JP2009072814A - Short circuiting arc welding method using alternating current consumable electrode - Google Patents

Short circuiting arc welding method using alternating current consumable electrode Download PDF

Info

Publication number
JP2009072814A
JP2009072814A JP2007244603A JP2007244603A JP2009072814A JP 2009072814 A JP2009072814 A JP 2009072814A JP 2007244603 A JP2007244603 A JP 2007244603A JP 2007244603 A JP2007244603 A JP 2007244603A JP 2009072814 A JP2009072814 A JP 2009072814A
Authority
JP
Japan
Prior art keywords
short
circuit
period
polarity
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007244603A
Other languages
Japanese (ja)
Other versions
JP4950819B2 (en
Inventor
Futoshi Nishisaka
太志 西坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2007244603A priority Critical patent/JP4950819B2/en
Publication of JP2009072814A publication Critical patent/JP2009072814A/en
Application granted granted Critical
Publication of JP4950819B2 publication Critical patent/JP4950819B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a short circuiting arc welding method using an alternating current consumable electrode, which can suppress an unstable state of the droplet transfer accompanying the switching of polarity to obtain good welding quality. <P>SOLUTION: The short circuiting arc welding method using the alternating current consumable electrode includes the steps of: repeating a short circuit period Ts during which a short circuit current according to a short circuit current waveform parameter is applied and an arc period Ta during which an arc current according to a constant voltage characteristic is applied; alternatively switching the output polarity of a welding power source between an electrode positive polarity EP and an electrode negative polarity EN at a predetermined polarity switching timing during the short circuit period Ts; and performing welding by setting the short circuit current waveform parameter at a different value between an electrode positive polarity period Tep and an electrode negative polarity period Ten, wherein the output polarity of the short circuit current waveform parameter is switched during the short circuit period Ts, and after the short circuit is released and generates arc (t4), is switched to a value corresponding to each output polarity. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電極プラス極性と電極マイナス極性とを交互に切り換えて溶接を行う交流消耗電極短絡アーク溶接において極性切り換えに伴う溶接状態の不安定を抑制するための交流消耗電極短絡アーク溶接方法に関するものである。   The present invention relates to an AC consumable electrode short-circuit arc welding method for suppressing instability of a welding state associated with polarity switching in AC consumable electrode short-circuit arc welding in which welding is performed by alternately switching between an electrode positive polarity and an electrode negative polarity. It is.

短絡アーク溶接は、消耗電極である溶接ワイヤを定速で送給すると共に、溶接ワイヤと母材との間で短絡期間とアーク期間とを繰り返しながら溶接が行われる。短絡期間中は予め定めた短絡電流波形パラメータに従って短絡電流を通電し、アーク期間中は溶接電源の定電圧特性に従ってアーク電流を通電する。短絡アーク溶接には、中電流域以下のCO2溶接、MAG溶接、MIG溶接等が該当する。短絡アーク溶接は、通常は溶接ワイヤが陽極となり母材が陰極となる電極プラス極性で溶接が行われる。しかし、ワークが薄板でギャップの大きい場合には、電極プラス極性と電極マイナス極性とを交互に切り換えて溶接を行う交流消耗電極短絡アーク溶接方法が使用されることが多い。これは、交流消耗電極短絡アーク溶接方法では、電極プラス極性期間と電極マイナス極性期間との時間比率を調整することによって母材への入熱及びワイヤ溶着量を所望値に設定することができるので、ギャップのある薄板を高品質に溶接することができるからである。極性を切り換える周期は、0.2〜10Hz程度である。 In short-circuit arc welding, a welding wire that is a consumable electrode is fed at a constant speed, and welding is performed while repeating a short-circuit period and an arc period between the welding wire and the base material. During the short-circuit period, the short-circuit current is energized according to a predetermined short-circuit current waveform parameter, and during the arc period, the arc current is energized according to the constant voltage characteristic of the welding power source. The short-circuit arc welding includes CO2 welding, MAG welding, MIG welding and the like in the middle current range or lower. In short-circuit arc welding, welding is usually performed with an electrode positive polarity in which the welding wire is the anode and the base material is the cathode. However, when the workpiece is a thin plate and has a large gap, an AC consumable electrode short-circuit arc welding method is often used in which welding is performed by alternately switching the electrode positive polarity and the electrode negative polarity. This is because, in the AC consumable electrode short-circuit arc welding method, the heat input to the base material and the amount of wire welding can be set to desired values by adjusting the time ratio between the electrode positive polarity period and the electrode negative polarity period. This is because a thin plate with a gap can be welded with high quality. The period for switching the polarity is about 0.2 to 10 Hz.

溶接中において極性を切り換えるためには、下記に説明する様々な工夫を行う必要がある。溶接中に極性を切り換える場合において、その切換タイミングがアーク状態であると、極性切換時にアーク切れが発生して不良な溶接になってしまう。このアーク切れを防止するために、極性切換時に数百Vの高電圧を印加する必要がある。この高電圧印加回路は回路構成が複雑であるために高価であり、かつ、大型であるという問題を有している。この問題を短絡アーク溶接において解決するために提案されたのが、以下に説明する従来技術(特許文献1、2参照)である。この従来技術では、溶接中の極性切り換えを必ず短絡期間において行うものである。アーク期間ではないのでアーク切れが発生する心配はない。このために、上記の高電圧印加回路も不要となる。以下、この従来技術について図面を参照して説明する。   In order to switch the polarity during welding, it is necessary to devise various ideas described below. When the polarity is switched during welding, if the switching timing is in an arc state, an arc break occurs during polarity switching, resulting in poor welding. In order to prevent this arc break, it is necessary to apply a high voltage of several hundred volts when switching the polarity. This high voltage application circuit has a problem that it is expensive and large because of its complicated circuit configuration. In order to solve this problem in short-circuit arc welding, the conventional techniques described below (see Patent Documents 1 and 2) have been proposed. In this prior art, polarity switching during welding is always performed during a short circuit period. Since it is not the arc period, there is no fear of arc breakage. For this reason, the above-described high voltage application circuit is also unnecessary. The prior art will be described below with reference to the drawings.

図3は、従来技術の交流消耗電極短絡アーク溶接方法における電圧・電流波形図である。同図(A)は極性切換信号Saを示し、同図(B)は極性切換開始信号Sbを示し、同図(C)は溶接ワイヤと母材との間の電圧である溶接電圧vを示し、同図(D)はアーク/短絡負荷を通電する溶接電流iを示す。同図において、EPとは電極プラス極性を示し、ENとは電極マイナス極性を示す。以下、同図を参照して説明する。   FIG. 3 is a voltage / current waveform diagram in the conventional AC consumable electrode short-circuit arc welding method. (A) shows the polarity switching signal Sa, (B) shows the polarity switching start signal Sb, and (C) shows the welding voltage v, which is the voltage between the welding wire and the base metal. FIG. 4D shows the welding current i for energizing the arc / short-circuit load. In the figure, EP indicates the positive polarity of the electrode, and EN indicates the negative polarity of the electrode. Hereinafter, a description will be given with reference to FIG.

短絡期間Ts中は、同図(C)に示すように、溶接電圧vは数V程度の短絡電圧値となり、同図(D)に示すように、溶接電流iは予め定めた短絡電流波形パラメータに従って通電する。すなわち、短絡が発生すると、短絡電流を予め定めた短絡初期期間Ti中は小電流値(数十A)の予め定めた短絡初期電流値Iiにアーク電流から減少させ、その後は予め定めた上昇特性Cuに従って増加させ、これでも短絡が解除しないときは短絡発生から予め定めた短絡解除期間Tkが経過した後は大電流値(400〜600A程度)の予め定めた短絡解除電流値Ikに急増させる。したがって、上記の短絡電流波形パラメータは、短絡初期期間Ti、短絡初期電流値Ii、上昇特性Cu、短絡解除期間Tk及び短絡解除電流値Ikから形成される。短絡電流波形パラメータは、短絡期間Ts中の短絡電流の波形を定義するためのものであるので、同図に示した以外にも種々なパラメータの設定方法がある。短絡電流波形パラメータは出力極性おとに適正値に設定される。したがって、短絡電流波形パラメータの一部又は全部は、電極プラス極性期間Tepと電極マイナス極性期間Tenとは異なった値になる。この短絡期間Ts中は、短絡電流波形パラメータに従った短絡電流を通電するために、溶接電源は定電流特性となる。   During the short-circuit period Ts, the welding voltage v is a short-circuit voltage value of about several volts as shown in FIG. 5C, and the welding current i is a predetermined short-circuit current waveform parameter as shown in FIG. Energize according to. That is, when a short-circuit occurs, the short-circuit current is decreased from the arc current to a predetermined short-circuit initial current value Ii having a small current value (several tens of A) during a predetermined short-circuit initial period Ti, and thereafter, a predetermined increase characteristic If the short-circuit is not released even after the short-circuit is released, it is rapidly increased to a predetermined short-circuit release current value Ik having a large current value (about 400 to 600 A) after a predetermined short-circuit release period Tk has elapsed since the occurrence of the short-circuit. Accordingly, the short-circuit current waveform parameter is formed from the short-circuit initial period Ti, the short-circuit initial current value Ii, the rising characteristic Cu, the short-circuit release period Tk, and the short-circuit release current value Ik. The short-circuit current waveform parameter is for defining a short-circuit current waveform during the short-circuit period Ts, and there are various parameter setting methods other than those shown in FIG. The short-circuit current waveform parameter is set to an appropriate value for each output polarity. Therefore, some or all of the short-circuit current waveform parameters have different values in the electrode positive polarity period Tep and the electrode negative polarity period Ten. During this short-circuit period Ts, the short-circuit current according to the short-circuit current waveform parameter is supplied, so that the welding power source has a constant current characteristic.

