JP2009070496A - ディスク・ドライブ装置、その製造方法及びディスク・ドライブ装置のデータ・トラック・ピッチを決定する方法 - Google Patents

ディスク・ドライブ装置、その製造方法及びディスク・ドライブ装置のデータ・トラック・ピッチを決定する方法 Download PDF

Info

Publication number
JP2009070496A
JP2009070496A JP2007238585A JP2007238585A JP2009070496A JP 2009070496 A JP2009070496 A JP 2009070496A JP 2007238585 A JP2007238585 A JP 2007238585A JP 2007238585 A JP2007238585 A JP 2007238585A JP 2009070496 A JP2009070496 A JP 2009070496A
Authority
JP
Japan
Prior art keywords
data track
data
recording surface
adjacent
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007238585A
Other languages
English (en)
Inventor
Hideaki Ito
英昭 伊東
Kazuyuki Ishibashi
和幸 石橋
Kazunari Tsuchimoto
和成 土本
Osamu Takazawa
修 高澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV filed Critical Hitachi Global Storage Technologies Netherlands BV
Priority to JP2007238585A priority Critical patent/JP2009070496A/ja
Priority to US12/283,479 priority patent/US7706096B2/en
Publication of JP2009070496A publication Critical patent/JP2009070496A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B20/1816Testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10481Improvement or modification of read or write signals optimisation methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2508Magnetic discs
    • G11B2220/2516Hard disks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Digital Magnetic Recording (AREA)
  • Moving Of The Head To Find And Align With The Track (AREA)

Abstract

【課題】ディスク・ドライブ装置の容量及び信頼性を向上し、製造の歩留まりを向上することができる。
【解決手段】本発明の一形態は、ヘッド・スライダ毎(記録面毎)にヘッド特性に応じてデータ・トラック・ピッチを設定する。このデータ・トラック・ピッチの決定方法は、両側隣接データ・トラックのイレーズ・バンド端EBEの間隔を基準とする。データ・トラックのイレーズ・バンドは、そのデータ・トラックの書き込みにおいて、すでに書き込まれているデータを消す領域と定義されるバンドである。両側隣接データ・トラックのイレーズ・バンド端の間隔は、隣接データ・トラックによって消去されない領域の幅SWに相当する。これを基準としてデータ・トラック・ピッチを決定することで、記録面毎のデータ容量を増加することができると共に、スクイーズ・エラーの発生をより確実に防止しすることができる。
【選択図】図5

