JP2009081512A - 光送信装置および設定値決定方法 - Google Patents

光送信装置および設定値決定方法 Download PDF

Info

Publication number
JP2009081512A
JP2009081512A JP2007247351A JP2007247351A JP2009081512A JP 2009081512 A JP2009081512 A JP 2009081512A JP 2007247351 A JP2007247351 A JP 2007247351A JP 2007247351 A JP2007247351 A JP 2007247351A JP 2009081512 A JP2009081512 A JP 2009081512A
Authority
JP
Japan
Prior art keywords
wavelength
temperature
control current
bias
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007247351A
Other languages
English (en)
Inventor
Kenichi Nakamoto
健一 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2007247351A priority Critical patent/JP2009081512A/ja
Priority to US12/219,939 priority patent/US20090080904A1/en
Publication of JP2009081512A publication Critical patent/JP2009081512A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06832Stabilising during amplitude modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】波長制御時の伝送特性を向上させること。
【解決手段】波長可変光源110は、入力される波長制御電流に応じた波長の光を生成する。EA変調器120は、波長可変光源110によって生成された光に対して、入力されるEAバイアスに応じた変調特性によって変調を行う。TEC130は、波長可変光源110およびEA変調器120の温度を、入力される温度制御電流に応じて変化させる。制御部150は、波長可変光源110へ入力する波長制御電流の設定値と、EA変調器120へ入力するEAバイアスの設定値と、EA変調器120の温度の設定値と、を入力される波長情報に応じて調節する。
【選択図】図1

