JP2009060747A - Dc−dcコンバータ - Google Patents

Dc−dcコンバータ Download PDF

Info

Publication number
JP2009060747A
JP2009060747A JP2007227459A JP2007227459A JP2009060747A JP 2009060747 A JP2009060747 A JP 2009060747A JP 2007227459 A JP2007227459 A JP 2007227459A JP 2007227459 A JP2007227459 A JP 2007227459A JP 2009060747 A JP2009060747 A JP 2009060747A
Authority
JP
Japan
Prior art keywords
voltage
power converter
converter
switching element
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007227459A
Other languages
English (en)
Inventor
Kazuo Iwatani
一生 岩谷
Junichi Ito
淳一 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology NUC
TDK Lambda Corp
Original Assignee
Nagaoka University of Technology NUC
TDK Lambda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology NUC, TDK Lambda Corp filed Critical Nagaoka University of Technology NUC
Priority to JP2007227459A priority Critical patent/JP2009060747A/ja
Publication of JP2009060747A publication Critical patent/JP2009060747A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

【課題】電力損失の低減を図り、さらには高効率化を達成できるDC−DCコンバータを提供する。
【解決手段】負荷5への大部分の電力が、主電力変換器61から発生する交流電圧Vaによって供給され、残りの電力分について、補助電力変換器71のスイッチング素子72を、可変したデューティでスイッチング動作させることで、負荷5への出力電圧Voを制御できる。その際、主電力変換器61は、スイッチング素子62のスイッチング動作に際してデューティを固定して、常に最適な動作点で動作させることができ、電力損失が少ない。また、補助電力変換器71は、負荷5への出力電力が小さく、DC−DCコンバータ51全体に対する電力損失は少ない。
【選択図】図1