短絡電流パラメータは、アーク期間Ta中に溶接ワイヤ先端に形成された溶滴を短絡期間Ts中に円滑に溶融池に移行させるために適正値に設定される。溶滴の下端部が溶融池に接触すると短絡が発生する。この状態をより確実な短絡状態に導くために、短絡初期期間Tiを設けて短絡初期電流Iiを通電する。その後は上昇特性Cuに従って短絡電流を増加させて短絡解除に導く。この上昇特性Cuが急勾配過ぎると短絡解除時に大粒のスパッタが発生してビード外観が悪くなる。他方、この上昇特性Cuが緩やかな勾配過ぎると短絡が解除されずに不安定な溶接状態になる。1秒間に30〜80回程度発生する短絡は、ほとんどこの上昇特性Cuの短絡電流が通電しているときに解除されてアークが発生する。しかし、ワイヤ送給速度の変動、溶融池の不規則な運動、トーチ高さの変動等の外乱によって溶滴サイズが大きくなる場合がときたま生じる。このようなときには、上昇特性Cuの短絡電流の通電では短絡が解除できない場合がある。このときは、短絡発生時点から短絡解除期間Tkが経過した後は短絡解除電流Ikを通電して強制的な短絡解除を行う。短絡電流波形パラメータを出力極性に応じて異なった値に設定する理由は、出力極性によって溶滴サイズが大きく異なるためである。すなわち、電極プラス極性期間Tep中はワイヤ直径よりも少し大きい程度の溶滴サイズになる。他方、電極マイナス極性期間Ten中の溶滴サイズは、電極プラス極性期間Tepよりも約2倍程度大きくなり、かつ、そのサイズが大きく変動する。このために、電極マイナス極性期間Ten中の短絡電流波形パラメータは、電極プラス極性期間Tep中に比べて以下のように設定される。すなわち、上昇特性Cuは急勾配に、短絡解除期間Tkは短く、短絡解除電流値Ikは大きく設定される。   The short-circuit current parameter is set to an appropriate value in order to smoothly transfer the droplet formed on the welding wire tip during the arc period Ta to the molten pool during the short-circuit period Ts. A short circuit occurs when the lower end of the droplet contacts the molten pool. In order to lead this state to a more reliable short-circuit state, a short-circuit initial period Ti is provided to supply a short-circuit initial current Ii. Thereafter, the short-circuit current is increased according to the rising characteristic Cu, and the short-circuit is released. If this rising characteristic Cu is too steep, large spatters are generated when the short circuit is released and the bead appearance is deteriorated. On the other hand, if the rising characteristic Cu is too gentle, the short circuit is not released and an unstable welding state is obtained. Short-circuits that occur about 30 to 80 times per second are almost canceled when the short-circuit current of the rising characteristic Cu is energized, and an arc is generated. However, sometimes the droplet size increases due to disturbances such as fluctuations in the wire feed speed, irregular movement of the molten pool, fluctuations in the torch height, and the like. In such a case, the short circuit may not be released by energizing the short circuit current of the rising characteristic Cu. At this time, after the short-circuit release period Tk has elapsed since the occurrence of the short-circuit, the short-circuit release current Ik is energized to forcibly release the short-circuit. The reason for setting the short-circuit current waveform parameter to a different value depending on the output polarity is that the droplet size varies greatly depending on the output polarity. That is, the droplet size is slightly larger than the wire diameter during the electrode positive polarity period Tep. On the other hand, the droplet size during the electrode minus polarity period Ten is about twice as large as the electrode plus polarity period Tep, and the size fluctuates greatly. For this reason, the short-circuit current waveform parameter during the electrode negative polarity period Ten is set as follows compared to during the electrode positive polarity period Tep. That is, the rising characteristic Cu is set to be steep, the short-circuit release period Tk is short, and the short-circuit release current value Ik is set to be large.

次に、アーク期間Ta中は、同図(C)に示すように、溶接電圧vは数十V程度のアーク電圧値となり、同図(D)に示すように、溶接電流iはアーク電流となり次第に減少する。アーク期間Ta中は溶接電源は定電圧特性になるので、このアーク電流は定電圧特性とアーク負荷との関係によって変化する。アーク期間Ta中は定電圧特性に設定される理由は、アーク長を適正値に制御するためである。   Next, during the arc period Ta, the welding voltage v becomes an arc voltage value of about several tens of volts as shown in FIG. 3C, and the welding current i becomes the arc current as shown in FIG. It gradually decreases. Since the welding power source has a constant voltage characteristic during the arc period Ta, the arc current varies depending on the relationship between the constant voltage characteristic and the arc load. The reason why the constant voltage characteristic is set during the arc period Ta is to control the arc length to an appropriate value.

時刻t1において、同図(A)に示すように、極性切換信号Saが変化すると、これに応動して同図(B)に示すように、極性切換開始信号Sbは時刻t1以降の最初の短絡が時刻t2で発生した後の短絡初期期間Tiが経過した時刻t3において変化する。これに応動して、同図(C)に示す溶接電圧v及び同図(D)に示す溶接電流iの極性は、電極プラス極性EPから電極マイナス極性ENへと切り換わる。電極マイナス極性ENから電極プラス極性EPに切り換わるときも同図と同様に行う。同図では、極性切換タイミングを短絡初期期間Tiが経過した時点としているが、短絡期間Ts又は短絡初期期間Ti中の任意の時点で行っても良い。   When the polarity switching signal Sa changes at time t1, as shown in FIG. 5A, the polarity switching start signal Sb is first short-circuited after time t1, as shown in FIG. Changes at time t3 when the short-circuit initial period Ti after occurrence of time t2 has elapsed. In response to this, the polarity of the welding voltage v shown in FIG. 6C and the welding current i shown in FIG. 4D is switched from the electrode positive polarity EP to the electrode negative polarity EN. The same operation is performed when the electrode negative polarity EN is switched to the electrode positive polarity EP. In the figure, the polarity switching timing is the time when the short-circuit initial period Ti has elapsed, but it may be performed at any time during the short-circuit period Ts or the short-circuit initial period Ti.

