調整し、誘導結合プラズマ発光分析法にて測定を行った。結果を上記表3に示す。なお、測定溶液に含有するアルミニウムは4820ppmであった。
Comparative Example 1
Add 15 ml of sulfuric acid (1: 2) to 0.75 g of the same aluminum nitride powder B used in Example 1 above, add 15 ml of sulfuric acid (1: 2), and perform pressure decomposition at 200 ° C. for 16 hours. It was. Subsequently, sulfuric acid (1: 2) was added to make a constant volume of 100 ml to prepare a measurement solution, and measurement was performed by inductively coupled plasma emission spectrometry. The results are shown in Table 3 above. The aluminum contained in the measurement solution was 4820 ppm.

実施例2
測定試料としてアルミナ粉末1.0gを使用し、硫酸加圧分解を220℃で16時間行った以外は上記実施例1と同様の操作で、測定溶液を調整し測定を行った。結果を上記表3に示す。なお、測定に先立ち、参考例1と同様の操作で4M及び8Mの残渣含有塩酸水溶液での回収率を測定したところ、上記表1と同様の結果を得た。
Example 2
A measurement solution was prepared and measured in the same manner as in Example 1 except that 1.0 g of alumina powder was used as a measurement sample and sulfuric acid pressure decomposition was performed at 220 ° C. for 16 hours. The results are shown in Table 3 above. Prior to the measurement, the recovery rate in 4M and 8M residue-containing hydrochloric acid aqueous solution was measured in the same manner as in Reference Example 1, and the same results as in Table 1 were obtained.

比較例2
測定試料としてアルミナ粉末1.0gを使用し、硫酸加圧分解を230℃で16時間加圧分解を行った以外は上記比較例1と同様の操作で、測定溶液を調整し測定を行った。結果を上記表3に示す。
Comparative Example 2
The measurement solution was adjusted and measured in the same manner as in Comparative Example 1 except that 1.0 g of alumina powder was used as a measurement sample and the pressure decomposition of sulfuric acid was performed at 230 ° C. for 16 hours. The results are shown in Table 3 above.

実施例3
測定試料として窒化アルミニウム焼結体0.75gを使用した以外は上記実施例1と同様の操作で、測定溶液を調整し測定を行った。結果を上記表3に示す。
Example 3
A measurement solution was prepared and measured in the same manner as in Example 1 except that 0.75 g of an aluminum nitride sintered body was used as a measurement sample. The results are shown in Table 3 above.

比較例3
測定試料として窒化アルミニウム焼結体0.75gを使用した以外は上記比較例1と同様の操作で、測定溶液を調整し測定を行った。結果を上記表3に示す。
Comparative Example 3
A measurement solution was prepared and measured in the same manner as in Comparative Example 1 except that 0.75 g of aluminum nitride sintered body was used as a measurement sample. The results are shown in Table 3 above.

本発明の分解工程において好適な加圧分解容器の断面図Sectional view of a pressure decomposition container suitable for the decomposition process of the present invention 本発明の硫酸除去工程において好適な硫酸除去装置の概略図Schematic of a suitable sulfuric acid removal apparatus in the sulfuric acid removal step of the present invention

符号の説明Explanation of symbols

1 試料分解容器
2 内容器
3 加圧分解容器
4 不活性ガス吸入口
5 排出ガス排出口
6 試料容器
1 Sample decomposition container 2 Inner container 3 Pressure decomposition container 4 Inert gas inlet 5 Exhaust gas outlet 6 Sample container

Claims (5)