Description

この発明は、送信する光の波長を制御することができる光送信装置および光送信装置の設定値決定方法に関する。
近年のデータトラフィックの増加に伴い、長距離高速大容量通信が必須となり、WDM(Wavelength Division Multiplexing)ネットワークの構築が進んでいる。WDMでは、多くの異なる波長の光送信装置が必要であり、光送信装置の在庫や品種の管理が困難である。出力波長が可変の波長可変光源を用いた光送信装置は、在庫や品種削減による生産管理の簡素化に有効なキーデバイスである。
光伝送システムの小型化および大容量化に向けて、XFP(10 Gigabit Small Form Factor Pluggable)タイプの小型の送信光サブアセンブリ(TOSA:Transmitter Optical SubAssembly)への期待が高騰している。XFPタイプのTOSAの実現には、(1)波長可変光源と電界吸収型(EA:Electric Absorpsion)変調器との集積化、(2)波長制御の簡素化による回路規模縮小と消費電力削減、の2点が大きな課題である。
温度可変型や外部共振器型の波長可変光源は上記(1),(2)に適さないが、電流注入型波長可変光源はEA変調器との集積化が容易であり、1つの波長制御電流による簡易な波長制御および低消費電力化が可能である。したがって、XFPタイプの小型のTOSAに適用する光送信装置には、電流注入型の波長可変光源とEA変調器を集積化した光送信装置が好適であると考えられる。
波長可変光源とEA変調器は、熱電クーラ(TEC:Thermo Electric Cooler)上に集積され、TECへ入力される温度制御電流に応じて温度制御される。波長可変光源とEA変調器を集積化した光送信装置においては、EA変調器でのチャープ(αパラメータ)の波長依存性が大きく、波長制御時に伝送特性が満足できないという問題がある。そのため、温度可変型の波長可変光源については、波長可変時に伝送特性を満足できる制御方法が従来考えられている(たとえば、下記特許文献1〜5参照。)。
特開2001−144367号公報 特開2001−154162号公報 特開2005−45548号公報 特開2002−323685号公報 特開平9−179079号公報
しかしながら、上述した電流注入型の波長可変光源とEA変調器を集積化した光送信装置においては、波長制御時に伝送特性を満足できる制御方法が存在せず、波長を変化させると伝送特性が劣化するという問題がある。これに対して、たとえば、電流注入による波長制御時に、EA変調器へ入力するEAバイアスを調節することによりEA変調器のEAバンドギャップ波長特性を制御することが考えられるが、以下のような問題がある。
図19は、波長制御およびEAバンドギャップ波長特性の制御を説明するグラフである。図19において、横軸は、EA変調器の温度(以下、「EA温度」という)を示している。縦軸は、波長を示している。ここでは、光送信装置が出力する光の波長(以下、「出力波長」という)を初期状態のλ1からλ4へ変化させる波長制御について説明する。TECへ入力する温度制御電流の設定値は、波長にかかわらず一定の設定値に調節する。
特性1910は、波長制御電流の設定値を波長λ1に対応付けられた設定値に調節した場合における、出力波長のEA温度に対する特性を示している。点1911は、特性1910において、EA温度が45℃である場合の出力波長を示している。特性1920は、EAバイアスの設定値を波長λ1に対応付けられた設定値に調節した場合における、EAバンドギャップ波長のEA温度に対する特性を示している。
まず、符号1901に示すように、波長制御電流の設定値を波長λ4に対応付けられた設定値に調節することにより、出力波長をλ4に制御する(点1940)。つぎに、符号1902に示すように、EAバイアスの設定値を波長λ4に対応付けられた設定値に調節することにより、EAバンドギャップ波長特性が特性1950になるように制御する。これにより、波長制御の前後における、出力波長およびEAバンドギャップ波長の波長ずれ量(符号1930および符号1960)をほぼ等しくする。
図20は、図19で示した制御方法による出力光の劣化を説明するグラフである。図20において、横軸は、光送信装置の出力波長[nm]を示している。縦軸は、光送信装置が送信する光の最小受信感度[dBm]を示している。符号2010および符号2020は、図19に示した波長制御で出力波長をλ1からλ4へ変化させた場合の、光送信装置から送信される光の最小受信感度を示している。
符号2010は、光送信装置から送信された直後(波長分散なし)の光の最小受信感度を示している(B−to−B)。符号2020は、光送信装置から送信され、伝送路(およそ80km)を通過して波長分散が1600ps/nm発生した光の最小受信感度を示している。電流注入による波長制御時にEAバンドギャップ波長特性を制御する場合は、EAバイアスの電圧レンジが不足し、光の消光比および波形が劣化する。
このため、符号2010および符号2020に示すように、電流注入による波長制御時に、光送信装置から送信される光の最小受信感度が1dBm以上劣化する。符号2030は、図19に示した制御方法で出力波長をλ1からλ4へ変化させた場合の、光送信装置から送信された光の伝送ペナルティを示している。
このように、電流注入による波長可変時にEAバンドギャップ波長特性を制御する場合は、最小受信感度特性が劣化し、伝送特性を満足できないという問題がある。また、電流注入による波長制御時に、TECへ入力する温度制御電流を調節することによりEA温度を制御することが考えられるが、以下のような問題がある。
図21は、波長制御およびEA温度の制御を説明するグラフである。図21において、横軸は、EA温度を示している。縦軸は、波長を示している。ここでは、出力波長を初期状態のλ1からλ4へ変化させる制御について説明する。EA変調器へ入力するEAバイアスの設定値は、波長にかかわらず一定の設定値に調節する。
特性2110は、波長制御電流の設定値を波長λ1に対応付けられた設定値に調節した場合における、出力波長のEA温度に対する特性を示している。点2111は、特性2110において、EA温度が45℃である場合の出力波長を示している。特性2120は、EAバイアスの設定値を波長λ1に対応付けられた設定値に調節した場合における、EAバンドギャップ波長のEA温度に対する特性を示している。
まず、符号2101に示すように、温度制御電流の設定値を波長λ4に対応付けられた設定値に調節することにより、EA温度をおよそ39℃に制御する(点2112)。つぎに、符号2102に示すように、波長制御電流の設定値を波長λ4に対応付けられた設定値に調節することにより、出力波長をλ4に制御する(点2140)。
EA温度に応じてEAバンドギャップ波長が変化するため、温度制御電流の設定値を適切に設定することで、波長制御の前後における、出力波長およびEAバンドギャップ波長の波長ずれ量(符号2130および符号2150)をほぼ等しくする。したがって、出力波長を大きく変化させる場合には、EA温度も大きく変化させる制御が必要になる。
図22は、図21で示した制御方法によるFIT数および消費電力を示すグラフである。図22において、横軸は、EA温度[℃]を示している。関数2211は、光送信装置のFIT数とEA温度との関係を示している。光送信装置のFIT数とは、光送信装置の光源としての信頼度パラメータである。関数2211に示すように、光送信装置のFIT数は、EA温度が高くなるほど増加する。許容できるFIT数の上限を5700とする。
しきい値2221は、FIT数が5700となるEA温度の値(45℃)を示している。関数2212は、光送信装置の消費電力とEA温度との関係を示している。関数2212に示すように、光送信装置の消費電力は、EA温度が低くなるほど増加する。温度の範囲2230は、図21に示した制御方法において、波長制御とともに行うEA温度の制御の範囲である。
電流注入による波長可変時にEA温度を制御する場合は、波長制御の前後における波長ずれ量を等しくするために、EA温度の制御の範囲2230を広く確保する必要がある。しきい値2222は、EA温度の制御範囲2230の下限を示している。この場合は、消費電力が1.6Wとなり、光送信装置をTOSAに適用する場合に要求される消費電力の上限(たとえば1.4W)を超えてしまう。
このように、電流注入型の波長可変光源とEA変調器を集積する光送信装置において、波長可変時にEA温度を制御する場合は、光送信装置の消費電力が大きくなるという問題がある。このため、TOSAへの適用において要求される光送信装置の消費電力と信頼度を満たすことができず、光送信装置のTOSAへの適用が困難であるという問題がある。
開示の光送信装置および設定値決定方法は、上述した問題点を解消するものであり、波長制御時の伝送特性を向上させることを目的とする。
光送信装置が、入力される波長制御電流に応じた波長の光を生成する波長可変光源と、前記波長可変光源によって生成された光に対して、入力されるEAバイアスに応じた変調特性によって変調を行う電界吸収型変調器と、前記電界吸収型変調器のEA温度を、入力される温度制御電流に応じて変化させる温度調節手段と、前記波長可変光源へ入力する波長制御電流と、前記電界吸収型変調器へ入力するEAバイアスと、の各設定値を入力される波長情報に応じて調節することで前記波長可変光源の前記波長および前記電界吸収型変調器の前記変調特性を制御する制御手段と、を備える。
また、光送信装置が、入力される波長制御電流に応じた波長の光を生成する波長可変光源と、前記波長可変光源によって生成された光に対して、入力されるEAバイアスに応じた変調特性によって変調を行う電界吸収型変調器と、前記電界吸収型変調器のEA温度を、入力される温度制御電流に応じて変化させる温度調節手段と、前記温度制御電流を調節することで制御する前記EA温度と、前記波長可変光源へ入力する波長制御電流と、の各設定値を入力される波長情報が示す波長に応じて調節することで、前記EA温度および前記波長可変光源の前記波長を制御する制御手段と、を備える。
上記構成によれば、波長可変光源へ入力する波長制御電流の設定値を波長に応じて調節するとともに、電界吸収型変調器へ入力するEAバイアスの設定値および電界吸収型変調器のEA温度の設定値の少なくとも一方を波長に応じて調節することで、波長制御時の伝送特性を向上させることができる。また、波長制御時に、EA温度の制御とともにEAバイアスの制御を行うことで、光送信装置の消費電力を低減することができる。
開示の光送信装置および設定値決定方法によれば、波長制御時の伝送特性を向上させることができるという効果を奏する。
以下に添付図面を参照して、この発明にかかる光送信装置および設定値決定方法の好適な実施の形態を詳細に説明する。
(実施の形態1)
図1は、実施の形態1にかかる光送信装置の機能的構成を示すブロック図である。実施の形態1にかかる光送信装置100は、可変の波長の光を生成し、生成した光を変調して送信する光送信装置である。図1に示すように、実施の形態1にかかる光送信装置100は、波長可変光源110と、EA変調器120(電界吸収型変調器)と、TEC130(熱電クーラ)と、制御部150と、メモリ部140と、を備えている。
波長可変光源110およびEA変調器120は、TEC130上に集積して設けられている。波長可変光源110には、光を生成するための駆動電流(不図示)とは別に、制御部150から出力された波長制御電流が入力される。波長可変光源110は、入力される波長制御電流に応じた波長の光を生成する電流注入型の波長可変光源である。波長可変光源110は、生成した光をEA変調器120へ出力する。