特開昭58−38664号公報JP 58-38664 A 特開2006−142317号公報JP 2006-142317 A

上述した従来技術では、図3に示すように、極性切換タイミングは短絡期間Ts中となる。時刻t3において極性が切り換わると、それに伴って短絡電流波形パラメータも切り換わる。上述したように、短絡電流波形パラメータの値は、アーク期間Ta中に形成された溶滴を円滑に移行うさせるように設定される。時刻t2において溶融池と接触する溶滴はそれ以前のアーク期間Ta中に形成されたものである。したがって、時刻t2時点での溶滴は電極プラス極性EPで形成されたものであるのでそのサイズは小さい。しかし、時刻t3において短絡電流波形パラメータは電極マイナス極性EN用の値に切り換わるために、小さなサイズの溶滴に対しては不適合であり、大粒のスパッタが発生しビード外観が悪くなる。このようになる理由は、電極プラス極性EPで形成された溶滴が電極マイナス極性EN用の短絡電流波形パラメータ値によって移行させられるためである。電極マイナス極性ENから電極プラス極性EPに切り換わるときも同様に溶接状態が不安定になる。すなわち、電極マイナス極性ENのアーク期間Taで形成された大きなサイズの溶滴を、電極プラス極性EP用の短絡電流波形パラメータ値によって移行させるために短絡解除に長い時間がかかり溶接状態が不安定になる。   In the prior art described above, as shown in FIG. 3, the polarity switching timing is during the short circuit period Ts. When the polarity is switched at time t3, the short-circuit current waveform parameter is switched accordingly. As described above, the value of the short-circuit current waveform parameter is set so that the droplets formed during the arc period Ta are transferred smoothly. The droplet that contacts the molten pool at time t2 is formed during the previous arc period Ta. Therefore, since the droplet at time t2 is formed with the electrode plus polarity EP, its size is small. However, since the short-circuit current waveform parameter is switched to the value for the electrode negative polarity EN at time t3, it is incompatible with small-sized droplets, large spatter is generated, and the bead appearance is deteriorated. The reason for this is that the droplet formed with the electrode positive polarity EP is shifted by the short-circuit current waveform parameter value for the electrode negative polarity EN. Similarly, when the electrode minus polarity EN is switched to the electrode plus polarity EP, the welding state becomes unstable. That is, it takes a long time to release the short circuit to make the large size droplet formed in the arc period Ta of the electrode negative polarity EN shift by the short circuit current waveform parameter value for the electrode positive polarity EP, and the welding state becomes unstable. Become.

そこで、本発明は、極性切換に伴う溶滴移行状態の不安定を抑制することができる交流消耗電極短絡アーク溶接方法を提供することを目的とする。   Then, an object of this invention is to provide the alternating current consumable electrode short circuit arc welding method which can suppress instability of the droplet transfer state accompanying polarity switching.

上述した課題を解決するために、第1の発明は、
溶接ワイヤを送給すると共に、予め定めた短絡電流波形パラメータに従った短絡電流が通電する短絡期間と予め定めた定電圧特性に従ったアーク電流が通電するアーク期間とを繰り返す短絡アーク溶接にあって、
溶接電源の出力極性を電極プラス極性と電極マイナス極性とに前記短絡期間中の所定極性切換タイミングで交互に切り換え、前記短絡電流波形パラメータを前記電極プラス極性期間と電極マイナス極性期間とで異なる値に設定して溶接を行う交流消耗電極短絡アーク溶接方法において、
前記短絡電流波形パラメータは、出力極性が短絡期間中に切り換わりこの短絡が解除されてアークが発生した後に各出力極性に対応した値に切り換わる、ことを特徴とする交流消耗電極短絡アーク溶接方法である。
In order to solve the above-described problem, the first invention
It is suitable for short-circuit arc welding that feeds a welding wire and repeats a short-circuit period in which a short-circuit current is applied according to a predetermined short-circuit current waveform parameter and an arc period in which an arc current is applied according to a predetermined constant voltage characteristic. And
The output polarity of the welding power source is alternately switched between an electrode positive polarity and an electrode negative polarity at a predetermined polarity switching timing during the short circuit period, and the short circuit current waveform parameter is set to a different value between the electrode positive polarity period and the electrode negative polarity period. In the AC consumable electrode short-circuit arc welding method of setting and welding,
The alternating current consumable electrode short circuit arc welding method, wherein the short circuit current waveform parameter is switched to a value corresponding to each output polarity after the output polarity is switched during the short circuit period and the short circuit is released and an arc is generated. It is.

第2の発明は、短絡が発生すると、短絡電流を予め定めた短絡初期期間中は小電流値の予め定めた短絡初期電流値に減少させ、その後は予め定めた上昇特性に従って増加させ、短絡発生後予め定めた短絡解除期間が経過すると大電流値の予め定めた短絡解除電流値に急増させて短絡を解除させ、
前記短絡電流波形パラメータとして、前記上昇特性、前記短絡解除期間又は前記短絡解除電流値の少なくとも1つ以上を設定する、ことを特徴とする第1の発明記載の交流消耗電極短絡アーク溶接方法である。
According to a second aspect of the present invention, when a short circuit occurs, the short circuit current is decreased to a predetermined short circuit initial current value during a predetermined initial short circuit period, and thereafter increased according to a predetermined rising characteristic to generate a short circuit. After the predetermined short-circuit release period has elapsed, the short-circuit is released by rapidly increasing to a predetermined short-circuit release current value of a large current value,
The AC consumable electrode short-circuit arc welding method according to the first aspect of the invention, wherein at least one of the rising characteristic, the short-circuit release period, or the short-circuit release current value is set as the short-circuit current waveform parameter. .

第3の発明は、前記極性切換タイミングが前記短絡初期期間中である、ことを特徴とする第2の発明記載の交流消耗電極短絡アーク溶接方法である。   A third invention is the AC consumable electrode short-circuit arc welding method according to the second invention, wherein the polarity switching timing is during the short-circuit initial period.

第4の発明は、前記短絡電流波形パラメータは、出力極性が短絡期間中に切り換わりこの短絡が解除されてアークが発生してから所定期間経過後に各出力極性に対応した値に切り換わる、ことを特徴とする第1〜第3の発明のいずれか1項に記載の交流消耗電極短絡アーク溶接方法である。   According to a fourth aspect of the invention, the short circuit current waveform parameter is switched to a value corresponding to each output polarity after a predetermined period has elapsed after the output polarity is switched during the short circuit period and the short circuit is released and an arc is generated. An AC consumable electrode short-circuit arc welding method according to any one of the first to third inventions.

第5の発明は、前記短絡電流波形パラメータは、出力極性が短絡期間中に切り換わりこの短絡が解除されてアークが発生してから所定回数の短絡が発生した時点で各出力極性に対応した値に切り換わる、ことを特徴とする第1〜第3の発明のいずれか1項に記載の交流消耗電極短絡アーク溶接方法である。   According to a fifth aspect of the invention, the short-circuit current waveform parameter is a value corresponding to each output polarity when the output polarity is switched during the short-circuit period and the short-circuit is released and an arc is generated a predetermined number of times. The AC consumable electrode short-circuit arc welding method according to any one of the first to third inventions, wherein

上記第1の発明によれば、短絡電流波形パラメータは出力極性が短絡期間中に切り換わりこの短絡が解除されてアークが発生した後に各出力極性に対応した値に切り換わる。このために、極性切換前に形成された溶滴が極性切換後もその溶滴サイズに適合した短絡電流波形パラメータに従った短絡電流によって溶滴移行が行われるので、安定した溶滴移行となり、良好な溶接品質を得ることができる。   According to the first invention, the output polarity of the short-circuit current waveform parameter is switched during the short-circuit period, and after the short-circuit is released and an arc is generated, the short-circuit current waveform parameter is switched to a value corresponding to each output polarity. For this reason, since the droplet formed before the polarity switching is performed by the short-circuit current according to the short-circuit current waveform parameter suitable for the droplet size even after the polarity switching, the droplet transfer is stable, Good welding quality can be obtained.

上記第2の発明によれば、短絡が発生すると、短絡電流を予め定めた短絡初期期間中は小電流値の予め定めた短絡初期電流値に減少させ、その後は予め定めた上昇特性に従って増加させ、短絡発生後予め定めた短絡解除期間が経過すると大電流値の予め定めた短絡解除電流値に急増させて短絡を解除させる場合において、
短絡電流波形パラメータとして上昇特性、短絡解除期間又は短絡解除電流値の少なくとも1つ以上を設定することによって、上記の効果を奏することができる。
According to the second aspect of the present invention, when a short circuit occurs, the short circuit current is reduced to a predetermined short circuit initial current value with a small current value during a predetermined initial short circuit period, and thereafter increased according to a predetermined rising characteristic. When a predetermined short-circuit release period elapses after the occurrence of a short-circuit, when the short-circuit is released by rapidly increasing to a predetermined short-circuit release current value of a large current value,
By setting at least one of the rising characteristic, the short-circuit release period, or the short-circuit release current value as the short-circuit current waveform parameter, the above effect can be obtained.

第3の発明によれば、極性切換タイミングが短絡初期期間中であるときは、小電流の状態で極性を切り換えることができるので、極性切換用スイッチング素子へのサージ電圧の印加を抑制することができる。このために溶接電源の信頼性を向上させることができる。   According to the third invention, when the polarity switching timing is in the initial short-circuit period, the polarity can be switched in a small current state, so that the application of the surge voltage to the polarity switching switching element can be suppressed. it can. For this reason, the reliability of the welding power source can be improved.