Description

本発明はディスク・ドライブ装置、その製造方法及びデータ・トラック・ピッチを決定する方法に関し、特に、ヘッド特性に応じたデータ・トラック・ピッチの決定に関する。
ディスク・ドライブ装置として、光ディスク、光磁気ディスク、あるいはフレキシブル磁気ディスクなどの様々な態様のメディアを使用する装置が知られているが、その中で、ハードディスク・ドライブ(HDD)は、コンピュータの記憶装置として広く普及し、現在のコンピュータ・システムにおいて欠かすことができない記憶装置の一つとなっている。さらに、コンピュータにとどまらず、動画像記録再生装置、カーナビゲーション・システムあるいは携帯電話など、HDDの用途は、その優れた特性により益々拡大している。
HDDで使用される磁気ディスクは、同心円状に形成された複数のデータ・トラックとサーボ・トラックとを有している。各サーボ・トラックはアドレス情報を有する複数のサーボ・データから構成される。また、各データ・トラックには、ユーザ・データを含む複数のデータ・セクタが記録されている。円周方向に離間するサーボ・データの間に、データ・セクタが記録されている。揺動するアクチュエータに支持されたヘッド・スライダのヘッド素子部が、サーボ・データのアドレス情報に従って所望のデータ・セクタにアクセスすることによって、データ・セクタへのデータ書き込み及びデータ・セクタからのデータ読み出しを行うことができる。
HDDの記憶容量を増加させるため、あるいはHDDの信頼性を向上するため、ヘッド毎に(記録面毎に)データ・トラック・ピッチを決定することが提案されている。リード幅やライト幅などのヘッドの特性に合わせてデータ・トラック・ピッチを決定することで、データ書き込みにおける隣接データ・トラックへの影響(Adjacent Track Interference:ATI)を抑制すると共に、記録面あたりのデータ容量を増加させることができる。
記録面毎にデータ・トラック・ピッチを調整する、二つの方法が考えられる。一つは、サーボ・トラックとデータ・トラックを一致させ、サーボ・トラック・ライトにおいてサーボ・トラック・ピッチを記録面毎に調整する方法である(例えば、特許文献1を参照)。もう一つは、各記録面に共通ピッチのサーボ・トラックを形成し、データ・トラック・ピッチを記録面毎に調整する方法である。
特開2006−114142号公報
データ・トラック・ピッチの決定において、データ容量の点からデータ・トラック・ピッチをできるだけ狭くすることが好ましい一方、ATIによる信頼性の点からは、データ・トラック・ピッチをできるだけ広くすることが好ましい。データ・トラック・ピッチが狭すぎると、データ・トラックの書き込みにより隣接データ・トラックの一部が消去され、その隣接データ・トラックを正確に読み出すことができなくなる。これをスクイーズ・エラーと呼ぶ。
上記特許文献1に開示されている方法は、テスト・パターンを書き込み、その隣接位置に隣接テスト・パターンを書き込む。その後、先の書き込んだテスト・パターンのエラー・レートを測定する。データ・トラック・ピッチを順次狭くしてテスト・パターンのエラー・レートを測定し、エラー・レートが基準を満足しなくデータ・トラック・ピッチを特定する。このピッチを、最適なデータ・トラック・ピッチと決定する。
上記方法は、理想的なヘッド位置決精度が実現されている場合、適切なデータ・トラック・ピッチを決定することができる。しかし、製品としてのHDDは、フォローイング中のヘッド位置の変動を許容する。HDDは、ヘッド位置がターゲット位置から所定範囲にある間はデータの書き込みを続けるが、ヘッド位置がその所定範囲から外れるとデータ書き込みを中止する。
このように、データ書き込み中にヘッドの半径方向位置は常に変動しており、半径方向のヘッド位置はあるシグマをもってばらついている。このため、テストにおいて測定されたエラー・レートが実際のHDDの動作において常に実現されることはなく、製品としてのHDDにおいては、ヘッド位置の変動により、テスト時のエラー・レートよりも高いエラー・レートとなる場合がある。つまり、スクイーズ・エラーを起こす可能性がある。
従って、HDDの製品化において、データ書き込みにおけるヘッド位置の変動を考慮に入れてデータ・トラック・ピッチを決定することが必要となる。ヘッド位置の想定される変動の中で、スクイーズ・エラーを起こすことなくデータ容量の増加を図ることができる過不足ない最適なデータ・トラック・ピッチを決めることが必要となる。
本発明の一態様は、ディスク・ドライブ装置において、ヘッドの特性に応じて記録面のデータ・トラック・ピッチを決定する方法である。この方法は、対象データ・トラックの隣接データ・トラックを記録面に書き込む。前記記録面に予め記録されているデータの前記隣接データ・トラックによるエラー・レート変化を測定して、前記隣接データ・トラックのイレーズ・バンド端を特定する。前記対象データ・トラックの両側隣接データ・トラックのイレーズ・バンド端の間隔を基準として、前記記録面のデータ・トラック・ピッチを決定する。イレーズ・バンド端の間隔を基準として記録面のデータ・トラック・ピッチを決定することで、ディスク・ドライブ装置の容量及び信頼性を向上し、製造の歩留まりを向上することができる。
好ましくは、前記記録面には、予めサーボ・トラックが記録されており、前記隣接データ・トラックをターゲット・サーボ・アドレスに書き込み、前記イレーズ・バンド端をサーボ・データにより特定し、サーボ・データにより表される前記イレーズ・バンド端の間隔を基準として、データ・トラック・ピッチを決定する。これにより、より正確に測定が可能となる。
好ましくは、前記対象となるデータ・トラックの両側の隣接データ・トラックを、それぞれのターゲット位置に書き込み、前記両側の隣接データ・トラックのイレーズ・バンド端を特定し、前記特定した両側隣接データ・トラックのイレーズ・バンド端の間隔を基準として、データ・トラック・ピッチを決定する。これにより、より正確に測定が可能となる。
好ましくは、前記間隔が基準値と一致するように前記データ・トラック・ピッチを決定する。これにより、より適切なデータ・トラック・ピッチを実現することができる。好ましくは、前記対象となるデータ・トラックを書き込み、前記隣接データ・トラックによる前記対象となるデータ・トラックのエラー・レート変化を測定して、前記隣接データ・トラックのイレーズ・バンド端をサーボ・データにより特定する。これにより、より適切なデータ・トラック・ピッチを実現することができる。
好ましくは、前記対象となるデータ・トラックを書き込み、前記対象となるデータ・トラックの両側の隣接データ・トラックを書き込み、前記両側の隣接データ・トラックによる前記対象となるデータ・トラックのエラー・レート変化をそれぞれ測定して、前記間隔を特定する。これにより、より適切なデータ・トラック・ピッチを実現することができる。前記決定されるデータ・トラック・ピッチに、コマンドに応じて前記隣接データ・トラックを書き込むときのヘッドのふれ幅が含まれていることが好ましい。これにより、より信頼性を向上することができる。
本発明の他の態様は、ディスク・ドライブ装置の製造方法である。この方法は、筐体にディスク、ディスクの記録面にアクセスするヘッド、前記ヘッドを移動する移動機構を実装する。前記ヘッドによって、対象データ・トラックの隣接データ・トラックを前記記録面に書き込む。前記ヘッドを使用して前記記録面に予め記録されているデータの前記隣接データ・トラックによるエラー・レート変化を測定して、前記隣接データ・トラックのイレーズ・バンド端を特定する。前記対象データ・トラックの両側隣接データ・トラックのイレーズ・バンド端の間隔を基準として、前記記録面のデータ・トラック・ピッチを決定する。イレーズ・バンド端の間隔を基準として記録面のデータ・トラック・ピッチを決定することで、ディスク・ドライブ装置の容量及び信頼性を向上し、製造の歩留まりを向上することができる。
本発明の他の態様は、ヘッドの特性に応じて記録面のデータ・トラック・ピッチを決定するディスク・ドライブ装置である。この装置は、データを記憶するディスクの記録面と、対象データ・トラックの隣接データ・トラックを前記記録面に書き込むヘッドと、前記記録面に予め記録されているデータの前記隣接データ・トラックによるエラー・レート変化を測定して、前記隣接データ・トラックのイレーズ・バンド端を特定し、前記対象データ・トラックの両側隣接データ・トラックのイレーズ・バンド端の間隔を基準として、前記記録面のデータ・トラック・ピッチを決定するコントローラを有する。イレーズ・バンド端の間隔を基準として記録面のデータ・トラック・ピッチを決定することで、ディスク・ドライブ装置の容量及び信頼性を向上し、製造の歩留まりを向上することができる。
本発明によれば、ディスク・ドライブ装置の容量及び信頼性を向上し、製造の歩留まりを向上することができる。
以下に、本発明を適用した実施の形態を説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略及び簡略化がなされている。又、各図面において、同一要素には同一の符号が付されており、必要に応じて重複説明は省略されている。以下においては、ディスク・ドライブ装置の一例であるハードディスク・ドライブ(HDD)について説明する。本形態は、HDDのデータ・トラック・ピッチの設定に特徴を有している。