Description

本発明は、直流入力電圧を所望の直流出力電圧に変換するDC−DCコンバータに関し、特に電力損失を小さくし、高効率化を達成するためのDC−DCコンバータに関する。
近年、基幹型通信用電源として、直流入力電圧をDC48Vの直流出力電圧に変換して、負荷である通信機器に供給できるDC−DCコンバータが多用されている。特に、入力側と出力側とを絶縁し、且つ効率の高い回路方式としては、絶縁トランスの漏れインダクタンスを利用した共振形のDC−DCコンバータが有効であるが、最適条件を維持したまま出力電圧を制御することが困難である。
こうした問題に対し、出力電圧を制御しつつ、絶縁トランスの漏れインダクタンスを利用して、絶縁トランスの入力側巻線に直流入力電圧を断続的に印加させるスイッチング素子のソフトスイッチングを達成した共振形のDC−DCコンバータが、例えば特許文献1などに開示されている。
図8は、こうした出力電圧を制御可能なDC−DCコンバータの概略構成を示したものである。同図において、1は入力側と出力側との間を電気的に絶縁しつつ、直流電源2から入力端子3A,3Bに印加する直流入力電圧Viを、所望の直流出力電圧Voに変換して出力端子4A,4Bから負荷5に供給する絶縁形のDC−DCコンバータである。このDC−DCコンバータ1は、前記直流入力電圧Viを正負交互の矩形状パルスからなる交流電圧Vacに変換する絶縁型の電力変換器11と、電力変換器11からの交流電圧Vacを整流して、整流電圧Vdcを出力する整流回路21と、整流回路21からの整流電圧Vdcを平滑して、出力端子4A,4Bに直流出力電圧Voを出力する出力フィルタ31と、を備えている。
DC−DCコンバータ1の各部の構成について、さらに詳しく説明すると、絶縁型の電力変換器11は、例えばFETなどの半導体素子で構成されるスイッチング素子12と、絶縁トランス13とによるインバータを内蔵している。このスイッチング素子12と絶縁トランス13の個数や接続形態については、特に限定しない。スイッチング素子12は、図示しない制御部からのパルス駆動信号を受けて、オンまたはオフするいわゆるスイッチング動作を行なうようになっている。また絶縁トランス13は、その入力(一次)側巻線と出力(二次)側巻線が電気的には絶縁するものの、磁気的には結合して設けられており、前記スイッチング素子12のスイッチング動作に伴い、直流電源2からの直流入力電圧Viを断続的に絶縁トランス13の入力側巻線に印加することで、絶縁トランス13の出力側巻線から、入力側巻線と出力側巻線との巻線比に応じたピークレベルの交流電圧Vacが発生するようになっている。
整流回路21は、例えばFETなどの半導体素子で構成される整流用のスイッチング素子22を内蔵している。このスイッチング素子22は、前記電力変換器11を構成するスイッチング素子12と同期してスイッチング動作するようになっている。整流回路21の整流素子としては、他にダイオードを用いることも考えられるが、ダイオードの導通損によるDC−DCコンバータ1の効率低下を避けるためには、本例のようなスイッチング素子22を用いるのが好ましい。こうしたスイッチング素子22のスイッチング動作に伴い、前記交流電圧Vacが全波整流され、整流回路21から整流電圧Vdcが出力される。
出力フィルタ31は、逆L形に接続されたチョークコイル32とコンデンサ33とによるフィルタ回路で構成される。これにより、整流回路21からの整流電圧Vdcが平滑され、出力端子4A,4Bから負荷5に直流出力電圧Voが出力される。
特開2000−295844号公報
上述した従来のDC−DCコンバータでは、次のような問題点がある。
負荷5に供給する直流出力電圧Voを制御するためには、例えばこの直流出力電圧Voを監視しながら、制御回路が電力変換器11のスイッチング素子12に供給するパルス駆動信号のデューティ(時比率)または周波数を可変させることが必要である。しかし、こうした制御の下では、例えば前記デューティを50%に固定するなどの最適な動作条件で、電力変換器11を常に動作させることは難しく、負荷5に供給する全ての電力を電力変換器11が取り扱う現状では、DC−DCコンバータ1として電力損失の増大が免れず、高効率化が達成できないという問題を有していた。
そこで本発明は、こうした問題に鑑み、電力損失の低減を図り、さらには高効率化を達成できるDC−DCコンバータを提供することをその目的とする。
本発明のDC−DCコンバータは、上記目的を達成するために、直流入力電圧を第1の交流電圧に変換する主電力変換器と、前記主電力変換器よりも小さな電力容量を有し、前記直流入力電圧を第2の交流電圧に変換する補助電力変換器と、前記第1の交流電圧に前記第2の交流電圧を重畳した電圧を整流平滑し、負荷に直流出力電圧を供給する整流平滑部とにより構成され、前記入力と出力との間を絶縁するトランスを有し、前記主電力変換器は主スイッチング素子を内蔵し、固定したデューティで前記スイッチング素子をスイッチング動作することで、前記第1の交流電圧を生成するように構成し、前記補助電力変換器は補助スイッチング素子を内蔵し、可変したデューティで前記補助スイッチング素子をスイッチング動作することで、前記第2の交流電圧を生成するように構成している。
また、本発明のDC−DCコンバータは、上記目的を達成するために、直流入力電圧を第1の交流電流に変換する主電力変換器と、前記主電力変換器よりも小さな電力容量を有し、前記直流入力電圧を第2の交流電流に変換する補助電力変換器と、前記第1の交流電流に前記第2の交流電流を重畳した電流を整流平滑し、負荷に直流出力電流を供給する整流平滑部とにより構成され、前記入力と出力との間を絶縁するトランスを有し、前記主電力変換器は主スイッチング素子を内蔵し、固定したデューティで前記スイッチング素子をスイッチング動作することで、前記第1の交流電流を生成するように構成し、前記補助電力変換器は補助スイッチング素子を内蔵し、可変したデューティで前記補助スイッチング素子をスイッチング動作することで、前記第2の交流電流を生成するように構成している。
上記何れの構成においても、前記補助電力変換器を複数台接続するのが好ましい。
また、前記補助スイッチング素子のスイッチング周波数は、前記主スイッチング素子のスイッチング周波数のn倍であることが好ましい。
