JP2009072987A - Laser welding device - Google Patents

Laser welding device Download PDF

Info

Publication number
JP2009072987A
JP2009072987A JP2007243093A JP2007243093A JP2009072987A JP 2009072987 A JP2009072987 A JP 2009072987A JP 2007243093 A JP2007243093 A JP 2007243093A JP 2007243093 A JP2007243093 A JP 2007243093A JP 2009072987 A JP2009072987 A JP 2009072987A
Authority
JP
Japan
Prior art keywords
prism
optical system
laser
workpiece
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007243093A
Other languages
Japanese (ja)
Inventor
Makoto Miyawaki
宮脇  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007243093A priority Critical patent/JP2009072987A/en
Publication of JP2009072987A publication Critical patent/JP2009072987A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • B29C65/1667Laser beams characterised by the way of heating the interface making use of several radiators at the same time, i.e. simultaneous laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1687Laser beams making use of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1222Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1224Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/22Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being in the form of recurring patterns
    • B29C66/225Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being in the form of recurring patterns being castellated, e.g. in the form of a square wave or of a rectangular wave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/816General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the mounting of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8161General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the mounting of the pressing elements, e.g. of the welding jaws or clamps said pressing elements being supported or backed-up by springs or by resilient material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/704Bobbins, spools

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Laser Beam Processing (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser welding device capable of highly accurately performing welding of an object to be irradiated at high speed with laser irradiation. <P>SOLUTION: The laser welding device has an irradiation head provided with an optical element comprising an image-forming optical group, a prism group and a deflection optical group, whereby a multi-point irradiation of laser is highly accurately performed toward an outer circumferential part of a cylindrical workpiece at high speed and, thereby, two members are bonded. Further, the laser welding device has a support mechanism of the positioning of the workpiece, for the prism group and the deflection optical group and, every time processing, securely supports the work and prevents deviation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、レーザー光による溶着手段及び接合装置に関するものである。   The present invention relates to welding means and a joining apparatus using laser light.

近年デジタルカメラを始めとするデジタル機器に搭載される機構部品や、これを駆動する小型のモータの小型化、低コスト化が進んでいる。その中で小型の樹脂製部品同士を締結する方法としてレーザー樹脂溶着方法が注目されている。この溶着方法は接合に必要な面積が小さく、接着剤の乾燥時間不要である。一方、モータ類は外装も磁気回路に利用する構造から外装が鉄製であるものが多かったが、組立製や部品点数低減などの効果が得られるため、特許文献1に示すように外観が樹脂製部品で構成されたものが開示されている。   In recent years, mechanical parts mounted on digital devices such as digital cameras and small motors for driving them have been reduced in size and cost. Among them, a laser resin welding method has attracted attention as a method for fastening small resin parts together. This welding method requires a small area for joining and does not require drying time of the adhesive. On the other hand, many motors have a structure in which the exterior is made of iron because of the structure used for the magnetic circuit. However, since effects such as assembly and reduction of the number of parts can be obtained, the appearance is made of resin as shown in Patent Document 1. What consists of parts is disclosed.

特許文献2に示すように、一部の偏平タイプのモータを除き、一般的に回転軸方向に長い円筒形状であるモータは、何層かのユニットを軸方向から積み重ねて組み立てる。そして、円筒状の結合部材を介し、軸方向に直交する径方向から接着剤の塗布、或いはレーザー光などによって金属溶接を行っている。ここで径方向から溶接する理由は、例えば溶接するために軸方向からレーザー光を照射できるようなツバ部などを設けるとツバ部は外筒から径方向に突出するので円筒形状にならず、装置内のモータの配置に支障をきたすからである。   As shown in Patent Document 2, except for some flat type motors, a motor having a generally cylindrical shape that is long in the direction of the rotation axis is assembled by stacking several layers of units from the axial direction. And metal welding is performed by application of an adhesive or laser light from the radial direction orthogonal to the axial direction via a cylindrical coupling member. Here, the reason for welding from the radial direction is that, for example, if a brim portion that can be irradiated with laser light from the axial direction for welding is provided, the brim portion protrudes from the outer cylinder in the radial direction, so it does not have a cylindrical shape. This is because the arrangement of the motors is hindered.

また、径方向から照射する場合はその接合強度のバランスの関係から、少なくとも外周上に2点、すなわち、180度回転した位置の2点に照射する。   In the case of irradiation from the radial direction, irradiation is performed at least at two points on the outer periphery, that is, at two points rotated by 180 degrees, because of the balance of the bonding strength.

一方、レーザー装置は一般的に、電源部、レーザー発振ユニット、制御部とレーザー発振ユニットから照射ヘッドまではガラスファイバー等で接続されている。照射ヘッド1本につき、レーザー発振ユニットも1台必要である。   On the other hand, the laser device is generally connected to the power supply unit, the laser oscillation unit, the control unit and the laser oscillation unit to the irradiation head by a glass fiber or the like. One laser oscillation unit is required for each irradiation head.

ワークである被照射物体が平面である場合は、照射ヘッドあるいはワークのいずれかが平面方向、すなわち、X軸方向とY軸方向に移動可能であればよい。一般的には照射ヘッドは焦点調節の為などから、Z軸のみ上下動可能で、ワークはX−Yステージ装置に固定される。よって、ワークを動かしながらレーザー光を照射する、いわゆるライン溶着でも、複数の必要な部位のみ溶着するスポット溶着でも対応可能である。   When the irradiated object that is a workpiece is a plane, it is sufficient that either the irradiation head or the workpiece is movable in the plane direction, that is, the X-axis direction and the Y-axis direction. In general, the irradiation head can be moved up and down only in the Z-axis for focus adjustment and the work is fixed to an XY stage apparatus. Therefore, so-called line welding in which laser light is irradiated while moving the workpiece, or spot welding in which only a plurality of necessary portions are welded can be supported.

しかし、上記に説明したような小型モータを始めとする円筒形上のユニットの径方向から、その外周を溶接しようとすると様々な問題が発生する。   However, various problems occur when trying to weld the outer periphery of a cylindrical unit including a small motor as described above from the radial direction.