本形態は、ヘッド・スライダ毎(記録面毎)にヘッド特性に応じてデータ・トラック・ピッチを設定する。本形態のデータ・トラック・ピッチの決定方法は、両側隣接データ・トラックのイレーズ・バンド端の間隔を基準とする。データ・トラックのイレーズ・バンドは、そのデータ・トラックの書き込みにおいて、すでに書き込まれているデータを消す領域と定義されるバンドである。両側隣接データ・トラックのイレーズ・バンド端の間隔は、隣接データ・トラックによって消去されない領域の幅に相当する。これを基準としてデータ・トラック・ピッチを決定することで、記録面毎のデータ容量を増加することができると共に、スクイーズ・エラーの発生をより確実に防止しすることができる。製造工程におけるスクイーズ・エラーの発生が防止されることで、スクイーズ・フェイルが減少し、製造歩留まりを向上することができる。
本実施形態のデータ・トラック・ピッチ設定について説明する前に、まず、HDDの全体構成を説明する。図1は、HDD1の全体構成を模式的に示すブロック図である。HDD1は、エンクロージャ10の外側に固定された回路基板20を備えている。回路基板20上には、リード・ライト・チャネル(RWチャネル)21、モータ・ドライバ・ユニット22、ハードディスク・コントローラ(HDC)とMPUの集積回路(HDC/MPU)23及び半導体メモリのRAM24などの各回路を有している。エンクロージャ10内において、スピンドル・モータ(SPM)14は所定の角速度で磁気ディスク11を回転する。磁気ディスク11は、データを記憶するディスクである。HDC/MPU23からの制御データに従って、モータ・ドライバ・ユニット22がSPM14を駆動する。
各ヘッド・スライダ12は、磁気ディスク上を浮上するスライダと、スライダに固定され磁気信号と電気信号との間の変換を行うヘッド素子部とを備えている。ヘッド・スライダ12はヘッドの一例である。アーム電子回路(AE:Arm Electronics)13は、HDC/MPU23からの制御データに従って複数のヘッド・スライダ12の中から磁気ディスク11にアクセス(リードもしくはライト)するヘッド・スライダ12を選択し、リード/ライト信号の増幅を行う。各ヘッド・スライダ12はアクチュエータ16の先端部に固定されている。アクチュエータ16はボイス・コイル・モータ(VCM)15に連結され、回動軸を中心に回動することによって、ヘッド・スライダ12を回転する磁気ディスク11上においてその半径方向に移動する。アクチュエータ16とVCMのアセンブリは、ヘッドの移動機構である。モータ・ドライバ・ユニット22は、HDC/MPU23からの制御データに従ってVCM15を駆動する。
RWチャネル21は、リード処理において、AE13から取得したリード信号からサーボ・データ及びユーザ・データを抽出し、デコード処理を行う。デコード処理されたデータは、HDC/MPU23に供給される。また、RWチャネル21は、ライト処理において、HDC/MPU23から供給されたライト・データをコード変調し、さらに、コード変調されたデータをライト信号に変換してAE13に供給する。HDC/MPU23において、HDCはロジック回路であり、MPUはRAM24にロードされたファームウェアに従って動作する。HDC/MPU23はコントローラの一例であり、ヘッド・ポジショニング制御、インターフェース制御、ディフェクト管理などのデータ処理に関する必要な処理の他、HDD1の全体制御を実行する。
図2(a)は、磁気ディスク11の記録面全体のデータ構成を模式的に示しており、図2(b)は、記録面上の一部のデータ・フォーマットを模式的に示している。磁気ディスク11の記録面には、磁気ディスク11の中心から半径方向に放射状に延び、所定の角度毎に離間して形成された複数のサーボ領域111と、隣り合う2つのサーボ領域111の間にデータ領域112が形成されている。各サーボ領域111には、ヘッド・スライダ12の位置決め制御を行うためのサーボ・データが記録される。各データ領域112には、ユーザ・データが記録される。
磁気ディスク11の記録面には、半径方向に所定幅を有し、同心円状に形成された複数のデータ・トラック(DTr)114が形成される。ユーザ・データは、データ・トラック114に沿って記録される。一つのデータ・トラック114は、ユーザ・データの記録単位であるデータ・セクタを有し、典型的には、複数のデータ・セクタから構成されている。典型的には、各複数データ・トラックは、磁気ディスク11の半径方向の位置に従って、複数のゾーン113a〜113cにグループ化されている。1つのデータ・トラック114に含まれるデータ・セクタの数は、ゾーンのそれぞれに設定される。
同様に、磁気ディスク11は、半径方向に所定幅を有し、同心円状に形成された複数のサーボ・トラック(STr)115を備えている。各サーボ・トラック115は、データ領域112で分離された複数のサーボ・データから構成されている。サーボ・データは、サーボ・トラック番号と、サーボ・トラック内におけるサーボ・セクタ番号、そして細かい位置制御をするためのバースト・パターンを備えている。バースト・パターンは、例えば、半径位置の異なる4つのバースト・パターンA、B、C、Dからなっている。各バースト・パターンの再生信号の振幅によって、サーボ・トラック内の位置を決定することができる。サーボ・トラック内の位置は、PES(Position Error Signal)値とよばれるもので表すことができる。PESは、バースト・パターンA、B、C、Dの振幅値から算出され、例えば、1サーボ・トラックが半径方向に256PES値に分割される。
図2(b)に示すように、本形態において、一つの記録面上において、サーボ・トラック・ピッチとデータ・トラック・ピッチが一致していない。データ・トラック・ピッチは、各ヘッド・スライダ12の特性に応じて個別に設定される。ヘッド・スライダ12毎にデータ・トラック・ピッチを決定することにより、ヘッド・スライダ12の特性に応じた最適なデータ・トラック・ピッチを決定し、データ・ライトにおける隣接データ・トラックへの影響を小さくすると共に、記憶容量(データ・トラック数)を増加させることができる。
HDD1の製造方法は、ヘッド・スライダ12及びアクチュエータ16のアセンブリを製造し、それにAE13を実装する。さらに、エンクロージャ10内に、このアセンブリ、SPM14、磁気ディスク11及びVCM15を実装し、ヘッド・ディスク・アセンブリ(HDA)を製造する。HDAは、サーボ・ライト工程にまわされ、磁気ディスク11の各記録面に対応する各ヘッド・スライダ12によりサーボ・トラックが書き込まれる。このサーボ・ライト工程としては、外部装置としてサーボ・トラック・ライタ(STW)を使用する方法、あるいは、HDD1のVCM15を制御してサーボ・データを書き込む方法(セルフ・サーボ・ライト)がある。サーボ・ライトは広く知られた技術であり、ここでは詳細な説明を省略する。
HDD1の製造において、サーボ・ライト工程の後、ヘッド・スライダ12毎(記録面毎)にデータ・トラック・ピッチ(隣接データ・トラック中心間の間隔)を決定する。本形態において、ヘッド・スライダ12の位置決め精度のぶれを考慮し、スクイーズ・エラーの発生をより確実に防止するように、データ・トラック・ピッチを決定する。スクイーズ・エラーは、データ・トラックの両側のデータ・トラックにデータを書き込むことにより、中央のデータ・トラックの一部が消去されて、そのデータ・トラックのデータを正確に読む出すことができないエラーである。製造のテスト工程でこのエラーが見つかった場合、そのHDDはスクイーズ・フェイルとして分解処理にまわされる。
スクイーズ・エラーについて具体的に説明する。図3(a)に示すように、データ・トラックDTr_kがすでに記録面に書き込まれている。データ・トラックDTr_kは、データ・トラック幅TW1を有している。次に、図3(b)に示すように、データ・トラックDTr_kの内周(ID)側にデータ・トラックDTr_k+1が書き込まれる。データ・トラックDTr_k+1の内周側と外周(OD)側の両側に、イレーズ・バンドEBI_k+1、EBO_k+1が付随している。データの書き込みにおいて、ライト素子が生成する磁界は、漏れ磁界を含め、半径方向の両側端において徐々に減少していく。このため、リード素子がデータを読み出すことができるデータ・トラックの両側に、正確なデータを有していないが、すでに書き込まれているデータを消去するイレーズ・バンドが形成される。
データ・トラックDTr_k+1の書き込みにより、データ・トラックDTr_kの内周側の一部が、イレーズ・バンドEBO_k+1により消去される。これにより、データ・トラックDTr_kのトラック幅は、TW1からTW2に減少する。さらに、図3(c)に示すように、データ・トラックDTr_kの外周側にデータ・トラックDTr_k−1が書き込まれる。データ・トラックDTr_k−1には、イレーズ・バンドEBI_k−1、EBO_k−1が付随している。
データ・トラックDTr_k−1の書き込みにより、データ・トラックDTr_kの外周側の一部が、イレーズ・バンドEBI_k−1により消去される。これにより、データ・トラックDTr_kのトラック幅は、TW2からTW3に減少する。このような中央データ・トラックDTr_kへの両側データ・トラックDTr_k−1、DTr_k+1によるスクイーズが、中央データ・トラックDTr_kへの最も厳しい条件となる。中央データ・トラックのトラック幅TW3が小さすぎる場合、ヘッド・スライダ12のリード素子はデータ・トラックDTr_kのデータを正確に読み出すことできない。これがスクイーズ・エラーである。