請求項1の発明によれば、負荷への大部分の電力が、主電力変換器から発生する交流電圧によって供給され、残りの電力分について、補助電力変換器の補助スイッチング素子を、可変したデューティでスイッチング動作させることで、負荷への出力電圧を制御することが可能になる。その際、主電力変換器は、主スイッチング素子のスイッチング動作に際してデューティを固定して、常に最適な動作点で動作させることが可能であるため、電力損失が少ない。また、補助電力変換器は、可変したデューティで補助スイッチング素子をスイッチング動作させているものの、負荷への出力電力は小さく、DC−DCコンバータ全体に対する電力損失は少ない。そのため、DC−DCコンバータとして電力損失の低減を図ることができ、さらには高効率化を達成できる。
請求項2の発明によれば、負荷への大部分の電力が、主電力変換器から発生する交流電流によって供給され、残りの電力分について、補助電力変換器の補助スイッチング素子を、可変したデューティでスイッチング動作させることで、負荷への出力電流を制御することが可能になる。その際、主電力変換器は、主スイッチング素子のスイッチング動作に際してデューティを固定して、常に最適な動作点で動作させることが可能であるため、電力損失が少ない。また、補助電力変換器は、可変したデューティで補助スイッチング素子をスイッチング動作させているものの、負荷への出力電力は小さく、DC−DCコンバータ全体に対する電力損失は少ない。そのため、DC−DCコンバータとして電力損失の低減を図ることができ、さらには高効率化を達成できる。
請求項3の発明によれば、整流平滑部で得られる整流電圧または整流電流のリップル成分をより少なくして、整流平滑部ひいてはDC−DCコンバータの更なる小型化と、高速応答を達成できる。
請求項4の発明によれば、補助電力変換器の出力電力が小さいため、補助スイッチング素子におけるスイッチング損失の増加は少なく、補助スイッチング素子を高速にスイッチングさせることにより、補助電力変換器を小型化できる。また、整流平滑部で得られる整流電圧または整流電流のリップル成分がより少なくなり、整流平滑部ひいてはDC−DCコンバータの更なる小型化と、高速応答を達成できる。
以下、本発明における電源装置の好ましい実施形態について、添付図面を参照しながら詳細に説明する。なお、従来例と同一の構成には同一の符号を付し、共通する箇所の説明は重複を避けるため、極力省略する。
図1は、本発明の好ましい一実施例で提案する絶縁形のDC−DCコンバータ51の概略構成を示したものである。同図において、DC−DCコンバータ51は、入力側と出力側との間を電気的に絶縁しつつ、直流電源2から入力端子3A,3Bに印加する直流入力電圧Viを、所望の直流出力電圧Voに変換して出力端子4A,4Bから負荷5に供給するもので、前記直流入力電圧Viを正負交互の矩形状パルスからなる交流電圧Vaに変換する絶縁型の主電力変換器61と、直流入力電圧Viを正負交互の矩形状パルスからなる別な交流電圧Vbに変換する絶縁型の補助電力変換器71と、前記主電力変換器61からの交流電圧Vaに補助電力変換器71からの交流電圧Vbを重畳した加算電圧Vabを整流して、整流電圧Vdcを出力する整流回路21と、整流回路21からの整流電圧Vdcを平滑して、出力端子4A,4Bに直流出力電圧Voを出力する出力フィルタ31と、をそれぞれ備えている。
負荷5に大部分の電力を供給する主回路としての主電力変換器61は、例えばFETなどの半導体素子で構成されるスイッチング素子62と、絶縁トランス63とによるインバータを内蔵している。このスイッチング素子62と絶縁トランス63の個数や接続形態については、特に限定しない。スイッチング素子62は、図示しないパルス生成部からのパルス駆動信号を受けて、固定した周波数とデューティでスイッチング動作するようになっている。また絶縁トランス63は、その入力側巻線と出力側巻線が電気的には絶縁するものの、磁気的には結合して設けられており、前記スイッチング素子62のスイッチング動作に伴い、直流電源2からの直流入力電圧Viを受けて、絶縁トランス63の入力側巻線に直流電圧を断続的に印加することで、絶縁トランス63の出力側巻線から、入力側巻線と出力側巻線との巻線比に応じたピークレベルの交流電圧Vaが発生するようになっている。
一方、補助電力変換器71は、負荷5に供給する直流出力電圧Voを制御するための補助回路として設けられ、例えばFETなどの半導体素子で構成されるスイッチング素子72と、絶縁トランス73とによるインバータを内蔵している。このスイッチング素子72と絶縁トランス73の個数や接続形態については、特に限定しない。スイッチング素子72は、図示しない制御部からのパルス駆動信号を受けて、可変したデューティ(周波数はスイッチング素子62と同一)でスイッチング動作するようになっている。また絶縁トランス73は、その入力側巻線と出力側巻線が電気的には絶縁するものの、磁気的には結合して設けられており、前記スイッチング素子72のスイッチング動作に伴い、直流電源2からの直流入力電圧Viを受けて、絶縁トランス73の入力側巻線に直流電圧を断続的に印加することで、絶縁トランス73の出力側巻線から、入力側巻線と出力側巻線との巻線比に応じたピークレベルの交流電圧Vbが発生するようになっている。
本実施例では、主電力変換器61からの交流電圧Vaと、補助電力変換器71からの交流電圧Vbとを加算した加算電圧Vabが、整流回路21に印加されるように、主電力変換器61と補助電力変換器71の出力側が直列に接続される。つまり、ここでは所望の出力電圧Voを得るために、主電力変換器61からの交流電圧Vaに対して、補助電力変換器71から必要分だけ交流電圧Vbを重畳する構成となっている。また、主電力変換器61と補助電力変換器71の各電力容量(交流電圧Vaおよび交流電圧Vb)は異なり、電力容量の大きな主電力変換器61で、負荷5に大部分の主電力を供給する一方、電力容量の小さな補助電力変換器71からの交流電圧Vbを、主電力変換器61からの交流電圧Vaに重畳することで、残りの必要な電力分の出力電圧Voを制御する。その他の構成は、従来例で示した図8と共通している。
次に、上記構成について、その作用を図2および図3の波形図に基づき説明する。図2は、主電力変換器61からの交流電圧Vaの平均値Vaaveよりも、整流回路21に印加される加算電圧Vabの平均値Vabaveを高くしたい場合(Vaave<Vabave)の波形図であり、また図3は、交流電圧Vaの平均値Vaaveよりも、加算電圧Vabの平均値Vabaveを低くしたい場合(Vaave>Vabave)の波形図である。また、これらの各図において、最上段は交流電圧Vaの経時変化を示しており、以下、交流電圧Vb,加算電圧Vab,整流電圧Vdcの各経時変化を示している。