EA変調器120には、波長可変光源110から出力された光と、制御部150から出力されたEAバイアスと、が入力される。EA変調器120は、入力されるEAバイアスに応じた変調特性(αパラメータ)によって、波長可変光源110から出力された光に対して変調を行う。具体的には、入力されるEAバイアスに応じてEAバンドギャップ波長を変化させる。EA変調器120は、変調した光を外部へ出力する。
TEC130には、制御部150から出力された温度制御電流が入力される。TEC130は、入力される温度制御電流に応じて、波長可変光源110およびEA変調器120の温度を変化させる温度調節手段である。具体的には、TEC130の温度が、入力される温度制御電流に応じて変化する。これにより、波長可変光源110およびEA変調器120の温度はTEC130の温度変化に応じて変化する。
また、TEC130上には温度モニタ素子131が設けられている。温度モニタ素子131は、EA変調器120の温度を示すEA温度情報を制御部150へ出力する。具体的には、温度モニタ素子131は、TEC130の温度を検出する感熱素子であり、TEC130の温度に応じた電流をEA温度情報として制御部150へ出力する。
メモリ部140は、波長制御電流と、EAバイアスと、温度制御電流と、の設定値の組み合わせの情報を、設定波長毎に対応させてあらかじめ記憶している。または、メモリ部140は、波長制御電流の波長に対する関数と、EA温度の波長に対する関数と、EAバイアスの波長に対する関数と、をあらかじめ記憶している。
制御部150は、波長可変光源110へ波長制御電流を入力する。制御部150は、波長可変光源110へ入力する波長制御電流の設定値を調節することで、波長可変光源110が生成する光の波長を変化させる。これにより、制御部150は、光送信装置100から送信される光の波長(出力波長)を制御する。
また、制御部150は、EA変調器120へEAバイアスを入力する。制御部150は、EA変調器120へ入力するEAバイアスの設定値を調節することで、EA変調器120のEAバンドギャップ波長の特性を制御する。これにより、制御部150は、光送信装置100から送信される光の伝送特性を制御する。
また、制御部150は、TEC130へ温度制御電流を入力する。制御部150は、温度モニタ素子131から出力されたEA温度情報が示す温度が目的の温度となるように、TEC130へ入力する温度制御電流を調節してTEC130の温度を制御する。これにより、制御部150は、EA変調器120の温度(EA温度)を制御する。
また、制御部150には、光送信装置100が送信すべき光の波長を示す波長情報が外部から入力される。波長情報は、たとえば、光送信装置100の出力波長をλ1にする旨の要求情報である。制御部150は、波長可変光源110へ入力する波長制御電流と、EA変調器120へ入力するEAバイアスと、TEC130へ入力する温度制御電流と、の設定値の組み合わせを、入力される波長情報が示す波長に応じて調節する。
具体的には、制御部150は、メモリ部140によって記憶された組み合わせの情報のうちの、入力される波長情報が示す波長に対応した組み合わせの情報を読み出す。制御部150は、メモリ部140から読み出した組み合わせの情報に基づいて、波長可変光源110へ入力する波長制御電流と、EA変調器120へ入力するEAバイアスと、TEC130へ入力する温度制御電流と、の設定値をそれぞれ調節する。
または、制御部150は、メモリ部140に記憶された、波長制御電流の波長に対する関数と、EA温度の波長に対する関数と、EAバイアスの波長に対する関数と、を読み出す。制御部150は、メモリ部140から読み出した関数に基づいて、波長情報が示す波長に対応した波長制御電流、EAバイアスおよび温度制御電流の各設定値を算出する。
制御部150は、算出した各設定値に基づいて、波長可変光源110へ入力する波長制御電流、EA変調器120へ入力するEAバイアスおよびTEC130へ入力する温度制御電流の設定値をそれぞれ調節する。つぎに、メモリ部140によって記憶された、各設定値の組み合わせの情報の一例を説明する。
図2は、メモリ部に記憶された情報(その1)を示す図である。メモリ部140は、波長可変光源110へ入力する電流と、EA変調器120へ入力するEAバイアスと、TEC130へ入力する温度制御電流と、の設定値の組み合わせの情報として、たとえば図2に示すようなテーブル200を記憶している。符号210は、外部から制御部150へ入力される波長情報が示す各波長(λ1〜λn)の情報を示している。
符号220は、各波長(λ1〜λn)に対応付けられたEA温度(T1〜Tn)の設定値の情報を示している。制御部150は、温度モニタ素子131から出力されるEA温度情報が示す温度が、各波長(λ1〜λn)のうちの波長情報が示す波長に対応したEA温度となるように、TEC130へ入力する温度制御電流を調節する。
符号230は、各波長(λ1〜λn)に対応付けられたEAバイアス(V1〜Vn)の設定値の情報を示している。制御部150は、波長情報が示す波長に対応したEAバイアスをEA変調器120へ入力する。符号240は、各波長(λ1〜λn)に対応付けられた波長制御電流(I1〜In)の設定値の情報を示している。制御部150は、波長情報が示す波長に対応した波長制御電流を波長可変光源110へ入力する。
図3は、FIT数および消費電力のEA温度との関係を示すグラフである。図3において、横軸は、制御部150によって制御されるEA温度[℃]を示している。縦軸は、光送信装置100のFIT数と、光送信装置100の消費電力[W]と、を示している。関数311は、光送信装置100のFIT数とEA温度との関係を示している。
光送信装置100のFIT数とは、光送信装置100の光源としての信頼度パラメータである。関数311に示すように、光送信装置100のFIT数は、EA温度が高くなるほど増加(劣化)する。許容できるFIT数の上限を5700とする。しきい値321は、FIT数が5700となるEA温度の値(45℃)を示している。
関数312は、光送信装置100の消費電力とEA温度との関係を示している。関数312に示すように、光送信装置100の消費電力は、EA温度が低くなるほど増加する。許容できる消費電力の上限を1.4Wとする。しきい値322は、消費電力が1.4WとなるEA温度の値(42℃)を示している。
光送信装置100において使用する各波長(以下、「使用波長」という)に対応するEA温度の各設定値は、範囲330(42℃〜45℃)内で決定する。たとえば、各使用波長に対応するEA温度の設定値を、42℃〜45℃内に均等に割り当てる。このとき、長い波長に対応するEA温度ほど高い温度に割り当てる。
図4は、光送信装置の機能的構成の変形例を示すブロック図である。図4において、図1に示した構成と同様の構成については同一の符号を付して説明を省略する。図4に示すように、実施の形態1にかかる光送信装置100は、図1に示した構成に加えて、光モニタ部410と、設定値決定部420と、を備えていてもよい。
光モニタ部410は、EA変調器120から出力される光の一部を取得して、取得した光の波長(出力波長)および伝送特性を監視する。光モニタ部410が監視する光の伝送特性は、たとえば光の消光比である。光モニタ部410は、監視した波長の情報を波長決定部422へ出力し、監視した伝送特性の情報をバイアス決定部423へ出力する。
設定値決定部420は、メモリ部140に記憶される各設定値の組み合わせの情報を、光送信装置100の使用波長(λ1〜λn)毎に、温度制御電流の設定値、波長制御電流の設定値、EAバイアスの設定値、の順に決定する。具体的には、設定値決定部420は、温度決定部421と、波長決定部422と、バイアス決定部423と、を備えている。
温度決定部421には、光送信装置100の使用波長(λ1〜λn)を示す使用波長情報が入力される。温度決定部421は、各使用波長に対応する温度制御電流の各設定値を決定する。具体的には、温度決定部421は、関数311および関数312(図3参照)の情報を取得し、光送信装置100の信頼度パラメータおよび光送信装置100の消費電力に基づいて温度制御電流の各設定値を決定する。
たとえば、関数311および関数312の情報はメモリ部140に記憶されており、温度決定部421は、メモリ部140から読み出すことによって関数311および関数312の情報を取得する。温度決定部421は、使用波長情報に、決定した温度制御電流の各設定値の情報を対応付けた設定値情報を波長決定部422へ出力する。
波長決定部422は、制御部150を介して波長制御電流を変化させ、光モニタ部410から出力される情報が示す波長が使用波長(λ1〜λn)になる波長制御電流の各設定値を、各使用波長に対応する波長制御電流の各設定値として決定する。波長決定部422は、温度決定部421から出力された設定値情報に、決定した波長制御電流の各設定値の情報を対応付けてバイアス決定部423へ出力する。
バイアス決定部423は、制御部150を介してEAバイアスを変化させ、光モニタ部410から出力される情報が示す伝送特性が所望の伝送特性(最適な消光比)になるEAバイアスの設定値を使用波長毎に決定する。バイアス決定部423は、波長決定部422から出力された設定値情報に、決定したEAバイアスの各設定値の情報を対応付けてメモリ部140へ出力する。
バイアス決定部423からメモリ部140へ出力される設定値情報は、使用波長毎に対応付けられた、温度制御電流の各設定値と、波長制御電流の各設定値と、EAバイアスの各設定値と、の情報を含んでおり、たとえば図2に示したテーブル200のようになる。メモリ部140は、バイアス決定部423から出力された設定値情報を、上述した各設定値の組み合わせの情報として記憶する。
なお、ここでは、光送信装置100が光モニタ部410を備え、光モニタ部410による出力光の監視結果に基づいて各設定値の組み合わせの情報を決定する構成について説明したが、光モニタ部410に代えて、光送信装置100が送信した光を受信した受信装置から、受信した光の波長および伝送特性の情報を取得する取得手段を備えてもよい。
図5は、各設定値を決定する手順の一例を示すフローチャートである。図5に示すように、まず、温度決定部421が、入力される使用波長情報から、使用波長の数fおよび波長間隔Δλの情報を取得する(ステップS501)。つぎに、関数311および関数312(図3参照)の情報を取得する(ステップS502)。
つぎに、ステップS502によって取得した関数311に基づいて、FIT数が5700(所望の値)になるEA温度(45℃)をEA温度の上限温度Taとして算出する(ステップS503)。つぎに、使用波長のうちの最も長い波長λ1に対応するEA温度T1を、ステップS503によって算出した上限温度Ta以下の温度に決定する(ステップS504)。たとえば、波長λ1に対応するEA温度T1を上限温度Taに決定する。
つぎに、ステップS502によって取得した関数312に基づいて、消費電力が1.4W(所望の値)になるEA温度(42℃)をEA温度の下限温度Tbとして算出する(ステップS505)。つぎに、使用波長のうちの最も短い波長λfに対応するEA温度Tfを、ステップS505によって算出した下限温度Tb以上の温度に決定する(ステップS506)。たとえば、波長λfに対応するEA温度Tfを下限温度Tbに決定する。
つぎに、使用波長のうちの、波長λ1および波長λf以外の波長(λ2〜λf−1)に対応するEA温度Tn(n=2,3,…,f−1)を、ステップS504によって決定したEA温度T1およびステップS506によって決定したEA温度Tfの間の範囲内に割り当てる(ステップS507)。たとえば、波長(λ2〜λf−1)に対応するEA温度T(n)を、T(n)=T(n−1)+(Tf−T1)/(f−1)とする。
つぎに、波長決定部422が、ステップS501〜S507によって決定したEA温度の各設定値に基づいて、使用波長毎に対応する波長制御電流の各設定値を決定する(ステップS508)。たとえば、λ1に対応付けた波長制御電流の設定値を決定する場合には、制御部150を介して、TEC130へ入力する温度制御電流の設定値をλ1に対応付けられた設定値に調節する。