第4の発明によれば、短絡電流波形パラメータを、出力極性が短絡期間中に切り換わりこの短絡が解除されてアークが発生してから所定期間経過後に各出力極性に対応した値に切り換えるようにしている。極性切換後のしばらくの間は、極性切換前に溶接ワイヤに蓄積された熱量のために溶滴形成が影響される場合がある。このために、極性切換後の短絡が解除されてから所定期間の間は極性切換前の短絡電流波形パラメータ値を使用することによって、安定した溶滴移行を行うことができる。   According to the fourth invention, the short-circuit current waveform parameter is switched to a value corresponding to each output polarity after the elapse of a predetermined period after the output polarity is switched during the short-circuit period and the short-circuit is released and the arc is generated. ing. For some time after polarity switching, droplet formation may be affected by the amount of heat stored in the welding wire before polarity switching. For this reason, stable droplet transfer can be performed by using the short-circuit current waveform parameter value before polarity switching for a predetermined period after the short-circuit after polarity switching is released.

第5の発明によれば、短絡電流波形パラメータを、出力極性が短絡期間中に切り換わりこの短絡が解除されてアークが発生してから所定回数の短絡が発生したときに各出力極性に対応した値に切り換えるようにしている。極性切換後のしばらくの間は、極性切換前に溶接ワイヤに蓄積された熱量のために溶滴形成が影響される場合がある。このために、極性切換後の短絡が解除されてから所定回数の短絡が発生するまでの間は極性切換前の短絡電流波形パラメータ値を使用することによって、安定した溶滴移行を行うことができる。   According to the fifth aspect of the invention, the short-circuit current waveform parameter corresponds to each output polarity when the output polarity is switched during the short-circuit period and the short-circuit is released and an arc is generated a predetermined number of times. Switch to the value. For some time after polarity switching, droplet formation may be affected by the amount of heat stored in the welding wire before polarity switching. For this reason, stable droplet transfer can be performed by using the short-circuit current waveform parameter value before polarity switching after the short-circuit after polarity switching is released until a predetermined number of short-circuits occur. .

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施の形態に係る交流消耗電極短絡アーク溶接方法を示すタイミングチャートである。同図(A)は極性切換信号Saを示し、同図(B)は極性切換開始信号Sbを示し、同図(C)は溶接電圧vを示し、同図(D)は溶接電流iを示し、同図(E)はパラメータ切換信号Spを示す。同図は上述した図3と対応しており、以下異なる点について同図を参照して説明する。   FIG. 1 is a timing chart showing an AC consumable electrode short-circuit arc welding method according to an embodiment of the present invention. (A) shows the polarity switching signal Sa, (B) shows the polarity switching start signal Sb, (C) shows the welding voltage v, and (D) shows the welding current i. FIG. 5E shows the parameter switching signal Sp. The figure corresponds to FIG. 3 described above, and different points will be described below with reference to the figure.

同図(D)に示すように、短絡電流波形パラメータは、電極プラス極性EPのときは(短絡初期期間Tip,短絡初期電流値Iip,上昇特性Cup,短絡解除期間Tkp,短絡解除電流値Ikp)から形成され、電極マイナス極性ENのときは(短絡初期期間Tin,短絡初期電流値Iin,上昇特性Cun,短絡解除期間Tkn,短絡解除電流値Ikn)から形成される。極性によって、上昇特性、短絡解除期間又は短絡解除電流値の少なくとも1つ以上は異なった値に設定される。   As shown in FIG. 4D, when the short-circuit current waveform parameter is the electrode plus polarity EP (short-circuit initial period Tip, short-circuit initial current value Iip, rising characteristic Cup, short-circuit release period Tkp, short-circuit release current value Ikp) When the electrode has a negative polarity EN, it is formed from (short-circuit initial period Tin, short-circuit initial current value Iin, rising characteristic Cun, short-circuit release period Tkn, short-circuit release current value Ikn). Depending on the polarity, at least one of the rising characteristic, the short-circuit release period, or the short-circuit release current value is set to a different value.

時刻t1において、同図(A)に示すように、、極性切換信号Saが変化し、最初の短絡が発生して短絡初期期間Tipが経過した時点(t3)ににおいて、同図(B)に示すように、極性切換開始信号Sbが変化する。これに応動して、同図(C)に示すように、電極プラス極性EPから電極マイナス極性ENに切り換わる。同図(D)に示すように、時刻t2に短絡が発生し、短絡初期期間Tipに入るために短絡電流は短絡初期電流値Iipになる。この短絡初期電流値Iipは数十A程度の小さな値であるので、後述する極性切換用スイッチング素子(図2のPTR及びNTR)へのサージ電圧の印加が小さくなり負担が抑制される。短絡期間Ts中に極性を切り換えているので、アーク切れの心配は不要であり安定した極性切換を行うことができる。   At time t1, as shown in FIG. 6A, the polarity switching signal Sa changes, and at the time (t3) when the initial short circuit occurs and the initial short circuit period Tip has elapsed, the circuit shown in FIG. As shown, the polarity switching start signal Sb changes. In response to this, as shown in FIG. 5C, the electrode positive polarity EP is switched to the electrode negative polarity EN. As shown in FIG. 4D, a short circuit occurs at time t2, and since the short circuit initial period Tip is entered, the short circuit current becomes the short circuit initial current value Iip. Since the short-circuit initial current value Iip is a small value of about several tens of A, application of a surge voltage to a polarity switching switching element (PTR and NTR in FIG. 2) to be described later is reduced and the burden is suppressed. Since the polarity is switched during the short-circuit period Ts, there is no need to worry about arc breakage and stable polarity switching can be performed.

時刻t4において極性切換後の最初の短絡が解除されると、同図(E)に示すように、パラメータ切換信号Spが変化する。これに応動して、短絡電流波形パラメータは、上述した電極プラス極性EP用の値から電極マイナス極性EN用の値に切り換わる。このために、時刻t2からの最初の短絡期間Ts中は電極プラス極性EP用の短絡電流波形パラメータ値になる。したがって、極性切換前に電極プラス極性EPで形成された溶滴が、極性切換後も電極プラス極性EP用の短絡電流波形パラメータ値で移行させられることになり、安定した溶滴移行を行うことができる。電極マイナス極性ENから電極プラス極性EPに切り換えるときも同様に安定した溶滴移行を行うことができる。   When the first short circuit after polarity switching is released at time t4, the parameter switching signal Sp changes as shown in FIG. In response to this, the short-circuit current waveform parameter switches from the value for the electrode positive polarity EP described above to the value for the electrode negative polarity EN. For this reason, during the first short-circuit period Ts from time t2, the short-circuit current waveform parameter value for the electrode plus polarity EP is obtained. Therefore, the droplet formed with the electrode plus polarity EP before the polarity switching is transferred with the short-circuit current waveform parameter value for the electrode plus polarity EP even after the polarity switching, and stable droplet transfer can be performed. it can. Similarly, when the electrode minus polarity EN is switched to the electrode plus polarity EP, stable droplet transfer can be performed.

同図においては、極性切換後の最初の短絡が解除される時点で短絡電流波形パラメータ値を切り換える場合を例示した。これ以外にも、最初の短絡が解除されてアークが発生してから所定期間経過した時点で短絡電流波形パラメータ値を切り換えても良い。また、最初の短絡が解除されてアークが発生した後に所定回数の短絡が解除された時点で短絡電流波形パラメータ値を切り換えるようにしても良い。   In the figure, the case where the short-circuit current waveform parameter value is switched when the first short circuit after the polarity switching is released is illustrated. In addition to this, the short-circuit current waveform parameter value may be switched when a predetermined period elapses after the first short circuit is released and the arc is generated. Alternatively, the short-circuit current waveform parameter value may be switched when a predetermined number of short-circuits are released after the first short-circuit is released and an arc is generated.

図2は、上述した実施の形態に係る交流消耗電極短絡アーク溶接方法を実施するための溶接電源のブロック図である。以下、同図を参照して各ブロックについて説明する。 FIG. 2 is a block diagram of a welding power source for carrying out the AC consumable electrode short-circuit arc welding method according to the above-described embodiment. Hereinafter, each block will be described with reference to FIG.