入力端子3A,3B間に直流電源2を接続し、出力端子4A,4B間に負荷5を接続した状態で、DC−DCコンバータ51を動作させると、主電力変換器61を構成するスイッチング素子62が、常に固定した周波数とデューティでスイッチング動作され、絶縁トランス63の入力側巻線に正負交互の直流電圧が断続的に印加される。ここでいう直流電圧とは、直流電源2からの直流入力電圧Viそのものであってもよいし、直流入力電圧Viをコンデンサなどで分圧した電圧であってもよい。また、スイッチング素子62に供給するパルス駆動信号のデューティは、主電力変換器61として最も電力損失を小さくできる0.5とするのが好ましい。これにより、図2や図3の波形図に示すように、主電力変換器61からは、同じ時間幅で正負交互に切替る交流電圧Vaが発生する。
一方、DC−DCコンバータ51の動作時には、補助電力変換器71を構成するスイッチング素子72も、前記スイッチング素子62と同じ周波数で、且つ出力電圧Voを制御するために可変したデューティでスイッチング動作され、絶縁トランス73の入力側巻線に正負交互の直流電圧が断続的に印加される。ここでいう直流電圧とは、直流電源2からの直流入力電圧Viそのものであってもよいし、直流入力電圧Viをコンデンサなどで分圧した電圧であってもよい。これにより、図2や図3の波形図に示すように、補助電力変換器71からは、前記交流電圧Vaに同期しつつ、スイッチング素子72に与えられるパルス駆動信号のデューティに依存した時間幅で、正負交互に切替る交流電圧Vbが発生する。
ここで制御部は、所望の出力電圧Voが得られるように、スイッチング素子72に供給するパルス駆動信号のデューティを可変すると共に、交流電圧Vaの平均値Vaaveよりも加算電圧Vabの平均値Vabaveを高くする場合には、交流電圧Vaと同極性で交流電圧Vbが発生するように、また交流電圧Vaの平均値Vaaveよりも加算電圧Vabの平均値Vabaveを低くする場合には、交流電圧Vaと逆極性で交流電圧Vbが発生するように、スイッチング素子72にパルス駆動信号を供給する。
これを具体的に説明すると、交流電圧Vaの平均値Vaaveよりも加算電圧Vabの平均値Vabaveを高くしたい場合は、図2に示すように、正極性の電圧レベルVa1の交流電圧Vaが発生しているときに、正極性の電圧レベルVb1の交流電圧Vbを発生させ、負極性の電圧レベル−Va1の交流電圧Vaが発生しているときに、負極性の電圧レベル−Vb1の交流電圧Vbを発生させる。整流回路21への加算電圧Vabは、これらの交流電圧Va,Vbを加算したものとなるので、これを全波整流して得た整流電圧Vdcは、交流電圧VbとしてVb1または−Vb1の電圧レベルが発生している期間中に、Va1+Vb1となり、出力フィルタ31を通して負荷5に供給する最終的な出力電圧Voは、交流電圧Vaの電圧レベルVa1よりも高くなる。
一方、交流電圧Vaの平均値Vaaveよりも加算電圧Vabの平均値Vabaveを低くしたい場合は、図3に示すように、正極性の電圧レベルVa1の交流電圧Vaが発生しているときに、負極性の電圧レベル−Vb1の交流電圧Vbを発生させ、負極性の電圧レベル−Va1の交流電圧Vaが発生しているときに、正極性の電圧レベルVb1の交流電圧Vbを発生させる。整流回路21への加算電圧Vabは、これらの交流電圧Va,Vbを加算したものとなるので、これを全波整流して得た整流電圧Vdcは、交流電圧VbとしてVb1または−Vb1の電圧レベルが発生している期間中に、Va1−Vb1となり、出力フィルタ31を通して負荷5に供給する最終的な出力電圧Voは、交流電圧Vaの電圧レベルVa1よりも低くなる。
このように本実施例では、DC−DCコンバータ51から負荷5への大部分の電力が、主電力変換器61から発生する交流電圧Vaによって供給され、残りの電力分について、補助電力変換器71のスイッチング素子72を、可変したデューティでスイッチング動作させることで、負荷5への出力電圧Voを調整するようになっている。ここで、交流電圧Vbの電圧レベルVb1,−Vb1は、出力電圧Voの可変範囲に応じて、補助電力変換器71にて設定すればよい。主電力変換器61は、負荷5に供給する電力の大部分を取り扱うものの、スイッチング素子62のスイッチング動作に際してデューティを固定して、常に最適な動作点で動作させることが可能であるため、電力損失が少ない。また、補助電力変換器71は、可変したデューティでスイッチング素子72をスイッチング動作させているが、負荷5への出力電力は小さく、DC−DCコンバータ51全体に対する電力損失は少ない。そのため、DC−DCコンバータ51として高効率化が期待できる。また、図2や図3の各波形図からも明らかなように、交流電圧Vaは常時電圧レベルVa1または電圧レベル−Va1となっており、そこに別な交流電圧Vbが重畳されるので、従来例に比べて整流回路21で得られる整流電圧Vdcの電圧変化量(リップル成分)が少なく、出力フィルタ31ひいてはDC−DCコンバータ51の小型化と、高速応答を達成できる。
次に、図1に示すDC−DCコンバータ51の具体的な回路図を図4で説明する。同図において、主電力変換器61は、入力端子3A,3Bの両端間に接続する入力コンデンサ65A,65Bの直列回路と、同じく入力端子3A,3Bの両端間に接続するFETからなるスイッチング素子62A,62Bと、入力コンデンサ65A,65Bの接続点とスイッチング素子62A,62Bの接続点との間に、その入力側巻線66が接続される絶縁トランス63と、からなる電流共振形ハーフブリッジコンバータとして構成される。
ここでの入力コンデンサ65A,65Bは同じ静電容量を有し、直流入力電圧Viの半値(Vi/2)が、それぞれの入力コンデンサ65A,65Bの両端間に発生するようになっている。また絶縁トランス63は、2個の出力側巻線67A,67Bを有する。なお68A,68Bは、スイッチング素子62A,62Bのドレイン・ソース間にそれぞれ逆並列接続されるダイオードで、これはスイッチング素子62A,62Bに内蔵するボディダイオードとして設けられる。