そして、波長可変光源110へ入力する波長制御電流を制御部150を介して変化させ、光モニタ部410から出力される情報が示す波長がλ1となるときの波長制御電流の設定値を、λ1に対応する設定値として決定する。λ2〜λnに対応する波長制御電流の各設定値も同様にそれぞれ決定する。
つぎに、バイアス決定部423が、ステップS501〜S508によって決定したEA温度および波長制御電流の各設定値に基づいて、使用波長毎に対応するEAバイアスの各設定値を決定する(ステップS509)。たとえば、λ1に対応付けたEAバイアスの設定値を決定する場合には、制御部150を介して、温度制御電流および波長制御電流の設定値をλ1に対応付けられた設定値にそれぞれ調節する。
そして、EA変調器120へ入力するEAバイアスを制御部150を介して変化させ、光モニタ部410から出力される情報が示す伝送特性が所望の伝送特性(最適な消光比)となるときのEAバイアスの設定値を、λ1に対応する設定として決定する。λ2〜λnに対応するEAバイアスの各設定値も同様にそれぞれ決定する。
つぎに、ステップS501〜S507によって決定したEA温度の各設定値と、ステップS508によって決定した波長制御電流の各設定値と、ステップS509によって決定したEAバイアスの各設定値と、の組み合わせの情報を使用波長毎に対応付けてメモリ部140に記憶し(ステップS510)、一連の手順を終了する。
また、ステップS501〜ステップS510によって使用波長毎に対応付けて決定したEA温度と、波長制御電流と、EAバイアスと、の各設定値に基づいて、波長制御電流の波長に対する関数と、EA温度の波長に対する関数と、EAバイアスの波長に対する関数と、を近似的に算出する制御を行ってもよい。この場合は、算出した各関数をメモリ部140に記憶して、一連の手順を終了する。
図6は、波長制御、EA温度およびEAバンドギャップ波長特性の制御を説明するグラフである。図6において、横軸は、EA温度[℃]を示している。縦軸は、波長を示している。特性610は、波長制御電流の設定値をλ1に対応付けられた設定値に調節した場合における、出力波長のEA温度に対する特性を示している。点611は、特性610において、温度制御電流の設定値をλ1に対応付けられた設定値(45℃)に調節した場合の出力波長を示している。
特性620は、EAバイアスの設定値をλ1に対応付けられた設定値に調節した場合における、EAバンドギャップ波長のEA温度に対する特性を示している。点621は、特性620において、温度制御電流の設定値を45℃に調節した場合におけるEAバンドギャップ波長を示している。点622は、特性620において、温度制御電流の設定値を42℃に調節した場合のEAバンドギャップ波長を示している。
波長ずれ量630は、初期状態(出力波長がλ1)における、出力波長(点611)およびEAバンドギャップ波長(点621)の波長ずれ量を示している。この初期状態の波長ずれ量630は、EA変調器120から出力される光の伝送特性が所望の伝送特性(消光比が最適)になる波長ずれ量に調節されているものとする。
まず、符号601に示すように、温度制御電流の設定値を波長λ4に対応付けられた設定値に調節することにより、EA温度をおよそ42℃に制御する(点612)。つぎに、符号602に示すように、波長制御電流の設定値を波長λ4に対応付けられた設定値に調節することにより、出力波長をλ4に制御する(点640)。
波長ずれ量650は、符号601に示すEA温度の制御と、符号602に示す出力波長の制御と、を行った状態における、出力波長(点640)およびEAバンドギャップ波長(点622)の波長ずれ量を示している。波長ずれ量650は、初期状態の波長ずれ量630と比較して小さくなっている。
つぎに、符号603に示すように、EAバイアスの設定値を波長λ4に対応付けられた設定値に調節することにより、EAバンドギャップ波長の特性を特性620から特性660に変化させる制御を行う。点661は、特性660において、EA温度が42℃である場合のEAバンドギャップ波長を示している。
波長ずれ量670は、符号603に示すEAバンドギャップ波長の特性の制御を行った場合における、出力波長(点640)およびEAバンドギャップ波長(点661)の波長ずれ量を示している。波長ずれ量670は、初期状態の波長ずれ量630とほぼ等しくなっている。このため、光送信装置100が送信する光の伝送特性を劣化させることなく、出力波長をλ1からλ4へ変化させることができる。
このように、制御部150は、波長情報が示す波長が長いほど、EA温度を上げるように温度制御電流を調節し、出力波長が長くなるように波長制御電流の設定値を下げ、EAバンドギャップ波長特性が高くなるようにEAバイアスの設定値を上げる制御を行う。反対に、制御部150は、波長情報が示す波長が短いほど、EA温度を下げるように温度制御電流を調節し、出力波長が短くなるように波長制御電流の設定値を上げ、EAバンドギャップ波長特性が低くなるようにEAバイアスの設定値を下げる制御を行う。
なお、ここでは、EA温度、出力波長、EAバイアスの順に設定する場合について説明したが、実際には、波長制御電流、温度制御電流およびEAバイアスの組み合わせをメモリ部140に記憶しておき、この組み合わせの情報に基づいてEA温度、出力波長およびEAバイアスを同時に設定してもよい。
図7は、制御部による制御の一例を示すフローチャートである。ここでは、制御部150が、メモリ部140に記憶された各設定値の組み合わせの情報に基づいて各設定値を調節する場合について説明する。図7に示すように、まず、外部から波長情報を取得する(ステップS701)。つぎに、ステップS701によって取得した波長情報が示す波長に対応したEA温度の設定値の情報をメモリ部140から読み出す(ステップS702)。
つぎに、ステップS701によって読み出した波長情報が示す波長に対応した波長制御電流の設定値の情報をメモリ部140から読み出す(ステップS703)。つぎに、ステップS701によって取得した波長情報が示す波長に対応したEAバイアスの設定値の情報をメモリ部140から読み出す(ステップS704)。
つぎに、ステップS702により読み出した情報に基づいて、TEC130へ入力する温度制御電流を調節する(ステップS705)。つぎに、ステップS703により読み出した情報に基づいて、波長可変光源110へ入力する波長制御電流を調節する(ステップS706)。つぎに、ステップS704により読み出した情報に基づいて、EA変調器120へ入力するEAバイアスを調節し(ステップS707)、一連の制御を終了する。
なお、ここでは、温度制御電流、波長制御電流およびEAバイアスの各設定値を連続してメモリ部140から読み出した後、温度制御電流、波長制御電流およびEAバイアスの各設定値を調節する制御について説明したが、温度制御電流、波長制御電流およびEAバイアスの各設定値を読み出す毎に温度制御電流、波長制御電流およびEAバイアスの設定値をそれぞれ調節する制御としてもよい。
図8は、制御部による制御の他の一例を示すフローチャートである。ここでは、制御部150が、メモリ部140に記憶された各設定値の関数に基づいて各設定値を調節する場合について説明する。図8に示すように、まず、外部から波長情報を取得する(ステップS801)。つぎに、メモリ部140からEA温度の波長に対する関数を読み出して、読み出した関数に基づいて、ステップS801によって取得した波長情報が示す波長に対応したEA温度の設定値を算出する(ステップS802)。
つぎに、メモリ部140から波長制御電流の波長に対する関数を読み出して、読み出した関数に基づいて、ステップS801によって取得した波長情報が示す波長に対応した波長制御電流の設定値を算出する(ステップS803)。つぎに、メモリ部140からEAバイアスの波長に対する関数を読み出して、読み出した関数に基づいて、ステップS801によって取得した波長情報が示す波長に対応したEAバイアスの設定値を算出する(ステップS804)。
つぎに、ステップS802により算出した設定値に基づいて、TEC130へ入力する温度制御電流を調節する(ステップS805)。つぎに、ステップS803により算出した設定値に基づいて、波長可変光源110へ入力する波長制御電流を調節する(ステップS806)。つぎに、ステップS804により算出した設定値に基づいて、EA変調器120へ入力するEAバイアスを調節し(ステップS807)、一連の制御を終了する。
なお、ここでは、温度制御電流、波長制御電流およびEAバイアスの各設定値を連続して算出した後、温度制御電流、波長制御電流およびEAバイアスの各設定値を調節する制御について説明したが、温度制御電流、波長制御電流およびEAバイアスの各設定値を算出する毎に温度制御電流、波長制御電流およびEAバイアスの設定値をそれぞれ調節する制御としてもよい。
このように、実施の形態1にかかる光送信装置100によれば、波長可変光源110へ入力する波長制御電流の設定値を波長に応じて調節するとともに、EA変調器120へ入力するEAバイアスの設定値およびTEC130へ入力する温度制御電流の設定値を波長に応じて調節することで、波長制御時の伝送特性を向上させることができる。
また、波長制御時に、EA温度の制御とともにEAバイアスの制御を行うことで、伝送特性を確保するために必要なEA温度の範囲330を小さくすることができる。このため、光送信装置100の消費電力を低減することができる。このため、TOSAへの適用において要求される光送信装置の消費電力と信頼度を満たすことができ、光送信装置のTOSAへの適用が容易になる。
なお、上述した実施の形態1の説明では、制御部150が、波長制御電流と、EAバイアスと、温度制御電流と、の設定値を波長に応じて調節する構成としたが、制御部150が、波長制御電流と、EAバイアスと、の設定値を波長に応じて調節し、温度制御電流の設定値は波長にかかわらず一定に調節する構成としてもよい。または、制御部150が、波長制御電流と、温度制御電流と、の設定値を波長に応じて調節し、EAバイアスの設定値は波長にかかわらず一定に調節する構成としてもよい。
図9は、メモリ部に記憶された情報(その2)を示す図である。図9において、図2に示した部分と同様の部分については同一の符号を付して説明を省略する。図9は、制御部150が、波長可変光源110へ入力する波長制御電流と、EA変調器120へ入力するEAバイアスと、の設定値を波長に応じて調節し、TEC130へ入力する温度制御電流の設定値を一定に調節する場合のテーブル200を示している。
この場合は、符号220に示すように、波長(λ1〜λn)に対応付けられた全てのEA温度の設定値はT1となっている。この場合は、テーブル200として記憶される設定値の組み合わせの情報は、波長制御電流、EAバイアス、の順に決定する(図19参照)。なお、EA温度情報をテーブル200に格納せず、EA温度の設定値が常にT1である旨の情報をテーブル200とは別にメモリ部140に記憶してもよい。
図10は、メモリ部に記憶された情報(その3)を示す図である。図10において、図2に示した部分と同様の部分については同一の符号を付して説明を省略する。図10は、制御部150が、波長可変光源110へ入力する波長制御電流と、TEC130へ入力する温度制御電流と、の設定値を波長に応じて調節し、EA変調器120へ入力するEAバイアスの設定値は一定に調節する場合のテーブル200を示している。
この場合は、符号230に示すように、波長(λ1〜λn)に対応付けられた全てのEAバイアスの設定値はV1となっている。この場合は、テーブル200として記憶される設定値の組み合わせの情報は、温度制御電流、波長制御電流、の順に決定する(図21参照)。なお、EAバイアスの情報をテーブル200に格納せず、EAバイアスの設定値が常にV1である旨の情報をテーブル200とは別にメモリ部140に記憶してもよい。