インバータ回路INVは、交流商用電源AC(3相200V等)を入力として整流し、後述する誤差増幅信号Eaに従ってインバータ制御によって高周波交流を出力する。高周波トランスINTは、高周波交流をアーク溶接に適した電圧値へと降圧した高周波交流を出力する。2次側ダイオードD2a〜D2dは、降圧された高周波交流を直流に整流する。電極プラス極性スイッチング素子PTRは、後述する電極プラス極性スイッチング素子駆動信号Pdに従ってオン/オフされ、オン状態のときは電極プラス極性EPになる。電極マイナス極性スイッチング素子NTRは、後述する電極マイナス極性スイッチング素子駆動信号Ndに従ってオン/オフされ、オン状態のときは電極マイナス極性ENになる。リアクトルWLは、整流されたリップルのある直流を平滑する。溶接ワイヤ1はワイヤ送給装置の送給ロール5によって溶接トーチ4内を通って送給され、母材2との間にアーク3が発生する。   The inverter circuit INV rectifies using an AC commercial power supply AC (three-phase 200 V or the like) as an input, and outputs high-frequency AC by inverter control according to an error amplification signal Ea described later. The high frequency transformer INT outputs a high frequency alternating current obtained by stepping down the high frequency alternating current to a voltage value suitable for arc welding. The secondary side diodes D2a to D2d rectify the stepped-down high-frequency alternating current into direct current. The electrode positive polarity switching element PTR is turned on / off in accordance with an electrode positive polarity switching element drive signal Pd described later, and has an electrode positive polarity EP when in the on state. The electrode negative polarity switching element NTR is turned on / off in accordance with an electrode negative polarity switching element drive signal Nd, which will be described later, and becomes the electrode negative polarity EN when in the on state. The reactor WL smoothes the rectified rippled direct current. The welding wire 1 is fed through the welding torch 4 by the feeding roll 5 of the wire feeding device, and an arc 3 is generated between the welding wire 1 and the base material 2.

電圧検出回路VDは、交流の溶接電圧vを検出し絶対値に変換して、電圧検出信号Vdを出力する。短絡判別回路SDは、この電圧検出信号Vdの値によって短絡期間とアーク期間とを判別し、短絡期間のときはHighレベルとなりアーク期間のときはLowレベルとなる短絡判別信号Sdを出力する。電流検出回路IDは、交流の溶接電流iを検出し絶対値に変換して、電流検出信号Idを出力する。   The voltage detection circuit VD detects an AC welding voltage v, converts it to an absolute value, and outputs a voltage detection signal Vd. The short circuit determination circuit SD determines a short circuit period and an arc period based on the value of the voltage detection signal Vd, and outputs a short circuit determination signal Sd that is High level during the short circuit period and Low level during the arc period. The current detection circuit ID detects an AC welding current i, converts it to an absolute value, and outputs a current detection signal Id.

極性切換信号生成回路SAは、予め定めた電極プラス極性期間Tepの間はHighレベルになり予め定めた電極マイナス極性期間Tenの間はLowレベルになる極性切換信号Saを出力する。極性切換開始信号生成回路SBは、この極性切換信号Saが変化した後に後述する短絡初期期間終了信号Stiが入力された時点で変化する極性切換開始信号Sbを出力する。駆動回路Dvは、この極性切換開始信号SbがHighレベルのときは電極プラス極性スイッチング素子PTRを駆動するための電極プラス極性スイッチング素子駆動信号Pdを出力し、Lowレベルのときは電極マイナス極性スイッチング素子NTRを駆動するための電極マイナス極性スイッチング素子駆動信号Ndを出力する。   The polarity switching signal generation circuit SA outputs a polarity switching signal Sa that is at a high level during a predetermined electrode plus polarity period Tep and is at a low level during a predetermined electrode minus polarity period Ten. The polarity switching start signal generation circuit SB outputs a polarity switching start signal Sb that changes when a short-circuit initial period end signal Sti described later is input after the polarity switching signal Sa changes. The drive circuit Dv outputs an electrode positive polarity switching element drive signal Pd for driving the electrode positive polarity switching element PTR when the polarity switching start signal Sb is High level, and the electrode minus polarity switching element when the polarity switching start signal Sb is Low level. An electrode negative polarity switching element drive signal Nd for driving the NTR is output.

電極プラス極性用短絡電流波形パラメータ設定回路PPRは、予め定めた電極プラス極性用短絡電流波形パラメータ設定信号Pprを出力する。電極マイナス極性用短絡電流波形パラメータ設定回路PNRは、予め定めた電極マイナス極性用短絡電流波形パラメータ設定信号Pnrを出力する。ここで、Ppr=(Tip,Iip,Cup,Tkp,Ikp)であり、Pnr=(Tin,Iin,Cun,Tkn,Ikn)である。パラメータ切換信号生成回路SPは、上記の極性切換開始信号Sbが変化し、かつ、上記の短絡判別信号SdがLowレベル(アーク期間)に変化した時点で変化するパラメータ切換信号Spを出力する。パラメータ切換回路SWPは、このパラメータ切換信号SpがHighレベルのときは上記の電極プラス極性用短絡電流波形パラメータ設定信号Pprをパラメータ設定信号Prとして出力し、Lowレベルのときは上記の電極マイナス極性用短絡電流波形パラメータ設定信号Pnrをパラメータ設定信号Prとして出力する。短絡電流設定回路IRは、上記の短絡判別信号SdがHighレベル(短絡期間)になった時点からこのパラメータ設定信号Prに従った短絡電流を通電するための短絡電流設定信号Irを出力する。この短絡電流波形パラメータによる短絡電流の通電については、図1で上述している。電流誤差増幅回路EIは、上記の短絡電流設定信号Irと電流検出信号Idとの誤差を増幅して、電流誤差増幅信号Eiを出力する。   The electrode positive polarity short circuit current waveform parameter setting circuit PPR outputs a predetermined electrode positive polarity short circuit current waveform parameter setting signal Ppr. The electrode negative polarity short-circuit current waveform parameter setting circuit PNR outputs a predetermined electrode negative polarity short-circuit current waveform parameter setting signal Pnr. Here, Ppr = (Tip, Iip, Cup, Tkp, Ikp) and Pnr = (Tin, Iin, Cun, Tkn, Ikn). The parameter switching signal generation circuit SP outputs a parameter switching signal Sp that changes when the polarity switching start signal Sb changes and the short circuit determination signal Sd changes to a low level (arc period). The parameter switching circuit SWP outputs the electrode positive polarity short-circuit current waveform parameter setting signal Ppr as the parameter setting signal Pr when the parameter switching signal Sp is High level, and the electrode negative polarity when the parameter switching signal Sp is Low level. The short-circuit current waveform parameter setting signal Pnr is output as the parameter setting signal Pr. The short-circuit current setting circuit IR outputs a short-circuit current setting signal Ir for supplying a short-circuit current according to the parameter setting signal Pr from the time when the short-circuit determination signal Sd becomes High level (short-circuit period). The short-circuit current energization based on the short-circuit current waveform parameter is described above with reference to FIG. The current error amplification circuit EI amplifies an error between the short-circuit current setting signal Ir and the current detection signal Id and outputs a current error amplification signal Ei.

電圧設定回路VRは、予め定めた電圧設定信号Vrを出力する。電圧誤差増幅回路EVは、この電圧設定信号Vrと上記の電圧検出信号Vdとの誤差を増幅して電圧誤差増幅信号Evを出力する。外部特性切換回路SWは、上記の短絡判別信号SdがHighレベル(短絡期間)のときは上記の電流誤差増幅信号Eiを誤差増幅信号Eaとして出力し、Lowレベル(アーク期間)のときは上記の電圧誤差増幅信号Evを誤差増幅信号Eaとして出力する。したがって、溶接電源の外部特性は短絡期間中は定電流特性となり、アーク期間中は定電圧特性となる。上述したブロック構成によって、図1の各信号が出力されて交流の溶接電圧v及び溶接電流iが通電する。   The voltage setting circuit VR outputs a predetermined voltage setting signal Vr. The voltage error amplification circuit EV amplifies an error between the voltage setting signal Vr and the voltage detection signal Vd and outputs a voltage error amplification signal Ev. The external characteristic switching circuit SW outputs the current error amplification signal Ei as the error amplification signal Ea when the short-circuit determination signal Sd is at a high level (short-circuit period), and when the short-circuit determination signal Sd is at a low level (arc period). The voltage error amplification signal Ev is output as the error amplification signal Ea. Accordingly, the external characteristics of the welding power source are constant current characteristics during the short circuit period and constant voltage characteristics during the arc period. With the block configuration described above, each signal in FIG. 1 is output, and the AC welding voltage v and the welding current i are applied.