補助電力変換器71は、入力端子3A,3Bの両端間にブリッジ接続されたFETからなる4個のスイッチング素子72A,72B,72C,72Dと、絶縁トランス73とによるフルブリッジコンバータで構成される。スイッチング素子72A,72Bの直列回路と、スイッチング素子72C,72Dの直列回路が、共に入力端子3A,3Bの両端間に接続され、絶縁トランス73の入力側巻線76が、スイッチング素子72A,72Bの接続点と、スイッチング素子72C,72Dの接続点との間に接続される。また絶縁トランス73は、2個の出力側巻線77A,77Bを有する。なお78A,78B,78C,78Dは、スイッチング素子72A,72B,72C,72Dのドレイン・ソース間にそれぞれ逆並列接続されるダイオードで、これはスイッチング素子72A,72B,72C,72Dに内蔵するボディダイオードとして設けられる。
絶縁トランス63,73の出力側には、前述した整流回路21と出力フィルタ31がそれぞれ設けられる。整流回路21は、一方の出力側巻線67A,77Aの直列回路に直列接続する第1の整流ダイオード23Aと、他方の出力側巻線67B,77Bの直列回路に直列接続する第2の整流ダイオード23Bとにより構成される。勿論、DC−DCコンバータ51全体の効率を向上させるために、整流ダイオード23A,23Bに代わり、それぞれ整流用のスイッチング素子22を用いてもよい。図4に示す回路例では、整流ダイオード23A,23Bのカソードどうしが接続され、この接続点に出力フィルタ31を構成するチョークコイル32の一端が接続され、チョークコイル32の他端と、絶縁トランス63の出力側巻線67A,67Bの接続点との間に、コンデンサ33が接続される。そして、このコンデンサ33の両端に出力端子4A,4Bがそれぞれ接続される。
主電力変換器61では、前述した固定したデューティで、各スイッチング素子62A,62Bを交互にオン・オフさせるパルス駆動信号が、当該スイッチング素子62A,62Bにそれぞれ与えられる。またここでは、絶縁トランス63の漏れインダクタンスと、コンデンサ65A,65Bとによる電流共振を実現するために、スイッチング素子62A,62Bが共にオフになるデッドタイムが、前述のパルス駆動信号によって設けられる。これにより、各スイッチング素子62A,62Bは、そのドレイン・ソース間に電流が流れない状態で、オン・オフの切替が行なわれるゼロ電流スイッチングが達成される。
そして、スイッチング素子62Aがオンし、スイッチング素子62Bがオフすると、コンデンサ65Aの両端間に発生する直流電圧が絶縁トランス63の入力側巻線66のドット側端子に印加され、一方の出力側巻線67Aのドット側端子に誘起された電圧が、正極性の電圧レベルVa1の交流電圧Vaとして発生する。一方、スイッチング素子62Bがオンし、スイッチング素子62Aがオフすると、今度はコンデンサ65Bの両端間に発生する直流電圧が絶縁トランス63の入力側巻線66の非ドット側端子に印加され、他方の出力側巻線67Bの非ドット側端子に誘起された電圧が、負極性の電圧レベル−Va1の交流電圧Vaとして発生するようになっている。
また、補助電力変換器71は、対をなすスイッチング素子72A,72Dと、対をなすスイッチング素子72B,72Cが交互にオン・オフを繰り返し、且つスイッチング素子72A,72Bが同時オフ、またはスイッチング素子72C,72Dが同時オフになるデッドタイムを設けながら、これらのスイッチング素子72A,72B,72C,72Dに可変したデューティでパルス駆動信号が与えられる。ここではスイッチング素子72A,72Dがオンし、スイッチング素子72B,72Cがオフすると、直流入力電圧Viが絶縁トランス73の入力側巻線76のドット側端子に印加され、一方の出力側巻線77Aのドット側端子に誘起された電圧が、正極性の電圧レベルVb1の交流電圧Vbとして発生する。一方、スイッチング素子72B,72Cがオンし、スイッチング素子72A,72Dがオフすると、今度はコンデンサ65Bの両端間に発生する直流電圧が絶縁トランス73の入力側巻線76の非ドット側端子に印加され、他方の出力側巻線77Bの非ドット側端子に誘起された電圧が、負極性の電圧レベル−Vb1の交流電圧Vbとして発生するようになっている。
そして図4の提案回路では、電流共振形ハーフブリッジコンバータで構成される主電力変換器61と、フルブリッジコンバータで構成される補助電力変換器71とを用い、2つの絶縁トランス63,73により、主電力変換器61から出力する交流電圧Vaと、補助電力変換器71から出力する交流電圧Vbとを直列に重畳することで、負荷5に供給する出力電圧Voを制御する。この結果、負荷5に供給する電力のうち、目標とする出力電圧Voの差分のみを補助電力変換器71で変換する。これによって、大部分の電力は補助電力変換器71を通過させることなく、高効率な共振形の主電力変換器61を通過することになり、主電力変換器61および補助電力変換器71全体としての変換器容量の低減と、損失の低減を実現できる。しかも、ここでは、共振形の高効率を維持した上で、補助電力変換器71からの交流電圧Vbにより出力電圧Voを可変できる利点もある。
図5は、図4に示す提案回路の実験結果を示したものである。この図5では、負荷5が102Wで、入力電圧ViをDC36V〜60Vに変化させた時に、効率と損失がどのように変化するのかをプロットしている。なお、実験での出力電圧VoはDC48Vとなるように制御され、また各スイッチング素子62A,62Bのスイッチング周波数は286kHzであった。特に入力電圧Viが基準電圧であるDC48Vに近いところで、92.1%の高い効率が得られている。またこのときの損失は、10W以下に低減している。
図6は、DC−DCコンバータ51として最適な動作点において、主電力変換器61を構成する絶縁トランス63の入力側巻線66を流れる入力電流iTと、スイッチング素子62Bのゲート・ソース間電圧Vgsとの経時変化を示したものである。同図に示すように、主電力変換器61の共振周波数に合せて、スイッチング素子62Bのオン・オフが切替り、ゼロ電流スイッチング(ZCS)が実現できていることがわかる。これにより、スイッチング素子62Bのスイッチング損失を低減できる。ここでは、共振周波数が286kHzとして、主電力変換器61の各素子を選定している。
図7は、DC−DCコンバータ51の別な変形例を示したものである。図1に示す例では、負荷5の出力電圧Voを制御する関係で、主電力変換器61および補助電力変換器71は、共に電圧出力形となっていたが、図7に示す例では、負荷5の出力電流Ioを制御するために、主電力変換器61および補助電力変換器71が、共に電流出力形の構成となっている。この場合、主電力変換器61で得られる交流電流iaと、補助電力変換器71で得られる交流電流ibを加算した加算電流iabが、整流回路21に印加されるように、主電力変換器61と補助電力変換器71の出力側が並列に接続される。それ以外の各部の構成は、図1に示すものと共通しており、上述の説明で交流電圧Vaを交流電流iaとし、交流電圧Vbを交流電流ibとし、加算電圧Vabを加算電流iabとし、整流電圧Vdcを整流電流idcとし、出力電圧Voを出力電流Ioとして、各々置き換えることで、電圧出力形の主電力変換器61および補助電力変換器71と同様の作用効果を発揮する。