データ・トラック端及びイレーズ・バンド端は、設計により定義される。具体的には、データ・トラックは、書き込まれたデータのエラー・レートが基準値以上の領域と定義することができる。基準エラー・レート値は、例えば、10−4とすることができる。各データ・セクタはECC(Error Correction Code)を有しており、HDC/MPU23は、読み出したユーザ・データをECCにより訂正する。HDC/MPU23は、所定のエレー・レートまではECCにより回復することができる。データ・トラックのエラー・レートは、データ・トラック中央で小さく、中央から離れるに従って徐々に大きくなる。データ・トラック端は基準エラー・レート値を示す位置となり、基準エラー・レート値を示す位置の間隔がデータ・トラック幅と定義される。
イレーズ・バンド端は、イレーズ・バンドのデータ・トラック(すでに書き込まれているデータ)へ影響により定義される。図3(b)に示すように、データ・トラックにおいて、イレーズ・バンドとデータ・トラックとが重なる部分が影響を受ける。イレーズ・バンドによる影響は、データ・トラックのエラー・レートを増加させる。イレーズ・バンド端は、変化したエラー・レートが設計により定義されている基準エラー・レート値となる位置にある。この基準エラー・レート値は、データ・トラック端を定義する基準エラー・レート値と同一である。データ・トラックの一部がイレーズ・バンドにより消去されると、イレーズ・バンド端と影響を受けたデータ・トラックDTr_kのデータ・トラック端とが一致することになる。
スクイーズ・エラーを起こさないためには、図4(a)に示すようにデータ・トラックの両側のデータ・トラックにデータが上書きされた場合であっても、中央のデータ・トラックにおいて、所定以上のデータ・トラック幅が確保されていればよい。図4(b)に示すように、スクイーズされたときの中央のデータ・トラックのデータ・トラック幅SWは、両側データ・トラックのイレーズ・バンド端の間隔である。
本形態は、選択したデータ・トラックの一方もしくは両側の隣接データ・トラックのイレーズ・バンドの測定を行い、その測定結果から特定されるイレーズ・バンド端の間隔を基準として、データ・トラック・ピッチを決定する。具体的には、イレーズ・バンド端の間隔SWが、予め設定されている基準範囲内(例えば、第1基準値と第2基準値の間)にあるようにデータ・トラック・ピッチを決定し、好ましくは、イレーズ・バンド端の間隔SWが基準値と一致するように決定する。
SWの基準値(基準幅)は、スクイーズ・エラーを起こさない最小値が最も好ましい。SWがこの値に一致するようにデータ・トラック・ピッチを決定することで、スクイーズ・エラーを起こすことなく最大容量を得ることができる。この基準幅として、HDD1の設計において、実験やシミュレーションを行うことで、適切な値を特定する。また、HDD1の実際の動作において現れうるイレーズ・バンド端の最小間隔は、データ書き込みに置けるライト素子のふれを考慮することが必要となる。この点については、後に説明する。
以下において、イレーズ・バンド端の測定及びデータ・トラック・ピッチの決定方法について、より具体的に説明する。以下においては、HDD1に実装された制御回路がデータ・トラック・ピッチを決定する例を説明する。同様の処理を製造装置の制御回路が行うことができる。図5(a)に示すように、HDC/MPU23は、アクチュエータ16とヘッド・スライダ12を制御して、選択した記録面のターゲット位置TC_kにデータ・トラックDTr_kを書き込む。ターゲット位置TC_kは、データ・トラックDTr_kの中心位置であり、サーボ・データで表されるサーボ・アドレスである。ターゲット位置TC_kは、例えば、特定のサーボ・トラック中心とすればよい。
次に、HDC/MPU23は、書き込んだデータ・トラックDTr_kのエラー・レート測定を行い、データ・トラックDTr_kのデータ・トラック端の位置(サーボ・アドレス)を特定する。図5(a)の例においては、内周側のデータ・トラック端を特定する。具体的には、HDC/MPU23は、データ・トラックDTr_kの異なる半径位置でデータを読み出し、そのエラー・レートを測定する。ヘッド・スライダ12の位置決めは、サーボ・データによる。この点は、以下のヘッド・ポジショニングにおいて同様である。HDC/MPU23は、エラー・レートが基準値にある位置をデータ・トラック端と特定する。
例えば、HDC/MPU23は、データ・トラックDTr_kの中心TC_kからエラー・レートの測定を開始する。HDC/MPU23は、リード素子を内周側にわずかに移動して(例えば2PES)、その位置でのエラー・レートを再測定する。HDC/MPU23は、リード素子の内周側への移動とエラー・レート測定を繰り返し、エラー・レートが基準値となる位置を特定する。その位置が、データ・トラックDTr_kの内周側トラック端である。典型的には、HDC/MPU23は、同一位置において複数回のエラー・レート測定を行い、測定値の平均値を上記基準エラー・レート値と比較する。
次に、HDC/MPU23は、データ・トラックDTr_kの隣接データ・トラックを書き込む。図5(b)の例においては、内周側隣接データ・トラックDTr_k+1が、ターゲット位置(TC_k+1)に書き込まれる。図5(b)の例においては、データ・トラックDTr_k+1のイレーズ・バンドがデータ・トラックDTr_kに重なっていない。このため、データ・トラックDTr_k+1のイレーズ・バンド端を特定することができない。
具体的処理として、データ・トラックDTr_kを書き込んだ後、HDC/MPU23は、リード素子をデータ・トラックDTr_kの内周側トラック端の位置決めし、エラー・レートを測定する。好ましくは、HDC/MPU23は、複数回の測定によるエラー・レートの平均値を算出する。その値が基準エラー・レート値と一致、あるいは基準エラー・レート値を含む所定範囲内にある場合、HDC/MPU23は、隣接データ・トラックDTr_k+1の影響がなかったと判定する。
次に、HDC/MPU23は、ターゲット位置TC_k+1を外周側にオフ・トラックさせて、新たにデータ・トラックDTr_k+1を書き込む。オフ・トラック量は、設計により適切な値が設定されている。図5(c)の例においては、オフ・トラックされたデータ・トラックDTr_k+1のイレーズ・バンド端EBEが、データ・トラックDTr_kと重なっている。HDC/MPU23は、データ・トラックDTr_kを読み出すことで、イレーズ・バンド端EBEを特定する。具体的には、HDC/MPU23は、アクチュエータ16を制御してヘッド・スライダ12を、データ・トラックDTr_k内の複数の位置に位置決めし、各位置においてデータの読み出し及びエラー・レート測定を行う。
例えば、HDC/MPU23は、最初にリード素子をデータ・トラックDTr_kの内周側トラック端に位置決めしてエラー・レートを測定する。同一位置で複数回のエラー・レート測定を行い、その平均値を使用することが好ましい。この測定したエラー・レートが上記基準値より大きい場合、HDC/MPU23は、ターゲット位置を外周側にずらしてエラー・レートを再測定する。HDC/MPU23は、ヘッド・スライダ12のわずかな移動とエラー・レート測定を繰り返し、エラー・レートが上記基準エラー・レート値となる位置のサーボ・アドレスを特定する。その位置が、隣接データ・トラックDTr_k+1のイレーズ・バンド端EBEである。
HDC/MPU23は、データ・トラックDTr_kと外周側隣接データ・トラックDTr_k−1との間の関係についても同様の測定を行う。このとき、外周側隣接データ・トラックDTr_k−1を書き込む位置は、内周側隣接データ・トラックDTr_k+1の書き込み位置と、Tc_kについて線対称であることが好ましい。外周側隣接データ・トラックDTr_k−1をデータ・トラックDTr_kに近づけるときの移動量も、内周側隣接データ・トラックDTr_k+1と同じとする。
データ・トラックDTr_kと外周側隣接データ・トラックDTr_k−1との間の関係について測定を行うことにより、HDC/MPU23は、対象としているデータ・トラックDTr_kの両側のデータ・トラックDTr_k−1、DTr_k+1のイレーズ・バンド端を特定する。具体的には、HDC/MPU23は、二つの隣接データ・トラックDTr_k−1、DTr_k+1のトラック中心からイレーズ・バンド端までの間隔をPES値で取得する。
HDC/MPU23は、この二つの隣接データ・トラックのイレーズ・バンド端の間隔が予め設定されている基準範囲内となるように、データ・トラック・ピッチを決定する。このデータ・トラック・ピッチは、測定を行った半径位置でのデータ・トラック・ピッチである。データ・トラック・ピッチは、サーボ・データ(PES)により表される。好ましくは、イレーズ・バンド端の間隔が予め設定されている基準値と一致するようにデータ・トラック・ピッチを決定する。このときの基準値は、スクイーズ・エラーの可能性がほぼ0である値の内の最小値とデータ書き込みにおけるライト素子のふれ幅とを組み込んだ値である。HDC/MPU23は、典型的には、この半径位置のデータ・トラック・ピッチを、両側隣接データ・トラックのイレーズ・バンド端のそれぞれと、中央データ・トラックの中心位置が同一となるように決定する。