(実施の形態2)
図11は、実施の形態2にかかる光送信装置の機能的構成を示すブロック図である。図11において、図1に示した構成と同様の構成については同一の符号を付して説明を省略する。図11に示すように、実施の形態2にかかる光送信装置100は、図1に示した光送信装置100の構成に加えてSOA1110(半導体光増幅器:Semiconductor Optical Amplifier)を備えている。
SOA1110は、波長可変光源110およびEA変調器120とともにTEC130上に集積して設けられている。波長可変光源110は、生成した光をSOA1110へ出力する。SOA1110には、波長可変光源110から出力される光と、制御部150から出力される強度制御電流と、が入力される。SOA1110は、波長可変光源110から出力された光を、制御部150から入力される強度制御電流に応じて増幅する。
SOA1110は、増幅した光をEA変調器120へ出力する。EA変調器120には、SOA1110から出力された光と、制御部150から出力されたEAバイアスと、が入力される。EA変調器120は、SOA1110から出力された光に対して変調を行う。メモリ部140は、波長制御電流と、EAバイアスと、温度制御電流と、強度制御電流と、の設定値の組み合わせの情報を、使用波長毎に対応させてあらかじめ記憶している。
制御部150は、SOA1110へ強度制御電流を入力する。また、制御部150は、SOA1110へ入力する強度制御電流を調節することで、SOA1110による光の強度を制御する。制御部150は、波長可変光源110へ入力する波長制御電流と、EA変調器120へ入力するEAバイアスと、TEC130へ入力する温度制御電流と、SOA1110へ入力する強度制御電流と、の設定値の組み合わせを波長に応じて調節する。
具体的には、制御部150は、メモリ部140に記憶された組み合わせの情報のうちの、入力される波長情報が示す波長に対応した組み合わせの情報を読み出す。制御部150は、メモリ部140から読み出した組み合わせの情報に基づいて、波長可変光源110へ入力する波長制御電流、EA変調器120へ入力するEAバイアス、TEC130へ入力する温度制御電流およびSOA1110へ入力する強度制御電流の各設定値を調節する。
図12は、メモリ部に記憶された情報(その4)を示す図である。図12において、図2に示した部分と同様の部分については同一の符号を付して説明を省略する。図12は、制御部150が、波長可変光源110へ入力する波長制御電流と、EA変調器120へ入力するEAバイアスと、TEC130へ入力する温度制御電流と、SOA1110へ入力する強度制御電流と、を波長に応じて調節する場合のテーブル200を示している。
図12に示すように、実施の形態2にかかる光送信装置100のメモリ部140が記憶するテーブル200は、図2に示したテーブル200に加えて、使用波長(λ1〜λn)に対応付けられた強度制御電流(Isoa 1〜Isoa n)の情報を有する。制御部150は、波長情報が示す波長に対応した強度制御電流をSOA1110へ入力する。
図13は、光送信装置の機能的構成の変形例を示すブロック図である。図13において、図4および図11に示した構成と同様の構成については同一の符号を付して説明を省略する。図13に示すように、実施の形態2にかかる光送信装置100は、図11に示した構成に加えて光モニタ部410および設定値決定部420を備えていてもよい。光モニタ部410は、取得した光の波長および伝送特性を監視するとともに、取得した光の強度を監視する。光モニタ部410は、監視した強度の情報を設定値決定部420へ出力する。
設定値決定部420は、メモリ部140に記憶される各設定値の組み合わせの情報を、光送信装置100の使用波長(λ1〜λn)毎に、温度制御電流の設定値、波長制御電流の設定値、EAバイアスの設定値、強度制御電流の設定値、の順に決定する。具体的には、設定値決定部420は、温度決定部421と、波長決定部422と、バイアス決定部423と、強度決定部1310と、を備えている。
バイアス決定部423は、決定したEAバイアスの各設定値の情報を対応付けた設定値情報を強度決定部1310へ出力する。強度決定部1310は、制御部150を介して強度制御電流を変化させ、光モニタ部410から出力される情報が示す強度が所望の強度になる強度制御電流の各設定値を、各使用波長に対応する強度制御電流の各設定値として決定する。強度決定部1310は、バイアス決定部423から出力された設定値情報に、決定した強度制御電流の各設定値の情報を対応付けてメモリ部140へ出力する。
強度決定部1310からメモリ部140へ出力される設定値情報は、使用波長毎に対応付けられた、温度制御電流の各設定値と、波長制御電流の各設定値と、EAバイアスの各設定値と、強度制御電流の各設定値と、の情報を含んでおり、たとえば図12に示したテーブル200のようになる。メモリ部140は、強度決定部1310から出力された設定値情報を、上述した各設定値の組み合わせの情報として記憶する。
図14は、各設定値を決定する手順の一例を示すフローチャートである。図14において、ステップS1401〜S1409は、図5に示したステップS501〜S509と同様であるため、説明を省略する。図14に示すように、ステップS1409によって使用波長毎に対応するEAバイアスの各設定値を決定した後に、強度決定部1310が、使用波長毎に対応する強度制御電流の各設定値を決定する(ステップS1410)。
たとえば、λ1に対応付けた強度制御電流の設定値を決定する場合には、制御部150を介して、温度制御電流、波長制御電流およびEAバイアスの設定値をλ1に対応付けられた設定値に調節する。そして、波長可変光源110へ入力する波長制御電流を制御部150を介して変化させ、光モニタ部410から出力される情報が示す強度が所望の強度になるときの強度制御電流の設定値を、λ1に対応する設定値として決定する。λ2〜λnに対応する強度制御電流の各設定値も同様にそれぞれ決定する。
つぎに、ステップS1403〜S1407によって決定したEA温度の各設定値と、ステップS1408によって決定した波長制御電流の各設定値と、ステップS1409によって決定したEAバイアスの各設定値と、ステップS1410によって決定した強度制御電流の各設定値と、の組み合わせの情報を使用波長毎に対応付けてメモリ部140に記憶し(ステップS1411)、一連の手順を終了する。
このように、実施の形態2にかかる光送信装置100によれば、実施の形態1にかかる光送信装置100の効果を奏するとともに、温度制御電流、波長制御電流およびEAバイアスの各設定値を決定した後に決定した強度制御電流の設定値を用いてSOA1110による光の利得を制御することで、波長制御時の伝送特性を劣化させることなく、送信する光の強度を所望の強度に制御することができる。
図15は、FIT数および消費電力のEA温度との関係を示すグラフである。図15において、図3に示した部分と同様の部分については同一の符号を付して説明を省略する。範囲2230は、従来の光送信装置において、伝送特性を満たすために確保する必要があるEA温度の制御の範囲である(図22参照)。これに対して、光送信装置100は、EA温度の制御とともにEAバイアスの制御を行うことで、伝送特性を確保するために必要なEA温度の制御範囲330を小さくすることができる。
このため、光送信装置100の消費電力を低減することができる。この場合は、消費電力が1.4Wとなり、光送信装置をTOSAに適用する場合に要求される消費電力の範囲を満たすことができる。このため、TOSAへの適用において要求される光送信装置の消費電力と信頼度を満たすことができ、光送信装置のTOSAへの適用が容易になる。
図16は、最小受信感度と出力波長との関係を示すグラフである。図16において、横軸は、光送信装置100の出力波長[nm]を示している。縦軸は、光送信装置100が送信する光の最小受信感度[dBm]を示している。符号1610および符号1620は、光送信装置100が出力波長をλ1からλ4へ変化させた場合の、光送信装置100から送信された光の最小受信感度を示している。
符号1610は、光送信装置100から送信された直後(波長分散なし)の光の最小受信感度を示している。符号1620は、光送信装置100から送信され、伝送路(およそ80km)を通過して波長分散が1600ps/nm発生した光の最小受信感度を示している。符号1610および符号1620に示すように、光送信装置100の出力波長を1542[nm],1543[nm],1544[nm],1545[nm]と変化させた場合にも、光送信装置100の最小受信感度はほとんど劣化しない。
図17は、伝送ペナルティと出力波長との関係を示すグラフである。図17において、横軸は、光送信装置100の出力波長[nm]を示している。符号1710は、光送信装置100の伝送ペナルティ[dB]を示している。図17に示すように、光送信装置100の出力波長を1542[nm],1543[nm],1544[nm],1545[nm]と変化させた場合にも、光送信装置100の伝送ペナルティはほとんど劣化しない。
図18は、光送信装置をTOSAに適用した実施例を示す正面断面図である。図18において、図11に示した構成と同様の構成については同一の符号を付して説明を省略する。図18に示すTOSA1800は、上述した実施の形態2にかかる光送信装置100をTOSAに適用した実施例である。TOSA1800は、筐体1810と、基板1820と、波長可変光源110と、SOA1110と、EA変調器120と、サーミスタ1830と、光学系1840と、光ファイバ1850と、TEC130と、を備えている。
基板1820はTEC130上に設けられている。基板1820上には、波長可変光源110と、SOA1110と、EA変調器120と、サーミスタ1830と、が集積されている。また、上述した制御部150、温度決定部421、波長決定部422、バイアス決定部423および強度決定部1310は、たとえばCPU(Central Processing Unit)によって構成され、基板1820上に設けられる(不図示)。
また、上述したメモリ部140も基板1820上に設けられ(不図示)、基板1820を介して制御部150に接続されている。制御部150は、波長制御電流、EAバイアス、温度制御電流および強度制御電流を、基板1820を介して、波長可変光源110、EA変調器120、TEC130およびSOA1110へそれぞれ入力する。サーミスタ1830は、上述した温度モニタ素子131に対応する構成であり、基板1820の温度に応じた電流をEA温度情報として制御部150へ出力する。
光学系1840は、EA変調器120から出射された光をコリメートするコリメートレンズ1841と、コリメートレンズ1841によってコリメートされた光を集光して光ファイバ1850へ結合する集光レンズ1842と、から構成されている。光ファイバ1850は、集光レンズ1842によって結合された光を外部へ出力する。
以上説明したように、開示の光送信装置および設定値決定方法によれば、波長制御時の伝送特性を向上させることができる。
(付記1)入力される波長制御電流に応じた波長の光を生成する波長可変光源と、
前記波長可変光源によって生成された光に対して、入力されるEAバイアスに応じた変調特性によって変調を行う電界吸収型変調器と、
前記電界吸収型変調器のEA温度を、入力される温度制御電流に応じて変化させる温度調節手段と、
前記波長可変光源へ入力する波長制御電流と、前記電界吸収型変調器へ入力するEAバイアスと、の各設定値を入力される波長情報に応じて調節することで前記波長可変光源の前記波長および前記電界吸収型変調器の前記変調特性を制御する制御手段と、
を備えることを特徴とする光送信装置。
(付記2)入力される波長制御電流に応じた波長の光を生成する波長可変光源と、