上述した実施の形態によれば、短絡電流波形パラメータは出力極性が短絡期間中に切り換わりこの短絡が解除されてアークが発生した後に各出力極性に対応した値に切り換わる。このために、極性切換前に形成された溶滴が極性切換後もその溶滴サイズに適合した短絡電流波形パラメータに従った短絡電流によって溶滴移行が行われるので、安定した溶滴移行となり、良好な溶接品質を得ることができる。   According to the embodiment described above, the output polarity of the short-circuit current waveform parameter is switched during the short-circuit period, and after the short-circuit is released and an arc is generated, the short-circuit current waveform parameter is switched to a value corresponding to each output polarity. For this reason, since the droplet formed before the polarity switching is performed by the short-circuit current according to the short-circuit current waveform parameter suitable for the droplet size even after the polarity switching, the droplet transfer is stable, Good welding quality can be obtained.

短絡が発生すると、短絡電流を予め定めた短絡初期期間中は小電流値の予め定めた短絡初期電流値に減少させ、その後は予め定めた上昇特性に従って増加させ、短絡発生後予め定めた短絡解除期間が経過すると大電流値の予め定めた短絡解除電流値に急増させて短絡を解除させる場合において、短絡電流波形パラメータとして上昇特性、短絡解除期間又は短絡解除電流値の少なくとも1つ以上を設定することによって、上記の効果を奏することができる。   When a short-circuit occurs, the short-circuit current is decreased to a predetermined short-circuit initial current value during a predetermined initial short-circuit period, and then increased according to a predetermined rising characteristic. In the case where the short-circuit is released by rapidly increasing to a predetermined short-circuit release current value with a large current value when the period has elapsed, at least one of a rising characteristic, a short-circuit release period, or a short-circuit release current value is set as a short-circuit current waveform parameter As a result, the above effects can be achieved.

極性切換タイミングが短絡初期期間中であるときは、小電流の状態で極性を切り換えることができるので、極性切換用スイッチング素子へのサージ電圧の印加を抑制することができる。このために溶接電源の信頼性を向上させることができる。   When the polarity switching timing is during the initial short-circuit period, the polarity can be switched in a small current state, so that application of a surge voltage to the polarity switching switching element can be suppressed. For this reason, the reliability of the welding power source can be improved.

短絡電流波形パラメータを、出力極性が短絡期間中に切り換わりこの短絡が解除されてアークが発生してから所定期間経過後に各出力極性に対応した値に切り換えるようにしても良い。極性切換後のしばらくの間は、極性切換前に溶接ワイヤに蓄積された熱量のために溶滴形成が影響される場合がある。このために、極性切換後の短絡が解除されてから所定期間の間は極性切換前の短絡電流波形パラメータ値を使用することによって、安定した溶滴移行を行うことができる。この所定期間は、10〜100ms程度である。   The short-circuit current waveform parameter may be switched to a value corresponding to each output polarity after a predetermined period elapses after the output polarity is switched during the short-circuit period and the short-circuit is released and an arc is generated. For some time after polarity switching, droplet formation may be affected by the amount of heat stored in the welding wire before polarity switching. For this reason, stable droplet transfer can be performed by using the short-circuit current waveform parameter value before polarity switching for a predetermined period after the short-circuit after polarity switching is released. This predetermined period is about 10 to 100 ms.

短絡電流波形パラメータを、出力極性が短絡期間中に切り換わりこの短絡が解除されてアークが発生してから所定回数の短絡が発生したときに各出力極性に対応した値に切り換えるようにしても良い。極性切換後のしばらくの間は、極性切換前に溶接ワイヤに蓄積された熱量のために溶滴形成が影響される場合がある。このために、極性切換後の短絡が解除されてから所定回数の短絡が発生するまでの間は極性切換前の短絡電流波形パラメータ値を使用することによって、安定した溶滴移行を行うことができる。この所定回数は、1〜10回程度である。   The short-circuit current waveform parameter may be switched to a value corresponding to each output polarity when the output polarity is switched during the short-circuit period and a short-circuit occurs a predetermined number of times after the short-circuit is released and an arc is generated. . For some time after polarity switching, droplet formation may be affected by the amount of heat stored in the welding wire before polarity switching. For this reason, stable droplet transfer can be performed by using the short-circuit current waveform parameter value before polarity switching after the short-circuit after polarity switching is released until a predetermined number of short-circuits occur. . This predetermined number of times is about 1 to 10 times.

本発明の実施の形態に係る交流消耗電極短絡アーク溶接方法を示すタイミングチャートである。It is a timing chart which shows the alternating current consumable electrode short circuit arc welding method which concerns on embodiment of this invention. 本発明の実施の形態に係る交流消耗電極短絡アーク溶接方法を実施するための溶接電源のブロック図である。It is a block diagram of the welding power supply for enforcing the alternating current consumable electrode short circuit arc welding method which concerns on embodiment of this invention. 従来技術の交流消耗電極短絡アーク溶接方法を示す波形図である。It is a wave form diagram which shows the alternating current consumable electrode short circuit arc welding method of a prior art.

符号の説明Explanation of symbols

1 溶接ワイヤ
2 母材
3 アーク
4 溶接トーチ
5 送給ロール
AC 交流商用電源
Cu 上昇特性
Cun 電極マイナス極性用上昇特性
Cup 電極プラス極性用上昇特性
D2a〜D2d 2次側ダイオード
Dv 駆動回路
Ea 誤差増幅信号
EI 電流誤差増幅回路
Ei 電流誤差増幅信号
EN 電極マイナス極性
EP 電極プラス極性
EV 電圧誤差増幅回路
Ev 電圧誤差増幅信号
i 溶接電流
ID 電流検出回路
Id 電流検出信号
Ii 短絡初期電流
Iin 電極マイナス極性用短絡初期電流値
Iip 電極プラス極性用短絡初期電流値
Ik 短絡解除電流値
Ikn 電極マイナス極性用短絡解除電流値
Ikp 電極プラス極性用短絡解除電流値
INT 高周波トランス
INV インバータ回路
IR 短絡電流設定回路
Ir 短絡電流設定信号
Nd 電極マイナス極性スイッチング素子駆動信号
NTR 電極マイナス極性スイッチング素子
Pd 電極プラス極性スイッチング素子駆動信号
PNR 電極マイナス極性用短絡電流波形パラメータ設定回路
Pnr 電極マイナス極性用短絡電流波形パラメータ設定信号
PPR 電極プラス極性用短絡電流波形パラメータ設定回路
Ppr 電極プラス極性用短絡電流波形パラメータ設定信号
Pr パラメータ設定信号
PTR 電極プラス極性スイッチング素子
SA 極性切換信号生成回路
Sa 極性切換信号
SB 極性切換開始信号生成回路
Sb 極性切換開始信号
SD 短絡判別回路
Sd 短絡判別信号
SP パラメータ切換信号生成回路
Sp パラメータ切換信号
Sti 短絡初期期間終了信号
SW 外部特性切換回路
SWP パラメータ切換回路
Ta アーク期間
Ten 電極マイナス極性期間
Tep 電極プラス極性期間
Ti 短絡初期期間
Tin 電極マイナス極性用短絡初期期間
Tip 電極プラス極性用短絡初期期間
Tk 短絡解除期間
Tkn 電極マイナス極性用短絡解除期間
Tkp 電極プラス極性用短絡解除期間
Ts 短絡期間
v 溶接電圧
VD 電圧検出回路
Vd 電圧検出信号
VR 電圧設定回路
Vr 電圧設定信号
WL リアクトル
1 Welding wire
2 Base material
3 arc
4 Welding torch
5 Feeding roll AC AC commercial power supply Cu Ascending characteristic Cun Electrode minus polarity ascending characteristic Cup Electrode plus polarity ascending characteristic D2a to D2d Secondary side diode Dv Drive circuit Ea Error amplification signal EI Current error amplification circuit Ei Current error amplification signal EN Electrode negative polarity EP Electrode positive polarity EV Voltage error amplification circuit Ev Voltage error amplification signal i Welding current ID Current detection circuit Id Current detection signal Ii Short circuit initial current Iin Short circuit initial current value for electrode negative polarity Iip Short circuit initial current value for electrode positive polarity Ik Short-circuit release current value Ikn Short-circuit release current value for electrode negative polarity Ikp Short-circuit release current value for electrode positive polarity INT High-frequency transformer INV Inverter circuit IR Short-circuit current setting circuit Ir Short-circuit current setting signal Nd Electrode negative-polarity switching element drive signal NTR Electrode negative Polarity switching element d Electrode positive polarity switching element drive signal PNR Electrode negative polarity short circuit current waveform parameter setting circuit Pnr Electrode negative polarity short circuit current waveform parameter setting signal PPR Electrode positive polarity short circuit current waveform parameter setting circuit Ppr Electrode positive polarity short circuit current waveform parameter Setting signal Pr Parameter setting signal PTR Electrode plus polarity switching element SA Polarity switching signal generation circuit Sa Polarity switching signal SB Polarity switching start signal generation circuit Sb Polarity switching start signal SD Short circuit determination circuit Sd Short circuit determination signal SP Parameter switching signal generation circuit Sp Parameters Switching signal Sti Short circuit initial period end signal SW External characteristic switching circuit SWP Parameter switching circuit Ta Arc period Ten Electrode negative polarity period Tep Electrode positive polarity period Ti Short circuit initial period Tin Electrode negative polarity first short circuit Period Tip Electrode positive polarity short circuit initial period Tk Short circuit release period Tkn Electrode negative polarity short circuit release period Tkp Electrode positive polarity short circuit release period Ts Short circuit period v Welding voltage VD Voltage detection circuit Vd Voltage detection signal VR Voltage setting circuit Vr Voltage setting Signal WL reactor