HDC/MPU23は、同様の測定を記録面上の複数の半径位置において行い、各測定位置におけるデータ・トラック・ピッチを決定する。HDC/MPU23は、測定により決定した各データ・トラック・ピッチから、半径位置により変化するデータ・トラック・ピッチの曲線を算出する。この曲線は測定値の近似曲線であり、測定値が曲線上にあるとは限らない。HDC/MPU23は、上記データ・トラック・ピッチの決定処理を、各記録面(ヘッド・スライダ12)について実行し、各記録面のデータ・トラック・ピッチを表す近似曲線を算出する。HDC/MPU23は、ホスト51からのコマンドの指定アドレスから、決定したデータ・トラック・ピッチの近似曲線を使用して、記録面上のサーボ・アドレスを特定する。なお、HDC/MPU23は、各測定値の間を補間するようにデータ・トラック・ピッチを決定することもできる。これにより半径位置に応じて適切なデータ・トラック・ピッチを決定することができる。
上記例において、HDC/MPU23は、対象データ・トラックDTr_kの両側の隣接データ・トラックDTr_k−1、DTr_k+1について、イレーズ・バンド端の測定を行うが、HDC/MPU23は、その一方の隣接データ・トラックについてのみイレーズ・バンド端の測定を行い、その値からデータ・トラック・ピッチを決定してもよい。HDC/MPU23は、両側隣接データ・トラック及びそれらのイレーズ・バンドは線対称であるとみなす。つまり、HDC/MPU23は、測定した隣接データ・トラックのトラック中心からイレーズ・バンド端までの間隔と、反対側隣接データ・トラックのそれが同一であるとしてデータ・トラック・ピッチを決定する。
データ書き込みのトラック・フォローイングにおいて、ヘッド・スライダ12は、ターゲット位置と中心として半径方向において振動する。図6(a)に示すように、理想的な制御においては、ライト素子121はターゲット位置上を正確にフォローイングする。しかし、実際のサーボ制御においては、ライト素子12のターゲット位置からのずれが許容されている。図6(b)に示すように、ライト素子12は、半径方向に振動しながらデータを書き込む。ライト素子12(ヘッド・スライダ12)が書き込み禁止値以上ターゲット位置から離れると、HDC/MPU23は、データの書き込みを中止する。例えば、ライト素子122がターゲット位置から30PES離れると、HDC/MPU23はデータ書き込みを中止する。
従って、図6(c)に示すように、ライト素子122の軌跡はターゲット位置と書き込み禁止値との間にあり、データ・トラックが隣接データ・トラックに最も近づく距離は、この書き込み禁止値と実質的に一致すると考えることができる。データ・トラック・ピッチの決定においては、このライト素子122の位置(サーボ位置決め精度)のばらつきを考慮することが重要である。ライト素子122がふらついて隣接データ・トラックの一部を消去しても、消去されたデータ・トラックに基準以上のトラック幅が残されるようにデータ・トラック・ピッチを決定する。
データ・トラックDTr_kのデータ・トラック幅SWは、両側隣接データ・トラックDTr_k−1、DTr_k+1がデータ・トラックDTr_kに最も近いときに最も小さくなる。このときのデータ・トラック幅(イレーズ・バンド端間隔)が、エレーを起こすことがないデータ・トラック幅以上であることが必要となる。データ・トラック・ピッチの決定においては、この必要な最小データ・トラック幅に隣接データ・トラックの書き込み禁止値を加算した値を使用する。例えば、最小データ・トラック幅が100PESであり、両側データ・トラックの書き込み禁止値がそれぞれ30PESである場合、両側データ・トラックのターゲット位置におけるイレーズ・バンド端間隔が、160となるようにデータ・トラック・ピッチを決定する。
以下において、本形態のデータ・トラック・ピッチの決定方法について定量的に議論する。まず、BATHTUBについて説明する。BATHTUBは、データ・トラック幅に一致する。つまり、リード素子がデータ・トラックの中心からデータ・読み出しを行い、少しずつターゲット位置をずらしながら読み出しを繰り返す。そして、HDC/MPU23は、各位置において、リード素子がどれ程度正確にデータを読み出すかを測定する。所定以上の割合で読めた幅がBATHTUBである。HDC/MPU23は、どれくらい読めたかを測る指標として、エラー・レートを用いる。上記例に従えば、エラー・レートが10−4以下の幅が、BATHTUBである。幅はPESで表す。
図7(a)に示すように、BATHTUBは両脇のデータ・トラックを寄せ書きすると、変化することがある。図7(a)の横軸はPESに相当し、縦軸はエラー・レートに相当する。寄せ書きする前のBATHTUBをORIGINAL BATHTUB、寄せ書きした後のBATHTUBをSQUEEZED BATHTUBと呼び、何PES寄せて書いたかをOFFTRACK量と呼ぶ。
隣接データ・トラックを書いても消えないということは、隣接データ・トラックを書いてもORIGINAL BATHTUBが変化しないことを意味する。図5(b)のように、隣接データ・トラックを対象とするデータ・トラックから十分離れたところに書くと、ORIGINAL BATHTUBは変化しない。しかし、隣接データ・トラックの書き込み位置を徐々に対象とするデータ・トラックに近づけていくと、ある位置からBATHTUBが狭くなり始める。BATHTUBが狭くなり始めたら、OFFTRACK量に比例して、BATHTUBが狭くなっていくと仮定すると、OFFTRACK(ORIGINAL BATHTUB−SQUEEZED BATHTUB)/2だけデータ・トラックを詰めても問題はない(緩めるときも同様である。)
通常処理において、データ・トラックを正確に読み出すことができるかは、データ・トラック幅、つまりBATHTUBに依存する部分が大きい。このため、本形態は、スクイーズされた後のBATHTUBが基準以上確保されるように、データ・トラック・ピッチを決定する。図7(b)に示すように、ORIGINAL BATHTUBが狭い場合、隣接データ・トラックによるわずかなイレーズ(スクイーズ)によって、SQUEEZED BATHTUBが非常に小さくなる。一方、図7(c)に示すように、ORIGINAL BATHTUBが広い場合、隣接データ・トラックによりある程度イレーズがあっても、SQUEEZED BATHTUBは十分な幅が確保される。
サーボ位置決め精度(データ書き込みにおけるライト素子122のふれ)を考慮し、できる限り多くのデータ容量を得るために基準とすべきは何かと考えたとき、それは、隣接データ・トラックが書き込まれた場合に保証されているデータ・トラック幅である。隣接データ・トラックの書き込みにより、たとえ対象となるデータ・トラックがある程度消されたとしても、その対象となるデータ・トラックに必要なBATHTUB(トラック幅)は残るということを保証する。
例えば、ヘッド・スライダ12の位置決めのばらつき(上記書き込み禁止値)を30PESとする。両側隣接データ・トラックを30PESだけOFFTRACKさせたときのSQUEEZED BATHTUBが、ある程度確保されていればよいというところからデータ・トラック・ピッチを決定する。
SQUEEZED BATHTUBの目標値を「目標値」とすると、「目標値」からの差分をなくすようにデータ・トラックを補正すればよい。隣のデータ・トラックのデータ・トラック・ピッチも同様に補正されることを考慮にいれると、データ・トラック・ピッチの補正TPは、
TP=(目標値−SQUEEZED BATHTUB)/2
となる。
OFFTRACK量が可変量とすると、
TP=((目標値+2×30)
―(SQUEEZED BATHTUB+2×OFFTRACK))/2
である。
以上、本発明の好ましい態様を使用して説明したが、本発明は上述した実施の形態のみに限定されるものではない。本発明の要旨を逸脱しない範囲において種々の変更が可能であることは勿論である。例えば、上述の実施の形態においては、HDDを例にとって説明したが、他のディスクを使用するディスク・ドライブ装置に本発明を適用することができる。
測定の正確性を上げるため、イレーズ・バンド端の測定には、実際にヘッド・スライダにより書き込んだデータ・トラックを使用することが好ましいが、他のデータを使用することも可能である。また、測定の正確性と迅速性の点から、サーボ・データを書き込んだ後にヘッド特性に合わせて本発明に従いデータ・トラック・ピッチを決定することが好ましいが、サーボ・トラック・ピッチの決定に本発明を適用することも可能である。データ・トラック端及びイレーズ・バンド端は、エラー・レートにより規定することが好ましいが、読み出し振幅などの他の指標によるこれらを規定してもよい。全ての記録面について本発明に従いデータ・トラック・ピッチを決定することが好ましいが、一部の記録面あるいは記録面の一部のみに本発明を適用することができる。
本実施の形態にかかるハードディスク・ドライブの全体構成を模式的に示すブロック図である。 本実施の形態において、記録面上のデータ・フォーマットを模式的に示す図である。 本実施の形態において、スクイーズ・エラーについて説明する図である。 本実施の形態において、スクイーズ・エラーを起こさない場合のデータ・トラック・ピッチを示す図である。 本実施の形態において、データ・トラック・ピッチ設定のためのイレーズ・バンド端の測定方法を示す図である。 本実施の形態において、データ書き込みにおけるライト素子のふれを模式的に示す図である。 本実施の形態において、データ・トラック・ピッチの決定方法について定量的に議論ためにBATHTUBについて説明する図である。
符号の説明
1 ハードディスク・ドライブ、10 エンクロージャ、11 磁気ディスク
12 ヘッド・スライダ、13 アーム・エレクトロニクス、14 スピンドル・モータ
15 ボイス・コイル・モータ、16 アクチュエータ、20 回路基板
21 RWチャネル、22 モータ・ドライバ・ユニット
23 ハードディスク・コントローラ/MPU、24 RAM、122 ライト素子