前記波長可変光源によって生成された光に対して、入力されるEAバイアスに応じた変調特性によって変調を行う電界吸収型変調器と、
前記電界吸収型変調器のEA温度を、入力される温度制御電流に応じて変化させる温度調節手段と、
前記温度制御電流を調節することで制御する前記EA温度と、前記波長可変光源へ入力する波長制御電流と、の各設定値を入力される波長情報が示す波長に応じて調節することで、前記EA温度および前記波長可変光源の前記波長を制御する制御手段と、
を備えることを特徴とする光送信装置。
(付記3)前記制御手段は、前記温度制御電流を調節することで制御する前記EA温度と、前記波長可変光源へ入力する波長制御電流と、前記電界吸収型変調器へ入力するEAバイアスと、の各設定値を前記波長情報が示す波長に応じて調節することで、前記EA温度、前記波長可変光源の前記波長および前記電界吸収型変調器の前記変調特性を制御することを特徴とする付記1または2に記載の光送信装置。
(付記4)前記制御手段は、前記波長情報が示す波長が長いほど、前記EA温度の設定値を上げ、前記波長制御電流の設定値を下げ、前記EAバイアスの設定値を上げる制御を行うことを特徴とする付記1〜3のいずれか一つに記載の光送信装置。
(付記5)前記温度調節手段は熱電クーラであり、
前記波長可変光源および前記電界吸収型変調器は、前記熱電クーラ上に集積されることを特徴とする付記1〜3のいずれか一つに記載の光送信装置。
(付記6)前記熱電クーラには、前記熱電クーラの温度を示す情報を出力する温度モニタ素子が設けられており、
前記制御手段は、前記温度モニタ素子から出力された情報に応じて前記温度調節手段へ入力する前記温度制御電流を調節することを特徴とする付記5に記載の光送信装置。
(付記7)前記EA温度と、前記波長可変光源へ入力する波長制御電流と、前記電界吸収型変調器へ入力するEAバイアスと、の各設定値の組み合わせの情報を使用波長毎に対応させて記憶した記憶手段をさらに備え、
前記制御手段は、前記記憶手段によって記憶された組み合わせの情報のうちの、前記入力される波長情報が示す波長に対応した組み合わせの情報に基づいて前記各設定値を調節することを特徴とする付記1〜6のいずれか一つに記載の光送信装置。
(付記8)前記EA温度と、前記波長制御電流と、前記EAバイアスと、の波長に対する各関数を記憶した記憶手段をさらに備え、
前記制御手段は、前記記憶手段によって記憶される前記各関数および前記波長情報が示す波長に基づいて前記波長制御電流、前記EA温度および前記EAバイアスの設定値を算出し、算出した各設定値に基づいて調節することを特徴とする付記1〜6のいずれか一つに記載の光送信装置。
(付記9)前記光送信装置の信頼度パラメータおよび消費電力の情報に基づいて、前記使用波長毎に対応する前記EA温度の各設定値を決定する温度決定手段と、
前記温度決定手段によって決定された前記EA温度の各設定値に基づいて、前記使用波長毎に対応する波長制御電流の各設定値を決定する波長決定手段と、
前記温度決定手段によって決定された前記EA温度の各設定値および前記波長決定手段によって決定された前記波長制御電流の各設定値に基づいて、前記使用波長毎に対応する前記EAバイアスの各設定値を決定するバイアス決定手段と、をさらに備え、
前記記憶手段は、前記温度決定手段、前記波長決定手段および前記バイアス決定手段によって決定された各設定値の組み合わせの情報を記憶することを特徴とする付記7に記載の光送信装置。
(付記10)前記波長可変光源から前記電界吸収型変調器へ出力される光を、入力される強度制御電流に応じて増幅する半導体光増幅器をさらに備え、
前記制御手段は、前記EA温度と、前記波長可変光源へ入力する波長制御電流と、前記電界吸収型変調器へ入力するEAバイアスと、前記半導体光増幅器へ入力する強度制御電流と、の各設定値を入力される波長情報に応じて調節することを特徴とする付記1または2に記載の光送信装置。
(付記11)前記EA温度と、前記波長可変光源へ入力する波長制御電流と、前記電界吸収型変調器へ入力するEAバイアスと、前記半導体光増幅器へ入力する強度制御電流と、の各設定値の組み合わせの情報を使用波長毎に対応させて記憶した記憶手段をさらに備え、
前記制御手段は、前記記憶手段によって記憶された組み合わせの情報のうちの、前記波長情報が示す波長に対応した組み合わせの情報に基づいて前記各設定値を調節することを特徴とする付記10に記載の光送信装置。
(付記12)前記光送信装置の信頼度パラメータおよび消費電力の情報に基づいて、前記使用波長毎に対応する前記EA温度の各設定値を決定する温度決定手段と、
前記温度決定手段によって決定された前記EA温度の各設定値に基づいて、前記使用波長毎に対応する波長制御電流の各設定値を決定する波長決定手段と、
前記温度決定手段によって決定された前記EA温度の各設定値および前記波長決定手段によって決定された前記波長制御電流の各設定値に基づいて、前記使用波長毎に対応する前記EAバイアスの各設定値を決定するバイアス決定手段と、
前記温度決定手段によって決定された前記EA温度の各設定値、前記波長決定手段によって決定された前記波長制御電流の各設定値および前記バイアス決定手段によって決定された前記EAバイアスの各設定値に基づいて、前記使用波長毎に対応する前記強度制御電流の各設定値を決定する強度決定手段と、をさらに備え、
前記記憶手段は、前記温度決定手段、前記波長決定手段、前記バイアス決定手段および前記強度決定手段によって決定された各設定値の組み合わせの情報を記憶することを特徴とする付記11に記載の光送信装置。
(付記13)入力される波長制御電流に応じた波長の光を生成する波長可変光源と、前記波長可変光源によって生成された光に対して、入力されるEAバイアスに応じた変調特性によって変調を行う電界吸収型変調器と、前記電界吸収型変調器のEA温度を、入力される温度制御電流に応じて変化させる温度調節手段と、を備える光送信装置の設定値決定方法であって、
前記光送信装置の信頼度パラメータおよび消費電力の情報に基づいて、前記使用波長毎に対応する前記EA温度の各設定値を決定する温度決定工程と、
前記温度決定工程によって決定された前記EA温度の各設定値に基づいて、前記使用波長毎に対応する波長制御電流の各設定値を決定する波長決定工程と、
前記温度制御電流の各設定値および前記波長決定工程によって決定された波長制御電流の各設定値に基づいて、前記使用波長毎に対応するEAバイアスの各設定値を決定するバイアス決定工程と、
を含むことを特徴とする設定値決定方法。
(付記14)前記光送信装置は、前記EA温度と、前記波長可変光源へ入力する波長制御電流と、前記電界吸収型変調器へ入力するEAバイアスと、の設定値の組み合わせの情報を使用波長毎に対応させて記憶する記憶手段をさらに備え、
前記温度決定工程によって決定されたEA温度の各設定値と、前記波長決定工程によって決定された波長制御電流の各設定値と、前記バイアス決定工程によって決定されたEAバイアスの各設定値と、の組み合わせの情報を使用波長毎に対応付けて前記記憶手段に記憶させる記憶工程をさらに含むことを特徴とする付記13に記載の設定値決定方法。
(付記15)前記温度決定工程によって決定されたEA温度の各設定値と、前記波長決定工程によって決定された波長制御電流の各設定値と、前記バイアス決定工程によって決定されたEAバイアスの各設定値と、に基づいて、前記波長制御電流と、前記EA温度と、前記EAバイアスと、の波長に対する各関数を近似的に算出する算出工程をさらに含むことを特徴とする付記13または14に記載の設定値決定方法。
(付記16)前記温度決定工程は、
前記信頼度パラメータと前記EA温度との関数に基づいて、前記信頼度パラメータが所望の値以上となる前記EA温度の上限を算出する上限温度算出工程と、
前記消費電力と前記EA温度との関数に基づいて、前記消費電力が所望の値以下となる前記EA温度の下限を算出する下限温度算出工程と、
前記上限温度算出工程によって算出された前記EA温度の上限と、前記下限温度算出工程によって算出された前記EA温度の下限と、によって決まる範囲において、前記使用波長毎に対応する前記EA温度の各設定値を決定する決定工程と、
を含むことを特徴とする付記13〜15のいずれか一つに記載の設定値決定方法。
(付記17)前記波長決定工程では、前記使用波長毎に、前記温度決定工程によって決定された前記使用波長に対応する前記EA温度の設定値を設定し、前記電界吸収型変調器から出力される光の波長が前記使用波長になる波長制御電流を前記使用波長に対応した設定値として決定することを特徴とする付記13〜16のいずれか一つに記載の設定値決定方法。
(付記18)前記バイアス決定工程では、前記使用波長毎に、前記温度決定工程および前記波長決定工程によって決定された前記使用波長に対応する前記EA温度および前記波長制御電流の設定値を設定し、前記電界吸収型変調器から出力される光の伝送特性が所望の伝送特性になるEAバイアスを前記使用波長に対応した設定値として決定することを特徴とする付記13〜17のいずれか一つに記載の設定値決定方法。
(付記19)前記光送信装置は、前記波長可変光源から前記電界吸収型変調器へ出力される光を、入力される強度制御電流に応じて増幅する半導体光増幅器をさらに備え、
前記温度決定工程によって決定された前記EA温度の各設定値、前記波長決定工程によって決定された前記波長制御電流の各設定値および前記バイアス決定工程によって決定された前記EAバイアスの各設定値に基づいて、前記使用波長毎に対応する前記強度制御電流の各設定値を決定する強度決定工程をさらに含むことを特徴とする付記13〜18のいずれか一つに記載の設定値決定方法。
(付記20)前記強度決定工程では、前記使用波長毎に、前記温度決定工程、前記波長決定工程および前記バイアス決定工程によって決定された前記使用波長に対応する前記EA温度、前記波長制御電流および前記EAバイアスの設定値を設定し、前記電界吸収型変調器から出力される光の強度が所望の強度になる強度制御電流を前記使用波長に対応した設定値として決定することを特徴とする付記19に記載の設定値決定方法。
実施の形態1にかかる光送信装置の機能的構成を示すブロック図である。 メモリ部に記憶された情報(その1)を示す図である。 FIT数および消費電力のEA温度との関係を示すグラフである。 光送信装置の機能的構成の変形例を示すブロック図である。 各設定値を決定する手順の一例を示すフローチャートである。 波長制御、EA温度およびEAバンドギャップ波長特性の制御を説明するグラフである。 制御部による制御の一例を示すフローチャートである。 制御部による制御の他の一例を示すフローチャートである。 メモリ部に記憶された情報(その2)を示す図である。 メモリ部に記憶された情報(その3)を示す図である。 実施の形態2にかかる光送信装置の機能的構成を示すブロック図である。 メモリ部に記憶された情報(その4)を示す図である。 光送信装置の機能的構成の変形例を示すブロック図である。 各設定値を決定する手順の一例を示すフローチャートである。 FIT数および消費電力のEA温度との関係を示すグラフである。 最小受信感度と出力波長との関係を示すグラフである。 伝送ペナルティと出力波長との関係を示すグラフである。 光送信装置をTOSAに適用した実施例を示す正面断面図である。 波長制御およびEAバンドギャップ波長特性の制御を説明するグラフである。 図19で示した制御方法による出力光の劣化を説明するグラフである。 波長制御およびEA温度の制御を説明するグラフである。 図21で示した制御方法によるFIT数および消費電力を示すグラフである。
符号の説明
100 光送信装置
200 テーブル
410 光モニタ部
420 設定値決定部
1800 TOSA
1810 筐体
1820 基板
1830 サーミスタ
1840 光学系
1841 コリメートレンズ
1842 集光レンズ
1850 光ファイバ