まず、ワークと照射ヘッドの相対的な位置関係から、3つの方法について考える。例えば、ワークである第1の部材と第2の部材を軸方向に重ねて、外周を重畳するように構成し、その中心軸に垂直な径方向から外周部にレーザー光を照射して溶着しようとする。第1の方法として、照射ヘッド側を中心軸に対して垂直に固定し、円筒形状のワーク側をワーク回転装置に固定して、ワークの中心軸を中心に回転しながらレーザー光を照射する、方法が考えられる。   First, three methods are considered from the relative positional relationship between the workpiece and the irradiation head. For example, the first member and the second member, which are workpieces, are overlapped in the axial direction, and the outer periphery is overlapped, and the outer peripheral portion is irradiated with laser light from the radial direction perpendicular to the central axis to be welded. And As a first method, the irradiation head side is fixed perpendicularly to the central axis, the cylindrical workpiece side is fixed to the workpiece rotating device, and the laser beam is irradiated while rotating around the central axis of the workpiece. A method is conceivable.

次に、第2の方法として、ワーク側をステージに固定し、照射ヘッド側をワークの外周に回動させながらレーザー光を照射する方法も考えられる。   Next, as a second method, a method of irradiating laser light while fixing the workpiece side to the stage and rotating the irradiation head side to the outer periphery of the workpiece can be considered.

さらに、第3の方法として、ワーク側をステージに固定し、ワーク側の中心軸の周囲に複数の照射ヘッドを固定して、ワークの外周の複数箇所にスポット的に照射する方法も考えられる。   Further, as a third method, a method in which the workpiece side is fixed to the stage, a plurality of irradiation heads are fixed around the central axis on the workpiece side, and a plurality of spots on the outer periphery of the workpiece are irradiated in a spot manner.

また、集光環を形成する又は集光点を円周上に多点的にレーザー光を形成するものは、特許文献3で開示されている。これは、2つの反射部材を用い、1つの反射部材で光線分離及び偏向を行い、もう一方の反射部材で照射物体へ光線を向かわせる作用にて環形状の照射パターンを得る方法である。
特開2003-70224号 特開平9−331666号 特開2003-001474号
Further, Patent Document 3 discloses that a condensing ring is formed or a laser beam is formed at multiple points on a circumference of a condensing point. In this method, two reflecting members are used, light separation and deflection are performed with one reflecting member, and a ring-shaped irradiation pattern is obtained by directing the light toward the irradiated object with the other reflecting member.
JP 2003-70224 A JP-A-9-331666 JP 2003-001474 A

しかしながら、第1の方法である照射ヘッドを固定し、ワークを回転させる方法では、ワークを精度よく固定して回転する装置は複雑な構成となり易く、ワークを迅速に固定するチャッキングも容易ではない。結果として、ワークのセット毎にレーザー光の焦点位置とのずれが発生し易い。よって、被照射物体が樹脂又は金属でもレーザー光の焦点面と被照射物体の距離がばらつくことで、溶融エネルギーの変化をもたらし、溶着強度のばらつきに影響する。   However, in the first method of fixing the irradiation head and rotating the workpiece, an apparatus for fixing and rotating the workpiece with high precision is likely to have a complicated configuration, and chucking for quickly fixing the workpiece is not easy. . As a result, deviation from the focal position of the laser beam is likely to occur for each set of workpieces. Therefore, even if the object to be irradiated is resin or metal, the distance between the focal plane of the laser beam and the object to be irradiated varies, thereby causing a change in melting energy and affecting the dispersion of the welding strength.

また、ワークの外周の複数箇所をスポット的に溶着する場合はワーク回転装置の停止精度も高い必要がある。   Moreover, when spot-welding several places of the outer periphery of a workpiece | work, the stop precision of a workpiece | work rotation apparatus needs to also be high.

次に第2の方法であるワークを固定し、照射ヘッドをワークの周りに回動させる方法では、照射ヘッドは光学系を含む為に長い筒状であることが多い。また照射ヘッドが前述したようにガラスファイバー、及びレーザー発振ユニットと一連になっている。従って、これらを同時に回動させなければならないので、さらに大型の装置となる可能性がある。フレキシブルなガラスファイバーを利用して照射ヘッド部分のみを回転させることも考えられるが、ガラスファイバーの長さはレーザー光の損失に影響するので回動範囲が限られる。さらに、ガラスファイバーのフレキシビリティには耐久性の限界がある。   Next, in the second method of fixing the work and rotating the irradiation head around the work, the irradiation head often includes a long cylindrical shape because it includes an optical system. Further, as described above, the irradiation head is a series with the glass fiber and the laser oscillation unit. Therefore, since these have to be rotated simultaneously, there is a possibility that a larger apparatus will be obtained. Although it is conceivable to rotate only the irradiation head portion using a flexible glass fiber, the length of the glass fiber affects the loss of the laser beam, so the rotation range is limited. In addition, the flexibility of glass fibers has a limit on durability.

以上の2種類の方法には更なる問題が生じる。ワーク或いは照射ヘッドを駆動しながらレーザー光を照射するのでワークの溶着開始する部位と終了する部位との時間差が発生する。すなわち、一部が溶融している間に開始する位置に近い部分では既に溶着後の固化が始まるので、溶着開始点と終了点との時間差によりワークの第1の部材と第2の部材の同軸などがずれる可能性がある。特に樹脂溶着の場合は、溶着時の樹脂の固化時に収縮の発生が考えられるのでより顕著にずれが現れる。また、基本的に複数の位置への照射時間、ワークの回転時間が必要となる。   The above two kinds of methods cause further problems. Since the laser beam is irradiated while driving the workpiece or the irradiation head, a time difference between the portion where the welding of the workpiece starts and the portion where the welding ends is generated. That is, since solidification after welding has already begun in a portion close to the position where it starts while part of the workpiece is melted, the first member and the second member of the workpiece are coaxially due to the time difference between the welding start point and end point. There is a possibility that it will shift. Particularly in the case of resin welding, the occurrence of shrinkage is considered when the resin is solidified at the time of welding, so that a significant shift appears. In addition, irradiation time to a plurality of positions and work rotation time are basically required.

次に第3の方法である固定したワークの周囲に複数の照射ヘッドを固定する方法は、前述したように照射ヘッド毎にレーザー光発振装置が必要である。従って、照射ヘッドは光学系を含む為に長い筒状であることが多いので、ワークの周りに照射ヘッドが取り囲む構成では設備が大型化し、設備費が増大する。   Next, as a third method for fixing a plurality of irradiation heads around a fixed workpiece, a laser beam oscillation device is required for each irradiation head as described above. Therefore, since the irradiation head includes an optical system in many cases, the irradiation head often has a long cylindrical shape. Therefore, in the configuration in which the irradiation head surrounds the workpiece, the equipment is increased in size and the equipment cost is increased.