Claims (15)

  1. ディスク・ドライブ装置において、ヘッドの特性に応じて記録面のデータ・トラック・ピッチを決定する方法であって、
    対象データ・トラックの隣接データ・トラックを記録面に書き込み、
    前記記録面に予め記録されているデータの前記隣接データ・トラックによるエラー・レート変化を測定して、前記隣接データ・トラックのイレーズ・バンド端を特定し、
    前記対象データ・トラックの両側隣接データ・トラックのイレーズ・バンド端の間隔を基準として、前記記録面のデータ・トラック・ピッチを決定する、
    方法。
  2. 前記記録面には、予めサーボ・トラックが記録されており、
    前記隣接データ・トラックをターゲット・サーボ・アドレスに書き込み、
    前記イレーズ・バンド端をサーボ・データにより特定し、
    サーボ・データにより表される前記イレーズ・バンド端の間隔を基準として、データ・トラック・ピッチを決定する、
    請求項1に記載の方法。
  3. 前記対象となるデータ・トラックの両側の隣接データ・トラックを、それぞれのターゲット位置に書き込み、
    前記両側の隣接データ・トラックのイレーズ・バンド端を特定し、
    前記特定した両側隣接データ・トラックのイレーズ・バンド端の間隔を基準として、データ・トラック・ピッチを決定する、
    請求項1に記載の方法。
  4. 前記間隔が基準値と一致するように前記データ・トラック・ピッチを決定する、
    請求項1に記載の方法。
  5. 前記対象となるデータ・トラックを書き込み、
    前記隣接データ・トラックによる前記対象となるデータ・トラックのエラー・レート変化を測定して、前記隣接データ・トラックのイレーズ・バンド端をサーボ・データにより特定する、
    請求項1に記載の方法。
  6. 前記対象となるデータ・トラックを書き込み、
    前記対象となるデータ・トラックの両側の隣接データ・トラックを書き込み、
    前記両側の隣接データ・トラックによる前記対象となるデータ・トラックのエラー・レート変化をそれぞれ測定して、前記間隔を特定する、
    請求項1に記載の方法。
  7. 前記決定されるデータ・トラック・ピッチに、コマンドに応じて前記隣接データ・トラックを書き込むときのヘッドのふれ幅が含まれている、
    請求項1に記載の方法。
  8. ディスク・ドライブ装置の製造方法であって、
    筐体にディスク、ディスクの記録面にアクセスするヘッド、前記ヘッドを移動する移動機構を実装し、
    前記ヘッドによって、対象データ・トラックの隣接データ・トラックを前記記録面に書き込み、
    前記ヘッドを使用して前記記録面に予め記録されているデータの前記隣接データ・トラックによるエラー・レート変化を測定して、前記隣接データ・トラックのイレーズ・バンド端を特定し、
    前記対象データ・トラックの両側隣接データ・トラックのイレーズ・バンド端の間隔を基準として、前記記録面のデータ・トラック・ピッチを決定する、
    ディスク・ドライブ装置の製造方法。
  9. 前記記録面には、予めサーボ・トラックが記録されており、
    前記隣接データ・トラックをターゲット・サーボ・アドレスに書き込み、
    前記イレーズ・バンド端をサーボ・データにより特定し、
    サーボ・データにより表される前記イレーズ・バンド端の間隔を基準として、データ・トラック・ピッチを決定する、
    請求項8に記載のディスク・ドライブ装置の製造方法。
  10. 前記対象となるデータ・トラックの両側の隣接データ・トラックを、それぞれのターゲット位置に書き込み、
    前記両側の隣接データ・トラックのイレーズ・バンド端を特定し、
    前記特定した両側隣接データ・トラックのイレーズ・バンド端の間隔を基準として、データ・トラック・ピッチを決定する、
    請求項8に記載のディスク・ドライブ装置の製造方法。
  11. 前記間隔が基準値と一致するように前記データ・トラック・ピッチを決定する、
    請求項8に記載のディスク・ドライブ装置の製造方法。
  12. 前記対象となるデータ・トラックを書き込み、
    前記隣接データ・トラックによる前記対象となるデータ・トラックのエラー・レート変化を測定して、前記隣接データ・トラックのイレーズ・バンド端をサーボ・データにより特定する、
    請求項8に記載のディスク・ドライブ装置の製造方法。
  13. 前記対象となるデータ・トラックを書き込み、
    前記対象となるデータ・トラックの両側の隣接データ・トラックを書き込み、
    前記両側の隣接データ・トラックによる前記対象となるデータ・トラックのエラー・レート変化をそれぞれ測定して、前記間隔を特定する、
    請求項8に記載のディスク・ドライブ装置の製造方法。
  14. 前記決定されるデータ・トラック・ピッチに、コマンドに応じて前記隣接データ・トラックを書き込むときのヘッドのふれ幅が含まれている、
    請求項8に記載のディスク・ドライブ装置の製造方法。
  15. ヘッドの特性に応じて記録面のデータ・トラック・ピッチを決定するディスク・ドライブ装置であって、
    データを記憶するディスクの記録面と、
    対象データ・トラックの隣接データ・トラックを前記記録面に書き込むヘッドと、
    前記記録面に予め記録されているデータの前記隣接データ・トラックによるエラー・レート変化を測定して、前記隣接データ・トラックのイレーズ・バンド端を特定し、前記対象データ・トラックの両側隣接データ・トラックのイレーズ・バンド端の間隔を基準として、前記記録面のデータ・トラック・ピッチを決定するコントローラと、
    を有するディスク・ドライブ装置。
JP2007238585A 2007-09-13 2007-09-13 ディスク・ドライブ装置、その製造方法及びディスク・ドライブ装置のデータ・トラック・ピッチを決定する方法 Pending JP2009070496A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007238585A JP2009070496A (ja) 2007-09-13 2007-09-13 ディスク・ドライブ装置、その製造方法及びディスク・ドライブ装置のデータ・トラック・ピッチを決定する方法
US12/283,479 US7706096B2 (en) 2007-09-13 2008-09-11 Disk drive device manufacturing method thereof, and method for specifying data track pitch for the disk drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007238585A JP2009070496A (ja) 2007-09-13 2007-09-13 ディスク・ドライブ装置、その製造方法及びディスク・ドライブ装置のデータ・トラック・ピッチを決定する方法