Claims (10)

  1. 入力される波長制御電流に応じた波長の光を生成する波長可変光源と、
    前記波長可変光源によって生成された光に対して、入力されるEAバイアスに応じた変調特性によって変調を行う電界吸収型変調器と、
    前記電界吸収型変調器のEA温度を、入力される温度制御電流に応じて変化させる温度調節手段と、
    前記波長可変光源へ入力する波長制御電流と、前記電界吸収型変調器へ入力するEAバイアスと、の各設定値を入力される波長情報に応じて調節することで前記波長可変光源の前記波長および前記電界吸収型変調器の前記変調特性を制御する制御手段と、
    を備えることを特徴とする光送信装置。
  2. 入力される波長制御電流に応じた波長の光を生成する波長可変光源と、
    前記波長可変光源によって生成された光に対して、入力されるEAバイアスに応じた変調特性によって変調を行う電界吸収型変調器と、
    前記電界吸収型変調器のEA温度を、入力される温度制御電流に応じて変化させる温度調節手段と、
    前記温度制御電流を調節することで制御する前記EA温度と、前記波長可変光源へ入力する波長制御電流と、の各設定値を入力される波長情報が示す波長に応じて調節することで、前記EA温度および前記波長可変光源の前記波長を制御する制御手段と、
    を備えることを特徴とする光送信装置。
  3. 前記EA温度と、前記波長可変光源へ入力する波長制御電流と、前記電界吸収型変調器へ入力するEAバイアスと、の各設定値の組み合わせの情報を使用波長毎に対応させて記憶した記憶手段をさらに備え、
    前記制御手段は、前記記憶手段によって記憶された組み合わせの情報のうちの、前記入力される波長情報が示す波長に対応した組み合わせの情報に基づいて前記各設定値を調節することを特徴とする請求項1または2に記載の光送信装置。
  4. 前記EA温度と、前記波長制御電流と、前記EAバイアスと、の波長に対する各関数を記憶した記憶手段をさらに備え、
    前記制御手段は、前記記憶手段によって記憶される前記各関数および前記波長情報が示す波長に基づいて前記波長制御電流、前記EA温度および前記EAバイアスの設定値を算出し、算出した各設定値に基づいて調節することを特徴とする請求項1または2に記載の光送信装置。
  5. 前記光送信装置の信頼度パラメータおよび消費電力の情報に基づいて、前記使用波長毎に対応する前記EA温度の各設定値を決定する温度決定手段と、
    前記温度決定手段によって決定された前記EA温度の各設定値に基づいて、前記使用波長毎に対応する波長制御電流の各設定値を決定する波長決定手段と、
    前記温度決定手段によって決定された前記EA温度の各設定値および前記波長決定手段によって決定された前記波長制御電流の各設定値に基づいて、前記使用波長毎に対応する前記EAバイアスの各設定値を決定するバイアス決定手段と、をさらに備え、
    前記記憶手段は、前記温度決定手段、前記波長決定手段および前記バイアス決定手段によって決定された各設定値の組み合わせの情報を記憶することを特徴とする請求項3に記載の光送信装置。
  6. 前記波長可変光源から前記電界吸収型変調器へ出力される光を、入力される強度制御電流に応じて増幅する半導体光増幅器と、
    前記EA温度と、前記波長可変光源へ入力する波長制御電流と、前記電界吸収型変調器へ入力するEAバイアスと、前記半導体光増幅器へ入力する強度制御電流と、の各設定値の組み合わせの情報を使用波長毎に対応させて記憶した記憶手段と、をさらに備え、
    前記制御手段は、前記記憶手段によって記憶された組み合わせの情報のうちの、前記波長情報が示す波長に対応した組み合わせの情報に基づいて、前記EA温度と、前記波長可変光源へ入力する波長制御電流と、前記電界吸収型変調器へ入力するEAバイアスと、前記半導体光増幅器へ入力する強度制御電流と、の各設定値を調節することを特徴とする請求項1または2に記載の光送信装置。
  7. 前記光送信装置の信頼度パラメータおよび消費電力の情報に基づいて、前記使用波長毎に対応する前記EA温度の各設定値を決定する温度決定手段と、
    前記温度決定手段によって決定された前記EA温度の各設定値に基づいて、前記使用波長毎に対応する波長制御電流の各設定値を決定する波長決定手段と、
    前記温度決定手段によって決定された前記EA温度の各設定値および前記波長決定手段によって決定された前記波長制御電流の各設定値に基づいて、前記使用波長毎に対応する前記EAバイアスの各設定値を決定するバイアス決定手段と、
    前記温度決定手段によって決定された前記EA温度の各設定値、前記波長決定手段によって決定された前記波長制御電流の各設定値および前記バイアス決定手段によって決定された前記EAバイアスの各設定値に基づいて、前記使用波長毎に対応する前記強度制御電流の各設定値を決定する強度決定手段と、をさらに備え、
    前記記憶手段は、前記温度決定手段、前記波長決定手段、前記バイアス決定手段および前記強度決定手段によって決定された各設定値の組み合わせの情報を記憶することを特徴とする請求項6に記載の光送信装置。
  8. 入力される波長制御電流に応じた波長の光を生成する波長可変光源と、前記波長可変光源によって生成された光に対して、入力されるEAバイアスに応じた変調特性によって変調を行う電界吸収型変調器と、前記電界吸収型変調器のEA温度を、入力される温度制御電流に応じて変化させる温度調節手段と、前記EA温度、前記波長可変光源へ入力する波長制御電流および前記電界吸収型変調器へ入力するEAバイアスの設定値の組み合わせの情報を使用波長毎に対応させて記憶する記憶手段と、を備える光送信装置の設定値決定方法であって、
    前記光送信装置の信頼度パラメータおよび消費電力の情報に基づいて、前記使用波長毎に対応する前記EA温度の各設定値を決定する温度決定工程と、
    前記温度決定工程によって決定された前記EA温度の各設定値に基づいて、前記使用波長毎に対応する波長制御電流の各設定値を決定する波長決定工程と、
    前記温度制御電流の各設定値および前記波長決定工程によって決定された波長制御電流の各設定値に基づいて、前記使用波長毎に対応するEAバイアスの各設定値を決定するバイアス決定工程と、
    前記温度決定工程によって決定されたEA温度の各設定値と、前記波長決定工程によって決定された波長制御電流の各設定値と、前記バイアス決定工程によって決定されたEAバイアスの各設定値と、の組み合わせの情報を使用波長毎に対応付けて前記記憶手段に記憶させる記憶工程と、
    を含むことを特徴とする設定値決定方法。
  9. 前記温度決定工程によって決定されたEA温度の各設定値と、前記波長決定工程によって決定された波長制御電流の各設定値と、前記バイアス決定工程によって決定されたEAバイアスの各設定値と、に基づいて、前記波長制御電流と、前記EA温度と、前記EAバイアスと、の波長に対する各関数を近似的に算出する算出工程をさらに含むことを特徴とする請求項8に記載の設定値決定方法。
  10. 前記温度決定工程は、
    前記信頼度パラメータと前記EA温度との関数に基づいて、前記信頼度パラメータが所望の値以上となる前記EA温度の上限を算出する上限温度算出工程と、
    前記消費電力と前記EA温度との関数に基づいて、前記消費電力が所望の値以下となる前記EA温度の下限を算出する下限温度算出工程と、
    前記上限温度算出工程によって算出された前記EA温度の上限と、前記下限温度算出工程によって算出された前記EA温度の下限と、によって決まる範囲において、前記使用波長毎に対応する前記EA温度の各設定値を決定する決定工程と、
    を含むことを特徴とする請求項8または9に記載の設定値決定方法。
JP2007247351A 2007-09-25 2007-09-25 光送信装置および設定値決定方法 Pending JP2009081512A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007247351A JP2009081512A (ja) 2007-09-25 2007-09-25 光送信装置および設定値決定方法
US12/219,939 US20090080904A1 (en) 2007-09-25 2008-07-30 Optical transmitting apparatus and setting-value determining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007247351A JP2009081512A (ja) 2007-09-25 2007-09-25 光送信装置および設定値決定方法