また、特許文献3のような例では、光学系の分割手段として反射光学系が用いられている。しかし、それでは反射光学系を空間に設置しなければならず、支持する機構が必要となるなど、照射ヘッドの構造が複雑となる。よって、大型化、長軸化、大径化する可能性があり、ワークの加工時間、いわゆるタクトタイムに影響する。すなわち、ワークが連続して供給されて、次々にレーザー加工する場合では照射ヘッドの大径化によって隣接するワークに干渉しないように加工するので、ワークの配置のピッチが大きくなる。よって、移動する照射ヘッドの移動距離が大きくなるか、ワークを固定したステージ側の移動距離が大きくなり、1ワークの加工時間が長くなる。さらに、支持機構の複雑化によって組立誤差が大きくなり、結果として照射位置の精度の低下が考えられる。   In an example such as Patent Document 3, a reflection optical system is used as a dividing unit of the optical system. However, in this case, the structure of the irradiation head becomes complicated, for example, a reflection optical system must be installed in the space and a supporting mechanism is required. Therefore, there is a possibility of increasing the size, increasing the axis, and increasing the diameter, which affects the machining time of the workpiece, the so-called tact time. That is, when workpieces are continuously supplied and laser processing is performed one after another, the workpiece is processed so as not to interfere with adjacent workpieces by increasing the diameter of the irradiation head. Therefore, the moving distance of the moving irradiation head is increased, or the moving distance on the stage side where the workpiece is fixed is increased, and the processing time of one workpiece is increased. Further, the assembly error increases due to the complicated support mechanism, and as a result, the accuracy of the irradiation position may be lowered.

また、前記した反射部材を用いての複数点や線分パターン形状を得る照射方法は、反射部材の取り付け誤差による照射位置ズレや照射光の特性ズレを招きやすくなると共に照射光学系の大型化及び照射位置の調整方法が煩雑になってしまう問題がある。
本発明では、上記問題点を解消する、特にレーザー照射によって円筒形状の被照射物体の溶着を行うことに適した簡素な構成のレーザー溶着装置を提案する。
In addition, the irradiation method for obtaining a plurality of points and line segment pattern shapes using the reflection member described above is likely to cause an irradiation position shift and an irradiation light characteristic shift due to a mounting error of the reflection member, and increase the size of the irradiation optical system. There is a problem that the method of adjusting the irradiation position becomes complicated.
The present invention proposes a laser welding apparatus having a simple configuration that solves the above-described problems, and is particularly suitable for welding a cylindrical object to be irradiated by laser irradiation.

本発明の一側面として、レーザー光を被照射物体に照射して被照射物体を溶着するレーザー溶着装置において、光源から発するレーザー光を結像する結像光学系と、頂点方向を前記光源側に向けた錐形状であって、前記結像光学系から射出されたレーザー光が側面部に入射し、底面部から射出するようにする配置される第1のプリズムと、底面方向を前記光源側に向けた錐形状であって、を有し、前記第1のプリズムから射出されたレーザー光が底面部に入射し、側面部から射出するように配置される第2のプリズムと、前記第2のプリズムから射出されたレーザー光を前記被照射物体の外周面に照射するように偏向する偏向光学系とを有することを特徴とする。   As one aspect of the present invention, in a laser welding apparatus that irradiates an object to be irradiated with laser light and welds the object to be irradiated, an imaging optical system that forms an image of laser light emitted from a light source, and a vertex direction on the light source side A first prism arranged so that the laser beam emitted from the imaging optical system enters the side surface and exits from the bottom surface, and the bottom surface direction is directed to the light source side A second prism arranged so that the laser beam emitted from the first prism is incident on the bottom surface portion and is emitted from the side surface portion; And a deflection optical system that deflects the laser light emitted from the prism so as to irradiate the outer peripheral surface of the irradiated object.

本発明によれば、簡素で小型の光学系を用いて単一の光源を使用しても同時に複数のもしくは連続したレーザー光の照射が行える。特に円筒形状のワークに対しての径方向から溶接及び溶着加工が低コスト、小型、省スペースの設備で達成できる。   According to the present invention, even if a single light source is used using a simple and small optical system, a plurality of or continuous laser beams can be irradiated simultaneously. In particular, welding and welding from the radial direction to a cylindrical workpiece can be achieved with low-cost, small-size, and space-saving equipment.

以下、本発明の好ましい実施例について図面を参照しながら説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1乃至図4を用いて、本発明の実施例を説明する。   Embodiments of the present invention will be described with reference to FIGS.

光ファイバーから射出される擬似的な点光源の有効光線束を結像光学系に入射させる。射出される光線の集光点のワーキングディスタンスを確保するため、光源の点像から略点像を形成するような結像光学系を構成する。その光学系の光源側である第1レンズ群は、正の屈折力を有するので、点光源からの発散光を略アフォーカル光に屈折させる。その後方に、光線の集光作用を持たせるため正の屈折力である第2レンズ群を配置する。そして、さらに後方、結像面側に負の屈折力である第3レンズ群を配置することによって結像レンズ光学系全体の焦点距離を長焦点化し大きなワーキングディスタンスの確保を行う。また、光線の収斂作用により結像光学系の結像面側に配置するプリズム群の小型化を行っている。さらに、同時に光学系全体をテレフォト系で構成しレンズ長の短縮と収差の補正を行う。   An effective ray bundle of a pseudo point light source emitted from the optical fiber is made incident on the imaging optical system. In order to ensure the working distance of the condensing point of the emitted light beam, an imaging optical system that forms a substantially point image from the point image of the light source is configured. Since the first lens group on the light source side of the optical system has a positive refractive power, it refracts the divergent light from the point light source into substantially afocal light. On the rear side, a second lens group having a positive refractive power is disposed in order to provide a light condensing function. Further, a third lens group having a negative refractive power is arranged further rearward and on the imaging surface side, thereby making the focal length of the entire imaging lens optical system longer and ensuring a large working distance. In addition, the prism group disposed on the image forming surface side of the image forming optical system is miniaturized by the light beam converging action. At the same time, the entire optical system is configured by a telephoto system to reduce the lens length and correct aberrations.