Publications (1)

Publication Number Publication Date
JP2009070496A true JP2009070496A (ja) 2009-04-02

Family

ID=40454191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007238585A Pending JP2009070496A (ja) 2007-09-13 2007-09-13 ディスク・ドライブ装置、その製造方法及びディスク・ドライブ装置のデータ・トラック・ピッチを決定する方法

Country Status (2)

Country Link
US (1) US7706096B2 (ja)
JP (1) JP2009070496A (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2753130A (en) * 1953-09-01 1956-07-03 Sjogren Gosta Tage Filip Line fishing implement
JP2010140537A (ja) * 2008-12-10 2010-06-24 Hitachi Global Storage Technologies Netherlands Bv ハードディスクドライブの製造方法及び製造システム
US8102613B2 (en) * 2009-09-25 2012-01-24 Hitachi Global Storage Technologies Netherlands B.V. System, method and apparatus for determining track pitch in a hard disk drive to satisfy the requirements of both off-track capacity and adjacent track erasure
US7982989B1 (en) * 2009-12-23 2011-07-19 Western Digital (Fremont), Llc Method and system for measuring magnetic interference width
US8125723B1 (en) 2010-03-05 2012-02-28 Wd Media, Inc. Predictive characterization of adjacent track erasure in recording media
US8125724B1 (en) 2010-03-11 2012-02-28 Wd Media, Inc. Predictive characterization of adjacent track erasure in recording media
US8395857B2 (en) 2010-11-08 2013-03-12 HGST Netherlands B.V. Simulating discrete track media with continuous media for head evaluation
US8711499B1 (en) * 2011-03-10 2014-04-29 WD Media, LLC Methods for measuring media performance associated with adjacent track interference
US8885283B1 (en) 2011-11-03 2014-11-11 Western Digital Technologies, Inc. Disk drive adjusting write block size based on detected vibration
US8717695B1 (en) 2012-02-29 2014-05-06 Western Digital (Fremont), Llc Characterizing head parameters of a disk drive by evaluating track profile of an overwritten track
US8625224B1 (en) 2012-05-04 2014-01-07 Western Digital (Fremont), Llc Characterizing magnetic recording parameters of a disk drive by evaluating track profile of dual microtracks
US8736995B1 (en) 2013-09-05 2014-05-27 Seagate Technology Llc Identifying track pitch capability of a recording device
US9286159B2 (en) 2013-11-06 2016-03-15 HGST Netherlands B.V. Track-band squeezed-sector error correction in magnetic data storage devices
US9229813B2 (en) 2014-03-06 2016-01-05 HGST Netherlands B.V. Error correction with on-demand parity sectors in magnetic data storage devices
US9117463B1 (en) * 2014-06-23 2015-08-25 Western Digital Technologies, Inc. Data storage device erasing multiple adjacent data tracks to recover from inter-track interference