Claims (5)

溶接ワイヤを送給すると共に、予め定めた短絡電流波形パラメータに従った短絡電流が通電する短絡期間と予め定めた定電圧特性に従ったアーク電流が通電するアーク期間とを繰り返す短絡アーク溶接にあって、
溶接電源の出力極性を電極プラス極性と電極マイナス極性とに前記短絡期間中の所定極性切換タイミングで交互に切り換え、前記短絡電流波形パラメータを前記電極プラス極性期間と電極マイナス極性期間とで異なる値に設定して溶接を行う交流消耗電極短絡アーク溶接方法において、
前記短絡電流波形パラメータは、出力極性が短絡期間中に切り換わりこの短絡が解除されてアークが発生した後に各出力極性に対応した値に切り換わる、ことを特徴とする交流消耗電極短絡アーク溶接方法。
It is suitable for short-circuit arc welding that feeds a welding wire and repeats a short-circuit period in which a short-circuit current is applied according to a predetermined short-circuit current waveform parameter and an arc period in which an arc current is applied according to a predetermined constant voltage characteristic. And
The output polarity of the welding power source is alternately switched between an electrode positive polarity and an electrode negative polarity at a predetermined polarity switching timing during the short circuit period, and the short circuit current waveform parameter is set to a different value between the electrode positive polarity period and the electrode negative polarity period. In the AC consumable electrode short-circuit arc welding method of setting and welding,
The alternating current consumable electrode short circuit arc welding method, wherein the short circuit current waveform parameter is switched to a value corresponding to each output polarity after the output polarity is switched during the short circuit period and the short circuit is released and an arc is generated. .
短絡が発生すると、短絡電流を予め定めた短絡初期期間中は小電流値の予め定めた短絡初期電流値に減少させ、その後は予め定めた上昇特性に従って増加させ、短絡発生後予め定めた短絡解除期間が経過すると大電流値の予め定めた短絡解除電流値に急増させて短絡を解除させ、
前記短絡電流波形パラメータとして、前記上昇特性、前記短絡解除期間又は前記短絡解除電流値の少なくとも1つ以上を設定する、ことを特徴とする請求項1記載の交流消耗電極短絡アーク溶接方法。
When a short-circuit occurs, the short-circuit current is decreased to a predetermined short-circuit initial current value during a predetermined initial short-circuit period, and then increased according to a predetermined rising characteristic. When the period elapses, the short-circuit is released by rapidly increasing to a predetermined short-circuit release current value of a large current value,
2. The AC consumable electrode short-circuit arc welding method according to claim 1, wherein at least one of the increase characteristic, the short-circuit release period, or the short-circuit release current value is set as the short-circuit current waveform parameter.
前記極性切換タイミングが前記短絡初期期間中である、ことを特徴とする請求項2記載の交流消耗電極短絡アーク溶接方法。   The AC consumable electrode short-circuit arc welding method according to claim 2, wherein the polarity switching timing is during the short-circuit initial period. 前記短絡電流波形パラメータは、出力極性が短絡期間中に切り換わりこの短絡が解除されてアークが発生してから所定期間経過後に各出力極性に対応した値に切り換わる、ことを特徴とする請求項1〜3のいずれか1項に記載の交流消耗電極短絡アーク溶接方法。   The short circuit current waveform parameter is characterized in that the output polarity is switched during a short circuit period, and the short circuit is canceled and an arc is generated, and then the value is switched to a value corresponding to each output polarity after a predetermined period has elapsed. The AC consumable electrode short-circuit arc welding method according to any one of 1 to 3. 前記短絡電流波形パラメータは、出力極性が短絡期間中に切り換わりこの短絡が解除されてアークが発生してから所定回数の短絡が発生した時点で各出力極性に対応した値に切り換わる、ことを特徴とする請求項1〜3のいずれか1項に記載の交流消耗電極短絡アーク溶接方法。   The short-circuit current waveform parameter is switched to a value corresponding to each output polarity when a short-circuit occurs a predetermined number of times after the output polarity is switched during the short-circuit period and this short-circuit is released and an arc is generated. The AC consumable electrode short-circuit arc welding method according to any one of claims 1 to 3.
JP2007244603A 2007-09-21 2007-09-21 AC consumable electrode short-circuit arc welding method Active JP4950819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007244603A JP4950819B2 (en) 2007-09-21 2007-09-21 AC consumable electrode short-circuit arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007244603A JP4950819B2 (en) 2007-09-21 2007-09-21 AC consumable electrode short-circuit arc welding method

Publications (2)

Publication Number Publication Date
JP2009072814A true JP2009072814A (en) 2009-04-09
JP4950819B2 JP4950819B2 (en) 2012-06-13

Family

ID=40608338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007244603A Active JP4950819B2 (en) 2007-09-21 2007-09-21 AC consumable electrode short-circuit arc welding method

Country Status (1)

Country Link
JP (1) JP4950819B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029226A1 (en) * 2010-09-01 2012-03-08 パナソニック株式会社 Alternating current tig welding method
WO2014073184A1 (en) * 2012-11-07 2014-05-15 パナソニック株式会社 Arc welder and method for controlling arc welding
WO2014158531A1 (en) * 2013-03-14 2014-10-02 Illinois Tool Works Inc. Electrode negative pulse welding system and method
US9950383B2 (en) 2013-02-05 2018-04-24 Illinois Tool Works Inc. Welding wire preheating system and method
US10040143B2 (en) 2012-12-12 2018-08-07 Illinois Tool Works Inc. Dabbing pulsed welding system and method
US10189106B2 (en) 2014-12-11 2019-01-29 Illinois Tool Works Inc. Reduced energy welding system and method
US10610946B2 (en) 2015-12-07 2020-04-07 Illinois Tool Works, Inc. Systems and methods for automated root pass welding
US10675699B2 (en) 2015-12-10 2020-06-09 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US10766092B2 (en) 2017-04-18 2020-09-08 Illinois Tool Works Inc. Systems, methods, and apparatus to provide preheat voltage feedback loss protection
US10828728B2 (en) 2013-09-26 2020-11-10 Illinois Tool Works Inc. Hotwire deposition material processing system and method
US10870164B2 (en) 2017-05-16 2020-12-22 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US10906114B2 (en) 2012-12-21 2021-02-02 Illinois Tool Works Inc. System for arc welding with enhanced metal deposition
US10919100B2 (en) * 2016-03-29 2021-02-16 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method
US10926349B2 (en) 2017-06-09 2021-02-23 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US11014185B2 (en) 2018-09-27 2021-05-25 Illinois Tool Works Inc. Systems, methods, and apparatus for control of wire preheating in welding-type systems
US11020813B2 (en) 2017-09-13 2021-06-01 Illinois Tool Works Inc. Systems, methods, and apparatus to reduce cast in a welding wire
US11045891B2 (en) 2013-06-13 2021-06-29 Illinois Tool Works Inc. Systems and methods for anomalous cathode event control
US11154946B2 (en) 2014-06-30 2021-10-26 Illinois Tool Works Inc. Systems and methods for the control of welding parameters
US11198189B2 (en) 2014-09-17 2021-12-14 Illinois Tool Works Inc. Electrode negative pulse welding system and method
US11247290B2 (en) 2017-06-09 2022-02-15 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US11285559B2 (en) 2015-11-30 2022-03-29 Illinois Tool Works Inc. Welding system and method for shielded welding wires
US11370050B2 (en) 2015-03-31 2022-06-28 Illinois Tool Works Inc. Controlled short circuit welding system and method
US11478870B2 (en) 2014-11-26 2022-10-25 Illinois Tool Works Inc. Dabbing pulsed welding system and method
US11524354B2 (en) 2017-06-09 2022-12-13 Illinois Tool Works Inc. Systems, methods, and apparatus to control weld current in a preheating system
US11590597B2 (en) 2017-06-09 2023-02-28 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US11590598B2 (en) 2017-06-09 2023-02-28 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US11654503B2 (en) 2018-08-31 2023-05-23 Illinois Tool Works Inc. Submerged arc welding systems and submerged arc welding torches to resistively preheat electrode wire
US11772182B2 (en) 2019-12-20 2023-10-03 Illinois Tool Works Inc. Systems and methods for gas control during welding wire pretreatments
US11897062B2 (en) 2018-12-19 2024-02-13 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838664A (en) * 1981-08-31 1983-03-07 Mitsubishi Electric Corp Consumable electrode type arc welding machine
JP2006142317A (en) * 2004-11-17 2006-06-08 Daihen Corp Polarity switching short circuiting arc welding method
WO2006089322A1 (en) * 2005-02-25 2006-08-31 Fronius International Gmbh Method for controlling and/or regulating a welding device, and welding device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838664A (en) * 1981-08-31 1983-03-07 Mitsubishi Electric Corp Consumable electrode type arc welding machine
JP2006142317A (en) * 2004-11-17 2006-06-08 Daihen Corp Polarity switching short circuiting arc welding method
WO2006089322A1 (en) * 2005-02-25 2006-08-31 Fronius International Gmbh Method for controlling and/or regulating a welding device, and welding device