次に結像光学系の結像面側にプリズム群を配置する。像側テレセントリック光学系は屈折光学素子によって構成される。第1のプリズムである円錐プリズム(A)をプリズムの頂点を光源側に向け、頂点と底辺の中心を光軸上に一致させるような配置を行う。これによりプリズムの側面に入射した光線は同心円状に分離を行いプリズムの底面から光線を射出する。その後、プリズム(A)と底面を向き合わせた第2のプリズムである円錐プリズム(B)の底面に光線が入射され、プリズムの側面から光線が射出されるときに生ずる屈折作用により略テレセントリックな状態で結像光学系の光軸方向に光線が環形状に照射される。   Next, a prism group is disposed on the imaging surface side of the imaging optical system. The image side telecentric optical system includes a refractive optical element. The conical prism (A), which is the first prism, is arranged so that the apex of the prism faces the light source, and the center of the apex and the base coincides with the optical axis. As a result, the light rays incident on the side surfaces of the prism are separated concentrically and emitted from the bottom surface of the prism. Thereafter, the light beam is incident on the bottom surface of the conical prism (B), which is the second prism with the prism (A) facing the bottom surface, and is in a substantially telecentric state due to the refraction effect that occurs when the light beam is emitted from the side surface of the prism. Thus, the light beam is irradiated in a ring shape in the optical axis direction of the imaging optical system.

そして、屈折光学素子によって構成される偏向光学群に入射する。中空な円錐台状の光学部材により、環形状の光線がそのまま、結像光学系の光軸方向に反射され、被照射物体の径方向の外周にレーザー光が照射される。これにより、外周全体の広い範囲において同時に、溶着、溶接ができるので溶着強度が安定した加工が可能となる。   And it injects into the deflection | deviation optical group comprised by the refractive optical element. The hollow frustoconical optical member reflects the ring-shaped light beam as it is in the optical axis direction of the imaging optical system, and irradiates laser light on the outer circumference in the radial direction of the irradiated object. Thereby, since welding and welding can be performed simultaneously in a wide range of the entire outer periphery, processing with stable welding strength is possible.

図5乃至図8を用いて、底辺が正三角形形状を有する三角錐プリズムを2個用いて一点光源から3箇所に点像を照射する光学系について説明する。結像光学系は実施例1と共通であり、プリズム群は円錐プリズムを使用する際と同様に底面を向き合わせてプリズムの各頂点を光軸に一致させるように配置する。この際、第1のプリズムである三角錐プリズム(A)の底面と第2のプリズムである三角錐プリズム(B)の底面の各頂点を、回転中心軸を光軸として、60°の相対的な回転位相を与えるようにする。すなわち、三角錐プリズム(A)の側面と三角錐プリズム(B)の側面が略平行面になるような配置となる。これにより三角錐プリズム(A)の側面に入射した光線は3方向に分離され三角錐プリズム(A)の底面から光線を射出する。三角錐プリズム(A)と底面を向き合わせた三角錐プリズム(B)の底面に光線が入射された後、三角錐プリズム(B)の側面から光線が射出されることとなる。従って、射出面の屈折作用により略テレセントリックな状態で結像光学系の光軸方向に3本の光線が照射される。その各光線は、偏向光学群であるところの3つの45°プリズムの一辺に垂直に入射し、45°の反射面にて全反射する。そして、3本の光線が被照射物体の径方向から、被照射物体の外周の3点(ここでは円周方向120度ピッチ)に対してレーザー光が照射される。   An optical system that irradiates point images from three points from a single point light source using two triangular pyramid prisms whose bases have a regular triangular shape will be described with reference to FIGS. The imaging optical system is the same as that of the first embodiment, and the prism group is arranged so that the bottom faces face each other and the apexes of the prisms coincide with the optical axis as in the case of using the conical prism. At this time, each vertex of the bottom surface of the triangular pyramid prism (A), which is the first prism, and the bottom surface of the triangular pyramid prism (B), which is the second prism, is 60 ° relative to the rotation axis as the optical axis. To give the correct rotation phase. That is, the arrangement is such that the side surface of the triangular pyramid prism (A) and the side surface of the triangular pyramid prism (B) are substantially parallel surfaces. As a result, the light beam incident on the side surface of the triangular pyramid prism (A) is separated in three directions and emitted from the bottom surface of the triangular pyramid prism (A). After the light beam is incident on the bottom surface of the triangular pyramid prism (B), which faces the triangular pyramid prism (A), the light beam is emitted from the side surface of the triangular pyramid prism (B). Accordingly, three light beams are irradiated in the optical axis direction of the imaging optical system in a substantially telecentric state by the refractive action of the exit surface. Each of the light rays is perpendicularly incident on one side of the three 45 ° prisms which are the deflecting optical group, and is totally reflected by the 45 ° reflecting surface. Then, three light beams are emitted from the radial direction of the irradiated object to three points on the outer periphery of the irradiated object (here, 120 degrees pitch in the circumferential direction).

図9乃至図12を用いて、底辺が正四角形形状を有する四角錐プリズムを2個用いて一点光源から4箇所に点像を照射する光学系を説明する。結像光学系は実施例1と共通であり、プリズム群は円錐プリズムを使用する際と同様に底面を向き合わせてプリズムの各頂点を光軸に一致させるように配置する。この際、第1のプリズムである四角錐プリズム(A)の側面と第2のプリズムである四角錐プリズム(B)の底辺が略平行面になるような配置を行う。これにより四角錐プリズム(A)の側面に入射した光線は4方向に分離され四角錐プリズム(A)の底面から光線を射出する。四角錐プリズム(A)と底面を向き合わせた四角錐プリズム(B)の底面に光線が入射された後、四角錐プリズム(B)の側面から光線が射出される。従って、射出面の屈折作用により略テレセントリックな状態で結像光学系の光軸方向に4本の光線が照射される。その各光線は偏向光学群であるところの4つの45°プリズムの一辺に垂直に入射し、45°の反射面にて全反射する。そして、4本の光線が被照射物体の径方向から、被照射物体の外周の4点(ここでは円周方向90度ピッチ)に対して、レーザー光が照射される。   An optical system that irradiates four point images from a single point light source using two quadrangular pyramid prisms whose bases have a regular square shape will be described with reference to FIGS. 9 to 12. The imaging optical system is the same as that of the first embodiment, and the prism group is arranged so that the bottom faces face each other and the apexes of the prisms coincide with the optical axis as in the case of using the conical prism. At this time, an arrangement is made such that the side surface of the quadrangular pyramid prism (A) as the first prism and the base of the quadrangular pyramid prism (B) as the second prism are substantially parallel surfaces. Thereby, the light beam incident on the side surface of the quadrangular pyramid prism (A) is separated into four directions, and the light beam is emitted from the bottom surface of the quadrangular pyramid prism (A). After a light beam is incident on the bottom surface of the quadrangular pyramid prism (B) that faces the quadrangular pyramid prism (A), the light beam is emitted from the side surface of the quadrangular pyramid prism (B). Accordingly, four light beams are irradiated in the optical axis direction of the imaging optical system in a substantially telecentric state by the refraction action of the exit surface. Each of the light rays is perpendicularly incident on one side of four 45 ° prisms as a deflection optical group, and is totally reflected by a 45 ° reflecting surface. Then, four light beams are irradiated from the radial direction of the irradiated object to four points on the outer periphery of the irradiated object (here, 90 ° pitch in the circumferential direction).