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004213736A (ja) * 2002-12-27 2004-07-29 Toshiba Corp ディスク記憶装置及び同装置におけるヘッド位置決め方法
JP2005100611A (ja) * 2003-09-04 2005-04-14 Matsushita Electric Ind Co Ltd 磁気ディスク装置、並びにそのデータトラックピッチ決定方法及びセルフサーボライト方法
JP2005216443A (ja) * 2004-01-30 2005-08-11 Fujitsu Ltd 記録ディスク駆動装置の書き込み動作制御方法および書き込み動作制御プログラム
JP2006114142A (ja) * 2004-10-15 2006-04-27 Fujitsu Ltd 情報記憶装置、制御方法及びプログラム
JP2007164887A (ja) * 2005-12-13 2007-06-28 Fujitsu Ltd 磁気ディスク装置の試験方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102154A (ja) * 1994-09-30 1996-04-16 Toshiba Corp 磁気ディスク装置
JP4018771B2 (ja) * 1997-03-17 2007-12-05 富士通株式会社 磁気ディスク、磁気記録再生方法及び磁気ディスク装置
US6023389A (en) * 1997-06-18 2000-02-08 International Business Machines Corporation Method and apparatus for writing servo bursts with compensation for erase bands in a direct access storage device
US6052250A (en) * 1997-08-25 2000-04-18 Western Digital Corporation Disk drive with separately determined servo and data track pitch
JP3648395B2 (ja) * 1998-12-02 2005-05-18 株式会社日立グローバルストレージテクノロジーズ 磁気ディスク装置
US6611395B1 (en) * 1999-11-03 2003-08-26 Hitachi Global Storage Technologies Netherlands B.V. Rotating media recording system with adaptive track density
US20020075585A1 (en) * 2000-09-27 2002-06-20 Luong Peter Tri Automated drive-level microtrack profile using variable gain amplifier
JP2002237142A (ja) 2001-02-09 2002-08-23 Matsushita Electric Ind Co Ltd 磁気記憶媒体、そのトラックピッチ制御方法、その媒体のための磁気記録装置
US6765744B2 (en) * 2001-03-30 2004-07-20 Kevin Arthur Gomez Track pitch control using head offset measurement for self-servowriting tracks in a disc drive
US7170700B1 (en) * 2001-04-19 2007-01-30 Maxtor Corporation Method of determining side track erasure in a disk drive
US6885514B1 (en) * 2001-07-31 2005-04-26 Western Digital Technologies, Inc. Method of manufacturing and disk drive produced by measuring the read and write widths and varying the track pitch in the servo-writer
SG125065A1 (en) * 2001-10-31 2006-09-29 Seagate Technology Llc Method to determine encroachment at spin stand
US7283316B2 (en) * 2002-01-17 2007-10-16 Maxtor Corporation Vertical track zoning for disk drives
US20040125496A1 (en) * 2002-12-30 2004-07-01 Thorsten Schmidt Methods for setting thresholds for rotatable storage media
JP4184190B2 (ja) 2003-08-21 2008-11-19 富士通株式会社 ヘッド制御方法および記録装置
US7095575B2 (en) * 2003-09-04 2006-08-22 Matsushita Electric Industrial Co., Ltd. Magnetic disk apparatus, method for determining data track pitch, and self-servo write method
JP2007087547A (ja) * 2005-09-26 2007-04-05 Fujitsu Ltd 磁気ディスク装置
US20070279788A1 (en) * 2006-05-31 2007-12-06 Toshiba America Information Systems, Inc. Method and apparatus to perform defect scanning
US7535667B2 (en) * 2007-06-04 2009-05-19 Samsung Electronics Co., Ltd. Erase band compensated offset servo trimming

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004213736A (ja) * 2002-12-27 2004-07-29 Toshiba Corp ディスク記憶装置及び同装置におけるヘッド位置決め方法
JP2005100611A (ja) * 2003-09-04 2005-04-14 Matsushita Electric Ind Co Ltd 磁気ディスク装置、並びにそのデータトラックピッチ決定方法及びセルフサーボライト方法
JP2005216443A (ja) * 2004-01-30 2005-08-11 Fujitsu Ltd 記録ディスク駆動装置の書き込み動作制御方法および書き込み動作制御プログラム
JP2006114142A (ja) * 2004-10-15 2006-04-27 Fujitsu Ltd 情報記憶装置、制御方法及びプログラム
JP2007164887A (ja) * 2005-12-13 2007-06-28 Fujitsu Ltd 磁気ディスク装置の試験方法

Also Published As

Publication number Publication date
US7706096B2 (en) 2010-04-27
US20090073594A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
JP2009070496A (ja) ディスク・ドライブ装置、その製造方法及びディスク・ドライブ装置のデータ・トラック・ピッチを決定する方法
US7595955B2 (en) Disk drive device and method for error recovery procedure therefor
JP2009087405A (ja) ディスク・ドライブ装置、その製造方法及びクリアランス調整するヒータのヒータ・パワー値を設定する方法
JP2006252593A (ja) 磁気ディスク装置、制御方法及び製造方法
JP2009158016A (ja) ディスクドライブ装置および位置決め制御方法
US7573669B2 (en) Method and apparatus for writing pattern on disk
JP2008234745A (ja) ヘッドとディスクとの間のクリアランス調整量を制御する制御値を決定する方法、ディスク・ドライブ装置及びその製造方法
US7567404B1 (en) Method for measuring actuator velocity during self-servo-write
JP2008293625A (ja) ヘッドとディスクとの間のクリアランスを制御する制御値を決定する装置、その方法及び磁気ディスク・ドライブ装置
JP2003249044A (ja) 磁気ディスクドライブシステム
JP2008146724A (ja) ディスク記憶装置及びサーボテスト方法
JP2009015889A (ja) ディスク記憶装置及びサーボ書込み方法
JP2011123966A (ja) ディスクへサーボ・ライト・トラックを書き込む方法及びディスク・ドライブ
JP2007280566A (ja) ディスク記録面のイレーズ処理方法及びディスク・ドライブ装置
JP2007115324A (ja) ディスク装置
JP4818098B2 (ja) ディスク記憶装置及びサーボ書込み方法
JP2009129482A (ja) 生産効率を考慮したディスク・ドライブ装置のテスト方法及び製造方法
JP2007294050A (ja) パターン書き込み方法及び磁化消去状態の判定方法
JP2008027524A (ja) 磁気ディスク上にパターンを書き込む方法及びその装置
JP2006185478A (ja) 磁気ディスク装置及び記録再生方法
US8098448B2 (en) Method for setting zone format of a disk for storing data and disk drive
JP4739027B2 (ja) データ記憶装置及びその欠陥領域管理方法
JP2009070521A (ja) ディスク・ドライブ装置及びディスク・ドライブ装置のデータ・トラック・フォーマットを決定する方法
JP2010118131A (ja) ディスク・ドライブ装置、クリアランス測定方法及びサーボ・パターンの書き込み方法
JP2010040146A (ja) サーボ・パターンの書き込み方法及びディスク・ドライブ装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120118

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130709