Publications (1)

Publication Number Publication Date
JP2009081512A true JP2009081512A (ja) 2009-04-16

Family

ID=40471761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007247351A Pending JP2009081512A (ja) 2007-09-25 2007-09-25 光送信装置および設定値決定方法

Country Status (2)

Country Link
US (1) US20090080904A1 (ja)
JP (1) JP2009081512A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215662A (ja) * 2011-03-31 2012-11-08 Fujitsu Optical Components Ltd 光送信機および光波形補償方法
US8735802B2 (en) 2011-02-15 2014-05-27 Nec Corporation Optical transmission device, optical transmission/reception device, control method, and control program having heating and cooling control functions of a temperature control element
JP2015111644A (ja) * 2013-10-30 2015-06-18 住友電工デバイス・イノベーション株式会社 波長可変レーザの制御方法
JP2018502485A (ja) * 2014-11-20 2018-01-25 オーイー・ソリューションズ・アメリカ・インコーポレーテッド 同調可能な光デバイスおよびサブアセンブリに対して制御、モニタリング、および通信するための方法および装置
US10298332B2 (en) 2016-10-27 2019-05-21 Sumitomo Electric Device Innovations, Inc. Method of controlling semiconductor optical device that includes semiconductor optical amplifier
JP2022079575A (ja) * 2015-03-05 2022-05-26 日本電気株式会社 プラガブル光モジュール、光通信システム及び光通信方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5730469B2 (ja) 2009-03-27 2015-06-10 古河電気工業株式会社 波長可変光源装置
JP2011142584A (ja) * 2010-01-08 2011-07-21 Fujitsu Optical Components Ltd 光伝送装置
US8934779B2 (en) * 2012-02-10 2015-01-13 Source Photonics, Inc. Operational status indicators in an optical transceiver using dynamic thresholds
JP5822038B1 (ja) * 2015-02-20 2015-11-24 沖電気工業株式会社 光送信器、加入者側装置、及び光源の温度変化抑制方法。
AT522381B1 (de) 2019-04-25 2020-10-15 Ait Austrian Inst Tech Gmbh Anordnung zur Datenübertragung
US11146039B2 (en) * 2019-05-22 2021-10-12 Applied Optoelectronics, Inc. Temperature controlled multi-channel transmitter optical subassembly and transceiver module including same
CN114499684B (zh) * 2020-10-26 2023-12-05 青岛海信宽带多媒体技术有限公司 一种控制mz调制器工作点稳定的方法及***
CN114167556B (zh) * 2021-12-10 2022-12-20 深圳市欧深特信息技术有限公司 多通道光模块的波长调节方法、光模块和存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144367A (ja) * 1999-11-11 2001-05-25 Mitsubishi Electric Corp 半導体レーザ装置及びその駆動方法
JP2006261590A (ja) * 2005-03-18 2006-09-28 Furukawa Electric Co Ltd:The 集積型半導体レーザ装置および集積型半導体レーザ装置の駆動方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204523A (en) * 1991-08-19 1993-04-20 Xerox Corporation Method for spot position control in an optical output device employing a variable wavelength light source and an optical beam deflecting element
US5394489A (en) * 1993-07-27 1995-02-28 At&T Corp. Wavelength division multiplexed optical communication transmitters
US5491343A (en) * 1994-03-25 1996-02-13 Brooker; Gary High-speed multiple wavelength illumination source, apparatus containing the same, and applications thereof to methods of irradiating luminescent samples and of quantitative luminescence ratio microscopy
JP3583846B2 (ja) * 1995-12-26 2004-11-04 富士通株式会社 光変調器の駆動方法及び装置並びに光通信システム
US6567202B2 (en) * 1999-04-16 2003-05-20 Corning Incorporated Wavelength compensation in a WSXC using off-voltage control
US6233082B1 (en) * 1999-10-12 2001-05-15 Lucent Technologies Inc. Optical transmitter for WDM systems
JP2001127377A (ja) * 1999-10-28 2001-05-11 Hitachi Ltd 光送信装置および光伝送装置
JP4887549B2 (ja) * 2000-03-06 2012-02-29 富士通株式会社 波長可変安定化レーザ
US6842587B1 (en) * 2000-03-30 2005-01-11 Nortel Networks Limited Use of amplified spontaneous emission from a semiconductor optical amplifier to minimize channel interference during initialization of an externally modulated DWDM transmitter
US6486643B2 (en) * 2000-11-30 2002-11-26 Analog Technologies, Inc. High-efficiency H-bridge circuit using switched and linear stages
US20020097468A1 (en) * 2001-01-24 2002-07-25 Fsona Communications Corporation Laser communication system
GB0205529D0 (en) * 2002-03-08 2002-04-24 Agilent Technologies Inc Module apparatus
KR100496986B1 (ko) * 2002-11-01 2005-06-28 한국전자통신연구원 광원의 출력파장 천이 보정 방법
JP4421951B2 (ja) * 2004-06-11 2010-02-24 日本オプネクスト株式会社 光送信モジュール
US7747174B2 (en) * 2004-09-08 2010-06-29 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Multi-channel fabry-perot laser transmitters and methods of generating multiple modulated optical signals
CN101471539B (zh) * 2007-12-29 2010-09-08 华为技术有限公司 一种多路激光器的波长控制方法和***

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144367A (ja) * 1999-11-11 2001-05-25 Mitsubishi Electric Corp 半導体レーザ装置及びその駆動方法
JP2006261590A (ja) * 2005-03-18 2006-09-28 Furukawa Electric Co Ltd:The 集積型半導体レーザ装置および集積型半導体レーザ装置の駆動方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8735802B2 (en) 2011-02-15 2014-05-27 Nec Corporation Optical transmission device, optical transmission/reception device, control method, and control program having heating and cooling control functions of a temperature control element
JP2012215662A (ja) * 2011-03-31 2012-11-08 Fujitsu Optical Components Ltd 光送信機および光波形補償方法
JP2015111644A (ja) * 2013-10-30 2015-06-18 住友電工デバイス・イノベーション株式会社 波長可変レーザの制御方法
JP2018502485A (ja) * 2014-11-20 2018-01-25 オーイー・ソリューションズ・アメリカ・インコーポレーテッド 同調可能な光デバイスおよびサブアセンブリに対して制御、モニタリング、および通信するための方法および装置
JP2022079575A (ja) * 2015-03-05 2022-05-26 日本電気株式会社 プラガブル光モジュール、光通信システム及び光通信方法
US11784739B2 (en) 2015-03-05 2023-10-10 Nec Corporation Wavelength-tunable pluggable optical module, optical communication system and wavelength change method of wavelength-tunable pluggable optical module
US10298332B2 (en) 2016-10-27 2019-05-21 Sumitomo Electric Device Innovations, Inc. Method of controlling semiconductor optical device that includes semiconductor optical amplifier

Also Published As

Publication number Publication date
US20090080904A1 (en) 2009-03-26

Similar Documents

Publication Publication Date Title
JP2009081512A (ja) 光送信装置および設定値決定方法
JP4119918B2 (ja) 光モジュールおよびその波長監視制御方法
US6868200B2 (en) Wavelength division multiplexing optical transmission apparatus
US8249465B2 (en) Light transmitting apparatus and method for controlling the same
US6842587B1 (en) Use of amplified spontaneous emission from a semiconductor optical amplifier to minimize channel interference during initialization of an externally modulated DWDM transmitter
US20160134079A1 (en) Wavelength alignment method and apparatus, and optical network system
EP1564915A1 (en) Low relative intensity noise fiber grating type laser diode
JP2007109765A (ja) 波長可変光送信器および光送受信器
JP2013168500A (ja) 光半導体装置
US9042415B2 (en) Method to tune emission wavelength of semiconductor laser diode
US20080193145A1 (en) Optical transmitting apparatus and temperature controlling method used therefor
JP4957306B2 (ja) 光送信器
JP2001196689A (ja) レーザ波長を安定させる方法および装置
US20100254416A1 (en) Tunable laser source and linewidth narrowing method
US6965622B1 (en) Wavelength locking scheme and algorithm for ultra-high density WDM system
US20190221998A1 (en) Wavelength tunable laser module and method of controlling wavelength thereof
US6327064B1 (en) Frequency stabilized and crosstalk-free signal sources for optical communication systems
KR100236832B1 (ko) 파장분할다중 방식에서 파장 안정화부를 가지는 송신장치 및 구현방법
JP6849524B2 (ja) 半導体レーザ光源
JP2008078437A (ja) 半導体レーザモジュール
JP6586028B2 (ja) 半導体レーザ光源
KR100357625B1 (ko) 파장분할다중 광전송시스템 트랜스폰더의 파장 안정화 및출력 조정 장치
US8634680B2 (en) Wavelength control device and wavelength control method
JP5395235B2 (ja) 波長可変光送信器および光送受信器
JP2004304607A (ja) 光送信器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313