図13乃至図16を用いて、底辺が正五角形形状を有する五角錐プリズムを2個用いて一点光源から5箇所に点像を照射する光学系を説明する。   An optical system for irradiating five point images from a single point light source using two pentagonal pyramid prisms whose bases have a regular pentagonal shape will be described with reference to FIGS.

結像光学系は実施例1と共通であり、プリズム群は円錐プリズムを使用する際と同様に底面を向き合わせてプリズムの各頂点を光軸に一致させるように配置する。この際、第1のプリズムである五角錐プリズム(A)の底面と第2のプリズムである五角錐プリズム(B)の底面の各頂点を、回転中心軸を光軸として、36°の相対的な回転位相を与えるようにする。すなわち、五角錐プリズム(A)の側面と五角錐プリズム(B)の側面が略平行面になるように配置される。これよって、五角錐プリズム(A)の側面に入射した光線は4方向に分離され五角錐プリズム(A)の底面から光線を射出する。   The imaging optical system is the same as that of the first embodiment, and the prism group is arranged so that the bottom faces face each other and the apexes of the prisms coincide with the optical axis as in the case of using the conical prism. At this time, each vertex of the bottom surface of the pentagonal pyramid prism (A) as the first prism and the bottom surface of the pentagonal pyramid prism (B) as the second prism is 36 ° relative to the rotation center axis as the optical axis. To give the correct rotation phase. That is, the side surface of the pentagonal prism (A) and the side surface of the pentagonal pyramid prism (B) are arranged so as to be substantially parallel. Thus, the light beam incident on the side surface of the pentagonal prism (A) is separated into four directions and emitted from the bottom surface of the pentagonal prism (A).

五角錐プリズム(A)と底面を向き合わせた五角錐プリズム(B)の底面に光線が入射された後、五角錐プリズム(B)の側面から光線が射出される。従って、射出面の屈折作用により略テレセントリックな状態で結像光学系の光軸方向に5本の光線が照射される。その各光線は偏向光学群であるところの5つの45°プリズムの一辺に垂直に入射し、45°の反射面にて全反射する。そして、5本の光線が被照射物体の径方向から、被照射物体の外周の5点(ここでは円周方向72度ピッチ)に対してレーザー光が照射される。   After a light beam is incident on the bottom surface of the pentagonal prism (B) that faces the pentagonal pyramid prism (A), the light beam is emitted from the side surface of the pentagonal pyramid prism (B). Accordingly, five light beams are irradiated in the optical axis direction of the imaging optical system in a substantially telecentric state by the refractive action of the exit surface. Each light beam is incident perpendicularly to one side of the five 45 ° prisms which are the deflecting optical group, and is totally reflected by the 45 ° reflecting surface. Then, five light beams are irradiated from the radial direction of the irradiated object to five points on the outer periphery of the irradiated object (here, a pitch of 72 degrees in the circumferential direction).

円筒形状同士の接合で、内部構造が複雑になり、レーザー光の照射により不具合が発生する部分が存在し、直径の全周にわたって溶着部分が設けられないなどの場合がある。その場合であっても、実施例3及び実施例4により、任意の溶着部分に正確にピンポイント的にレーザー光を照射することが可能となる。   In some cases, the internal structure becomes complicated due to the joining of the cylindrical shapes, there are portions where defects occur due to laser light irradiation, and no welded portion is provided over the entire circumference of the diameter. Even in that case, the laser beam can be accurately and pinpointedly irradiated to any welded portion by the third and fourth embodiments.

nを整数としたとき、プリズム群のプリズムが正n角錐形状の多角錐プリズム場合、偏向光学群は等ピッチにn個の反射光学素子が結像光学系の光軸まわりに配置され、被照射物体の外周のn点にレーザーを照射することができる。照射位置が上記のように円周方向で不等ピッチの場合であってもn角錐形状を不等ピッチとすることで対応が可能となる。以上により、円筒形状のワーク外周部分のわずかなスペースでもレーザー接合することが可能となって機器の小型化に寄与する。   When n is an integer and the prism of the prism group is a regular n-pyramidal polygonal pyramid prism, the deflecting optical group has n reflecting optical elements arranged at equal pitches around the optical axis of the imaging optical system, Laser can be irradiated to n points on the outer periphery of the object. Even when the irradiation positions are unequal pitches in the circumferential direction as described above, it is possible to cope by setting the n-pyramidal shapes to unequal pitches. As described above, laser bonding can be performed even in a small space on the outer periphery of the cylindrical workpiece, which contributes to downsizing of the device.

図17乃至図20には、前述した実施例4の五角錐プリズムを用いた光学系と、ワークを支持する機構を組み込んだ照射ヘッドとワークを固定台に固定してレーザー光を多点照射する実施例を示す。   17 to 20, the optical system using the pentagonal pyramid prism of the fourth embodiment described above, the irradiation head incorporating the mechanism for supporting the workpiece, and the workpiece are fixed to a fixed base, and laser light is irradiated at multiple points. An example is shown.

図17は、固定台の待機状態の光軸方向の部分断面図である。図18は照射ヘッドの先端部から光源方向を見たときの偏向光学群とワークの回転方向の位相と照射される光束を示した部分図である。図19はワークのみの断面図であり、図20は照射ヘッドがワークを支持、レーザー加工する位置まで降下した状態の照射ヘッド先端部の断面図である。   FIG. 17 is a partial cross-sectional view in the optical axis direction of the fixed base in the standby state. FIG. 18 is a partial view showing the deflection optical group, the phase in the rotation direction of the workpiece, and the irradiated light beam when the light source direction is viewed from the tip of the irradiation head. FIG. 19 is a cross-sectional view of only the workpiece, and FIG. 20 is a cross-sectional view of the tip of the irradiation head in a state where the irradiation head is lowered to a position for supporting the workpiece and performing laser processing.

図17及び図20において、21の照射ヘッド全体は筒状であり、内面に反射防止塗装がされたアルミ材などによって作られ、結像光学群、像側テレセントリック光学系及び偏向光学群の各光学系のレンズ及びプリズムが組み込まれている。プリズム群は屈折光学素子で構成され、偏向光学群は反射光学素子で構成されている。不図示のレーザー発振装置から射出され、ガラスファイバーを経たレーザー光22は、照射ヘッドが短くなるように45°反射ミラー23により照射ヘッド21内に入射させる。24は結像光学系でスペーサなどにより間隔を決めている。25、26はプリズム群であり、25は2つの向かい合わせにしたプリズムのひとつ第1のプリズムであるプリズムA、26は第1のプリズムであるプリズムBである。27は保持ガラスで、ドーナツ状の透明ガラスであり、偏向光学群である5つの45°プリズム28が、保持部材29との間に保持されている。   17 and 20, the entire irradiation head 21 has a cylindrical shape and is made of an aluminum material or the like having an antireflection coating on the inner surface. Each of the optical elements of the imaging optical group, the image side telecentric optical system, and the deflecting optical group. System lenses and prisms are incorporated. The prism group is composed of a refractive optical element, and the deflection optical group is composed of a reflective optical element. The laser light 22 emitted from a laser oscillation device (not shown) and passed through the glass fiber is incident on the irradiation head 21 by the 45 ° reflection mirror 23 so that the irradiation head is shortened. Reference numeral 24 denotes an imaging optical system in which the interval is determined by a spacer or the like. Reference numerals 25 and 26 denote a prism group. Reference numeral 25 denotes a prism A which is a first prism of two opposed prisms. Reference numeral 26 denotes a prism B which is a first prism. Reference numeral 27 denotes a holding glass, which is a donut-shaped transparent glass, and five 45 ° prisms 28 which are deflection optical groups are held between holding members 29.

図18に示すように45°プリズム28は光軸の円周方向72度ピッチで回転配置され、プリズム群からの5本の光束を、結像光学系の光軸である図18の中心に向かって反射させるように45°面を外側、垂直面を内側に向けている。従って、偏向光学群である45°プリズム28によって反射された光束は図18において破線で示したように結像光学系の光軸上で交差している。   As shown in FIG. 18, the 45 ° prism 28 is rotationally arranged at a pitch of 72 degrees in the circumferential direction of the optical axis, and directs five light beams from the prism group toward the center of FIG. 18 which is the optical axis of the imaging optical system. The 45 ° surface is directed outward and the vertical surface is directed inward so as to reflect the light. Therefore, the light beams reflected by the 45 ° prism 28 which is the deflecting optical group intersect on the optical axis of the imaging optical system as shown by the broken line in FIG.

36は付勢部である。30はガイド部材で反射防止塗装がされたアルミ材からなり、保持ガラス27に固定されている。31は支持部材で、ガイド部材30のガイド部により、結像光学系と同軸で光軸方向に移動可能である。先端に被照射物体であるワークを光軸に同軸に支持する為の、ワークの外径を支持する受け部31aを有し、支持部材31自体が脱落しない為の止め輪31bを有する。32は付勢手段であるスプリングで、ガイド部材30と支持部材31の間に設けた圧縮スプリングである。照射ヘッド21から支持部材31を光軸上の光源と反対側に付勢するようにガイド部材30に固定されている。ガイド部材30、支持部材31、スプリング32などのワーク支持機構は、光軸方向で像側テレセントリック光学系であるプリズムB6と偏向光学群である45°プリズム28の中間に位置する。   Reference numeral 36 denotes an urging unit. A guide member 30 is made of an aluminum material with antireflection coating, and is fixed to the holding glass 27. Reference numeral 31 denotes a support member, which can be moved in the optical axis direction coaxially with the imaging optical system by a guide portion of the guide member 30. It has a receiving portion 31a for supporting the outer diameter of the workpiece for supporting the workpiece, which is an object to be irradiated, coaxially with the optical axis, and a retaining ring 31b for preventing the supporting member 31 itself from falling off. A spring 32 is a biasing means, and is a compression spring provided between the guide member 30 and the support member 31. The support member 31 is fixed to the guide member 30 so as to bias the support member 31 from the irradiation head 21 to the side opposite to the light source on the optical axis. Work support mechanisms such as the guide member 30, the support member 31, and the spring 32 are located in the middle of the prism B6 that is the image side telecentric optical system and the 45 ° prism 28 that is the deflection optical group in the optical axis direction.

37はワークである。図19に示すように、33は第1の部材であるボビンAであり、耐熱性の高いレーザー光透過性樹脂として液晶ポリマーのナチュラル色で成形されて導線が巻線される。34は第2の部材であるボビンBであり、耐熱性の高いレーザー光吸収性樹脂として液晶ポリマーにカーボンを混入して黒色として材料で成形されて導線が巻線される。34aは、中心軸から円周方向72度ピッチの5ヶ所の桟橋形状の溶着部であり、外径はボビンA13の内径部にガタなく嵌めあって互いが同軸に位置決めされる。ボビンA13とボビンB14が組み合わされ、被照射物体であるワークとなる。ワークはここでは2相ステップモータである。35は固定台でボビンA13とボビンB14が組み合わされた状態で所定の高さを決め、ワークの外径とその内径が嵌め合って所定の位置決めをする。また、5つの45°プリズム28と、ワークであるボビンB14の位置関係は、その中心軸を結像光学系の光軸と概略一致させ、回転方向の位相は5つの溶着部34aが5つの45°プリズム28の垂直面と対向するようにセットされている。   Reference numeral 37 denotes a work. As shown in FIG. 19, reference numeral 33 denotes a first member, bobbin A, which is molded with a natural color of a liquid crystal polymer as a laser light transmitting resin having high heat resistance, and a conducting wire is wound thereon. Reference numeral 34 denotes a second member, bobbin B, in which carbon is mixed into a liquid crystal polymer as a heat-resistant laser light-absorbing resin and is formed into a black material, and a conductive wire is wound thereon. Reference numerals 34a denote five pier-shaped welded portions with a pitch of 72 degrees in the circumferential direction from the central axis, and the outer diameters are fitted to the inner diameter part of the bobbin A13 without any backlash and are positioned coaxially. Bobbin A13 and bobbin B14 are combined to form a workpiece that is an object to be irradiated. The work here is a two-phase step motor. A fixed base 35 determines a predetermined height in a state where the bobbin A13 and the bobbin B14 are combined, and the outer diameter and the inner diameter of the work are fitted to each other to perform predetermined positioning. Further, the positional relationship between the five 45 ° prisms 28 and the bobbin B14 as a work is such that the central axis thereof is substantially coincident with the optical axis of the imaging optical system, and the phase in the rotational direction is 45 of the five welded portions 34a. ° It is set so as to face the vertical surface of the prism 28.

以上の構成による動作を説明する。図17のように、固定台35にワークであるボビンA13とボビンB14が仮組みされた状態でセットされている。次に図20のように、不図示のZ軸ステージに固定された照射ヘッド21が降下し、先ず支持部材21の受け部31aがボビンB14の上面に当接する。更に照射ヘッド21は下降し、45°プリズム28の垂直面がボビンA13とボビンB14の重畳部である溶着部34aに対向する高さになる。その際、スプリング32は圧縮されて所定の押し圧をもって、ワークであるボビンA13とボビンB14をともに固定台35に押し付けて安定して保持する。同時に、レーザー光が照射されると図18及び図20に示すような光束により、レーザー光透過性樹脂からなるボビンA13を透過し、レーザー光吸収性樹脂からなるボビンB14の溶着部34aに照射される。その結果、樹脂内のカーボン粒子などにより発熱し、その熱がボビンA13にも伝播して互いの樹脂が溶融し、照射終了後に冷却及び固化して接合される。   The operation of the above configuration will be described. As shown in FIG. 17, the bobbin A13 and the bobbin B14, which are works, are set on the fixed base 35 in a temporarily assembled state. Next, as shown in FIG. 20, the irradiation head 21 fixed to the Z-axis stage (not shown) is lowered, and first, the receiving portion 31a of the support member 21 comes into contact with the upper surface of the bobbin B14. Further, the irradiation head 21 is lowered, and the vertical surface of the 45 ° prism 28 becomes a height facing the welding portion 34a which is the overlapping portion of the bobbin A13 and the bobbin B14. At that time, the spring 32 is compressed and with a predetermined pressing force, both the bobbin A13 and the bobbin B14 which are works are pressed against the fixed base 35 and stably held. At the same time, when the laser beam is irradiated, the bobbin A13 made of a laser beam-transmitting resin is transmitted by the luminous flux as shown in FIGS. 18 and 20, and the welded portion 34a of the bobbin B14 made of the laser beam absorbing resin is irradiated. The As a result, heat is generated by carbon particles or the like in the resin, and the heat is propagated to the bobbin A13 to melt each other resin. After the irradiation is completed, the resin is cooled and solidified to be joined.

以上説明したように、ワークの同軸及び光軸方向の支持部がプリズム群と偏向光学群の中間のスペースに配置され、照射ヘッド全体の大きさに影響しない。また、スプリング32による付勢力で支持部材31がワークであるボビンA13とボビンB14が組み合わされた状態のまま、固定台35に押し付けながら、レーザー光加工する。これによって、ボビンA13とボビンB14の同軸がずれることがないまま、精度よく、安定した溶着加工がなされる。すなわち、位置ずれによって、部材の隙間が発生し、溶着強度が低下することがない。   As described above, the support portion of the workpiece in the coaxial and optical axis directions is arranged in the space between the prism group and the deflection optical group, and does not affect the overall size of the irradiation head. Further, laser beam processing is performed while pressing the fixing member 35 while the bobbin A13 and the bobbin B14, which are workpieces, are combined with the urging force of the spring 32. As a result, a stable welding process can be performed accurately and stably without the coaxiality of the bobbin A13 and the bobbin B14 being shifted. That is, the gap between the members does not occur due to the position shift, and the welding strength does not decrease.

本実施例の様に被照射物体の一端を付勢部36で、他端を固定部35で支持する構成は付勢部36と固定台35の位置を入れ替えてもよい。   In the configuration in which one end of the irradiated object is supported by the urging portion 36 and the other end is supported by the fixing portion 35 as in the present embodiment, the positions of the urging portion 36 and the fixing base 35 may be interchanged.

点光源を集光して結像作用を行う結像光学系の数値データー及び錐形プリズム形状データーの数値実施例Numerical examples of numerical data of an imaging optical system that focuses a point light source and performs an imaging action, and conical prism shape data 円錐プリズムを用いた光学系及び照射光線形状の側面図Side view of an optical system using a conical prism and the shape of irradiated light 円錐プリズムを用いた光学系及び照射光線形状の斜視図Optical system using conical prism and perspective view of irradiation light shape 円錐プリズムの光学系側面図Side view of conical prism optical system 三角錐プリズムを用いた光学系及び照射光線形状の側面図Side view of optical system and irradiation beam shape using triangular pyramid prism 三角錐プリズムを用いた光学系及び照射光線形状の斜視図Optical system using triangular pyramid prism and perspective view of irradiation light shape 三角錐プリズムの光学系側面図Side view of triangular pyramid optical system 三角錐プリズムの光軸方向からの射影図Projection view from the direction of the optical axis of the triangular pyramid prism 四角錐プリズムを用いた光学系及び照射光線形状の側面図Side view of optical system and shape of irradiated light using quadrangular pyramid prism 四角錐プリズムを用いた光学系及び照射光線形状の斜視図Perspective view of optical system and irradiation light beam shape using quadrangular pyramid prism 四角錐プリズムの光学系側面図Side view of the optical system of a quadrangular pyramid prism 四角錐プリズムの光軸方向からの射影図Projection view from the optical axis direction of a quadrangular pyramid prism 五角錐プリズムを用いた光学系及び照射光線形状の側面図Side view of optical system using pentagonal pyramid prism and shape of irradiated light 五角錐プリズムを用いた光学系及び照射光線形状の斜視図Optical system using pentagonal pyramid prism and perspective view of irradiation beam shape 五角錐プリズムの光学系側面図Side view of the pentagonal prism optical system 五角錐プリズムの光軸方向からの射影図Projection view of pentagonal prism from the optical axis direction 実施例5の部分断面図Partial sectional view of Example 5 実施例5の光軸方向からの射影図Projection view from the optical axis direction of Example 5 実施例5のワーク断面図Workpiece sectional view of Example 5 実施例5の照射ヘッド先端部の断面図Sectional drawing of the irradiation head front-end | tip part of Example 5