以上のように本実施例では、直流入力電圧Viを第1の交流電圧Vaに変換する主電力変換器61と、主電力変換器61よりも小さな電力容量を有し、直流入力電圧Viを第2の交流電圧Vbに変換する補助電力変換器71と、第1の交流電圧Vaに第2の交流電圧Vbを重畳した電圧(加算電圧Vab)を整流平滑し、負荷5に直流出力電圧Voを供給する整流平滑部としての整流回路21および出力フィルタ31とにより構成され、前記入力と出力との間を絶縁するトランスとしての絶縁トランス63,73を有し、主電力変換器61は主スイッチング素子であるスイッチング素子62を内蔵し、固定したデューティでスイッチング素子62をスイッチング動作することで、第1の交流電圧Vaを生成するように構成する一方で、補助電力変換器71は補助スイッチング素子である別なスイッチング素子72を内蔵し、可変したデューティでスイッチング素子72をスイッチング動作することで、第2の交流電圧Vbを生成するように構成している。
この場合、負荷5への大部分の電力が、主電力変換器61から発生する交流電圧Vaによって供給され、残りの電力分について、補助電力変換器71のスイッチング素子72を、可変したデューティでスイッチング動作させることで、負荷5への出力電圧Voを制御することが可能になる。その際、主電力変換器61は、スイッチング素子62のスイッチング動作に際してデューティを固定して、常に最適な動作点で動作させることが可能であるため、電力損失が少ない。また、補助電力変換器71は、可変したデューティでスイッチング素子72をスイッチング動作させているものの、負荷5への出力電力は小さく、DC−DCコンバータ51全体に対する電力損失は少ない。そのため、DC−DCコンバータ51として電力損失の低減を図ることができ、さらには高効率化を達成できる。
また、図7に示すように、直流入力電圧Viを第1の交流電流iaに変換する主電力変換器61と、主電力変換器61よりも小さな電力容量を有し、直流入力電圧Viを第2の交流電流ibに変換する補助電力変換器71と、第1の交流電流iaに第2の交流電流ibを重畳した電流(加算電流iab)を整流平滑し、負荷5に直流出力電流Ioを供給する整流平滑部としての整流回路21および出力フィルタ31とにより構成され、前記入力と出力との間を絶縁するトランスとしての絶縁トランス63,73を有し、主電力変換器61は主スイッチング素子であるスイッチング素子62を内蔵し、固定したデューティでスイッチング素子62をスイッチング動作することで、第1の交流電流iaを生成するように構成する一方で、補助電力変換器71は補助スイッチング素子である別なスイッチング素子72を内蔵し、可変したデューティでスイッチング素子72をスイッチング動作することで、第2の交流電流ibを生成するように構成してもよい。
この場合も、負荷5への大部分の電力が、主電力変換器61から発生する交流電流iaによって供給され、残りの電力分について、補助電力変換器71のスイッチング素子72を、可変したデューティでスイッチング動作させることで、負荷5への出力電流Ioを制御することが可能になる。その際、主電力変換器61は、スイッチング素子62のスイッチング動作に際してデューティを固定して、常に最適な動作点で動作させることが可能であるため、電力損失が少ない。また、補助電力変換器71は、可変したデューティでスイッチング素子72をスイッチング動作させているものの、負荷5への出力電力は小さく、DC−DCコンバータ51全体に対する電力損失は少ない。そのため、DC−DCコンバータ51として電力損失の低減を図ることができ、さらには高効率化を達成できる。
他の好ましい例として、図1や図7に示す補助電力変換器71を複数台接続してもよい。この場合、電圧出力形の補助電力変換器71では、主電力変換器61と各補助電力変換器71の出力側を直列に接続し、電流出力形の補助電力変換器71では、主電力変換器61と各補助電力変換器71の出力側を並列に接続する。こうすると、DC−DCコンバータ51としての電力損失は増加するものの、整流回路21で得られる整流電圧Vdcまたは整流電流idcのリップル成分をより少なくして、出力フィルタ31ひいてはDC−DCコンバータ51の更なる小型化と、高速応答を達成できる。
また、補助電力変換器71を構成するスイッチング素子72のスイッチング周波数が、主電力変換器61を構成するスイッチング素子62のスイッチング周波数のn倍(但し、nは1以上の自然数)となるようなパルス駆動信号を、制御部からスイッチング素子72に供給してもよい。この場合、補助電力変換器71の出力電力が小さいため、スイッチング素子72におけるスイッチング損失の増加は少なく、スイッチング素子72を高速にスイッチングさせることにより、補助電力変換器71を小型化できる。また、整流回路21で得られる整流電圧Vdcまたは整流電流idcのリップル成分がより少なくなり、出力フィルタ31ひいてはDC−DCコンバータ51の更なる小型化と、高速応答を達成できる。
なお、本発明は上記実施例に限定されるものではなく、本発明の要旨の範囲において種々の変形実施が可能である。主電力変換器61や補助電力変換器71は、図4に示す提案回路以外の構成であってもかまわない。
本発明の好ましい一実施例におけるDC−DCコンバータの回路構成図である。 同上、図1における各部の動作波形図である。 同上、図1における各部の動作波形図である。 同上、図1の具体的な回路図である。 同上、図4の提案回路で、入力電圧を変化させた時の効率と損失の変化を示す特性図である。 同上、図4の提案回路で、主電力変換器の入力電流と、主電力変換器を構成するスイッチング素子のゲート・ソース間電圧との関係を示す波形図である。 本発明の別な変形例におけるDC−DCコンバータの回路構成図である。 従来例におけるDC−DCコンバータの回路構成図である。
符号の説明
21 整流回路(整流平滑部)
31 出力フィルタ(整流平滑部)
61 主電力変換器
62 スイッチング素子(主スイッチング素子)
63 絶縁トランス(トランス)
71 補助電力変換器
72 スイッチング素子(補助スイッチング素子)
73 絶縁トランス(トランス)

Claims (4)

  1. 直流入力電圧を第1の交流電圧に変換する主電力変換器と、前記主電力変換器よりも小さな電力容量を有し、前記直流入力電圧を第2の交流電圧に変換する補助電力変換器と、前記第1の交流電圧に前記第2の交流電圧を重畳した電圧を整流平滑し、負荷に直流出力電圧を供給する整流平滑部とにより構成され、前記入力と出力との間を絶縁するトランスを有し、
    前記主電力変換器は主スイッチング素子を内蔵し、固定したデューティで前記スイッチング素子をスイッチング動作することで、前記第1の交流電圧を生成するように構成し、前記補助電力変換器は補助スイッチング素子を内蔵し、可変したデューティで前記補助スイッチング素子をスイッチング動作することで、前記第2の交流電圧を生成するように構成したことを特徴とするDC−DCコンバータ。
  2. 直流入力電圧を第1の交流電流に変換する主電力変換器と、前記主電力変換器よりも小さな電力容量を有し、前記直流入力電圧を第2の交流電流に変換する補助電力変換器と、前記第1の交流電流に前記第2の交流電流を重畳した電流を整流平滑し、負荷に直流出力電流を供給する整流平滑部とにより構成され、前記入力と出力との間を絶縁するトランスを有し、
    前記主電力変換器は主スイッチング素子を内蔵し、固定したデューティで前記スイッチング素子をスイッチング動作することで、前記第1の交流電流を生成するように構成し、前記補助電力変換器は補助スイッチング素子を内蔵し、可変したデューティで前記補助スイッチング素子をスイッチング動作することで、前記第2の交流電流を生成するように構成したことを特徴とするDC−DCコンバータ。
  3. 前記補助電力変換器を複数台接続したことを特徴とする請求項1または2記載のDC−DCコンバータ。
  4. 前記補助スイッチング素子のスイッチング周波数が、前記主スイッチング素子のスイッチング周波数のn倍(但し、nは1以上の自然数)であることを特徴とする請求項1または2記載のDC−DCコンバータ。
JP2007227459A 2007-09-03 2007-09-03 Dc−dcコンバータ Pending JP2009060747A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007227459A JP2009060747A (ja) 2007-09-03 2007-09-03 Dc−dcコンバータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007227459A JP2009060747A (ja) 2007-09-03 2007-09-03 Dc−dcコンバータ

Publications (1)

Publication Number Publication Date
JP2009060747A true JP2009060747A (ja) 2009-03-19

Family

ID=40555960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007227459A Pending JP2009060747A (ja) 2007-09-03 2007-09-03 Dc−dcコンバータ

Country Status (1)

Country Link
JP (1) JP2009060747A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150046823A (ko) * 2013-10-22 2015-05-04 페어차일드코리아반도체 주식회사 전원 공급 장치 및 그 구동 방법
JP2017511679A (ja) * 2014-04-15 2017-04-20 デンマークス テクニスク ユニヴェルジテイト 共振dc−dc電力コンバータアセンブリ
WO2018048057A1 (ko) * 2016-09-06 2018-03-15 엠투파워 주식회사 Dc-dc 컨버터 및 이를 포함하는 2단 전력단 컨버터
DE102017220289A1 (de) 2016-11-15 2018-05-17 Omron Automotive Electronics Co., Ltd. Spannungsumwandlungsvorrichtung
JP2019075948A (ja) * 2017-10-19 2019-05-16 株式会社三社電機製作所 直流電源装置
JP2020145808A (ja) * 2019-03-05 2020-09-10 Tdk株式会社 スイッチング電源装置
JP2020145810A (ja) * 2019-03-05 2020-09-10 Tdk株式会社 スイッチング電源装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168617A (ja) * 1984-09-12 1986-04-09 Hitachi Ltd マスタ・スレイブ方式電源装置
JPH04210776A (ja) * 1990-12-13 1992-07-31 Tabuchi Denki Kk スイッチング電源
JPH11187662A (ja) * 1997-12-24 1999-07-09 Isuzu Motors Ltd Dc−dcコンバータ
JP2001211642A (ja) * 2000-01-26 2001-08-03 Sanken Electric Co Ltd スイッチング電源装置
JP2002223565A (ja) * 2001-01-24 2002-08-09 Nissin Electric Co Ltd Dc−dcコンバータ
JP2002291248A (ja) * 2001-03-29 2002-10-04 Nagano Japan Radio Co フライバック型スイッチング電源装置
JP2003153538A (ja) * 2001-11-14 2003-05-23 Mitsubishi Electric Corp 電源装置
JP2005224069A (ja) * 2004-02-09 2005-08-18 Matsushita Electric Ind Co Ltd スイッチング電源装置およびそれを用いた電子機器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168617A (ja) * 1984-09-12 1986-04-09 Hitachi Ltd マスタ・スレイブ方式電源装置
JPH04210776A (ja) * 1990-12-13 1992-07-31 Tabuchi Denki Kk スイッチング電源
JPH11187662A (ja) * 1997-12-24 1999-07-09 Isuzu Motors Ltd Dc−dcコンバータ
JP2001211642A (ja) * 2000-01-26 2001-08-03 Sanken Electric Co Ltd スイッチング電源装置
JP2002223565A (ja) * 2001-01-24 2002-08-09 Nissin Electric Co Ltd Dc−dcコンバータ
JP2002291248A (ja) * 2001-03-29 2002-10-04 Nagano Japan Radio Co フライバック型スイッチング電源装置
JP2003153538A (ja) * 2001-11-14 2003-05-23 Mitsubishi Electric Corp 電源装置
JP2005224069A (ja) * 2004-02-09 2005-08-18 Matsushita Electric Ind Co Ltd スイッチング電源装置およびそれを用いた電子機器

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150046823A (ko) * 2013-10-22 2015-05-04 페어차일드코리아반도체 주식회사 전원 공급 장치 및 그 구동 방법
KR102136564B1 (ko) 2013-10-22 2020-07-23 온세미컨덕터코리아 주식회사 전원 공급 장치 및 그 구동 방법
JP2017511679A (ja) * 2014-04-15 2017-04-20 デンマークス テクニスク ユニヴェルジテイト 共振dc−dc電力コンバータアセンブリ
WO2018048057A1 (ko) * 2016-09-06 2018-03-15 엠투파워 주식회사 Dc-dc 컨버터 및 이를 포함하는 2단 전력단 컨버터
DE102017220289A1 (de) 2016-11-15 2018-05-17 Omron Automotive Electronics Co., Ltd. Spannungsumwandlungsvorrichtung
JP2019075948A (ja) * 2017-10-19 2019-05-16 株式会社三社電機製作所 直流電源装置
JP2020145808A (ja) * 2019-03-05 2020-09-10 Tdk株式会社 スイッチング電源装置
JP2020145810A (ja) * 2019-03-05 2020-09-10 Tdk株式会社 スイッチング電源装置
JP7225930B2 (ja) 2019-03-05 2023-02-21 Tdk株式会社 スイッチング電源装置
JP7275667B2 (ja) 2019-03-05 2023-05-18 Tdk株式会社 スイッチング電源装置

Similar Documents

Publication Publication Date Title
CN108028605B (zh) 具有保持操作的转换器
US8125158B2 (en) Insulation type AC-DC converter and LED DC power supply device using the same
US7405955B2 (en) Switching power supply unit and voltage converting method
JP4844674B2 (ja) スイッチング電源装置
JP5488722B2 (ja) スイッチング電源装置
JP4910525B2 (ja) 共振型スイッチング電源装置
JP5633778B2 (ja) スイッチング電源装置
KR100772658B1 (ko) 능동 클램프 전류원 푸쉬풀 직류-직류 컨버터
JP5088386B2 (ja) スイッチング電源装置
KR100966972B1 (ko) 가변 스위칭 주파수 방식 전원 공급 장치
JP4935499B2 (ja) 直流変換装置
WO2015004989A1 (ja) 双方向dc/dcコンバータ
JP4232845B1 (ja) 直流変換装置
JP2008206224A (ja) 直流変換装置
KR20070038921A (ko) 스위칭 전원 회로
JP2009060747A (ja) Dc−dcコンバータ
JP5857489B2 (ja) 共振コンバータ
JP6667750B1 (ja) Dc−dcコンバータ
US11296607B2 (en) DC-DC converter
JP2007221915A (ja) Dc−dcコンバータ
JP2008131793A (ja) 直流変換装置
JP4635584B2 (ja) スイッチング電源装置
JP5500438B2 (ja) 負荷駆動装置
KR20160101808A (ko) 풀브리지 dc-dc 컨버터
KR20210064958A (ko) Dc-dc 컨버터

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20100818

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20100818

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Effective date: 20120416

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20120612

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

A02 Decision of refusal

Effective date: 20130423

Free format text: JAPANESE INTERMEDIATE CODE: A02