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029226A1 (en) * 2010-09-01 2012-03-08 パナソニック株式会社 Alternating current tig welding method
JP5429362B2 (en) * 2010-09-01 2014-02-26 パナソニック株式会社 AC TIG welding method
CN104526130A (en) * 2010-09-01 2015-04-22 松下电器产业株式会社 Alternating current TIG welding method
CN104526130B (en) * 2010-09-01 2016-09-28 松下知识产权经营株式会社 AC-TIG WELDING welder
WO2014073184A1 (en) * 2012-11-07 2014-05-15 パナソニック株式会社 Arc welder and method for controlling arc welding
US10625358B2 (en) 2012-11-07 2020-04-21 Panasonic Intellectual Property Management Co., Ltd. Arc welder and method for controlling arc welding
US10040143B2 (en) 2012-12-12 2018-08-07 Illinois Tool Works Inc. Dabbing pulsed welding system and method
US10906114B2 (en) 2012-12-21 2021-02-02 Illinois Tool Works Inc. System for arc welding with enhanced metal deposition
US11878376B2 (en) 2013-02-05 2024-01-23 Illinois Tool Works Inc. Welding wire preheating systems and methods
US11040410B2 (en) 2013-02-05 2021-06-22 Illinois Tool Works Inc. Welding wire preheating systems and methods
US9950383B2 (en) 2013-02-05 2018-04-24 Illinois Tool Works Inc. Welding wire preheating system and method
US10835983B2 (en) 2013-03-14 2020-11-17 Illinois Tool Works Inc. Electrode negative pulse welding system and method
US10835984B2 (en) 2013-03-14 2020-11-17 Illinois Tool Works Inc. Electrode negative pulse welding system and method
WO2014158531A1 (en) * 2013-03-14 2014-10-02 Illinois Tool Works Inc. Electrode negative pulse welding system and method
US11045891B2 (en) 2013-06-13 2021-06-29 Illinois Tool Works Inc. Systems and methods for anomalous cathode event control
US10828728B2 (en) 2013-09-26 2020-11-10 Illinois Tool Works Inc. Hotwire deposition material processing system and method
US11154946B2 (en) 2014-06-30 2021-10-26 Illinois Tool Works Inc. Systems and methods for the control of welding parameters
US11198189B2 (en) 2014-09-17 2021-12-14 Illinois Tool Works Inc. Electrode negative pulse welding system and method
US11478870B2 (en) 2014-11-26 2022-10-25 Illinois Tool Works Inc. Dabbing pulsed welding system and method
US11253940B2 (en) 2014-12-11 2022-02-22 Illinois Tool Works Inc. Reduced energy welding system and method
US10189106B2 (en) 2014-12-11 2019-01-29 Illinois Tool Works Inc. Reduced energy welding system and method
US11370050B2 (en) 2015-03-31 2022-06-28 Illinois Tool Works Inc. Controlled short circuit welding system and method
US11285559B2 (en) 2015-11-30 2022-03-29 Illinois Tool Works Inc. Welding system and method for shielded welding wires
US11766732B2 (en) 2015-12-07 2023-09-26 Illinois Tool Works Inc. Systems and methods for automated root pass welding
US10610946B2 (en) 2015-12-07 2020-04-07 Illinois Tool Works, Inc. Systems and methods for automated root pass welding
US10675699B2 (en) 2015-12-10 2020-06-09 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US10919100B2 (en) * 2016-03-29 2021-02-16 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method
US10766092B2 (en) 2017-04-18 2020-09-08 Illinois Tool Works Inc. Systems, methods, and apparatus to provide preheat voltage feedback loss protection
US11911859B2 (en) 2017-04-18 2024-02-27 Illinois Tool Works Inc. Systems, methods, and apparatus to provide preheat voltage feedback loss protection
US11819959B2 (en) 2017-05-16 2023-11-21 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US10870164B2 (en) 2017-05-16 2020-12-22 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US11524354B2 (en) 2017-06-09 2022-12-13 Illinois Tool Works Inc. Systems, methods, and apparatus to control weld current in a preheating system
US11590597B2 (en) 2017-06-09 2023-02-28 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US11590598B2 (en) 2017-06-09 2023-02-28 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US11247290B2 (en) 2017-06-09 2022-02-15 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US10926349B2 (en) 2017-06-09 2021-02-23 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US11020813B2 (en) 2017-09-13 2021-06-01 Illinois Tool Works Inc. Systems, methods, and apparatus to reduce cast in a welding wire
US11654503B2 (en) 2018-08-31 2023-05-23 Illinois Tool Works Inc. Submerged arc welding systems and submerged arc welding torches to resistively preheat electrode wire
US11014185B2 (en) 2018-09-27 2021-05-25 Illinois Tool Works Inc. Systems, methods, and apparatus for control of wire preheating in welding-type systems
US11897062B2 (en) 2018-12-19 2024-02-13 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US11772182B2 (en) 2019-12-20 2023-10-03 Illinois Tool Works Inc. Systems and methods for gas control during welding wire pretreatments

Also Published As

Publication number Publication date
JP4950819B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4950819B2 (en) AC consumable electrode short-circuit arc welding method
JP4916759B2 (en) Polarity switching control method for consumable electrode AC pulse arc welding
JP4652825B2 (en) Arc start control method for AC arc welding
JP2006142317A (en) Polarity switching short circuiting arc welding method
JP5090765B2 (en) Feed control method for consumable electrode AC arc welding
JP6524412B2 (en) Arc welding control method
JP5622230B2 (en) AC pulse arc welding control method
JP2014083571A (en) Welding current control method during short-circuit period
JP2010075983A (en) Control method of ac pulse arc welding
JP5090759B2 (en) Output control method for consumable electrode AC arc welding power supply
JP2013240811A (en) Ac pulse arc welding control method
JP5851798B2 (en) Current control method for constriction detection in consumable electrode arc welding
JP2016144826A (en) Output control method for pulse arc welding
JP4211724B2 (en) Arc welding control method and arc welding apparatus
JP2017189818A (en) Arc start method
JP5871360B2 (en) Constriction detection control method for consumable electrode arc welding
JP5349152B2 (en) AC pulse arc welding control method
JP4850638B2 (en) Polarity switching short-circuit arc welding method
JP2021079427A (en) Arc-welding control method
JP4643236B2 (en) Polarity switching short-circuit arc welding method
JP7429598B2 (en) arc welding power supply
WO2021140970A1 (en) Arc welding control method and arc welding device
JP6746452B2 (en) AC arc welding control method
JP4576904B2 (en) Arc welding equipment
JP2022185997A (en) Pulse arc welding power source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100830

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4950819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250