符号の説明Explanation of symbols

21 照射ヘッド
22 光源
23 45°ミラー
24 結像光学群
25 プリズムA
26 プリズムB
27 保持ガラス
28 45°プリズム
29 保持部材
30 ガイド部材
31 支持部材
31a 受け部
31b 止め輪
32 スプリング
33 ボビンA
34 ボビンB
34a 溶着部
35 固定台
36 付勢部
37 ワーク
21 Irradiation head 22 Light source 23 45 ° mirror 24 Imaging optical group 25 Prism A
26 Prism B
27 Holding glass 28 45 ° prism 29 Holding member 30 Guide member 31 Support member 31a Receiving portion 31b Retaining ring 32 Spring 33 Bobbin A
34 Bobbin B
34a Welding part 35 Fixing base 36 Energizing part 37 Workpiece

Claims (4)

レーザー光を被照射物体に照射して被照射物体を溶着するレーザー溶着装置において、
光源から発するレーザー光を結像する結像光学系と、
頂点方向を前記光源側に向けた錐形状であって、前記結像光学系から射出されたレーザー光が側面部に入射し、底面部から射出するようにする配置される第1のプリズムと、
底面方向を前記光源側に向けた錐形状であって、を有し、前記第1のプリズムから射出されたレーザー光が底面部に入射し、側面部から射出するように配置される第2のプリズムと、
前記第2のプリズムから射出されたレーザー光を前記被照射物体の外周面に照射するように偏向する偏向光学系とを有することを特徴とするレーザー溶着装置。
In a laser welding apparatus that irradiates an irradiated object with laser light and welds the irradiated object,
An imaging optical system for imaging a laser beam emitted from a light source;
A first prism arranged in a conical shape with an apex direction directed toward the light source, the laser light emitted from the imaging optical system being incident on the side surface and exiting from the bottom surface;
A conical shape whose bottom surface direction is directed to the light source side, and a second laser beam emitted from the first prism is disposed so as to enter the bottom surface portion and exit from the side surface portion; Prism,
A laser welding apparatus comprising: a deflection optical system that deflects the laser light emitted from the second prism so as to irradiate the outer peripheral surface of the irradiated object.
前記偏向光学系は中空な円錐台の反射光学素子からなることを特徴とする請求項1に記載のレーザー溶着装置。   2. The laser welding apparatus according to claim 1, wherein the deflecting optical system includes a hollow truncated cone reflecting optical element. nを整数としたとき、前記第1のプリズムおよび第2のプリズムはn角錐形状であり、前記偏向光学系はn個の反射光学素子を光軸の周りに配置することを特徴とする請求項1又は2に記載のレーザー溶着装置。   The first prism and the second prism are n-pyramidal when n is an integer, and the deflecting optical system has n reflecting optical elements arranged around an optical axis. The laser welding apparatus according to 1 or 2. 被照射物体の一端を光軸方向に付勢する付勢部と、前記被照射物体の他端を固定する固定台とを有し、
前記付勢部又は前記固定台を前記第2のプリズムと前記偏向光学系の間に有することを特徴とする請求項1乃至3のうちいずれか一つに記載のレーザー溶着装置。
An urging portion for urging one end of the irradiated object in the optical axis direction, and a fixing base for fixing the other end of the irradiated object,
4. The laser welding apparatus according to claim 1, wherein the urging unit or the fixing base is provided between the second prism and the deflection optical system. 5.
JP2007243093A 2007-09-19 2007-09-19 Laser welding device Pending JP2009072987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007243093A JP2009072987A (en) 2007-09-19 2007-09-19 Laser welding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007243093A JP2009072987A (en) 2007-09-19 2007-09-19 Laser welding device

Publications (1)

Publication Number Publication Date
JP2009072987A true JP2009072987A (en) 2009-04-09

Family

ID=40608481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007243093A Pending JP2009072987A (en) 2007-09-19 2007-09-19 Laser welding device

Country Status (1)

Country Link
JP (1) JP2009072987A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017153493A1 (en) * 2016-03-11 2017-09-14 Aft Automotive Gmbh Method for producing a moulded part assembly and corresponding production device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017153493A1 (en) * 2016-03-11 2017-09-14 Aft Automotive Gmbh Method for producing a moulded part assembly and corresponding production device

Similar Documents

Publication Publication Date Title
CN105364301B (en) Laser processing device capable of switching fiber core
JP7163291B2 (en) Systems and methods for additive laser processing
JP2009208092A (en) Laser processing device and laser processing method
JP2001343574A (en) Lens barrel and optical equipment
JP2008134468A (en) Condensing optical system and optical processing device
US5365374A (en) Laser optical device
CN110977159A (en) Laser light path component for forming annular light spots
JP2009072987A (en) Laser welding device
JP4717502B2 (en) Lens fixing device
JP5196778B2 (en) Irradiation optical system and irradiation apparatus
JP2011170271A (en) Optical device, method for adjusting and fixing position of optical component, and laser projector
US7601949B2 (en) Optical scanner device
JP2007185707A (en) Optical unit for optical weld joining and optical weld joining device
JP2007183669A (en) Method for adjusting condensing lens device
JP2007171281A (en) Aligning apparatus
JP2006195097A (en) Fiber with lens and method for forming aspheric lens therein
WO2015137125A1 (en) Beam exposure device
JP2004361862A (en) Condenser lens system, laser beam machining device, and method for adjusting condenser lens
EP2732905B1 (en) Laser cutting apparatus and method using an adjustable optical fibre
JP2008018441A (en) Laser beam radiating head and laser beam radiating apparatus
JP6963344B2 (en) Tool holder
US20230056367A1 (en) Optical fibers including endcaps for use in additive manufacturing
JP2008211039A (en) Holding device for adjusting position
JP4746922B2 (en) Scanning device
JP3978108B2 (en) Laser processing equipment