下記の工程を含むことを特徴とするアルミニウム系セラミックス中の不純物の分析方法。
(1)硫酸加圧分解法により、アルミニウム系セラミックスを分解する分解工程
(2)上記分解工程により得られた分解液より遊離の硫酸を除去して残渣を得る硫酸除去工程
(3)上記硫酸除去工程により得られた残渣を塩酸に溶解せしめて、残渣含有塩酸水溶液を調製する残渣溶解工程
(4)上記残渣溶解工程より得られた残渣含有塩酸水溶液を陰イオン交換樹脂と接触せしめる吸着工程
(5)上記吸着工程により陰イオン交換樹脂に吸着した成分を脱着する脱着工程
(6)上記脱着工程により陰イオン交換樹脂より脱着された成分の分析を行う分析工程
A method for analyzing impurities in an aluminum-based ceramic, comprising the following steps.
(1) Decomposition step of decomposing aluminum ceramics by sulfuric acid pressure decomposition method (2) Sulfuric acid removal step of removing free sulfuric acid from the decomposition solution obtained in the decomposition step to obtain a residue (3) Removal of sulfuric acid The residue obtained in the step is dissolved in hydrochloric acid to prepare a residue-containing hydrochloric acid aqueous solution (4) The residue-containing hydrochloric acid aqueous solution obtained from the residue dissolving step is brought into contact with an anion exchange resin (5 ) Desorption step for desorbing the component adsorbed on the anion exchange resin by the adsorption step (6) Analysis step for analyzing the component desorbed from the anion exchange resin by the desorption step
アルミニウム系セラミックスが窒化アルミニウム又はアルミナである請求項1に記載のアルミニウム系セラミックス中の不純物の分析方法。   The method for analyzing impurities in an aluminum-based ceramics according to claim 1, wherein the aluminum-based ceramics is aluminum nitride or alumina. 前記硫酸除去工程における遊離の硫酸の除去をマイクロ波照射による加熱により行う請求項1及び2に記載のアルミニウム系セラミックス中の不純物の分析方法。   The method for analyzing impurities in an aluminum-based ceramic according to claim 1 or 2, wherein the removal of free sulfuric acid in the sulfuric acid removal step is performed by heating by microwave irradiation. 前記残渣溶解工程における残渣含有塩酸水溶液の調製を、残渣に水を加えて残渣を溶解し、次いで、塩酸を添加することによって行う請求項1から3の何れかに記載のアルミニウム系セラミックス中の不純物の分析方法。   The impurities in the aluminum-based ceramics according to any one of claims 1 to 3, wherein the residue-containing hydrochloric acid aqueous solution in the residue dissolution step is prepared by adding water to the residue to dissolve the residue, and then adding hydrochloric acid. Analysis method. 前記分析工程における分析方法が誘導結合プラズマ発光分析法又は誘導結合プラズマ質量分析法である、請求項1から4の何れかに記載のアルミニウム系セラミックス中の不純物の分析方法。   The analysis method of the impurity in the aluminum type ceramics in any one of Claim 1 to 4 whose analysis method in the said analysis process is inductively coupled plasma emission spectrometry or inductively coupled plasma mass spectrometry.
JP2007259405A 2007-10-03 2007-10-03 Method for analyzing impurities in aluminum-based ceramics Expired - Fee Related JP4889608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007259405A JP4889608B2 (en) 2007-10-03 2007-10-03 Method for analyzing impurities in aluminum-based ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007259405A JP4889608B2 (en) 2007-10-03 2007-10-03 Method for analyzing impurities in aluminum-based ceramics

Publications (2)

Publication Number Publication Date
JP2009085903A true JP2009085903A (en) 2009-04-23
JP4889608B2 JP4889608B2 (en) 2012-03-07

Family

ID=40659494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007259405A Expired - Fee Related JP4889608B2 (en) 2007-10-03 2007-10-03 Method for analyzing impurities in aluminum-based ceramics

Country Status (1)

Country Link
JP (1) JP4889608B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110836810A (en) * 2019-11-27 2020-02-25 中国电子科技集团公司第四十三研究所 Sample dissolving method for testing trace elements of aluminum nitride powder
CN114397156A (en) * 2021-12-30 2022-04-26 山东东岳高分子材料有限公司 Sample pretreatment method for detecting trace metal ions in PTFE (polytetrafluoroethylene) and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110836810A (en) * 2019-11-27 2020-02-25 中国电子科技集团公司第四十三研究所 Sample dissolving method for testing trace elements of aluminum nitride powder
CN114397156A (en) * 2021-12-30 2022-04-26 山东东岳高分子材料有限公司 Sample pretreatment method for detecting trace metal ions in PTFE (polytetrafluoroethylene) and application thereof

Also Published As

Publication number Publication date
JP4889608B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
Ball et al. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis
JPH1095696A (en) Recovery of metal surface contaminant from silicon
JP2001324427A (en) Method for high accuracy boron analysis in iron and steel
Thompson et al. Novel separation for the determination of cadmium by isotope dilution ICP-MS in samples containing high concentrations of molybdenum and tin
JP3768442B2 (en) Analytical sample preparation method and element quantification method
JP4889608B2 (en) Method for analyzing impurities in aluminum-based ceramics
KR20160106117A (en) Method for determining a concentration of metal impurities contaminating a silicon product
Nete et al. Comparative study of tantalite dissolution using different fluoride salts as fluxes
JP5131245B2 (en) Method for analyzing metal impurities in silicon powder
JP4362595B2 (en) Pretreatment method for enrichment of trace elements
JP2010197183A (en) Analysis method of trace element in alloy
JP7235593B2 (en) Method for preparing sample for quantitative determination and method for producing silver chloride
JP4704958B2 (en) Method for analyzing metal impurities in TiCl4 and method for producing high-purity titanium
JP4877897B2 (en) Method for removing impurities from silicon wafer and analysis method
KR101064657B1 (en) Apparatus and method for processing poly silicon
JP4559932B2 (en) Method for analyzing metal impurities
Sun et al. Novel matrix modifier for direct determination of palladium in gold alloy by electrothermal vaporization inductively coupled plasma mass spectrometry
JP4760458B2 (en) Method for analyzing metal contamination of semiconductor wafer storage container
JP4995596B2 (en) Quantitative determination of boron in graphite
JP2020091275A (en) Lithium evaluation method
JPS622259B2 (en)
Balarama Krishna et al. Studies on the determination of trace elements in high-purity Sb using GFAAS and ICP-QMS
TW201937148A (en) Method for preparing sample for analysis
JP6657851B2 (en) Determination of trace chlorine components
JP2018009981A (en) Method for quantifying amount of silicon in metal material, method for dissolving metal material including silicon component, and metal material dissolution liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111213

R150 Certificate of patent or registration of utility model

Ref document number: 4889608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees